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In this chapter, we present and discuss a new generalized proportional conflict redistribution rule. The Dezert-Smarandache extension of the Demster-Shafer theory has relaunched the studies on the combination rules especially for the management of the conflict. Many combination rules have been proposed in the last few years. We study here different combination rules and compare them in terms of decision on didactic example and on generated data. Indeed, in real applications, we need a reliable decision and it is the final results that matter. This chapter shows that a fine proportional conflict redistribution rule must be preferred for the combination in the belief function theory.

Introduction

Many fusion theories have been studied for the combination of the experts opinions such as voting rules [START_REF] Xu | Methods of Combining Multiple Classifiers and Their Application to Handwriting Recognition[END_REF][START_REF] Lam | Application of Majority Voting to Pattern Recognition: An Analysis of Its Behavior and Performance[END_REF], possibility theory [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF][START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF], and belief function theory [START_REF] Dempster | Uper and Lower probabilities induced by a multivalued mapping[END_REF][START_REF] Shafer | A mathematical theory of evidence[END_REF]. We can divide all these fusion approaches into four steps: the modelization, the parameters estimation depending on the model (not always necessary), the combination, and the decision. The most difficult step is presumably the first one. If both possibility and probability-based theories can modelize imprecise and uncertain data at the same time, in a lot of applications, experts can express their certitude on their perception of the reality. As a result, probabilities theory such as the belief function theory is more adapted. In the context of the belief function theory, the Dempster-Shafer theory (DST) [START_REF] Dempster | Uper and Lower probabilities induced by a multivalued mapping[END_REF][START_REF] Shafer | A mathematical theory of evidence[END_REF] is based on the use of functions defined on the power set 2 Θ (that is the set of all the disjunctions of the elements of Θ). Hence the experts can express their opinion not only on Θ but also on 2 Θ as in the probabilities theory. The extension of this power set into the hyper power set D Θ (that is the set of all the disjunctions and conjunctions of the elements of Θ) proposed by Dezert and Smarandache [START_REF] Dezert | Foundations for a new theory of plausible and paradoxical reasoning[END_REF], gives more freedom to the expert. This extension of the DST is called Dezert-Smarandache Theory (DSmT). This extension has relaunched the studies on the combination rules. The combination of multiple sources of information has still been an important subject of research since the proposed combination rule given by Dempster [START_REF] Dempster | Uper and Lower probabilities induced by a multivalued mapping[END_REF]. Hence, many solutions have been studied in order to manage the conflict [START_REF] Yager | On the Dempster-Shafer Framework and New Combinaison Rules[END_REF][START_REF] Dubois | Representation and combination of uncertainty with belief functions and possibility measures[END_REF][START_REF] Inagaki | Independence between safety-control policy and multiplesensors schemes via dempster-shafer theory[END_REF][START_REF] Ph | Belief Functions: the Disjunctive Rule of Combination and the Generalized Bayesian Theorem[END_REF][START_REF] Ph | The α-junctions: the commutative and associative non interactive combination operators applicable to belief functions[END_REF][START_REF] Lefevre | Belief function combination and conflict management[END_REF][START_REF] Lefevre | Reply to the Comments of R. Haenni on the paper "Belief function combination and conflict management[END_REF][START_REF] Smarandache | Information fusion based on new proportional conflict redistribution rules[END_REF][START_REF] Florea | Adaptative combination rule and proportional conflict redistribution rule for information fusion[END_REF]. These combination rules are the most of time compared following the properties of the operator such as associativity, commutativity, linearity, anonymity and on special and simple cases of experts responses [START_REF] Ph | Belief Functions: the Disjunctive Rule of Combination and the Generalized Bayesian Theorem[END_REF][START_REF] Sun | Applications and Advances of DSmT for Information Fusion, chapter On Conjunctive and disjunctive combination rules of evidence[END_REF][START_REF] Daniel | Applications and Advances of DSmT for Information Fusion, chapter Comparison between DSm and MinC combination rules[END_REF].

In real applications, we need a reliable decision and it is the final results that matter. Hence, for a given application, the best combination rule is the rule given the best results. For the decision step, different functions such as credibility, plausibility and pignistic probability [START_REF] Shafer | A mathematical theory of evidence[END_REF][START_REF] Ph | The Combination of Evidence in the Transferable Belief Model[END_REF][START_REF] Dezert | The Generalized Pignistic Transformation[END_REF] are usually used.

In this chapter, we discuss and compare different combination rules especially managing the conflict. First, the principles of the DST and DSmT are recalled. We present the formalization of the belief function models, different rules of combination and decision. One the combination rule (PCR5) proposed by [START_REF] Smarandache | Information fusion based on new proportional conflict redistribution rules[END_REF] for two experts is mathematically one of the best for the proportional redistribution of the conflict applicable in the context of the DST and the DSmT. In the section 3, we propose a new extension of this rule for more experts, the PCR6 rule. This new rule is compared to the generalized PCR5 rule given in [START_REF] Dezert | Dsmt: A new paradigm shift for information fusion[END_REF], in the section 4. Then this section presents a comparison of different combination rules in terms of decision in a general case, where the experts opinions are randomly simulated. We demonstrate also that some combination rules are different in terms of decision, in the case of two experts and two classes.

Theory Bases

Belief Function Models

The belief functions or basic belief assignments m are defined by the mapping of the power set 2 Θ onto [0, 1], in the DST, and by the mapping of the hyper-power set D Θ onto [0, 1], in the DSmT, with:

m(∅) = 0, (1) 
and

X∈2 Θ m(X) = 1, (2) 
in the DST, and

X∈D Θ m(X) = 1, (3) 
in the DSmT. The equation [START_REF] Daniel | Applications and Advances of DSmT for Information Fusion, chapter Comparison between DSm and MinC combination rules[END_REF] is the hypothesis at a closed world [START_REF] Shafer | A mathematical theory of evidence[END_REF][START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF]. We can define the belief function only with:

m(∅) > 0, (4) 
and the world is open [START_REF] Ph | The Combination of Evidence in the Transferable Belief Model[END_REF]. In a closed world, we can also add one element in order to propose an open world. These simple conditions in equation ( 1) and ( 2) or ( 1) and (3), give a large panel of definitions of the belief functions, which is one the difficulties of the theory. The belief functions must therefore be chosen according to the intended application.

Combination rules

Many combination rules have been proposed in the last few years in the context of the belief function theory ([25, 7, 19, 21, 15, 18], etc.). In the context of the DST, the combination rule most used today seems to be the conjunctive rule given by [START_REF] Ph | The Combination of Evidence in the Transferable Belief Model[END_REF] for all X ∈ 2 Θ by:

m c (X) = Y1∩...∩YM =X M j=1 m j (Y j ), (5) 
where Y j ∈ 2 Θ is the response of the expert j, and m j (Y j ) the associated belief function.

However, the conflict can be redistributed on partial ignorance like in the Dubois and Prade rule [START_REF] Dubois | Representation and combination of uncertainty with belief functions and possibility measures[END_REF], a mixed conjunctive and disjunctive rule given for all X ∈ 2 Θ , X = ∅ by:

m DP (X) = Y1∩...∩YM =X M j=1 m j (Y j ) + Y 1 ∪ ... ∪ Y M = X Y 1 ∩ ... ∩ Y M = ∅ M j=1 m j (Y j ), (6) 
where Y j ∈ 2 Θ is the response of the expert j, and m j (Y j ) the associated belief function.

In the context of the DSmT, the conjunctive rule can be used for all X ∈ D Θ and Y ∈ D Θ . The rule given by the equation ( 6), called DSmH [START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF], can be write in D Θ for all X ∈ D Θ , X ≡ ∅1 by: m H (X) = m j (Y j ), [START_REF] Dubois | Representation and combination of uncertainty with belief functions and possibility measures[END_REF] where Y j ∈ D Θ is the response of the expert j, m j (Y j ) the associated belief function, and u(Y ) is the function giving the union that compose Y [START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion, chapter Combination of beliefs on hybrid DSm models[END_REF]. For

example if Y = (A ∩ B) ∪ (A ∩ C), u(Y ) = A ∪ B ∪ C.
If we want to take the decision only on the elements in Θ, some rules propose to redistribute the conflict on these elements. The most accomplished is the PCR5 given in [START_REF] Smarandache | Information fusion based on new proportional conflict redistribution rules[END_REF] for two experts and for X ∈ D Θ , X = ∅ by:

m P CR5 (X) = m c (X)+ Y ∈D Θ , X∩Y ≡∅ m 1 (X) 2 m 2 (Y ) m 1 (X) + m 2 (Y ) + m 2 (X) 2 m 1 (Y ) m 2 (X) + m 1 (Y ) , (8) 
where m c (.) is the conjunctive rule given by the equation [START_REF] Dezert | The Generalized Pignistic Transformation[END_REF].

Note that more rules managing the conflict have been proposed [START_REF] Yager | On the Dempster-Shafer Framework and New Combinaison Rules[END_REF][START_REF] Inagaki | Independence between safety-control policy and multiplesensors schemes via dempster-shafer theory[END_REF][START_REF] Lefevre | Belief function combination and conflict management[END_REF][START_REF] Lefevre | Reply to the Comments of R. Haenni on the paper "Belief function combination and conflict management[END_REF][START_REF] Smarandache | Information fusion based on new proportional conflict redistribution rules[END_REF][START_REF] Florea | Adaptative combination rule and proportional conflict redistribution rule for information fusion[END_REF].

The comparison of all the combination rules is not the scope of this paper.

Decision rules

The decision is a difficult task. No measures are able to provide the best decision in all the cases. Generally, we consider the maximum of one of the three functions: credibility, plausibility, and pignistic probability.

In the context of the DST, the credibility function is given for all X ∈ 2 Θ by: bel

(X) = Y ∈2 X ,Y =∅ m(Y ). ( 9 
)
The plausibility function is given for all X ∈ 2 Θ by:

pl(X) = Y ∈2 Θ ,Y ∩X =∅ m(Y ) = bel(Θ) -bel(X c ), ( 10 
)
where X c is the complementary of X. The pignistic probability, introduced by [START_REF] Ph | Constructing the pignistic probability function in a context of uncertainty[END_REF], is here given for all X ∈ 2 Θ , with X = ∅ by: betP

(X) = Y ∈2 Θ ,Y =∅ |X ∩ Y | |Y | m(Y ) 1 -m(∅) . (11) 
Generally the maximum of these functions is taken on the elements in Θ, but we will give the values on all the focal elements.

In the context of the DSmT the corresponding generalized functions have been proposed [START_REF] Dezert | The Generalized Pignistic Transformation[END_REF][START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF]. The generalized credibility Bel is defined by:

Bel(X) = Y ∈D Θ ,Y ⊆X,Y ≡∅ m(Y ) (12) 
The generalized plausibility Pl is defined by:

Pl(X) = Y ∈D Θ ,X∩Y ≡∅ m(Y ) (13) 
The generalized pignistic probability is given for all X ∈ D Θ , with X = ∅ is defined by:

GPT(X) = Y ∈D Θ ,Y ≡∅ C M (X ∩ Y ) C M (Y ) m(Y ), (14) 
where C M (X) is the DSm cardinality corresponding to the number of parts of X in the Venn diagram of the problem [START_REF] Dezert | The Generalized Pignistic Transformation[END_REF][START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF]. If the credibility function provides a pessimist decision, the plausibility function is often too optimist. The pignistic probability is often taken as a compromise. We present the three functions for our models.

In the equation ( 8), the PCR5 is given for two experts only. Two extensions for three experts and two classes are given in [START_REF] Smarandache | Proportional conflict redistribution rules for information fusion[END_REF], and the equation for M experts, for X ∈ D Θ , X ≡ ∅ is given in [START_REF] Dezert | Dsmt: A new paradigm shift for information fusion[END_REF] by:

m PCR5 (X) = m c (X) + M i=1 m i (X) (Y σ i (1) ,...,Y σ i (M-1) )∈(D Θ ) M-1 M-1 ∩ k=1 Y σ i (k) ∩X≡∅ M-1 j=1 m σi(j) (Y σi(j) )1l j>i Y σ i (j) =X m σi(j) (Y σi(j) ) Z∈{X,Y σ i (1) ,...,Y σ i (M-1) } Y σ i (j) =Z m σi(j) (Y σi (j) ).T (X=Z,mi(X))
, [START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF] where σ i counts from 1 to M avoiding i:

σ i (j) = j if j < i, σ i (j) = j + 1 if j ≥ i, (16) 
and:

T (B, x) = x if B is true, T (B, x) = 1 if B is false. (17) 
We propose another generalization of the equation ( 8) for M experts, for X ∈ D Θ , X = ∅:

m PCR6 (X) = m c (X) + ( 18 
) M i=1 m i (X) 2 M-1 ∩ k=1 Y σ i (k) ∩X≡∅ (Y σ i (1) ,...,Y σ i (M-1) )∈(D Θ ) M-1        M-1 j=1 m σi(j) (Y σi(j) ) m i (X)+ M-1 j=1 m σi(j) (Y σi(j) )       
, where σ is defined like in [START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion, chapter Combination of beliefs on hybrid DSm models[END_REF].

m i (X) + M-1 j=1 m σi(j) (Y σi (j) ) = 0, m c
is the conjunctive consensus rule given by the equation ( 5).

We can propose two more generalized rules given by:

m PCR6f (X) = m c (X) + (19) M i=1 m i (X)f (m i (X)) M-1 ∩ k=1 Y σ i (k) ∩X≡∅ (Y σ i (1) ,...,Y σ i (M-1) )∈(D Θ ) M-1        M-1 j=1 m σi(j) (Y σi(j) ) f (m i (X))+ M-1 j=1 f (m σi(j) (Y σi(j) ))       
, with the same notations that in the equation [START_REF] Smarandache | Information fusion based on new proportional conflict redistribution rules[END_REF], and f an increasing function defined by the mapping of [0, 1] onto IR + . The second generalized rule is given by:

m PCR6g (X) = m c (X) + M i=1 M-1 ∩ k=1 Y σ i (k) ∩X≡∅ (Y σ i (1) ,...,Y σ i (M-1) )∈(D Θ ) M-1 m i (X) M-1 j=1 m σi(j) (Y σi(j) ) Y σ i (j) =X 1l j>i g m i (X)+ Y σ i (j) =X m σi(j) (Y σi(j) ) Z∈{X,Y σ i (1) ,...,Y σ i (M-1) } g   Y σ i (j) =Z m σi(j) (Y σi(j) ) + m i (X)1l X=Z   , (20) 
with the same notations that in the equation ( 18), and g an increasing function defined by the mapping of [0, 1] onto IR + . For instance, we can choose f (x) = g(x) = x α , with α ∈ IR + . Algorithms for the Dubois and Prade (equation ( 6)), the PCR5 (equation ( 15)), the PCR6 (equation ( 18)), the PCR6f (equation ( 19)), and the PCR6g (equation ( 20)) combinations are given in appendix.

Remarks on the generalized PCR rules

• M-1 ∩ k=1 Y k ∩ X ≡ ∅ means that M-1 ∩ k=1 Y k ∩ X is considered as a conflict by the model: m i (X) M-1 k=1 m σi(k) (Y σi(k)
) has to be redistributed on X and the Y k .

• The second term of the equation ( 18) is null if

M-1 ∩ k=1 Y k ∩ X ≡ ∅, hence in a general model in D Θ for all X and Y ∈ D Θ , X ∩ Y = ∅.
The PCR5 and PCR6 are exactly the conjunctive rule: there is never any conflict. However in

2 2 Θ , ∃X, Y ∈ 2 2 Θ such as X ∩ Y = ∅.
• One of the principal problem of the PCR5 and PCR6 rules is the non associativity. That is is a real problem for dynamic fusion. Take for example three experts and two classes giving: With the generalized PCR6 rule we obtain:

∅ A B Θ Expert 1 0 1 0 0 Expert 2
m (123) (A) = 1/3, m (123) (B) = 2/3,
a more intuitive result.

• The conflict is not only redistributed on singletons. For example if three experts give:

A ∪ B B ∪ C A ∪ C Θ Expert 1 0.7 0 0 0.3 Expert 2 0 0 0.6 0.4 Expert 3 0 0.5 0 0.5
The conflict is given here by 0.7×0.6×0.5=0.21, with the generalized PCR6 rule we obtain: 

m (123) (A) = 0.21, m ( 

Discussion on the decision following the combination rules

In order to compare the previous rules in this section, we study the decision on the basic belief assignments obtained by the combination. Hence, we consider here the induced order on the singleton given by the plausibility, credibility, pignistic probability functions, or directly by the masses. Indeed, in order to compare the combination rules, we think that the study on the induced order of these functions is more informative than the obtained masses values. All the combination rules presented here are not idempotent, for instance for the conjunctive non-normalized rule:

∅ A B C m 1 0 0.6 0.3 0.1 m 1 0 0.6 0.3 0.
1 m 11 0.54 0.36 0.09 0.01 So, if we only compare the rules looking the obtained masses, we have normalize them with the auto-conflict given by the combination of a mass with itself. However, if m 1 (A) > m 1 (B), then m 11 (A) > m 11 (B).

Extending the PCR rule for more than two experts

In [START_REF] Smarandache | Proportional conflict redistribution rules for information fusion[END_REF], two approaches are presented in order to extend the PCR5 rule. The second approach suggests to fuse the first two experts and then fuse the third expert. However the solution depend on the order of the experts because of the non-associativity of the rule, and so it is not satisfying.

The first approach proposed in [START_REF] Smarandache | Proportional conflict redistribution rules for information fusion[END_REF], that is the equation [START_REF] Smarandache | Applications and Advances of DSmT for Information Fusion[END_REF] proposes to redistribute the conflict about the singleton, e.g. if we have m 1 (A)m 3 (B)m 2 (A∪ B), the conflict is redistributed on A and B proportionally to m 1 (A) and m 3 (B). But this approach do not give solution if we have for instance m 1 (A ∪ B)m 2 (B ∪ C)m 3 (A ∪ C) where the conflict is A ∩ B ∩ C and we have no idea on the masses for A, B and C.

Moreover, if we have m ( A)m 2 (B)m 3 (B) the proposed solution distribute the conflict to A and B with respect to m 1 (A) and m 2 (B)m 3 (B) and not m 2 (B) + m 3 (B) that is more intuitive. For example, if m 1 (A) = m 2 (B) = m 3 (B) = 0.5, 0.0833 and 0.0416 is added to the masses A and B respectively, while there is more consensus on B than on A and we would expected the contrary: 0.0416 and 0.0833 could be added to the masses A and B respectively.

What is more surprising are the results given by PCR5 and PCR6 on the following example: As all the masses are on singletons, neither PCR5 nor PCR6 can put any mass on total or partial ignorance. So the fusion result is always a probability, and bel(X) = betP(X) = pl(X).

Conflict is total: conjunctive rule does not provide any information. PCR5 and PCR6 give the following results:

A B C D E F G PCR5 
0.1915 0.2376 0.1542 0.1042 0.1042 0.1042 0.1042 PCR6 0.5138 0.1244 0.0748 0.0718 0.0718 0.0718 0.0718 So decision is "A" according to PCR6, and decision is "B" according to PCR5. However, for any subset of 2, 3 or 4 experts, decision is "A" for any of these combination rules.

Stability of decision process

The space where experts can define their opinions on which n classes are present in a given tile is a part of

[0, 1] n : E = [0, 1] n ∩ (x 1 , ..., x n ) ∈ IR/ n i=1 x i ≤ 1 .
In order to study the different combination rules, and the situations where they differ, we use a Monte Carlo method, considering the masses given on each class (a X ) by each expert, as uniform variables, filtering them by the condition X∈Θ a X ≤ 1 for one expert. Thus, we measure the proportion of situations where decision differs between the conjunctive combination rule, and the PCR, where conflict is proportionally distributed.

We can not choose A ∩ B, as the measure of A ∩ B is always lower (or equal with probability 0) than the measure of A or B. In the case of two classes, A∪B is the ignorance, and is usually excluded (as it always maximizes bel, pl, betP, Bel, Pl and GPT). We restrict the possible choices to singletons, A, B, etc. Therefore, it is equivalent to tag the tile by the most credible class (maximal for bel), the most plausible (maximal for pl), the most probable (maximal for betP) or the heaviest (maximal for m), as the only focal elements are singletons, Θ and ∅.

The only situation where the total order induced by the masses m on singletons can be modified is when the conflict is distributed on the singletons, as is the case in the PCR method. Therefore, the specificity of PCR6 appears mostly with more than two classes, and the different combination rules are nearly equivalent when decision must be taken within two possible classes.

For two experts and two classes, the mixed rule (DP) and the conjunctive rule (DST) are equivalent. For three experts, we use the generalized PCR6 [START_REF] Smarandache | Information fusion based on new proportional conflict redistribution rules[END_REF].

The percentage of decision differences defines a distance between fusion methods: d(PCR6,DST) ≤ d(PCR6,DP) + d(DP,DST). The two other triangular inequalities are also true. As we have d(P CR6, DST ) ≥ d(PCR6,DP) and d(PCR,DST) ≥ d(DP,DST) for any number of experts or classes, we can conclude that the mixed rule lies between the PCR6 method and the conjunctive rule.

The figure 1 shows the density of conflict within E. The left part shows the conflict for two random experts and a number of classes of 2, 3 or 7. Plain lines Conflict is more important in this subspace where decision changes with the method used, mostly because a low conflict usually means a clear decision. The measure on the best class is often very different than measure on the second best class.

Dashed green line represents the conflict density for 3 classes when there is a difference between conjunctive rule and mixed rule. Dotted green line represents the conflict density for 3 classes when there is a difference between PCR6 rule and mixed rule. We can see that an high conflict level emphasizes mostly a decision change between conjunctive and mixed rule.

Calculi for two experts and two classes

For the "two experts and two classes" case, it is difficult to characterize analytically the stability of the decision process between the conjunctive rule and the PCR rule (the PCR5 and PCR6 rules are the same in the two experts case). Note that in this case the DSmH rule given by the equation ( 7), the mixed rule given by the equation ( 6) and the conjunctive rule given by the equation ( 5) are equal. However, we can easily resolve few cases where the final decision does not depend on the chosen combination rule.

Standard repartition of expert's opinions is given by this table:

∅ A B Θ Expert 1 0 a 1 b 1 1 -a 1 -b 1 Expert 2 0 a 2 b 2 1 -a 2 -b 2
The conjunctive rule gives:

m c (∅) = a 1 b 2 + a 2 b 1 , m c (A) = a 1 + a 2 -a 1 a 2 -a 1 b 2 -a 2 b 1 = a 1 + a 2 -a 1 a 2 -m c (∅), m c (B) = b 1 + b 2 -b 1 b 2 -a 1 b 2 -a 2 b 1 = b 1 + b 2 -b 1 b 2 -m c (∅), m c (Θ) = (1 -a 1 -b 1 )(1 -a 2 -b 2 ).
PCR gives:

m P CR (A) = m(A) + a 2 1 b 2 a 1 + b 2 + a 2 2 b 1 a 2 + b 1 , m P CR (B) = m(B) + a 1 b 2 2 a 1 + b 2 + a 2 b 2 1 a 2 + b 1 , m P CR (∅) = 0 and m P CR (Θ) = m c (Θ).
The stability of the decision is reached if we do not have: 

   m c (A) > m c (B)
That means for all a 1 , a 2 , b 1 and b 2 ∈ [0, 1]:

               a 2 + a 1 (1 -a 2 ) -b 1 (b 2 -1) -b 2 > 0 a 1 (1 -a 2 ) + a 2 (1 + b 1 1 - 2 (1+a2/b1) -b 1 (1 -b 2 ) -b 2 1 + a 1 (1 - 2 (1+b2/a1)) < 0 a 1 + b 1 ∈ [0, 1] a 2 + b 2 ∈ [0, 1] or                a 2 + a 1 (1 -a 2 ) -b 1 (b 2 -1) -b 2 < 0 a 1 (1 -a 2 ) + a 2 (1 + b 1 1 - 2 (1+a2/b1) -b 1 (1 -b 2 ) -b 2 1 + a 1 (1 - 2 (1+b2/a1)) > 0 a 1 + b 1 ∈ [0, 1] a 2 + b 2 ∈ [0, 1] (22) 
This system of inequation is difficult to solve, but with the help of a Monte Carlo method, considering the weights a 1 , a 2 , b 1 and b 2 , as uniform variables we can estimate the proportion of points (a 1 , a 2 , b 1 , b 2 ) solving this system.

We note that absence of solution in spaces where a 1 + b 1 > 1 or a 2 + b 2 > 1 comes from the two last conditions of the system. Also there is no solution if a 1 = b 1 (or a 2 = b 2 by symmetry) and if a 1 = b 2 (or a 2 = b 1 by symmetry). This is proved analytically.

Case

a 1 = b 1
In this situation, expert 1 considers that the data unit is equally filled with classes A and B: The conjunctive rule yields:

∅ A B Θ Expert 1 0 x x 1 -2x Expert 2 0 y z 1 -y -z
m c (∅) = 2xy, m c (A) = x + y -2xy -xz = x -m c (∅) + y(1 -x), m c (B) = x + y -xy -2xz = x -m c (∅) + z(1 -x), m c (Θ) = 1 -2x -y -z + 2xy + 2xz.
Therefore, as 1x ≥ 0:

m c (A) > m c (B) ⇐⇒ y > z.
The PCR yields:

m P CR (∅) = 0 m P CR (A) = x -m c (∅) + y(1 -x) + x 2 z x + z + xy 2 x + y , m P CR (B) = x -m c (∅) + z(1 -x) + xz 2 x + z + x 2 y x + y , m P CR (Θ) = 1 -2x -y -z + 2xy + 2xz.
So, we have:

(m P CR (A) + m c (∅) -x)(x + y)(x + z) = y(1 -x)(x + z)(x + y) + x 2 z(x + y) + y 2 x(x + z) = y(x + y)(x + z) + x 3 (z -y) (m P CR (B) + m c (∅) -x)(x + y)(x + z) = z(x + y)(x + z) -x 3 (z -y), m P CR (A) > m P CR (B) ⇐⇒ (y -z)((x + y)(x + y) -2x 3 ) > 0.
As 0 ≤ x ≤ 1 2 , we have 2x 3 ≤ x 2 ≤ (x + y)(x + z). So m P CR (A) > m P CR (B) if and only if y > z.

That shows that the stability of the decision is reached if a 1 = b 1 for all a 2 and b 2 ∈ [0, 1] or by symmetry if a 2 = b 2 for all a 1 and b 1 ∈ [0, 1].

Case a 1 = b 2

In this situation, expert 1 believes A and the expert 2 believes B with the same weight: The conjunctive rule yields:

∅ A B Θ Expert 1 0 x y 1 -x -y Expert 2 0 z x 1 -x -z
m c (∅) = x 2 + yz, m c (A) = x + z -xz -m c (∅) = -x 2 + x(1 -z) + z(1 -y), m c (B) = x + y -xy -m c (∅) = -x 2 + x(1 -y) + y(1 -z), m c (Θ) = 1 + m c (∅) -2x -y -z + x(y + z). Therefore: m c (A) > m c (B) ⇐⇒ (x -1)(y -z) > 0, as 1 -x ≥ 0: m c (A) > m c (B) ⇐⇒ y > z.
The PCR yields:

m P CR (∅) = 0, m P CR (A) = x + z -xz -m c (∅) = -x 2 + x(1 -z) + z(1 -y) + x 3 2x + yz 2 y + z , m P CR (B) = x + y -xy -m c (∅) = -x 2 + x(1 -y) + y(1 -z) + x 3 2x + y 2 z y + z , m P CR (Θ) = 1 + m c (∅) -2x -y -z + x(y + z).
Therefore: We can notice that if a 1 + a 2 > 1, no change occurs. In this situation, we have b 1 + b 2 < 1, but calculus is still to be done. In this situation, if a 2 = 1a 1 :

m P CR (A) > m P CR (B) ⇐⇒ (y -z) ((x -1)(y + z) -yz) > 0, as (x -1) ≤ 0, (x - 
∅ A B Θ Expert 1 0 x y 1 -x -y Expert 2 0 1 -x z x -z
The conjunctive rule yields:

m c (∅) = xz + (1 -x)y, m c (A) = 1 + x 2 -x -y + xy -xz, m c (B) = z -yz + xy -xz, m c (Θ) = -x 2 + x + xz -xy + yz -z.
Therefore:

m c (A) > m c (B) ⇐⇒ 1 + x 2 -x > y + z -yz, ⇐⇒ x(1 -x) > (1 -y)(1 -z),
as z < x and x < 1y, m c (A) > m c (B) is always true. The PCR yields:

m P CR (∅) = 0, m P CR (A) = m c (A) + x 2 z x + z + (1 -x) 2 y 1 -x + y , m P CR (B) = m c (B) + xz 2 x + z + (1 -x)y 2 1 -x + y , m P CR (Θ) = m c (Θ).
Therefore: m P CR (A) > m P CR (B) is always true. Indeed we have m c (A) > m c (B) is always true and:

x 2 z x + z > xz 2
x + z because x > z and:

(1x) 2 y 1x + y > (1x)y 2 1x + y because 1x > y.

That shows that the stability of the decision is reached if a 2 = 1a 1 for all a 2 and a 1 ∈ [0, 1] or by symmetry if a 1 = 1a 2 for all a 1 and a 2 ∈ [0, 1].

Conclusion

In this chapter, we have proposed a study of the combination rules compared in term of decision. A new generalized proportional conflict redistribution (PCR6) rule have been proposed and discussed. We have presented the pro and con of this rule. The PCR6 rule is more intuitive than the PCR5. We have shown on randomly generated data, that there is a difference of decision following the choice of the combination rule (for the non-normalized conjunctive rule, the mixed conjunctive and disjunction rule of Dubois and Prade, the PCR5 rule and the PCR6 rule). We have also proven, on a two experts and two classes case, the changes following the values of the basic belief assignments. This difference can be very small in percentage and we can not say on these data if it is a significantly difference. We have conducted this comparison on real data in the chapter [START_REF] Martin | Applications and Advances of DSmT for Information Fusion, Book 2, chapter Generalized proportional conflict redistribution rule applied to Sonar imagery and Radar targets classification[END_REF].

All this discussion comes from a fine proportional conflict distribution initiated by the consideration of the extension of the discernment space in D Θ . The generalized PCR6 rule can be used on 2 Θ or D Θ . Data: n experts ex: ex [ 

  Y j )+ {u(Y1)∪...∪u(YM )=X} Y1,...,YM ≡∅ M j=1 m j (Y j ) + {u(Y1)∪...∪u(YM)≡∅ and X=Θ} Y1,...,YM ≡∅ M j=1

  If we fuse the expert 1 and 2 and then 3, the PCR5 and the PCR6 rules give: m 12 (A) = 0.5, m 12 (B) = 0.5, and m (12)3 (A) = 0.25, m (12)3 (B) = 0.75. Now if we fuse the expert 2 and 3 and then 1, the PCR5 and the PCR6 rules give: m 23 (A) = 0, m 23 (B) = 1, and m (12)3 (A) = 0.5, m (12)3 (B) = 0.5, and the result is not the same.

  123) (B) = 0.14, m (123) (C) = 0.09, m (123) (A ∪ B) = 0.14 + 0.21. 7 18 ≃ 0.2217, m (123) (B ∪ C) = 0.06 + 0.21. 5 18 ≃ 0.1183, m (123) (A ∪ C) = 0.09 + 0.21. 6 18 = 0.16, m (123) (Θ) = 0.06.

Figure 1 :

 1 Figure 1: Density of conflict for (left) two uniform random experts and (right) three uniform random experts; with and without decision change

  and m P CR (A) < m P CR (B) or m c (A) < m c (B) and m P CR (A) > m P CR (B)

Figure 2 :

 2 Figure 2: Decision changes, projected on the plane a 1 , b 1 .

Figure 3 :

 3 Figure 3: Decision changes, projected on the plane a 1 , b 2 .

  1)(y + z)yz ≤ 0 and: m P CR (A) > m P CR (B) ⇐⇒ y > z. That shows that the stability of the decision is reached if a 1 = b 2 for all a 2 and b 1 ∈ [0, 1] or by symmetry if a 2 = b 1 for all a 1 and b 2 ∈ [0, 1]. 4.3.3 Case a 2 = 1a 1

Figure 4 :

 4 Figure 4: Decision changes, projected on the plane a 1 , a 2 .

  1] . . . ex[n] Result: Fusion of ex by PCR5 method : ep for i = 1 to n do foreach c in ex[i] do Append c to cl[i];

foreach ind in [1, size(cl[1])] × [1, size(cl[2])] × . . . × [1, size(cl[n])] do s ← Θ; for i = 1 to n do s ← s ∩ cl[i][ind[i]]; if s = ∅ then lconf ← 1;

el is an empty expert;

for i = 1 to n do lconf ← lconf × ex[i](cl[i][ind[i]]); if cl[i][ind[i]] in el then el(cl[i][ind[i]]) ← el(cl[i][ind[i]]) * ex[i](cl[i][ind[i]]); else el(cl[i][ind[i]]) ← ex[i](cl[i][ind[i]]);

for c in el do sum ← sum + el(c); for c in el do ep(c) ← ep(c) + g(el(c)) * lconf /sum; else lconf ← 1; for i = 1 to n do lconf ← lconf × ex[i](cl[i][ind[i]]); ep(s) ← ep(s) + lconf ;

The notation X ≡ ∅ means that X = ∅ and following the chosen model in D Θ , X is not one of the element of D Θ defined as ∅. For example, if Θ = {A, B, C}, we can define a model for which the expert can provide a mass on A ∩ B and not on A ∩ C, so A ∩ B = ∅ and A ∩ B = ∅

Appendix: Algorithms

An expert e is an association of a list of focal classes and their masses. We write size(e) the number of its focal classes. The focal classes are e [START_REF] Daniel | Applications and Advances of DSmT for Information Fusion, chapter Comparison between DSm and MinC combination rules[END_REF], e [START_REF] Dempster | Uper and Lower probabilities induced by a multivalued mapping[END_REF], . . . , e[size(e)]. The mass associated to a class c is e(c), written with paranthesis.

Data: n experts ex: ex [START_REF] Daniel | Applications and Advances of DSmT for Information Fusion, chapter Comparison between DSm and MinC combination rules[END_REF] . . . ex [n] Result: Fusion of ex by Dubois-Prade method :

ex[n]

Result: Fusion of ex by PCR6 method :

ex[n]

Data: A non-decreasing positive function f Result: Fusion of ex by PCR6 f method :

)); 

el is an empty expert;