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Abstract

During the drug development, nonlinear mixed effects models are routinely used
to study the drug’s pharmacokinetics and pharmacodynamics. The distribution of
random effects is of special interest because it allows to describe the heterogeneity
of the drug’s kinetics or dynamics in the population of individuals studied. Para-
metric models are widely used, but they rely on a normality assumption which may
be too restrictive. In practice, this assumption is often checked using the empirical
distribution of random effects’ empirical Bayes estimates. Unfortunately, when data
are sparse (like in patients phase III clinical trials), this method is unreliable. In this
context, nonparametric estimators of the random effects distribution are attractive.
Several nonparametric methods (estimators and their associated computation al-
gorithms) have been proposed but their use is limited. Indeed, their practical and
theoretical properties are unclear and they have a reputation for being computa-
tionally expensive. The article evaluates four nonparametric methods in compari-
son with the usual parametric method. Statistical and computational features are
reviewed and practical performances are compared in simulation studies mimick-
ing real pharmacokinetic analyses. The nonparametric methods seemed very useful
when data are sparse. On a simple pharmacokinetic model, all the nonparametric
methods performed roughly equivalently. On a more challenging pharmacokinetic
model, differences between the methods were clearer.
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1 Introduction

Nonlinear mixed effects (NLME) models are increasingly used in several biomed-
ical applications. Especially, they have become a routine tool for the analysis
of pharmacokinetic (PK) and/or pharmacodynamic (PD) data obtained in
clinical trials during drug development. Furthermore, the US Food and Drug
Administration strongly recommends their use for regulatory review (FDA,
1999). For each individual, PK data include the dosing history (amount of
drug administered, route and time of administration), measured drug concen-
trations in blood or in plasma, measurement times and values of clinically rel-
evant covariates (e.g. sex, age, weight, renal function...). The drug’s systemic
concentration-time profile depends on fixed effects and on individual-specific
random effects quantifying the drug’s absorption, distribution and elimina-
tion. NLME models allow to estimate the distribution P∗ of random effects,
even when within-individual information is sparse. They are particularly in-
teresting in phase II or phase III clinical trials that involve a large group of
individuals representative of the target population, with often few informa-
tion per individual. The objective of these analyses is to give a rationale for
dosing recommendations and identify subpopulations of patients that require
a dosing adjustment.

The most widely used model is parametric: it is usually assumed that P∗ is
a (log-) normal distribution. The model is said parametric because the distri-
bution of random effects P∗ depends only on a finite number of parameters:
its mean and variance. In this framework, the maximum likelihood estimator
(MLE) is generally favored because it is consistent and efficient. The nonlin-
ear relationship between the observations and the random effects makes the
likelihood not explicit. Several algorithms have been proposed to compute ap-
proximations of the MLE. The most popular are First Order Conditional Esti-
mates with Interaction (FOCEI), First Order Conditional Estimates (FOCE)
and First Order (FO) algorithms. They are implemented in the gold standard
software NONMEM (Boeckmann, Sheiner & Beal, 2006).

However, the parametric assumption may be too restrictive to describe very
heterogeneous populations. In practice, this can be checked by looking at the
empirical distribution of individual predictions of random effects, known as
empirical Bayes estimates (EBEs) (Pinheiro & Bates (2000), EMEA (2007)).
The problem is that, when the number of measurements per individual is low
(the dataset is qualified as sparse), the EBEs are strongly influenced by the
parametric assumption and their empirical distribution is unreliable (Savic,
Wilkins & al., 2006).

In that context, nonparametric (NP) estimators, which allow P∗ to live in
an infinite dimensional space, are attractive. Several NP methods have been
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proposed (by method, we mean an estimator plus its computation algorithm).
Laird (1978), Pfanzagl (1988) and Lindsay (1983) studied the MLE when no
assumption is made on P∗. Two algorithms have been introduced to com-
pute it. Mallet (1986) exploited a duality with the D-optimal design the-
ory to develop the Nonparametric Maximum Likelihood (NPML) algorithm.
Schumitzky (1991) proposed a generalization of the EM algorithm (Demp-
ster, Laird & Rubin, 1977): the Nonparametric EM (NPEM) algorithm. An
advanced version of the NPEM algorithm, named NPAG, has been developed
by the USC Laboratory of Applied Pharmacokinetics (USC Pack, 2002).
Gallant & Nychka (1987) and Davidian & Gallant (1993) investigated a Smooth
(or Semi) Nonparametric (SNP) estimator assuming that P∗ admits a smooth
probability density function π∗ with respect to the Lebesgue measure.
Kuhn (2003) proposed a consistent logspline estimator of π∗.
Finally, since 2006, NONMEM has introduced a discrete estimator whose sup-
port points are the EBEs (Boeckmann, Sheiner & Beal, 2006). In the present
article, we will refer to it as NPNM which stands for NP in NONMEM.

Several articles evaluated one of these NP methods on simulated data: Roe,
Vonesh & al. (1997) studied NPML; Bustad, Terziivanov & al. (2006) eval-
uated NPEM; Savic, Kjellsson & al. (2006) focused on NPNM. However,
there is a lack of a comparison between the different NP methods. Besides
these studies do not include comparison with the empirical distribution of
EBEs which remains widely used, despite its weaknesses.

This article offers to carry out a detailed review and comparison of four NP
methods among the most widely used or documented ones: NPML, NPEM,
SNP and NPNM, with focus on PK applications. The empirical distribution
of EBEs is also included in the study. The logspline estimator (Kuhn, 2003) is
not further investigated here, because it is only defined for unidimensional ran-
dom effects whereas the simplest PK model deals with bidimensional random
effects.

The article is organized as follows. The model and the notations are presented
in section 2. Section 3 describes the different methods studied. Section 4 is
dedicated to the review of their asymptotic properties. Section 5 presents
two PK simulation studies that empirically compare the performance of the
methods. The article ends with a conclusion in section 6.

2 Notations and framework

We consider the following general NLME model:

Yi = fi(di, θ
∗, Xi) + Γi(di, θ

∗, Xi)εi (1)
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where

- Yi = (Yij, j = 1..ni) is the ni-vector of observations on individual i.
- di is the known experimental design for individual i.
- θ∗ is an unknown p-vector of fixed parameters (or fixed effects).
- Xi = (X1i, ..., Xqi) is the q-vector of real random effects associated with

individual i. The Xis are assumed independent and identically distributed
(iid) from the probability measure P∗:

Xi
iid∼ P∗ i = 1..N.

We denote Π∗ the cumulative distribution function (cdf) of Xi, and, if it
exists, π∗ its probability density function (pdf) with respect to the Lebesgue
measure.

- fi is a known real function depending on i, di, θ∗ and Xi. An important
feature of NLME models is the nonlinearity of fi with respect to the random
effects Xi.

- εi = (εij, j = 1..ni) is a white noise:

εi
iid∼ N (0, Ini

) i = 1..N.

εi is independent of Xi.
- Γi(di, θ

∗, Xi) is a known positive low triangular ni × ni-matrix depending
on di, θ∗ and Xi.

The challenge of the statistical inference is the estimation of θ∗ and P∗ from
the observation of Yi, i = 1..N while the Xis are unobserved.
In phase II or phase III clinical trials, the number of individual measurements
(ni) is usually not large enough to be under asymptotic conditions and can
even be very low. Thus, the only asymptotic examined in the following will be
the number N of individuals in the sample, whereas ni will remain finite and
possibly small (with possible differences between individuals).

It is important to note that, in our NP context, the first moment of P∗ can be
infinite. Consequently, it cannot be considered as a fixed effect as usually done
in parametric models. One goal of the PK and/or PD analyses is to explain
the mean variations of Xi with covariates (age, body weight, renal function...).
Obviously in this case, it is necessary to assume that the first moment of P∗ is
finite. The ability of the NP methods to apply in this context will be discussed
in the following.
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3 Studied methods

3.1 The EBEs’ empirical distribution (EBEsED)

In population PK and/or PD analyses, it is common to assume the (log-)
normality of Xi. In this parametric model, P∗ only depends on its mean and
variance. These parameters and the fixed effects θ∗ are generally estimated by
MLE:

(θ̂parametric
N , P̂parametric

N ) = argsup
θ,P∈Nq

LN(θ,P),

where Nq denotes the set of the q-dimensional (log-)normal distributions and
LN(θ,P) the likelihood of θ and P .
After this parametric estimation step, some predictions of the random effects
Xi, known as empirical Bayes estimates (EBEs), can be computed:

EBEi = argsup
x

P[Xi = x|Yi, P̂parametric
N , θ̂parametric

N ],

where P[Xi|Yi, P̂parametric
N , θ̂parametric

N ] is the pdf of Xi conditionally to Yi, θ̂
parametric
N

and P̂parametric
N . In practice, the (log-) normality of Xi is often checked by look-

ing at the EBEs’ empirical distribution (EBEsED). In that context, EBEsED
can be considered as an NP estimator of the random effects distribution P∗:
it is discrete with EBEs as support points and equal frequencies for all indi-
viduals (equal to 1/N). Its cdf Π̂EBEsED

N is:

Π̂EBEsED
N (x) =

1

N

N∑
i=1

1[EBEi6x],

where 1[EBEi6x] equals 1 when, for all j = 1..q, EBEi(j) 6 x(j), and 0 other-
wise.
The drawback of EBEsED is that it gives the same weight (1/N) to all EBEs
even if the accuracy of each EBEi can be very different depending on the
number of measurements per individual (ni) and on the quality of the exper-
imental design (di) (i.e. the choice of the measurement times).

3.2 Nonparametric Maximum Likelihood (NPML)

When no assumption is made on P∗, the maximum likelihood estimator (MLE)
P̂NP

N is defined as:

P̂NP
N = argsup

P∈Pq

LN(θ,P) = argsup
P∈Pq

N∏
i=1

∫
P(Yi|Xi = x, θ)P(dx)
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where Pq denotes the space of all probability measures on Rq and P(Yi|Xi =
x, θ) the density of Yi conditionally to Xi = x with θ for fixed effects. The
following theorem gives an handy way to compute P̂NP

N .

Theorem 1 (Discreteness of P̂NP
N (Lindsay, 1983)) Assuming that

{(P[Yi|Xi = x, θ], i = 1..N), x ∈ Rq} is a compact set, P̂NP
N can be expressed

as a discrete measure with at most N support points.

The proof is elementary. It deals with convexity and the theorem of Caratheodory.
From a computational point of view, this discreteness has two useful conse-
quences. First, for a given N , the likelihood maximization can be restricted
to the finite dimensional set of all discrete measures with at most N support
points. Secondly, the integral with respect to P̂NP

N is a finite sum, and thus
the likelihood LN(θ, P̂NP

N ) has an explicit form:

LN(θ, P̂NP
N ) =

N∏
i=1

∫
P[Yi|Xi = x, θ]dP̂NP

N (x)

=
N∏

i=1

N∑
l=1

P[Yi|Xi = Xl, θ]× pl,

where Xl, l = 1..N denote the support points of P̂NP
N and pl, l = 1..N their

probabilities.

Despite the explicit writing of the likelihood, its maximum is still not explicit.
Therefore, iterative algorithms have been developed to compute P̂NP

N .

Mallet (1986) used an optimal design analogy to build the NPML algorithm.
NPML is derived from the Fedorov algorithm (Fedorov , 1972). Assuming that,

at iteration k, P̂k
N has L support points, NPML builds P̂(k+1)

N in 3 steps:

1. Support optimization step. The support of P̂(k+1)
N is built by adding a new

point X (k+1)
L+1 to the support of P̂(k)

N . X (k+1)
L+1 is defined as:

X (k+1)
L+1 = argsup

X∈Rq

∂LN(θ, P̂(k)
N )

∂X
,

where
∂LN (θ,P̂(k)

N )

∂X is the directional derivative of the likelihood in the direc-
tion X .

If argmax
X∈Rq

∂LN (θ,P̂(k)
N )

∂X = 0, the algorithm can be stopped because P̂(k)
N max-

imizes the likelihood.
2. Frequencies optimization step. The (L + 1) frequencies of P̂(k+1)

N are com-
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puted by likelihood maximization:

(p
(k+1)
1 , .., p

(k+1)
L+1 ) = argsup LN(θ, P̂(k+1)

N ),

where the supremum is over all pl, l = 1..L + 1 between 0 and 1 such that∑L+1
l=1 pl = 1.

3. Index limitation step. If P̂(k+1)
N has N + 1 support points, a point can be

removed from the support without a decreasing of the likelihood. Such a
point X can be determined by the resolution of the linear system:

P Y |X ×X = b

where P Y |X is an (N + 1)× (N + 1)-matrix and b an (N + 1)-vector: P
Y |X
ij = P[Yi|Xi = X (k+1)

j ] i = 1..N, j = 1..N + 1,

P
Y |X
ij = 1 i = N + 1, j = 1..N + 1.

If P Y |X is singular then bi = 0 ∀i = 1..N + 1, else bi = 1
P[Yi]

i = 1..N and
bN+1 = 0.

Theorem 2 (convergence of NPML, Mallet (1986)) Each iteration of NPML
increases the sample likelihood. Besides, if the maximum likelihood estimator
P̂NP

N is unique:

P̂(k)
N −→

k→+∞
P̂NP

N

where P̂(k)
N is the NPML estimator after k iterations.

3.3 Nonparametric Expectation Maximization (NPEM)

As Mallet (1986), Schumitzky (1991) proposed an algorithm to compute the
MLE P̂NP

N defined in the preceding section.

The Expectation Maximisation (EM) algorithm (Dempster, Laird & Rubin,
1977) is acknowledged to be very efficient for likelihood maximization with
unobserved data. However, despite a wide area of applications, this algorithm
does not permit to compute P̂NP

N . Actually, the EM algorithm is restricted
to absolutely continuous estimators of P∗. Schumitzky (1991) extended the
EM algorithm to the specific computation of P̂NP

N . The Nonparametric EM

(NPEM) algorithm consists of 2 steps. At iteration (k + 1), given P̂(k)
N with

L support points (L 6 N), P̂(k+1)
N is defined in two steps:

1. Support optimization step. For l = 1..L, the support points X (k+1)
l of P̂(k+1)

N
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are computed as:

X (k+1)
l = argsup

X∈Rq

N∑
i=1

P[X (k)
l |Yi, P̂(k)

N , θ]× ln P[Yi|Xi = X , θ],

where X (k)
l , l = 1..L are the support points of P̂(k)

N .

2. Frequencies optimization step. For l = 1..L, the probabilities p
(k+1)
l of

X (k+1)
l have an explicit form:

p
(k+1)
l =

1

N

N∑
i=1

P[X (k)
l |Yi, P̂(k)

N , θ]

Theorem 3 (Convergence of NPEM, Schumitzky (1991)) Each itera-
tion of NPEM increases the likelihood.

NPEM often leads to measures with a low number of support points. Actually,
NPEM does not allow to increase the number of support points, but some
points can be removed if their probability becomes zero.

3.4 Smooth Nonparametric (SNP)

In most applications, the random effects Xi have absolutely continuous dis-
tributions. Davidian & Gallant (1993) proposed a smooth estimation of the
density π∗ of Xi. More precisely, they considered the set SNPK of all density
functions with finite mean m of form:

[PK(U−1(x−m))]2 ×Nq(x−m; 0, UUT ) + επ0(x−m),

where

- K is a fixed truncation parameter,
- Nq(x; M, V ) is the density of a q-dimensional normal random variable, with

mean M and variance matrix V ,
- PK(x) is a polynomial in x = (x1, ..., xq) of degree K,
- U is a non singular upper triangular matrix, UT is the transposed matrix

of U,
- ε is small positive real number,
- π0 is a strictly positive probability density function with zero mean, and

such that ‖π0‖S is bounded, where ‖.‖S is a weighted Sobolev norm (see
Gallant & Nychka (1987) for details).

The term επ0(x − m) ensures that all the densities considered are strictly
positive. In practice, this lower bound can generally be disregarded (ε = 0)
without affecting the behavior of the log-likelihood.
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The SNP estimators θ̂SNP
N and π̂SNP

N of θ∗ and π∗ are defined as the MLE
over the set SNPK :

(θ̂SNP
N , π̂SNP

N ) = argsup
θ,π∈SNPK

LN(θ, π(x)dx)

The likelihood is not explicit, but it can be approximated by Gauss-Hermite
quadrature. The maximization of the approximated likelihood with respect
to θ, the coefficients of the polynomial PK and the terms of U under the
constraints

∫
π̂SNP

N (x)dx = 1 and
∫

xπ̂SNP
N (x)dx = m can be performed thanks

to standard algorithms. Davidian & Gallant (1993) suggested for instance the
Sequential Quadratic Programming algorithm.

3.5 Nonparametric in NONMEM (NPNM)

The software NONMEM (version VI) has recently introduced a nonpara-
metric subroutine. As EBEsED, this estimator, referred to as NPNM, is a
discrete measure with the EBEs used as support points. However, in con-
trast to EBEsED, the frequencies p1, .., pN associated with support points
EBE1, .., EBEN are not necessarily the same for all individuals. They maxi-
mize the log-likelihood:

(p1, .., pN) = argsup ln LN(θ̂parametric
N , P̂NPNM

N )

= argsup
N∑

i=1

ln(
N∑

l=1

plP[Yi|Xi = EBEl, θ̂
parametric
N ]),

under the constraint 0 6 pl 6 1 for all l = 1..N and
∑N

l=1 pl = 1. It shall
be noticed that, thanks to the discreteness of NPNM, the log-likelihood is
explicit. Besides, this optimization is a convex problem.

4 Asymptotic behaviors

4.1 The EBEs’ empirical distribution (EBEsED)

In this section, the consistency of EBEsED, considered as an NP estimator
of P∗, is investigated.
If all Xi (i = 1..N) are observed, their empirical cdf is an unbiased consistent
estimator of the cdf Π∗. In general mixed effects models, Xi are not observed
but EBEi, defined in section 3, can give an accurate prediction of Xi. Besides,
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if θ∗ is known and all ni are large, the accuracy of this prediction is little
affected by a misspecification of P∗ (see van der Vaart (1998) for instance):
conditionally on Xi = xi,

‖EBEi − xi‖
a.s.−→

ni→+∞
0 i = 1..N even if P∗ is misspecified.

Consequently, when θ∗ is known and all ni are large, EBEsED is consistent
in the sense that, if for all i, ni ∼ +∞,

Π̂EBEsED
N (x) =

1

N

N∑
i=1

1EBEi6x
a.s.−→

N→+∞
Π∗(x), ∀x ∈ Rq.

However, when data are sparse, the properties of EBEsED can be questioned.
In a general NLME model, when ni remains fixed, the rigorous study of the
asymptotic (in N) behavior of EBEsED appears to be a hard matter. How-
ever, for a specific linear homoscedastic mixed effects model, the following
theorem shows that EBEsED is not consistent.

Theorem 4 (non consistency of EBEsED) Consider the model:

Yi = Xi + θ∗εi, i = 1..N,

with the same notations as for model 1. Besides, we suppose that ni is the
same for all individuals i. Under the assumptions:

1. |E[Xi]| < ∞ and var[Xi] < ∞,
2. ∃M < ∞, limN→+∞ supi=1..N |EBEi| 6 M .

If −→ means weak convergence, we have:

P̂EBEsED
N 6−→

N→+∞
P∗.

Proof In this linear mixed effects model, the EBEi, P̂EBEsED
N , its mean and

its variance are explicit. They depend on the parametric estimators of θ∗,
E[Xi] and var[Xi], which, in this linear mixed effects model, are consistent
even if P∗ is misspecified. Then, by the law of large numbers, assumption 1,
the continuous mapping theorem, one can easily show that:

E[P̂EBEsED
N ] −→

N→+∞
E[P∗]

and

var[P̂EBEsED
N ] −→

N→+∞

1

1 + 1
ni

θ∗2

var[P∗]

var[P∗] 6= var[P∗]

By assumption 2, it implies the non weak consistency of P̂EBEsED
N (van der

Vaart, 1998, example 2.21). �
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The shrinkage phenomenon, described by Savic, Wilkins & al. (2006), is an
illustration of this result: when the data are sparse (that is the number of
measurement per individual is small) or ‘uninformative’ (the variance of the
residual error is high in comparison with the variance of Xi), the variance of
EBEsED shrinks, i.e. it is smaller than the variance of P∗.
As expected, when individual information is important (ni is large), the bias
of var[P̂EBEsED

N ] is insignificant.
To our knowledge, the (non) consistency of EBEsED has not been established
in sparse general NLME models.

4.2 NPML and NPEM

NPML and NPEM aim at computing the same estimator, P̂NP
N , defined as:

P̂NP
N = argsup

P∈Pq

LN(θ,P).

Here P is unrestricted since Pq denotes the set of all probability measures on
Rq.
For a specific NLME model, Pfanzagl (1988) gave the asymptotic properties
of P̂NP

N . His result has been extended to a non-equally distributed (ni and
di are not the same for all individuals) and heteroscedastic NLME model by
Chafäı & Loubes (2006).

Theorem 5 (Consistency of P̂NP
N (Chafäı & Loubes, 2006)) Under the

assumptions

1. ∀(P1,P2) ∈ Pq ×Pq, P1 6= P2 ⇒

LN(θ,P1)dy1..dyN 6= LN(θ,P2)dy1..dyN in PN ×PN ,

2. the fixed effects θ∗ are known.

The maximum likelihood estimator P̂NP
N is weakly consistent:

P̂NP
N −→

N→+∞
P∗.

Assumption 1 ensures identifiability of the model.
Assumption 2 is very restrictive because θ∗ is generally unknown. Pfanzagl
(1990) showed that assumption 2 can be relaxed if θ∗ is consistently estimated
whatever P∗. But, to the best of our knowledge, such an estimation of θ∗ is not
currently available for a general NLME model. Lai & Shih (2003) proposed
to jointly estimate θ∗ and P∗ by likelihood maximization. This procedure is
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consistent in an Ibragimov-Has’minski framework:
∃I, 1 6 I 6 N, I −→

N→+∞
+∞ such that ∀i = 1..I, ni ∼ +∞.

As noticed in section 2, it is usual in PK and/or PD analyses to constrain
the mean of Xi (E[Xi] = m < ∞) in order to explain between subjects vari-
ations with the available covariates. Unfortunately, to the best of our knowl-
edge, generalization of theorem 5 when the mean of Xi is constrained is not
trivial. Mallet, Mentré & al. (1988) circumvent this difficulty by considering
all covariates as random effects. In this case, the distribution of interest is
the distribution of Xi conditionally to covariates. The joint distribution of Xi

and the covariates is first estimated by unconstrained likelihood maximization
(with NPML or NPEM). The distribution of Xi conditionally to covariates
is then easily obtained by the Bayes formula. The method provides a consis-
tent estimator of the distribution of Xi conditionally to covariates. Besides,
the specification of a regression model between Xi and the covariates, and
estimation of the regression parameters, are no longer necessary. On the other
hand, this method increases the dimension of the distribution to be estimated.
This highly increases the computation time and requires very large samples
because the estimation of a joint distribution is much more demanding than
the estimation of the distribution of Xi.

4.3 Smooth Nonparametric (SNP)

The estimators θ̂SNP
N and π̂SNP

N have strong asymptotic properties.

Theorem 6 (consistency of SNP, Gallant & Nychka (1987)) Let
(θ̂SNP

N , π̂SNP
N ) be the MLE defined as:

(θ̂SNP
N , π̂SNP

N ) = argmax
(θ,π)∈Θ×SNPK

LN(θ, π(x)dx),

where Θ ⊂ Rp is compact and SNPK is the set of smooth density functions
defined in section ??. Under the assumptions:

1. E[Xi] = m is finite. The actual density π∗ of Xi can be written as:

π∗(x) = h2(x−m) + εh0(x−m),

where ε is a positive real number, h and h0 are probability density functions
with zero mean. ‖h‖S and ‖h0‖S are bounded, where ‖.‖S denotes a weighted
Sobolev norm, see Gallant & Nychka (1987). h0 is strictly positive. The
actual fixed effect θ∗ lives in Θ.

2. K −→
N→+∞

+∞
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3. there is a function L(θ, π, θ∗, π∗) that is continuous in (θ, π) with respect to
‖(θ, π)‖ = (‖θ‖2 + ‖π‖2

S∞)1/2 such that, with probability 1,

lim
N→∞

sup
θ×π

|L(Yi, i = 1..N |π(x)dx, θ)− L(θ, π, θ∗, π∗)| = 0

where ‖.‖S∞ is an infinite weighted Sobolev norm (see Gallant & Nychka
(1987) for details).

4. the model is identifiable.

The following convergences hold:

‖π̂SNP
N − π∗‖S∞

a.s.−→
N→+∞

0 and ‖θ̂SNP
N − θ∗‖ a.s.−→

N→+∞
0

Consistency with respect to ‖.‖S∞ implies L1-consistency of π̂SNP
N and of its

derivatives up to a certain order, and consistency of the first moments of Xi.

Assumption 1 imposes regularity conditions on π: the bound on ‖h‖S restricts
violent oscillatory behavior and tail’s thickness, conditions on h0 bound the
tails from below. This assumption seems realistic for most of the applications
because numerous type of densities, like skewed, leptokurtic, platykurtic, or
multi-modal, are allowed.
Assumption 2 ensures that the potential complexity of π̂SNP

N increases with the
sample size. The truncation parameter K thus plays a key role in the SNP
estimation. In practice, its determination for a given sample size N is not
obvious. Fenton & Gallant (1996) investigated deterministic rules. When Xi

is observed and univariate, they found that the optimal convergence rate (with

respect to the L1-norm) was achieved for K = N
1
5 . To our knowledge, there has

been no extension of this result to NLME models. In these models, Davidian
& Gallant (1993) recommend to ‘inspect plots [...] for all models between
those selected by Schwarz and Akaike criteria inclusively and make a visual
selection’. An automatic rule can be necessary when an a priori knowledge or
the subjectivity of the analyst could distort the figures interpretation. In that
case, Davidian & Gallant (1993) advise to use the Hannan-Quinn criterion
which gives good results in others Hermite series expansion studies.

It is noteworthy that theorem 6 proves the consistency of the fixed effects’
estimation jointly with the distribution of random effects’ estimation. Such a
result is not established for the others NP methods.

It shall be noticed that theorem 6 ensures that π̂SNP
N and θ̂SNP

N remain con-
sistent when the mean of Xi is constrained: this allows to use covariates for
explaining the mean variations of Xi.

Given that the (log-) normal distribution is a special case of SNP estimation
(for K = 0), the (log)-normality assumption can be tested with, for instance,
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the likelihood ratio test.

4.4 Nonparametric in NONMEM (NPNM)

To the best of our knowledge, asymptotic properties of NPNM have not been
documented.

5 Comparison on simulation studies

In order to compare the various NP methods in practical situations, we per-
formed two simulation studies. This section is organized in 3 parts: part 1
describes the design of the simulations, part 2 presents the various criterion
used to compare the methods’ performance and part 3 is devoted the results.

5.1 Design of simulations

General strategy

The simulations were conducted in a PK framework. In order to simulate re-
alistic datasets, the model’s settings were chosen according to real population
PK studies of phenobarbital in infants. The phenobarbital is a barbiturate
generally used to treat neonatal seizures. Two simulations were performed:
simulation 1 illustrated a simple PK analysis, simulation 2 illustrates a more
challenging PK analysis.

Simulation 1 was inspired by the phenobarbital PK analysis of Grasela & Donn
(1985). The PK of phenobarbital after intravenous administration is described
with a one compartment model with first order elimination, as follows: for
j = 1..ni,

[fi(di, θ
∗, Xi)]j =

D

Xi2

× exp−Xi1×tij/Xi2 .

The known experimental design di consists of the administered dose D at time
0 and the measurement times tij. The 2 random effects are: the clearance (Xi1)
and the volume of distribution (Xi2). The measurement error is assumed to
be proportional to the expected concentration:

Γi(di, θ
∗, Xi) = θ∗ × diag(fi(di, θ

∗, Xi)),

where θ∗ is the only fixed effect. The clearance was simulated with a bimodal
distribution. Clearance and volume of distribution were considered indepen-
dent. In order to investigate the influence of data sparseness, a rich and a
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sparse experimental design were simulated (in PK, a dataset is usually con-
sidered rich if, for each individual i, ni > q, q being the number of random
effects).

Simulation 2 was inspired by the phenobarbital PK analysis of Yukawa, Sue-
matsu & al. (2005). The PK of phenobarbital after oral administration is
described with a one compartment model with first-order elimination and
first-order absorption, as follows: for j = 1..ni

[fi(di, θ
∗, Xi)]j =

DXi3

Xi2(Xi3 −Xi1/Xi2)
(exp−Xi1×tij/Xi2 − exp−Xi3×tij).

The known experimental design di consists of the administered dose D at
time 0 and the measurement times tij. The 3 random effects are: the apparent
clearance (Xi1), the apparent volume of distribution (Xi2) and the absorption
rate constant (Xi3). The measurement error is assumed to be proportional
to the expected concentration. The apparent clearance was simulated with
a bimodal distribution. Apparent clearance and volume of distribution were
considered correlated.

For each simulation, sample of different sizes were simulated (N = 50, 100,
200, 300, 400) in order to assess the consistency of the methods.
For each simulation and sample size, 100 independent datasets were simulated
and analyzed with the various methods studied (EBEsED, NPML, NPEM,
SNP, NPNM).

More details on simulations 1, on simulation 2 and on computational settings
are provided in the following sections.

Details on simulation 1

In order to choose the values of θ∗ and of the first moments of Xi, we analyzed
the real dataset (Grasela & Donn, 1985), without taking into account the
covariates and assuming that Xi is log-normal. The estimation was performed
using NONMEM software (subroutine ADVAN1 TRANS2, method FOCEI).
The estimated values were:

- 12.8% for θ∗,
- 0.00613 liters per hour (L/h) for the mean clearance and 34.3% × 0.00613

for its standard deviation,
- 1.60 liters (L) for the mean volume of distribution and 47.3%× 1.60 for its

standard deviation.
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We simulated Xi with the following distribution with a minor (30%) and a
major (70%) sub-population (see figure 1):

Xi1
iid∼

 lnN (0.00735, (14.84%× 0.00735)2) with probability 70%

lnN (0.00330, (20.27%× 0.00330)2) with probability 30%

and Xi2
iid∼ lnN (1.60, (47.32%× 1.60)2),

where lnN (m, v) denotes the log-normal distribution with mean m and vari-
ance v, Xi1 and Xi2 were independently simulated. The values of modes and
proportions were arbitrary chosen in such a way that the overall mean and
variance were similar to those estimated from the real dataset used by Grasela
& Donn (1985).
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Figure 1. The distribution of random effects chosen in simulation 1: contour plots
of the joint pdf of clearance and volume of distribution at quantiles 5%, 10%, 25%,
50%, 75%, 90% and 95%. The pdf of clearance is bimodal. Clearance and volume
of distribution are independent.

In the simulations, we supposed that a single dose D was administered at time
t = 0 to all individuals. The value of D was set to the mean of the initial doses
of the real dataset used by Grasela & Donn (1985): D = 25.7µg. We simulated
some rich and some sparse datasets. For rich datasets, we simulated:

- 2 observations per individual for 85% of the individuals: one early and one
late,

- 3 observations per individual for 15% of the individuals: one early, one
intermediate and one late.

For sparse datasets, we simulated:
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- 1 single observation per individual for 85% of the individuals. This obser-
vation was early for half of the individuals, late for others individuals,

- 3 observations per individual for 15% of the individuals: one early, one
intermediate and one late.

The observation times were: 12 minutes (min) for the early observation, 6
hours (h) for the intermediate one and 246 h for the late one. These times
respectively correspond to the minimum, the median and the maximum of the
observation times following intravenous administration in the real dataset.

Details on simulation 2

The value of θ∗ used for the simulations equals the one found by Yukawa,
Suematsu & al. (2005): 25.2% for oral administration. Yukawa, Suematsu &
al. (2005) also found that, for an individual with a mean body weight of 2.9
kg and a mean postnatal age of 21 days: the apparent clearance has a mean of
0.0363 L/h and a standard deviation of 32%×0.0363 L/h, the apparent volume
of distribution has a mean of 7.75 L and a standard deviation of 54% × 7.75
L, the absorption rate constant equals 50h−1 (it was considered as a known
fixed effect).
We simulated Xi with the following distribution (see figure 2):

Xi1
iid∼

 lnN (0.0465, (43.01%× 0.0465)2) with probability 70%

lnN (0.0124, (47.72%× 0.0124)2) with probability 30%,

Xi2
iid∼ lnN (7.75, 17.5)

and Xi3
iid∼ lnN (5.00, 2.25).

Within each sub-population, the apparent clearance and volume of distribu-
tion were correlated:

correlation[ln(Xi1), ln(Xi2)] = 0.6.

The absorption rate constant (Xi3) was independent of apparent clearance
(Xi1) and volume of distribution (Xi2). The values of modes and proportions
were arbitrary chosen in such a way that: the mean of Xi1 and Xi2 and the
standard deviation of Xi2 were similar to the value found by Yukawa, Suematsu
& al. (2005). The Xi1 coefficient of variation was increased from 32% to 64% to
obtain a larger between individuals variability, very usual in PK applications.
The absorption rate constant was considered as a random effect in order to
have a more complex model. Its mean value was decreased from 50h−1 to 5h−1.

The value of the dose administered (D) was set to the mean of the real
dataset’s doses: D = 12, 400µg. In contrast to simulation 1, we only simu-
lated sparse datasets, with:
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Figure 2. The distribution of random effects chosen in simulation 2. On the left,
contour plot of the joint pdf of the apparent clearance and the apparent volume
of distribution at quantiles 5%, 10%, 25%, 50%, 75%, 90% and 95%. The pdf of
apparent clearance is bimodal. The apparent clearance and volume of distribution
are correlated. On the right, the absorption rate constant’s marginal pdf: it was
independently simulated as a log-normal random variable.

- 2 observations per individual for 85% of the individuals. One of these ob-
servations was around the maximum of the concentration-time profile. The
other observation was early for half of the individuals, and late for others
individuals.

- 4 observations per individual for 15% of the individuals: one early, one
intermediate, one late and one around the maximum of the concentration-
time profile.

The early observation time was equal to 12 min, the intermediate one to 6 h
and the late one to 246 h. The time around the maximum of the concentration-
time profile was set to 1h 24 min (this time achieved the maximum of the
population mean concentration-time profile).

5.1.1 Computational settings

In order to compute EBEsED,NPNM and an estimation θ̂parametric
N of θ∗,

we assumed that P∗ was a log-normal distribution and used the software
NONMEM VI with the $ESTIMATION (FOCEI method for simulation 1,
FO method for simulation 2), option POSTHOC and $NONPARAMETRIC
routines (Boeckmann, Sheiner & Beal (2006)). FO has been used in simulation
2 because FOCEI failed too often.

In order to perform NPML and NPEM, an estimation of θ∗ is needed: we
chose θ̂parametric

N . NPML and NPEM algorithms were implemented in C++.
NPNM was used as starting point for NPML and NPEM. A Fletcher-Reeves
algorithm with 10 random different initializations was used to perform the
support optimization step of NPML. The frequencies optimization step of
NPML was performed with an EM algorithm as described by McLachlan &
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Peel (2004). NPEM was stopped when:

ln LN(θ̂parametric
N , P̂(k+1))− ln LN(θ̂parametric

N , P̂(k))

| ln LN(θ̂parametric
N , P̂(k))|

< 10−4,

where ln LN(θ̂parametric
N , P̂(k)) is the NPEM likelihood at iteration k. This

stopping criteria was not convenient for NPML, because the likelihood im-
provement between 2 NPML iterations is always very small (each iteration
of NPML modifies only 1 support point whereas NPEM modifies N sup-
port points). We considered the likelihood improvement between N iterations:
NPML was stopped when:

ln LN(θ̂parametric
N , P̂(k+N))− ln LN(θ̂parametric

N , P̂(k))

| ln LN(θ̂parametric
N , P̂(k))|

< 10−4,

where ln LN(θ̂parametric
N , P̂(k)) is the NPML likelihood at iteration k.

A fortran 77 implementation of the SNP method, called nlmix (Davidian &
Gallant, 1991), is available in the public domain (statlib, Carnegie-Mellon
University). The SNP estimations of θ∗, θ̂SNP

N , and of P∗ were performed
with nlmix. The likelihood was computed by quadrature (with 15 quadrature
points in simulation 1 and, to save computation time, only 10 in simulation
2). Following Davidian & Gallant (1993) and Davidian & Gallant (1991) rec-
ommendations, the matrix U was set diagonal for K > 0. Besides, for each
dataset, several truncation parameters K (K=0,2,3 and 4) and, for each K, sev-
eral initialization points (10 in simulation 1, 5 in simulation 2) were assessed.
For a given K, we selected the initialization which performed the highest
likelihood. The best K was then selected using the Hannan-Quinn criterion.
Besides, when K was greater than 0, the matrix U was set diagonal.

5.2 Performance evaluation

Comparing the estimation of a distribution in inverse problems is not an
straightforward task. Indeed, ways of comparing estimated and actual proba-
bility distribution of random effects are numerous, and in general not equiv-
alent. Besides, in such inverse problems the objective in not always the es-
timation of the random effects’ distribution. For instance in this study, the
ability to detect the sub-population was of specific interest. Similarly, when
the aim of the statistical study is more predictive than descriptive, the ability
to predict the observed data Yi or the unobserved random effects Xi could be
a pertinent information. Therefore, it is necessary to use several criteria to
compare the methods.
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5.2.1 Estimation of P∗

To compare the estimated and the true distribution, the T1 distance (also
known as Wasserstein or Kantorovich or transport distance) is convenient
here because it can be computed for multidimensional discrete and continuous
distributions. The T1-error made by P̂N (with cdf Π̂N) in estimating P∗ (with
cdf Π∗) is defined as:

T1-error(P̂N) =
∫
|Π̂N(x)− Π∗(x)|dx,

T1-error represents the absolute volume between the estimated and the true
cdf.

5.2.2 Prediction of random effects

A prediction of unobserved random effects Xi can be computed after an esti-
mation P̂N of P∗ and θ̂N of θ∗:

EBEi(θ̂N , P̂N) = arg sup
Xi

P[Xi|Yi, θ̂N , P̂N ].

It is noteworthy that EBEi(θ̂
parametric
N ,EBEsED) equals the parametric EBEi

defined in section 3.1.
For each dataset, the sum of absolute relative errors between EBEi(θ̂N , P̂N)
and the actual realization xi of Xi, gives the average percentage error (denoted
X-error) for the prediction of Xi:

X-errorp(θ̂N , P̂N) =
1

N

N∑
i=1

|EBEi(θ̂N , P̂N)p − xip

xip

|.

5.2.3 Prediction of observed data

In order to evaluate the errors made in predicting the individual concentration
time profile of interest, we computed, for each dataset:

Y-error(θ̂N , P̂N) =
1

N

N∑
i=1

∫ +∞

t=0
|f(t, EBEi(θ̂N , P̂N))− f(t, xi)|dt,

where f(t, x) = fi(d, θ, x), where d represents the experimental design with
dose D and measurement time ti = (t). The Y-error represents the average
absolute area between the predicted and the real concentration-time profiles.
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5.3 Results

Computation

The NP methods were only run when the NONMEM $ESTIMATION routine
converged without warnings. Table 1 reports the number of these datasets. On
these datasets, all NP methods converged (SNP was considered convergent if
at least one initialization converged).

Table 1
Number of analyzed datasets over the number of simulated datasets. A dataset
was analyzed only if the NONMEM $ESTIMATION routine converged without
warnings.

N Simulation 1 Simulation 1 Simulation 2

Rich datasets Sparse datasets Sparse datasets

50 93/100 98/100 38/100

100 95/100 100/100 51/100

200 93/100 95/100 53/100

300 93/100 100/100 58/100

400 96/100 97/100 69/100

Figure 3 displays the average computation times. The computation time of
each method consists of the computation time needed to compute the fixed ef-
fects estimation (θ̂parametric

N for EBEsED, NPNM, NPML and NPEM, θ̂SNP
N

for SNP) and of the time needed to compute the estimation of P∗. For SNP,
the computation time consists of the computation time needed to perform the
MLE with K = 0, 2, 3 and 4, and for each K several initializations (10 for
simulation 1, 5 for simulation 2).
As expected, the computation time of all methods increased with the sample
size and with the number of random effects. SNP appeared particularly sen-
sitive to an increase of the random effects dimension: this can be explained by
the use of quadratures to approximate the likelihood.

Estimation of P∗

Figure 4 and 5 display boxplots of the T1-errors.
For rich datasets (simulation 1 only), EBEsED performed as well as the NP
methods. However, for sparse datasets (for simulations 1 and 2), it produced
much more T1-error than the NP methods and its T1-error did not really
decrease with the sample size: it seemed not consistent with respect to T1
metric.
On the contrary, in all situations, the T1-errors of all the NP methods de-
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Figure 3. Average computation times with respect to the sample size N : on top, for
simulation 1, on the left, for rich datasets, on the right for sparse datasets, at the
bottom, for simulation 2 (for sparse datasets only).

creased closed to 0 with the sample size: all the NP methods seemed conver-
gent with respect to T1 metric.
For simulation 1, the NP methods performed roughly equivalently with respect
to the T1-error. As expected, these errors were lower for the rich than for the
sparse datasets. It is noteworthy that, in this simulation, NPNM performed
nearly as well as the others methods, which is surprising as its support points
suffer from shrinkage.
For simulation 2, the difference between the NP methods was more percepti-
ble. In particular, NPNM appeared less successful than NPML and NPEM:
we suppose that, because of shrinkage, the EBEs did not provide a conve-
nient support to describe P∗ in this 3-dimensional model. The performance
of SNP was not as good as in the 2-dimensional model: we speculate that
the 10 quadrature points were not enough to give an accurate approximation
of the likelihood and/or that the 5 initializations assessed were not sufficient
to reach the global maximum in this high dimensional optimization problem
(e.g. for K = 4, the dimension equals 41). The difference between NPML and
NPEM was very slight.
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Figure 4. For simulation 1, boxplots of T1-errors for various methods with respect
to the sample size N : on the left for the rich datasets, on the right for the sparse
datasets.

●

●

●

●

50 100 200 300 400

0
1

2
3

4

sample size N

●

●

●

●●

●

●
●●

●

0
1

2
3

4

●

●●

●

●
●

●

0
1

2
3

4

●

●

●

●

0
1

2
3

4

●

●

●

●

●

●

●

0
1

2
3

4

EBEsED
NPML
NPEM
SNP
NPNM

Figure 5. For simulation 2, boxplots of T1-errors with respect to the sample size N
(the datasets are sparse).

Maximization of the likelihood

In order to evaluate the performances of the algorithms for likelihood max-
imization, we looked at the likelihood obtained with the various methods.
The likelihood of EBEsED considered here is not the approximated likeli-
hood given by NONMEM software after the parametric estimation, but the
(explicit) likelihood of the NP discrete measure with EBEs as support points
and equal frequencies. In that sense, it is comparable with the likelihood of
NPNM, NPML and NPEM. The likelihood of SNP is not considered here
since it is not comparable with the others because the estimation of θ∗ is dif-
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ferent. Table 2 reports the average log-likelihood of the various methods for
samples of size N = 400. Results for the other sample sizes are not presented
here but led to the same conclusions.

Table 2
Average log-likelihood of the various discrete NP estimators, for samples of size
N = 400. ∗ the likelihood of EBEsED computed here is not the parametric likelihood
but the NP likelihood considering EBEsED as a discrete NP estimator with EBEs
as support points and equals frequencies.

method Simulation 1 Simulation 1 Simulation 2

Rich datasets Sparse datasets Sparse datasets

EBEsED∗ -2403.3 -1518.6 -7260.7

NPNM -2377.9 -1450.5 -7235.9

NPML -2376.7 -1450.1 -7183.4

NPEM -2376.3 -1449.1 -7166.9

In theory, for a given estimation of θ∗, the likelihood of NPML and NPEM
should be greater than the likelihood of EBEsED and NPNM, since these
algorithms maximize the likelihood over the set of all probability measures. Be-
sides by definition, the likelihood of NPNM cannot be less than the EBEsED’s
one. Our results are in agreement with the theory for all the datasets.
For simulation 1, the likelihood improvement due to the optimization of sup-
port points (difference between NPML/NPEM and NPNM) is slight in com-
parison with the likelihood increasing due to the frequencies optimization (the
difference between NPNM and EBEsED), in both sparse and rich datasets.
On the contrary, for simulation 2, the optimization of the support points pro-
vided a real improvement of likelihood. Overall, these results are coherent with
the T1-error results presented above.
In all situations, in average, NPEM reached a higher likelihood than NPML,
with a lower computational cost. Therefore, it can be concluded that the
NPEM algorithm was, in average, more efficient than the NPML algorithm,
under the studied conditions.

Prediction abilities

Figure 6 displays the boxplots of prediction errors for the clearance (X-error1),
for simulation 1, the sparse datasets and samples of size N = 400. In the
overall population, EBEsED produced roughly as much X-error1 as the NP
methods, despite its poor estimation of P∗. Actually, when looking at the
2 sub-populations separately, we can see that: in the major sub-population,
EBEsED seemed better than the discrete NP methods, whereas in the minor
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sub-population, the discrete NP methods seemed better than EBEsED. For
all methods, the X-error1 was more important in the minor than in the major
sub-population. Surprisingly, SNP performed equivalently to EBEsED with
respect to X-error1, even in the minor sub-population.
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Figure 6. Boxplots of prediction errors for the clearance (X-error1), for simulation 1,
sparse datasets and samples of size N = 400: on the left for the overall population,
in the middle within the major sub-population (around 70% of the individuals), on
the right within the minor sub-population.

Figure 7 displays boxplots of prediction errors (Y-error), for simulation 1,
the sparse datasets and samples of size N = 400. In the overall population,
EBEsED made less Y-error than the discrete NP methods. Within the ma-
jor sub-population, EBEsED was better than all the NP methods. However,
within the minor sub-population, all the NP methods appeared better than
EBEsED. It is noteworthy that SNP was the best in this sub-population,
despite its poor prediction of clearance (X-error1).
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Figure 7. Boxplots of prediction errors of observed data (Y-error), for simulation 1,
sparse datasets and samples of size N = 400: on the left for the overall population,
in the middle within the major sub-population (around 70% of the individuals), on
the right within the minor sub-population.
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6 Conclusion

The goal of this article was to compare several NP methods for estimation of
the random effects’ distribution P∗ in NLME models, with applications to PK
analyses. We studied four NP methods: NPNM, NPML, NPEM and SNP.
EBEsED which is often used to check the parametric assumption, has also
been included in the study.
As expected, EBEsED appeared to be an efficient estimator of P∗ when the
experimental design was rich but was unreliable when the experimental design
was sparse. In that case, the need for NP methods was confirmed.
The NPML and NPEM algorithms aim at computing the MLE when no as-
sumption is made on P∗. This MLE is a discrete measure with at most N
support points. This discreteness has the advantage of making the likelihood
explicit. On the other hand, it can make the interpretation difficult since P∗
is generally continuous. The consistency of this MLE is established, but un-
der restrictive assumptions: all fixed effects are known and no covariates are
used to explain mean variations of Xi. In our simulation studies, NPML and
NPEM gave satisfactory results even if the fixed effect (relative to residual
error) was previously estimated using a parametric model. In general, NPEM
reached a higher likelihood with a lower computational cost. Both NPML
and NPEM present the risk of being trapped in local maxima since they are
deterministic algorithms.
In contrast to these discrete NP methods, the SNP method provides a con-
tinuous estimator of P∗. Its statistical properties are established under mild
assumptions. In particular, the fixed effects can be estimated and covariates
can be used to explain the mean variations of Xi. Besides, the (log-)normality
can be tested. SNP have two main weaknesses: the selection of the truncation
parameter and the likelihood optimization. To select the truncation parame-
ter, no criterion has well established properties in NLME models. As for the
likelihood optimization, this is difficult for two reasons. First, the likelihood
is not explicit: here, it was approximated with quadratures which is compu-
tationally very expensive when the number of random effects is important.
Second, the likelihood certainly has several local maxima: the algorithm used
here was deterministic and so several initializations were needed to avoid local
maxima. Investigations on stochastic algorithms would certainly be fruitful.
Lastly, NPNM is an easy-to-compute discrete estimator. On a simple PK
model, it performed nearly as good as the others NP estimators, but was less
satisfactory in a more complex PK model. Since its support points can be
affected by shrinkage, its statistical properties are questionable.
Finite mixtures of (log-) normal distributions could also be an alternative to
the parametric assumption (Lemenuel-Diot, Mallet & al. (2005), Wang, Schu-
mitzky & al. (2007)). If P∗ is really a finite mixture, the MLE is consistent
and some computational algorithms are available. If not, one could think that
increasing the number of mixture components would allow to approximate any
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kind of distribution, but, to our knowledge, such a result is not established.
In conclusion, all the studied NP methods seemed promising but would prob-
ably require more investigations on statistical and/or computational issues in
order to be more widely used in population PK and/or PD analyses.
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