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The paper emphasizes some asymptotic behaviors for skew-evolution semiflows in Banach spaces. These are defined by means of evolution semiflows and evolution cocycles. Some characterizations which generalize classical results are also provided. The approach is from nonuniform point of view.

Preliminaries

The study of asymptotic properties, such as exponential dichotomy and exponential trichotomy, considered basic concepts that appear in the theory of dynamical systems, plays an important role in the study of stable, instable and central manifolds. Some of the original results concerning stability and instability were published in [START_REF] Megan | On asymptotic behaviors for linear skewevolution semiflows in Banach spaces[END_REF], [START_REF] Stoica | L'instabilité des cocycles d'évolution fortement mesurable dans des espaces de Banach[END_REF] and [START_REF] Stoica | On exponential stability for skew-evolution semiflows on Banach spaces[END_REF] for a particular case of skewevolution semiflows defined by means of semiflows and cocycles. In this very case was also defined and characterized the trichotomy on Banach spaces in [START_REF] Megan | Nonuniform trichotomy for skew-evolution semiflows in Banach spaces[END_REF].

Concerning previous results, C. Buşe presents in [START_REF] Bus ¸e | On nonuniform exponential stability of evolutionary processes[END_REF] the nonuniform exponential stability for evolutionary processes. Caracterizations for the nonuniform exponential instability for evolution operators on Banach spaces were obtained by M. Megan, A.L. Sasu and B. Sasu in [START_REF] Megan | Nonuniform exponential unstability of evolution operators in Banach spaces[END_REF]. The study of the nonuniform exponential dichotomy for evolution families was emphasized by P. Preda and M. Megan in [START_REF] Preda | Nonuniform dichotomy of evolutionary processes in Banach spaces[END_REF] and for evolution operators, also in Banach spaces, by M. Megan, A.L. Sasu and B. Sasu in [START_REF] Megan | On nonuniform exponential dichotomy of evolution operators in Banach spaces[END_REF]. Other asymptotic properties for evolution families were studied by the same authors in the nonuniform setting in [START_REF] Megan | Asymptotic Behaviour of Evolution Families[END_REF].

In this paper we extend the asymptotic properties of exponential dichotomy and trichotomy for the newly introduced concept of skew-evolution semiflows defined on Banach spaces, which can be considered generalizations for evolution operators and skew-product semiflows. The results concerning 1 the nonuniform exponential trichotomy are generalizations of some Theorems proved for evolution operators in [START_REF] Megan | On uniform exponential trichotomy of evolution operators in Banach spaces[END_REF].

Notations. Definitions. Examples

Let us consider a metric space (X, d), a Banach space V and B(V ) the space of all bounded linear operators from V into itself. Let V * be the topological dual of V . We denote the sets T = (t, t 0 ) ∈ R 2 , t ≥ t 0 ≥ 0 and Y = X×V . Let P : Y → Y be a projector given by P (x, v) = (x, P (x)v), where

P (x) is a projection on Y x = {x} × V , x ∈ X. Definition 2.1 A mapping ϕ : T × X → X is called evolution semiflow on X if following relations hold: (s 1 ) ϕ(t, t, x) = x, ∀(t, x) ∈ R + × X (s 2 ) ϕ(t, s, ϕ(s, t 0 , x)) = ϕ(t, t 0 , x), ∀(t, s), (s, t 0 ) ∈ T, x ∈ X. Definition 2.2 A mapping Φ : T × X → B(V ) is called evolution cocycle over an evolution semiflow ϕ if: (c 1 ) Φ(t, t, x) = I, the identity operator on V , ∀(t, x) ∈ R + × X (c 2 ) Φ(t, s, ϕ(s, t 0 , x))Φ(s, t 0 , x) = Φ(t, t 0 , x), ∀(t, s), (s, t 0 ) ∈ T, x ∈ X. Definition 2.3 The mapping C : T × Y → Y defined by the relation C(t, s, x, v) = (ϕ(t, s, x), Φ(t, s, x)v)
, where Φ is an evolution cocycle over an evolution semiflow ϕ, is called skew-evolution semiflow on Y .

Example 2.1 We denote C = C(R + , R + ) the set of all continuous functions x : R + → R + , endowed with the topology of uniform convergence on compact subsets of R + and which is metrizable by means of the distance

d(x, y) = ∞ n=1 1 2 n d n (x, y) 1 + d n (x, y)
, where

d n (x, y) = sup t∈[0,n] |x(t) -y(t)|. If x ∈ C then for all t ∈ R + we denote x t (s) = x(t + s), x t ∈ C. Let X be the closure in C of the set {f t , t ∈ R + }, where f : R + → R * + is a decreasing function with the property lim t→∞ f (t) = l > 0. Then (X, d) is a metric space and the mapping ϕ : T × X → X, ϕ(t, s, x) = x t-s
is an evolution semiflow on X.

We consider the Banach space

V = R n , n ≥ 1, with the norm (v 1 , ..., v n ) = |v 1 | + ... + |v n |.
The mapping Φ : T × X → B(V ) given by

Φ(t, s, x)(v 1 , ..., v n ) = e α 1 t s x(τ -s)dτ v 1 , ..., e αn t s x(τ -s)dτ v n ,
where α = (α 1 , ..., α n ) ∈ R n , is an evolution cocycle over ϕ and C = (ϕ, Φ) is a skew-evolution semiflow on Y .

An interesting class of skew-evolution semiflows, useful to describe asymptotic properties, is given by Example 2.2 Let us consider a skew-evolution semiflow C = (ϕ, Φ) and a parameter λ ∈ R. We define the application Φ λ : T × X → B(V ), Φ λ (t, t 0 , x) = e -λ(t-t 0 ) Φ(t, t 0 , x).

(2.1)

It is to remark that C λ = (ϕ, Φ λ ), where Φ λ verifies the conditions of Definition 2.2, is a skew-evolution semiflow and it will be defined as the λ-shift skew-evolution semiflow on Y .

Definition 2.4 A skew-evolution semiflow C = (ϕ, Φ) is said to be (sm) strongly measurable if for all (t 0 , x, v) ∈ T × Y the mapping s → Φ(s, t 0 , x)v is measurable on [t 0 , ∞). (ssm) * -strongly measurable if for all (t, t 0 , x, v * ) ∈ T × X × V * the mapping s → Φ(t, s, ϕ(s, t 0 , x)) * v * is measurable on [t 0 , t].
Definition 2.5 The skew-evolution semiflow C is said to have exponential growth if there exist some applications M , ω : R

+ → R * + such that Φ(t, t 0 , x)v ≤ M (s)e ω(s)(t-s) Φ(s, t 0 , x)v , (2.2) 
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y .

Remark 2.1 Let C = (ϕ, Φ) be a skew-evolution semiflow with exponential growth and let C -α = (ϕ, Φ -α ), α > 0, be the -α-shift skew-evolution semiflow, where the evolution cocycle Φ -α is given by relation (2.1). We have

Φ -α (t, t 0 , x)v = e α(t-t 0 ) Φ(t, t 0 , x)v ≤ M (t 0 )e [α+ω(t 0 )](t-t 0 ) v for all (t 0 , x, v) ∈ R + × Y ,
where the functions M and ω are given by Definition 2.5. Hence, C -α has also exponential growth.

Definition 2.6

The skew-evolution semiflow C is said to have exponential decay if there exist some applications M , ω : R

+ → R * + such that Φ(s, t 0 , x)v ≤ M (t)e ω(t)(t-s) Φ(t, t 0 , x)v , (2.3) 
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y .

Remark 2.2 Let C = (ϕ, Φ) be a skew-evolution semiflow with exponential decay and let C α = (ϕ, Φ α ), α > 0, be the α-shifted skew-evolution semiflow, where the evolution cocycle Φ α is given by relation (2.1). Following relations

Φ α (s, t 0 , x)v = e -α(s-t 0 ) Φ(s, t 0 , x)v ≤ M (t)e [ω(t)+α](t-s) Φ α (t, t 0 , x)v
hold for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y , where the functions M and ω are given by Definition 2.6. Hence, C α has exponential decay.

Remark 2.3 Sometimes it is useful to consider in Definition 2.5 or in Definition 2.6 the particular case ω(s) ≡ ω, ∀s ≥ 0.

3 Exponential stability and instability

Let C : T ×Y → Y , C(t, s, x, v) = (ϕ(t, s, x), Φ(t, s, x)v) be a skew-evolution semiflow on Y . Definition 3.1 The skew-evolution semiflow C is called (s) stable if there exists a mapping N : R + → R * + such that Φ(t, t 0 , x)v ≤ N (s) Φ(s, t 0 , x)v (3.1) 
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y (es) exponentially stable if there exist a mapping N : R + → R * + and a constant ν > 0 such that

Φ(t, t 0 , x)v ≤ N (s)e -ν(t-s) Φ(s, t 0 , x)v , (3.2) 
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y .

Remark 3.1 The exponential stability of a skew-evolution semiflow implies the stability and, further, the exponential growth.

In what follows we will present an example of a skew-evolution semiflow that is exponentially stable but not uniformly exponentially stable.

Example 3.1 Let X = R + and V = R. We consider the continuous function

f : R + → [1, ∞), f (n) = e 2n and f n + 1 e n 2 = 1
and the mapping

Φ f : T × R + → B(R), Φ f (t, s, x)v = f (s) f (t) e -(t-s) v. Then C f = (ϕ, Φ f ) is a skew-evolution semiflow on Y = R + × R over all evolution semiflows ϕ on R + . As Φ f (t, s, x)v ≤ f (s)e -(t-s) |v|, ∀(t, s, x, v) ∈ T × Y,
it follows that C f is exponentially stable and, according to Remark 3.1, stable. On the other hand, as

Φ f n + 1 e n 2 , n, x = e 2n-e -n 2 → ∞ when n → ∞,
it follows that C f is not uniformly exponentially stable.

Definition 3.2 The skew-evolution semiflow C is called (is) instable if there exists a mapping N : R + → R * + such that N (t) Φ(t, t 0 , x)v ≥ Φ(s, t 0 , x)v (3.3)
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y (eis) exponentially instable if there exist a mapping N : R + → R * + and a constant ν > 0 such that

N (t) Φ(t, t 0 , x)v ≥ e ν(t-s) Φ(s, t 0 , x)v (3.4) 
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y .

Remark 3.2

The exponential instability of a skew-evolution semiflow implies the instability and, also, the exponential decay.

There exist skew-evolution semiflows that are exponentially instable but not uniformly exponentially instable, as following example shows. Example 3.2 Let X = R + and V = R. We consider the function

f : R + → [1, ∞), f (n) = 1 and f n + 1 e n 2 = e 2n
and the mapping

Φ f : T × R + → B(R), Φ f (t, s, x)v = f (s) f (t) e (t-s) v. Then C f = (ϕ, Φ f ) is a skew-evolution semiflow on Y = R + × R for all evolution semiflows ϕ on R + . We have Φ f (t, s, x)v ≥ 1 f (t) e (t-s) |v|, ∀(t, s, x, v) ∈ T × Y,
which proves that C f is exponentially instable and, as in Remark 3.2, instable. But, as

Φ f n + 1 e n 2 , n, x = e -2n+e -n 2 → 0 for n → ∞,
we obtain that C f is not uniformly exponentially instable.

Exponential dichotomy

Let C : T ×Y → Y , C(t, s, x, v) = (ϕ(t, s, x), Φ(t, s, x)v) be a skew-evolution semiflow on Y .

Definition 4.1 Two projector families {P k } k∈{1,2} are said to be compatible with a skew-evolution semiflow C = (ϕ, Φ) if (dc 

1 ) P 1 (x) + P 2 (x) = I, P 1 (x)P 2 (x) = P 2 (x)P 1 (x) = 0 (dc 2 ) P k (ϕ(t, s, x))Φ(t, s, x)v = Φ(t, s, x)P k (x)v, k ∈ {1, 2} for all t ≥ s ≥ t 0 ≥ 0 and all (x, v) ∈ Y.
→ R * + such that Φ(t, t 0 , x)P 1 (x)v ≤ N 1 (s) Φ(s, t 0 , x)P 1 (x)v (4.1) Φ(s, t 0 , x)P 2 (x)v ≤ N 2 (t) Φ(t, t 0 , x)P 2 (x)v (4.2) 
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y .

(ed)exponentially dichotomic if there exist two projectors P 1 and P 2 compatible with C, some mappings N 1 , N 2 : R + → R * + and some constants ν 1 , ν 2 > 0 such that e ν 1 (t-s) Φ(t, t 0 , x)P 1 (x)v ≤ N 1 (s) Φ(s, t 0 , x)P 1 (x)v (4.3)

e ν 2 (t-s) Φ(s, t 0 , x)P 2 (x)v ≤ N 2 (t) Φ(t, t 0 , x)P 2 (x)v (4.4)
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y .

Remark 4.1 (i) An exponentially dichotomic skew-evolution semiflow is dichotomic;

(ii) For P 2 = 0 in Definition 4.2 are obtained the stability, respectively the exponential stability properties for skew-evolution semiflows;

(iii) For P 1 = 0 we obtain in Definition 4.2 the instability and the exponential instability properties for skew-evolution semiflows.

Remark 4.2 Without any loss of generality we can consider

N (t) = max{N 1 (t), N 2 (t)}, t ≥ 0 and ν = min{ν 1 , ν 2 }.
We will call N 1 , N 2 , ν 1 , ν 2 , respectively N , ν the dichotomic characteristics asociated to the skew-evolution semiflow C. There exist exponentially dichotomic skew-evolution semiflows that are not uniformly exponentially dichotomic, as in the next Example 4.1 Let X = R + and V = R 2 endowed with the norm

(v 1 , v 2 ) = |v 1 | + |v 2 |, v = (v 1 , v 2 ) ∈ V.
The mapping Φ : T × X → B(V ), defined by Φ(t, t 0 , x)(v 1 , v 2 ) = (e t sin t-s sin s-2t+2s v 1 , e 2t-2s-3t cos t+3s cos s v 2 ) is an evolution cocycle over all evolution semiflows ϕ. We consider the projectors compatible with C

P 1 (x)(v 1 , v 2 ) = (v 1 , 0) and P 2 (x)(v 1 , v 2 ) = (0, v 2 ).

As

t sin ts sin s -2t + 2s ≤ -t + 3s, ∀(t, s) ∈ T, we obtain that Φ(t, s, x)P 1 (x)v ≤ e 2s e -(t-s) |v 1 |, ∀(t, s, x, v) ∈ T × Y.

Similarly, as 2t -2s -3t cos t + 3s cos s ≥ -t -5s, ∀(t, s) ∈ T, it follows that

e 6t Φ(t, s, x)P 2 (x)v ≥ e 5(t-s) |v 2 |, ∀(t, s, x, v) ∈ T × Y.
The skew-evolution semiflow C = (ϕ, Φ) is exponentially dichotomic with the dichotomic characteristics N (t 0 ) = e 6t 0 and ν = 2 and, according to Remark 4.1, dichotomic. But, as

Φ 2nπ, 2nπ - π 2 , x = e 2nπ-3π 2 → ∞ as n → ∞, and Φ 2nπ, 2nπ + π 2 , x = e -6nπ-π → 0 as n → ∞,
we obtain that C is not uniformly exponentially dichotomic.

In what follows we will denote

C k (t, s, x, v) = (ϕ(t, s, x), Φ k (t, s, x)v), ∀(t, t 0 , x, v) ∈ T × Y, ∀k ∈ {1, 2},
where Φ k (t, t 0 , x) = Φ(t, t 0 , x)P k (x), ∀(t, t 0 ) ∈ T, ∀x ∈ X, ∀k ∈ {1, 2}.

We give an integral characterization for the dichotomy property of skewevolution semiflows.

Theorem 4.1 A strongly measurable skew-evolution semiflow C = (ϕ, Φ) is exponentially dichotomic if and only if there exist two projectors P 1 and P 2 compatible with C such that C 1 has exponential growth and C 2 has exponential decay, some functions M 1 , M 2 : R + → R * + and some constants α, β > 0 such that (ed 1 )

t t 0 e α(τ -t 0 ) Φ 1 (τ, t 0 , x)v dτ ≤ M 1 (t 0 ) P 1 (x)v (4.5) (ed 2 ) t t 0 e β(t-τ ) Φ 2 (τ, t 0 , x)v dτ ≤ M 2 (t) Φ 2 (t, t 0 , x)v (4.6)
for all (t, t 0 ) ∈ T and all (x, v) ∈ Y .

Proof. Necessity. As the skew-evolution semiflow C is exponentially dichotomic, there exist two projectors P 1 and P 2 compatible with C, a function

N 1 : R + → R * + and a constant ν 1 > 0 such that Φ(t, s, x)P 1 (x)v ≤ N 1 (s)e -ν 1 (t-s) P 1 (x)v
for all t ≥ s ≥ 0 and all (x, v) ∈ Y . We consider α such that ν 1 = 2α. Following relations hold

t t 0 e α(τ -t 0 ) Φ(τ, t 0 , x)v dτ ≤ N 1 (t 0 ) v t t 0 e α(τ -t 0 ) e -ν 1 (τ -t 0 ) dτ ≤ M 1 (t 0 ) v ,
where we have denoted

M 1 (t 0 ) = N 1 (t 0 ) α .
Hence, relation (4.5) is obtained. Also, there exist a function N 2 : R + → R * + and a constant ν 2 > 0 such that e ν 2 (t-s) Φ(s, t 0 , x)P 2 (x)v ≤ N 2 (t) Φ(t, t 0 , x)P 2 (x)v for all t ≥ t 0 ≥ 0 and all (x, v) ∈ Y . We will consider β such that ν 2 = 2β. We have

t t 0 e β(t-τ ) Φ(τ, t 0 , x)P 2 (x)v dτ ≤ ≤ N 2 (t) t t 0 e β(t-τ ) e -ν 2 (t-τ ) Φ(t, t 0 , x)P 2 (x)v dτ ≤ M 2 (t) Φ(t, t 0 , x)P 2 (x)v ,
where we have denoted

M 2 (t) = N 2 (t) β .
Relation (4.6) is then obtained. Sufficiency. As C 1 has exponential growth, similarly as in Theorem 2.3 of [START_REF] Stoica | On asymptotic behaviors of evolution operators in Banach spaces[END_REF], proved for evolution operators, there exists a nondecreasing function

f : [0, ∞) → [1, ∞) with the property lim t→∞ f (t) = ∞ such that Φ(t, t 0 , x)v ≤ f (t -s) Φ(s, t 0 , x)v ,
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y .

For t ≥ t 0 + 1 we have

Φ(t, t 0 , x)P 1 (x)v e α(t-t 0 ) 1 0 e -αu f (u) du = = e α(t-t 0 ) Φ(t, t 0 , x)P 1 (x)v t t-1 e -α(t-τ ) f (t -τ ) dτ = = t t-1 Φ(t, t 0 , x)P 1 (x)v f (t -τ ) e α(τ -t 0 ) dτ ≤ t t-1 Φ(τ, t 0 , x)P 1 (x)v e α(τ -t 0 ) dτ ≤ ≤ M 1 (t 0 ) P 1 (x)v .
For t ∈ [t 0 , t 0 + 1) we have

Φ -α (t, t 0 , x)P 1 (x)v ≤ f (1)e α P 1 (x)v ,
where the evolution cocycle Φ -α is given by relation (2.1). We obtain

Φ -α (t, t 0 , x)P 1 (x)v ≤ N 1 (t 0 ) P 1 (x)v ,
for all (t, t 0 ) ∈ T and all (x, v) ∈ Y , where we have denoted

N 1 (t 0 ) = f (1)e α + M 1 (t 0 ) 1 0 e -αu f (u) du -1
.

It follows that Φ(t, t 0 , x)P 1 (x)v ≤ N 1 (t 0 )e -α(t-t 0 ) P 1 (x)v , for all t ≥ t 0 ≥ 0 and all (x, v) ∈ Y . Hence, relation (4.3) was proved.

As C 2 has exponential decay, by a similar deduction used to prove Theorem 3.3 of [START_REF] Stoica | On asymptotic behaviors of evolution operators in Banach spaces[END_REF] for evolution operators, there exists a nondecreasing function

g : [0, ∞) → [1, ∞) with the property lim t→∞ g(t) = ∞ such that Φ(s, t 0 , x)v ≤ g(t -s) Φ(t, t 0 , x)v , for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y . For t ≥ s ≥ t 0 ≥ 0, x ∈ X, v ∈ V we have Φ(s, t 0 , x)P 2 (x)v e β(t-s) 1 0 e βu g(u) du = = s s-1 Φ(s, t 0 , x)P 2 (x)v e β(t-s) g(s -τ ) e β(s-τ ) dτ ≤ ≤ s s-1 Φ(τ, t 0 , x)P 2 (x)v e β(t-τ ) dτ ≤ M 2 (t) Φ(t, t 0 , x)P 2 (x)v .
We obtain

Φ(s, t 0 , x)P 2 (x)v ≤ N 2 (t)e -β(t-s) Φ(t, t 0 , x)P 2 (x)v ,
for all t ≥ t 0 ≥ 0 and all (x, v) ∈ Y , where we have denoted

N 2 (t) = M 2 (t)
1 0 e βu g(u)

-1

.

Relation (4.4) is then obtained. Hence, the skew-evolution semiflow C is exponentially dichotomic.

Exponential trichotomy

Let C : T ×Y → Y , C(t, s, x, v) = (ϕ(t, s, x), Φ(t, s, x)v) be a skew-evolution semiflow on Y .

Definition 5.1 Three projector families {P k } k∈{1,2,3} are said to be compatible with a skew-evolution semiflow C = (ϕ, Φ) if (tc 1 ) P 1 (x) + P 2 (x) + P 3 (x) = I, P i (x)P j (x) = P j (x)P i (x) = 0, ∀i, j ∈ {1, 2, 3}, i = j (tc 2 ) P k (ϕ(t, s, x))Φ(t, s, x)v = Φ(t, s, x)P k (x)v, ∀k ∈ {1, 2, 3}, for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y. Definition 5.2 A skew-evolution semiflow C = (ϕ, Φ) is said to be (t) trichotomic if there exist three projectors P 1 , P 2 and P 3 compatible with C and some functions N 1 , N 2 , N 3 : R + → R * + such that Φ(t, t 0 , x)P 1 (x)v ≤ N 1 (t 0 ) Φ(s, t 0 , x)P 1 (x)v (5.1) is an evolution semiflow on X.

Let V = R 3 with the norm (v 1 , v 2 , v 3 ) = |v 1 | + |v 2 | + |v 3 |.
The mapping Φ : T × X → B(V ), given by

Φ(t, s, x)(v) = e -2(t-s)f (0)+ t 0 x(τ )dτ v 1 , e t-s+ t 0 x(τ )dτ v 2 , e -(t-s)f (0)+2 t 0 x(τ )dτ v 3
is an evolution cocycle.

We consider the projections

P 1 (x)(v) = (v 1 , 0, 0), P 2 (x)(v) = (0, v 2 , 0), P 3 (x)(v) = (0, 0, v 3 ).
The skew-evolution semiflow C = (ϕ, Φ) is exponentially trichotomic with asociated trichotomic characteristics

ν 1 = ν 2 = -f (0), ν 3 = f (0) and ν 4 = 1 N 1 (t 0 ) = e t 0 f (0) , N 2 (t) = e -2lt , N 3 (t 0 ) = e 2t 0 f (0) and N 4 (t) = e -lt .
A characterization for the property of exponential trichotomy can be given by the next Theorem 5.1 Let C = (ϕ, Φ) be a skew-evolution semiflow and three projectors P 1 , P 2 and P 3 compatible with C such that C 1 has exponential growth and is * -strongly measurable and C 2 has exponential decay and is strongly measurable. Then C is exponentially trichotomic if and only if there exist a mapping N : R + → R * + and a constant α > 0, a mapping N : R + → R * + and a constant β > 0, some functions M , M : [0, ∞) → (0, ∞), some nondecreasing functions g, g : [0, ∞) → (0, ∞) with the property lim

t→∞ g(t) = lim t→∞ g(t) = ∞ such that (et 1 ) t t 0 e α(t-s) Φ(t, s, ϕ(s, t 0 , x)) * P 1 (x)v * ds ≤ N (t 0 ) P 1 (x)v * , (5.8) 
for all (t, t 0 ) ∈ T and all 

(x, v * ) ∈ X × V * with v * ≤ 1 (et 2 ) t 0 e -β(s-t 0 ) Φ(s, t 0 , x)P 2 (x)v ds ≤ N (t)e -β(t-t 0 ) Φ(t, t 0 , x)P 2 (x)v , ( 5 
(x)v * ds ≤ t t 0 N 1 (t 0 )e ν 1 2 (t-s) P 1 (x)v * ds ≤ ≤ N (t 0 ) P 1 (x)v * ,
for all (t, t 0 , x, v * ) ∈ T × X × V * , where we have denoted

N (t 0 ) = - 2 ν N 1 (t 0 ). (et 2 ) Let us define β = ν 2 > 0,
where the existence of constant ν is assured by hypothesis and by Definition 3.2. Hence, we obtain Sufficiency. (et 1 ) Let t ≥ t 0 + 1 and s ∈ [t 0 , t 0 + 1). Then e -[α+ω(t 0 )] v * , e α(t-t 0 ) Φ(t, t 0 , x)v = = e -[α+ω(t 0 )] t 0 +1 t 0 Φ(t, s, x) * v * , e α(t-t 0 ) Φ(s, t 0 , x)v ds ≤ ≤ t 0 +1

t 0 e -β(s-t 0 ) Φ(s, t 0 , x)v ds ≤ ≤ N (t) t t 0 e -β(s-t 0 ) Φ(t, t 0 , x)v e -ν(t-s) ds ≤ β -1 N (t)e -β(t-t 0 ) Φ(t, t 0 , x)v . (et 3 ) It is obtained immediately if we consider M (u) = N 3 (u), u ≥ 0 and g(v) = e ν 3 v , v ≥ 0. ( et 
t 0 e α(t-s) Φ(t, s, ϕ(s, t 0 , x)) * v * e -ω(t 0 )(s-t 0 ) Φ(s, t 0 , x)v ds ≤ ≤ M (t 0 ) v t t 0 e α(t-s) Φ(t, s, ϕ(s, t 0 , x)) * v * ds ≤ M (t 0 )N (t 0 ) v v * , where the functions M , ω : R + → R * + are given by Definition 2.5. By taking supremum over v * ≤ 1 we obtain e -[α+ω(t 0 )] e α(t-t 0 ) Φ(t, t 0 , x)v ≤ M (t 0 )N (t 0 ) v , ∀t ≥ t 0 + 1, and, further, Φ(t, t 0 , x)v ≤ M 1 (t 0 )e -α(t-t 0 ) v , ∀t ≥ t 0 + 1, where we have denoted M 1 (t 0 ) = M (t 0 )N (t 0 )e [α+ω(t 0 )] , t 0 ≥ 0.

For t ∈ [t 0 , t 0 + 1) we have Φ(t, t 0 , x)v ≤ M (t 0 )e ω(t 0 )(t-t 0 ) v ≤ M 2 (t 0 )e -α(t-t 0 ) v , where we have denoted M 2 (t 0 ) = M (t 0 )e [α+ω(t 0 )] , t 0 ≥ 0. Hence Φ(t, t 0 , x)v ≤ [M 1 (t 0 ) + M 2 (t 0 )]e -α(t-t 0 ) v , ∀(t, t 0 , x, v) ∈ T × X × V, which proves relation (5.4) of Definition 5.1.

(et 2 ) We denote K = 1 0 e -βu f (u)du, where function f is given as in Theorem 3.3 of [START_REF] Stoica | On asymptotic behaviors of evolution operators in Banach spaces[END_REF]. We obtain succesively

K v = t 0 +1
t 0 e -β(τ -t 0 ) f (τt 0 ) Φ(t 0 , t 0 , x)v dτ ≤ ≤ t 0 +1 t 0 e -β(τ -t 0 ) Φ(τ, t 0 , x)v dτ ≤ M (t) Φ β (t, t 0 , x)v = = M (t)e -β(t-t 0 ) Φ(t, t 0 , x)v for all (t, t 0 ) ∈ T and all (x, v) ∈ Y . Hence, relation (5.5) of Definition 5.1 was proved.

(et 3 ) As lim t→∞ g(t) = ∞, there exists δ > 0 such that g(δ) > 1. Let (t, s) ∈ T . Then there exists n ∈ N and r ∈ [0, δ) such that t = s + nδ + r. We obtain succesively Φ(t, t 0 , x)P 3 (x)v = Φ(s + nδ + r, t 0 , x)P 3 (x)v ≤

Definition 4 . 2

 42 The skew-evolution semiflow C = (ϕ, Φ) is called (d) dichotomic if there exist two projectors P 1 and P 2 compatible with C and some mappings N 1 , N 2 : R +

Remark 4 . 3

 43 Let us consider that the shifted skew-evolution semiflows C λ = (ϕ, Φ λ ) and C µ = (ϕ, Φ µ ), where Φ λ and Φ µ are evolution cocycles defined by relation (2.1) with λ < µ, are exponentially dichotomic with characteristics N λ : R + → R * + and ν λ > 0, respectively N µ : R + → R * + and ν µ > 0. If we denote N (t) = max{N λ (t), N µ (t)} and ν = min{ν λ , ν µ } then these are appropriate for both C λ and C µ .

4 )

 4 It follows forM (u) = N 2 (u), u ≥ 0 and g(v) = e -ν 2 v , v ≥ 0.

Φ(s, t 0 , x)P 2 (x)v ≤ N 2 (t 0 ) Φ(t, t 0 , x)P 2 (x)v (5.2) Φ(s, t 0 , x)P 3 (x)v ≤ N 3 (t 0 ) Φ(t, t 0 , x)P 3 (x)v ≤ ≤ N 2 3 (t 0 ) Φ(s, t 0 , x)P 3 (x)v (5.3) for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y .

(et) exponentially trichotomic if there exist three projectors P 1 , P 2 and

(5.4)

for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y .

Remark 5.1 (i) An exponentially trichotomic skew-evolution semiflow is trichotomic;

(ii) For P 1 = 0 in Definition 5.2 are obtained the properties of dichotomy, respectively exponential dichotomy;

(iii) For P 2 = P 3 = 0 the properties of stability, respectively exponential stability follow from Definition 5.2;

(iv) If P 1 = P 3 = 0 the properties of instability and exponential instability are obtained from Definition 5.2. 

Remark 5.2 Without any loss of generality we can chose

for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y . If we define Hence, the skew-evolution semiflow C is exponentially trichotomic.