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The Podospora anserina genome sequence<p>A 10X draft sequence of <it>Podospora anserina</it> genome shows highly dynamic evolution since its divergence from <it>Neu-rospora crassa</it>.</p>

Abstract

Background: The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study
various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development.

Results: We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large
expressed sequence tag collection. Similar to higher eukaryotes, the P. anserina transcription/
splicing machinery generates numerous non-conventional transcripts. Comparison of the P.
anserina genome and orthologous gene set with the one of its close relatives, Neurospora crassa,
shows that synteny is poorly conserved, the main result of evolution being gene shuffling in the
same chromosome. The P. anserina genome contains fewer repeated sequences and has evolved
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new genes by duplication since its separation from N. crassa, despite the presence of the repeat
induced point mutation mechanism that mutates duplicated sequences. We also provide evidence
that frequent gene loss took place in the lineages leading to P. anserina and N. crassa. P. anserina
contains a large and highly specialized set of genes involved in utilization of natural carbon sources
commonly found in its natural biotope. It includes genes potentially involved in lignin degradation
and efficient cellulose breakdown.

Conclusion: The features of the P. anserina genome indicate a highly dynamic evolution since the
divergence of P. anserina and N. crassa, leading to the ability of the former to use specific complex
carbon sources that match its needs in its natural biotope.

Background
With one billion years of evolution [1], probably more than
one million species [2] and a biomass that may exceed that of
animals [3,4], eumycete fungi form one of the most successful
groups of eukaryotes. Not surprisingly, they have developed
numerous adaptations allowing them to cope with highly
diverse environmental conditions. Presently, virtually all
biotopes, with the exception of extreme biotopes (that is,
hyperthermophilic areas), contain some representative
eumycetes. They feed by osmotrophy and import through
very efficient transporters the nutrients they take up from the
environment, often by degrading complex material, such as
plant cell walls, that few other organisms can use.

Eumycete fungi have a huge impact on the global carbon cycle
in terrestrial biotopes. Some species associate with plant and
algae, helping them to scavenge mineral nutrients and to cope
with various stresses, such as poor soils, desiccation, para-
sites and herbivore damage. These mutualistic relationships
lead to better carbon dioxide fixation. In contrast, many spe-
cies parasitize plants and algae, resulting in reduced carbon
fixation [5], as well as causing serious economic losses to
human agriculture. The majority, however, are saprobic and
live on dead plant material, such as fallen plant debris, plants
ingested by herbivores or the remains of plants in feces of her-
bivores. It is estimated that saprobes release 85 billion tons of
carbon dioxide annually [6,7], much higher than the 7 billion
tons emitted by humans [8]. Finally, some fungi can infect
and kill animals, especially invertebrates, which results in
diminished carbon fluxes within the food chain. A few are
opportunists able to infect humans. Impact on human health
is increasing because of the higher prevalence of immunode-
ficiency, a condition favoring fungal infection.

In addition to these global effects, eumycetes impact their
biotope and humans in many ways. Indeed, humans have
been using them for thousands of years as food, to process
other plant or animal materials and to produce compounds of
medicinal interest. A few species degrade human artifacts,
causing permanent damage to irreplaceable items. Further-
more, due to their ease of handling, some species, such as
Saccharomyces cerevisiae or Neurospora crassa, have been
exploited as research tools to make fundamental biological

discoveries. In recent years, a number of genome initiatives
have been launched to further knowledge of the biology and
evolution of these organisms. Presently, a large effort is dedi-
cated to saccharomycotina yeasts (formerly hemiascomyc-
etes) [9]. Other efforts are concentrated towards human
parasites and plant mutualists or pathogens. The genomes of
Magnaporthe grisea, a rice pathogen, Fusarium gramine-
arum, a wheat pathogen, Ustilago maydis, a maize pathogen,
Cryptococcus neorformans and Aspergillus fumigatus, two
human pathogens, have been published [10-14]. In addition,
saprobic fungi are also considered, since the genome
sequences of the basidiomycete Phanerochaete chrysospo-
rium [15], of the ascomycetes N. crassa [16] and Schizosac-
charomyces pombe [17], and three strictly saprobic
Aspergilli, A. nidulans, A. oryzae and A. niger [18-20], are
available.

Because of its ease of culture and the speed of its sexual cycle,
which is completed within a week, the saprobic filamentous
ascomycete Podospora anserina (Figure 1) has long been
used as a model fungus in several laboratories [21,22] to study
general biological problems, such as ageing, meiosis, prion
and related protein-based inheritance, and some topics more
restricted to fungi, such as sexual reproduction, heterokaryon
formation and hyphal interference (Table 1). P. anserina and
N. crassa both belong to the sordariomycete clade of the pez-
izomycotina (formerly euascomycete). Based on the sequence
divergence between the P. anserina and N. crassa 18S rRNA,
the split between the two species has been estimated to have
occurred at least 75 million years ago [23]. However, the aver-
age amino acid identity between orthologous proteins of the
two species is 60-70% [24], the same percentage observed
between human and teleost fishes [25], which diverged about
450 million years ago [26,27]. It is not surprising, therefore,
that despite similar life cycles and saprobic lifestyles, each
species has adopted a particular biotope and displays many
specific features (Table 2). To better comprehend the gene
repertoire enabling P. anserina to adapt to its biotope and
permit this fungus to efficiently complete its life cycle, we
have undertaken to determine the genome sequence of P.
anserina and have compared it to that of N. crassa, its closest
relative for which the genome sequence is already known. We
started with a pilot project of about 500 kb (about 1.5% of the
Genome Biology 2008, 9:R77
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genome) [24] and in this paper we present the establishment
of a 10X draft sequence.

Results and discussion
Acquisition, assembly and main features of the 
sequence
The genome of the laboratory reference S mat+ strain was
sequenced using a whole-genome shotgun approach (see
Materials and methods for a detailed explanation of the
sequencing and assembly strategies). Ten-fold coverage per-
mitted complete assembly of the mitochondrial genome as a
single circular contig of about 95 kb and most of the nuclear
genome (Table 3). The latter was assembled in 1,196 contigs
clustered into 33 large scaffolds, comprising nearly all unique
sequences, and 45 small scaffolds composed almost exclu-
sively of transposon sequences, collectively totaling 35 Mb.
Based on the frequency of sequence runs corresponding to
the rDNA compared to that of unique sequences, we esti-
mated that 75 rDNA units are present in the genome. With
this assumption, the total sequence length of the genome is
35.5-36 Mb, a value somewhat superior to pulse field esti-
mates [28,29]. Presently, all large scaffolds are assigned to a
chromosome as defined by the genome map that now

includes over 300 markers (see Materials and methods; Addi-
tional data file 1).

The annotation strategy, described in the Materials and
methods section, identified 10,545 putative coding sequences
(CDSs), including two inteins [30]. 5S rRNA, tRNA, as well as
several small nuclear RNAs (snRNAs) and small nucleolar
RNAs (snoRNAs) were also identified. Statistics concerning
the protein coding capacity of the P. anserina genome and the
main features of the CDSs are indicated in Table 3. The
present estimates of the coding capacity of N. crassa are
9,826 CDSs at the Broad Institute [31] and 9,356 CDSs at the
Munich Information Center for Protein Sequences (MIPS)
[32]. It remains to be established whether the higher coding
capacity of P. anserina is real or due to the differences in
strategies used to annotate the genomes of these fungi. We
have searched for orthologous genes between P. anserina, N.
crassa, M. grisea and A. nidulans by the best reciprocal hit
method and found that these four fungi share a common core
of 2,876 genes (Figure 2a). Comparison of the P. anserina
CDSs with N. crassa orthologues (Figure 2b) indicates that
they are, on average, 60.5 ± 16.0 percent identical, a value
similar to the one calculated previously on a small sample
[24]. The P. anserina CDSs were 54.7 ± 15.8% identical to M.
grisea and 47.9 ± 15.1% to A. nidulans orthologues. The

The major stages of the life cycle of P. anserina as illustrated by light microphotography, with a corresponding schematic representation shown aboveFigure 1
The major stages of the life cycle of P. anserina as illustrated by light microphotography, with a corresponding schematic representation shown above. (a) 
The cycle starts with the germination of an ascospore, after the transit in the digestive tract of an herbivore in the wild. (b) Then, a mycelium, which 
usually carries two different and sexually compatible nuclei (pseudo-homothallism), called mat+ and mat-, develops and invades the substratum. (c) On this 
mycelium, male (top; microconidia) and female (bottom; ascogonium) gametes of both mating types differentiate after three days. In the absence of 
fertilization, ascogonium can develop into protoperithecium by recruiting hyphae proliferating from nearby cells. (d) This structure, in which an envelope 
protects the ascogonial cell, awaits fertilization. (e,f) This occurs only between mat+ and mat- sexually compatible gametes (heterothallism) and triggers 
the development completed in four days of a complex fructification (e) or perithecium, in which the dikaryotic mat+/mat- fertilized ascogonium gives rise 
to dikaryotic ascogenous hyphae (f). (g) These eventually undergo meiosis and differentiate into ascii, mostly with four binucleate mat+/mat- ascospores 
(pseudo-homothallism), but sometime with three large binucleate ascospores and two smaller uninucleate ones (bottom asci is five-spored). Unlike those 
issued from large binucleate ascospores, mycelia issued from these smaller ascospores are self-sterile because their nuclei carry only one mating type. (h) 
When ripe, ascospores are expelled from perithecia and land on nearby vegetation awaiting ingestion by an herbivore. Scale bar: 10 μm in (a-d,f,h); 200 μm 
in (e,g).
Genome Biology 2008, 9:R77
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identities reflect the known phylogenetic relationship
between these four pezizomycotina and are comparable to
those found between species of saccharomycotina [9].

The expressed sequence tag database analysis
In addition to genomic DNA sequencing, a collection of
51,759 cDNAs was sequenced. These originate from libraries
constructed at different stages of the P. anserina life cycle
(Table 4). The resulting expressed sequence tags (ESTs) were
mapped on the genomic sequence to help with the annotation
but also to gain insight into the transcriptional ability of P.
anserina. As seen in Table 4, these cDNAs confirmed 5,848
genes. However, we detected alternative splicing events in
3.8% of the clusters. This suggests that the P. anserina pro-
teome might be more complex than concluded from the
present annotation. Of interest is the presence of 668 tran-
scribed regions without obvious protein-coding capacity
(designated here as 'non-coding transcripts'). Some of these
produce ESTs that are spliced, poly-adenylated or present in
multiple copies, suggesting that they originate from true tran-
scription units. Although some genes may have been miss-
called during annotation, these transcription units may corre-
spond to transcriptional noise, code for catalytic/regulatory
RNA or reflect polycistronic units coding for small peptides as
described recently [33,34]. Finally, we detected 45 antisense
transcripts corresponding to 36 different CDSs. These tran-
scripts might potentially be involved in proper gene regula-
tion, as described for the S. cerevisiae PHO5 gene [35]. In
large scale analyses of Fusarium verticilloides [36] and S.
cerevisiae [37] ESTs, similar arrays of alternatively spliced,
'non-coding' and antisense transcripts were detected, sug-
gesting that the production of these 'unusual' transcripts is, in
fact, a normal situation in ascomycete fungi, as described for
other eukaryotes [38].

Genes putatively expressed through frame-shift or 
read-through
During the manual annotation of the genome, we detected 14
genes possibly requiring a frame-shift or a read-through to be
properly expressed (Additional data file 2). In all cases,
sequencing errors were discounted. In addition, ESTs cover-
ing putative read-through or frame-shift sites confirm six of
them. Some of the putative frame-shifts and read-throughs
detected could correspond to first mutations that will lead to
pseudogene formation. However, four sites seem conserved
during evolution, arguing for a physiological role. One of the
putative -1 frame-shift sequences is located in the Yeti retro-
transposon, a classic feature of this type of element. The 13
others affect genes coding for cellular proteins. Factors
involved in the control of translation fidelity and affecting
rates of frame-shift and read-through have been studied in P.
anserina and shown to strongly impact physiology [39-42].
To date, the reasons for these effects are not known. None of
the components responsible for insertion of selenocysteine
are found in the P. anserina genome, excluding a role in the
observed phenotypes of the non-conventional translation
insertion of this amino acid, which takes place at specific UGA
stop codons [43]. Similarly, no obvious suppressor tRNA was
discovered in the genome.

Synteny with N. crassa
We have explored in more detail the synteny between orthol-
ogous genes in the P. anserina and N. crassa genomes (Fig-
ures 3 and 4). Synteny was defined as orthologous genes that
have the same order and are on the same DNA strand. As
observed for other fungal genomes [18,44], extensive rear-
rangements have occurred since the separation of the two
fungi. However, most of them seem to happen within chro-
mosomes since a good correlation exists between the gene

Table 1

Areas of research that should benefit from the P. anserina complete genome sequence

Original report Recent works that have benefited from the genome 
sequence

Ageing and cell degeneration [40,103] [104-106]

Cell death [79] [104,107]

Self/non-self recognition (vegetative incompatibility and hyphal interference) [76,79] [65]

Mating type and inter-nuclear recognition [108] [109]

Cell differentiation and cell signaling in filamentous fungi [110] [111]

Sexual reproduction in fungi [21] [64,111]

Mechanism of meiosis [22,112]

Meiotic drive [113]

Translation accuracy determinants and role [114] [115]; this paper

Mitochondrial physiology [116,117] [105]

Peroxisomal physiology and function [118] [119]

Prions and other protein-based inheritance [120,121] [106]

Biomass conversion This paper

Secondary metabolism [122]
Genome Biology 2008, 9:R77
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contents of many chromosomes, even though a few transloca-
tions are detected (Figure 3). For example, most of P. anse-
rina chromosome 1 corresponds to N. crassa chromosome I
except for a small part, which is translocated to the N. crassa
chromosome IV. Within the chromosomes, numerous
rearrangements have occurred, compatible with the preva-
lence of small inversions in fungal genome evolution as
observed previously between genes of saccharomycotina
(hemiascomycetous) yeasts [45]. The size of the synteny
blocks loosely follows an exponential decrease (Figure 4),
compatible, therefore, with the random breakage model [46],
suggesting that most breaks occur randomly, as observed for
genome evolution in Aspergilli [18]. However, in both
Aspergilli and saccharomycotina yeasts, blocks of synteny
have been dispersed among the various chromosomes
[18,47], unlike what is observed between P. anserina and N.
crassa. This discrepancy of genome evolution between the
three groups of fungi might stem from the fact that P. anse-
rina and N. crassa have likely had a long history of heteroth-
allism, whereas Aspergilli and saccharomycotina yeasts are
either homothallic, undergo a parasexual cycle or switch mat-
ing types. In heterothallics, the presence of interchromo-
somic translocation results in chromosome breakage during
meiosis and, hence, reduced fertility. On the contrary,

homothallism, parasexualilty or mating-type switching may
allow translocation to be present in both partners during sex-
ual reproduction and, therefore, have fewer consequences on
fertility. Additionally, meiotic silencing of unpaired DNA
(MSUD), an epigenetic gene silencing mechanism operating
in N. crassa [48], abolishes fertility in crosses involving rear-
ranged chromosomes in one of the partners.

Interestingly, the largest synteny block between P. anserina
and N. crassa, with 37 orthologous genes, encompasses the
mating type, a region involved in sexual incompatibility. A
similar trend in conserved synteny in the mating-type region
has been observed in the genus Aspergillus [18]. This sug-
gests that recombination may be inhibited in this region on an
evolutionary scale. In both P. anserina and N. crassa, the
mating-type regions are known to display peculiar properties.
In P. anserina, meiotic recombination is severely repressed
around the mating-type locus [49], as also described in Neu-
rospora tetrasperma [50]. In N. crassa, MSUD is inhibited in
the mat region [48]. However, recombination is not com-
pletely abolished around this locus. Indeed, between pairs of
orthologous genes, a few species-specific CDSs were detected.
These genes may come from de novo insertion or, alterna-
tively, these species-specific genes have been lost in the other

Table 2

Comparison between P. anserina and N. crassa biology

P. anserina [80] N. crassa [123]

Ecology

Habitat Restricted on dung of herbivores Prefers plants killed by fire

Always small biotopes and high competition Often large biotopes and low competition

Distribution Worldwide Prefers hot climate

Vegetative growth

Growth rate Average (7 mm/d) High (9 cm/d)

Ageing syndrome Senescence in all investigated strains Mostly immortal with some ageing strains

Hyphal interference Present Not yet described

Major pigments Melanins (green) Carotenoids (orange)

Reproduction

Asexual reproduction None Efficient with germinating conidia

Sexual generation time One week Three weeks

Mating physiology Pseudohomothallic Strict heterothallic

Ascospore dormancy No Yes

Ascospore germination trigger Passage through digestive track of herbivores in nature 
(on low nutrient media containing ammonium acetate in 
the laboratory)

60°c heat shock or chemicals (for example, furfural)

Gene inactivation processes

RIP Not efficient Very efficient

MSUD Not yet described Efficient

Quelling Not yet described Efficient

Features and references pertaining to the biology of both fungi can be found at the corresponding reference.
Genome Biology 2008, 9:R77
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species. This lends credit to the hypothesis put forward to
explain the mating-type region of Cryptococcus neoformans
[51], in which the genetic incompatibility is driven by two
genetically different sequences of 100 kb. In these regions,
not only the mating-type regulatory genes are different, but
also housekeeping genes. Inhibition of recombination at this
locus may have driven the differential acquisition of genes by
the two haplotypes within the same species. Note that on a
longer evolutionary scale, inhibition of recombination cannot
be detected because the synteny of the mating-type region of
P. anserina with that of M. grisea or A. nidulans is absent or
limited to very few genes.

Repeated sequences in the P. anserina genome
The pilot project that sequenced about 500 kb around the
centromere of chromosome 5 revealed an apparent paucity in
repeated sequences in P. anserina [24]. The draft sequence
reported here confirms a paucity of repeats but not as much
as suggested by the pilot project. In fact, repeats cover about
5% of the P. anserina genome (omitting the rDNA cluster).
They can be divided into four categories: RNA genes (Table 3;
see Materials and methods), true transposons (Additional
data file 3), repetitive elements of unknown origin (Addi-
tional data file 3) and segmental duplications (Additional
data file 4). Collectively, the transposons occupy about 3.5%
of the genome. However, as many transposons border the

sequence gaps present in the draft assembly, the actual per-
centage in the complete genome may be higher. This is about
three times less than in the genomes of M. grisea [11] and N.
crassa [16], close relatives of P. anserina. Most segmental
amplifications are small (Additional data file 4), although one
is 20 kb large. They occupy about 1.5% of the genome. An
interesting feature of all these repeated sequences (except for
the 5S RNA and tRNA genes) is that they are nested together
(Figure 5), as previously described for Fusarium oxysporum
transposons [52]. In particular, large parts of many chromo-
somes are almost devoid of these repeated sequences whereas
chromosome 5 is enriched in repeats. Ironically, the pilot
project sequenced a region of this chromosome 5 almost
devoid of repeated sequences.

Nearly all copies of these repeated elements differ by poly-
morphisms, many of which appear to be caused by repeat
induced point mutation (RIP). RIP is a transcriptional gene
silencing and mutagenic process that occurs during the sexual
dikaryotic stage of many pezizomycotina [53]. P. anserina
displays a very weak RIP process [54,55]. It results, as in N.
crassa, in the accumulation of C●G to T●A transitions in
duplicated sequences present in one nucleus, and, therefore,
'ripped' sequences present a higher than average T/A content.
However, although the RIP process acts in the P. anserina
genome, it does not account for all the mutations found in

Table 3

Main features of the P. anserina genome

Genome features Value

Nuclear genome

Size 35.5-36 Mb

Chromosomes 7

GC percentage (total genome) 52.02

GC percentage in coding sequences 55.87

GC percentage in non-coding regions 48.82

tRNA genes 361

rDNA repeat number 75

Consensus rDNA repeat size 8192 pb

5S rRNAs 87

snRNA genes 14

snoRNA genes 13

Protein coding genes (CDSs) 10545

Percent coding 44.75

Average CDS size (min; max) 496.4 codons (10; 8,070)

Average intron number/CDS (max) 1.27 (14)

Average intron size (max) 79.32 nucleotides (2,503 nucleotides)

Mitochondrial genome

Size 94,197 bp

Chromosome 1 (circular)

GC percentage 30%
Genome Biology 2008, 9:R77
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these inactivated paralogues. For example, the copies of 'rai-
nette', the last transposon to have invaded the P. anserina
genome (Additional data file 3), differ by 30 polymorphic
sites. Twenty-five of them (83%) were C●G versus T●A
polymorphisms and may, therefore, be accounted for by RIP,
while the five others (17%) cannot. A reciprocal ratio was
observed in other instances as seen for the largest segmental
triplication with two copies present on chromosome 5 and
one on chromosome 1. The three members share a common
region of about 9 kb. In this region they differ by numerous
indels and in about 20% of their nucleotides. More precisely,
in the 4,000 nucleotide-long core region where the three
sequences can unambiguously be aligned, there are 1,341 pol-
ymorphic sites in which at least one sequence differs from the
others. For 418 of them (31%), two members have a C●G pol-
ymorphism whereas the other has a T●A polymorphism,
strongly suggesting that these polymorphisms may originate
from RIP, whereas for the remaining 923 (69%), the varia-
tions are small indels or single nucleotide variations not

accounted for by RIP. Therefore, in the case of rainette, RIP
polymorphisms are foremost, whereas for the triplication,
non-RIP polymorphisms are more frequent. This is compati-
ble with a model in which RIP occurs first and is then followed
by accumulation of other types of mutations.

Overall, these data suggest that P. anserina has experienced a
fairly complex history of transposition and duplications,
although it has not accumulated as many repeats as N. crassa.
P. anserina possesses all the orthologues of N. crassa factors
necessary for gene silencing (Additional data file 5), including
RIP, meiotic MSUD [48] and also vegetative quelling, a post
transcriptional gene silencing mechanism akin to RNA inter-
ference [56]. However, to date, no MSUD or quelling has been
described in P. anserina, despite the construction of
numerous transgenic strains since transformation was first
performed [57]. Surprisingly, the DIM-2 DNA methyltrans-
ferase [58], the RID DNA methyltransferase-related protein
[59] and the HP1 homolog necessary for DNA methylation
[60] described in N. crassa are present in the genome of P.
anserina. Although the P. anserina orthologues of these two
proteins seem functional based on the analysis of the con-
served catalytic motifs, no cytosine methylation has been
reported to occur in this fungus [54]. A possibility would be
that methylation is restricted to a specific developmental
stage or genomic region that has not yet been investigated.
Overall, the apparent absence (quelling and MSUD) or lack of
efficiency (RIP) of these genome protection mechanisms in P.
anserina questions their true impact on genome evolution,
especially since this fungus contains less repeated sequences
than N. crassa. Maybe the life strategy of P. anserina makes
it less exposed to incoming selfish DNA elements, therefore
diminishing the requirement of highly efficient gene silencing
mechanisms. Supporting this assumption is the fact that,
although heterothallic, formation of ascospores makes P.
anserina pseudo-homothallic (Figure 1), with seemingly very
little out-crossing [61], whereas N. crassa is strictly
heterothallic and presents a low fertility in crosses between
closely related strains [62].

Gene evolution by duplication and loss in fungi
The detection of segmental duplications raised the question
of whether new genes evolved through duplication in the lin-
eage that gave rise to P. anserina. It is known that creating
new genes through duplication in N. crassa, in which RIP is
very efficient, is almost impossible [16]. On the contrary, RIP
is much less efficient in P. anserina; in particular, RIP is
absent in progeny produced early during the maturation of
the fructifications [55]. In addition, the mutagenic effect of
RIP is very slight since it has been estimated that at most 2%
of cytosines are mutated when RIP affects duplicated
sequences present on two different chromosomes [63]. We
previously reported that some thioredoxin isoforms were
encoded by a triplicated gene set in P. anserina as compared
to N. crassa [64], showing that gene duplications can indeed
generate new genes in P. anserina. However, thioredoxins are

Orthologue conservation in some PezizomycotinaFigure 2
Orthologue conservation in some Pezizomycotina. (a) Venn diagram of 
orthologous gene conservation in four ascomycete fungi. The diagram was 
constructed with orthologous genes identified by the best reciprocal hit 
method with a cut-off e-value lower than 10-3 and a BLAST alignment 
length greater than 60% of the query CDS. (b) Phylogenetic tree of the 
four fungal species. The average percentage of identity ± standard 
deviation between orthologous proteins of P. anserina and the three other 
fungi are indicated on the right.
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small proteins encoded by small genes. To test if large genes
were duplicated, we performed a three-way comparison
between the P. anserina, N. crassa and M. grisea putative
CDSs and screened for P. anserina CDSs that show a best hit
with another P. anserina CDS to the exclusion of proteins
from N. crassa and M. grisea. Such CDSs may originate from
duplication that occurred in the P. anserina lineage after its
divergence from N. crassa. In this analysis, small genes were
excluded because the putative candidates were selected on
the basis of an e-value of less than 10-190 in Blast comparison
against the database containing the three predicted pro-
teomes (as a consequence, the thioredoxin genes were not
included in the set).

To confirm that the candidates recovered indeed originated
from recent duplications, phylogenetic trees were con-
structed with the CDSs from P. anserina, N. crassa, M. grisea
and additional fungal CDSs. In some instances, the trees con-
firmed a recent duplication event in the P. anserina lineage
after the split between P. anserina and N. crassa, because the
phylogenetic analysis clustered the P. anserina paralogues
with high statistical confidence. Figure 6 shows the trees
obtained for three such couples of paralogues, for example,
genes coding for putative alkaline phosphatase D precursors
(Pa_4_1520 and Pa_6_8120; Figure 6a), putative HC-toxin
efflux carrier proteins related to ToXA from Cochliobolus car-
bonum (Pa_2_7900 and Pa_6_8600; Figure 6b) and puta-
tive chitinases related to the killer toxin of Kluyveromyces
lactis (Pa_4_5560 and Pa_5_1570; Figure 6c). Overall, our
analysis detected an initial set of 33 putative duplicated gene
families, including the het-D/E gene family, whose evolution-

ary history has been reported elsewhere [65]. Among these, at
least nine (including the het-D/E genes) have duplicated
recently. However, some additional recent duplication events
may have occurred but are not supported with sufficient sta-
tistical confidence to differentiate between recent duplica-
tions followed by rapid divergence, and ancient duplications
(see Figure 6c for an example of such duplications with
putative chitinases). The fact that large genes may duplicate
in P. anserina is not contradictory to the presence of RIP,
since if RIP may inactivate genes when efficient, it can accel-
erate gene divergence when moderately efficient, as described
for the het-D/E family [65].

The phylogenetic analyses of the multigene families suggest
that gene loss may also have occurred during fungal evolu-
tion. The putative chitinases related to the killer toxin of K.
lactis provide a clear example of this situation. N. crassa and
M. grisea have two paralogues, whereas P. anserina has
eight. The phylogenetic tree including the ten paralogues
present in A. nidulans (Figure 6c) suggests that these proteins
can be grouped into two families. Surprisingly, the P. anse-
rina proteins cluster in one subfamily, whereas the M. grisea
proteins cluster in the other, indicating differential gene
losses. In P. anserina, even if Pa_4_5560 and Pa_5_1570
seem to have duplicated recently, this is not as clear for the
other members since they are not very similar. They may
result from ancient gene duplications or from recent
duplications followed by rapid evolution, possibly thanks to
RIP. Evolution of this family seems thus to proceed by a com-
plex set of gain and loss at various times. The same holds true
for polyketide synthase (PKS) genes. Seven PKSs were

Table 4

EST analysis

Alternatively spliced transcripts

Number of 
sequenced 

cDNA clones

Number of 
clusters

Confirmed 
genes*

Exon 
cassette

Alternative 
splice site

Retained 
intron

Non-coding 
transcripts 

not covering 
a predicted 

CDS

Antisense 
transcripts

Bank

Mycelium grown for 48 h 27,291 6,054 5,780 1 155 137 322 19

Young perithecia of less 
than 48 h

7,695 2,392 2,236 2 46 55 258 12

Perithecia older than 48 h 7,814 2,373 2,088 2 26 51 440 4

Ascospores 20 h after 
germination trigger

5,570 1,589 1,502 0 29 28 125 3

Senescent mycelium 1,136 718 665 0 10 9 59 4

Incompatible mycelium 1,133 514 474 1 7 6 54 1

Rapamycin induced 
mycelium

1,120 593 543 1 3 11 68 2

All databanks 51,759 6,618 5,848 5 80 167 668 36

*Cluster covering a CDS.
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reported for N. crassa [16], while M. grisea has 23 [11], and
we identified 20 PKS genes for P. anserina. A comparison of
all these PKSs (data not shown) indicates a complex evolution
process in which N. crassa has probably lost most of its PKSs
and the two other fungi present several duplications yielding
very different copies. Again, this does not permit us to estab-
lish whether the duplications are ancient or recent but fol-
lowed by intense divergence. See also below for additional
examples of losses and amplifications of genes involved in
carbon source degradation.

Such gene losses may be frequent events in filamentous asco-
mycete. As seen in Figure 2a, P. anserina, M. grisea and A.
nidulans share 1,624 genes that seem to be lacking in N.
crassa (among these, 449 are present in the three fungi, 630
in both P. anserina and M. grisea, and 545 in both P. anse-
rina and A. nidulans), even though M. grisea and A. nidulans
are more distantly related to P. anserina than is N. crassa
(Figure 2b). Although some genes may have evolved beyond
recognition specifically in N. crassa, the most parsimonious
explanation is that P. anserina has retained many genes that
N. crassa has lost. Similarly, N. crassa, M. grisea and A. nid-
ulans share 1,050 genes that are absent in P. anserina. There-
fore, we tentatively suggest that genomes from
sordariomycetes may be shaped by more gene loss and gene
duplications than anticipated by the presence of RIP. Similar
rates of gene loss in filamentous ascomycetes have recently
been demonstrated [66].

Carbon catabolism
In nature, P. anserina lives exclusively on dung of herbivores.
In this biotope, a precise succession of fungi fructifies [67]. An
explanation put forward to account for this succession is
nutritional. The first fungi to appear feed preferably on sim-
ple sugars, which are easy to use, followed by species able to
digest more complex polymers that are not easily degraded.
Indeed, the mucormycotina zygomycetes, which are usually
the first ones to fructify on dung, prefer glucose and other
simple sugars as carbon sources. They are followed by asco-
mycetes that use more complex carbohydrates such as
(hemi)cellulose but rarely degrade lignin. The succession
ends with basidiomycetes, some of which can degrade lignin
to reach the cellulose fiber not available to other fungi [68-
70].

Usually, P. anserina fructifies in the late stage of dung
decomposition [67]. This late appearance of the P. anserina
fruiting body is hard to correlate with slow growth of the
mycelium and delay in fructification since in laboratory
conditions ascospore germination occurs overnight and fruit
body formation takes less than a week. However, P. anserina
harbors unexpected enzymatic equipment, suggesting that it
may be capable of at least partly degrading lignin, which con-
curs with the nutritional hypothesis (Table 5). It includes a
large array of glucose/methanol/choline oxidoreductases
[71], many of which are predicted to be secreted, two
cellobiose dehydrogenases, a pyranose oxidase, a galactose
oxidase, a copper radical oxidase, a quinone reductase, sev-
eral laccases and one putative Lip/Mn/Versatile peroxidase.
Enzymes homologous to these CDSs are known to produce or
use reactive oxygen species during lignin degradation [68-
70]. This ascomycete fungus may thus be able to access car-

Genome-wide comparison of orthogolous genes of N. crassa (x-axis) and P. anserina (y-axis)Figure 3
Genome-wide comparison of orthogolous genes of N. crassa (x-axis) and 
P. anserina (y-axis). Each dot corresponds to a couple of orthologous 
genes. The lines delimit the chromosomes. The scale is based on the 
number of orthologous genes per chromosome.

Size distribution of synteny block between P. anserina and N. crassaFigure 4
Size distribution of synteny block between P. anserina and N. crassa. Block 
size is given on the x-axis and frequency on the y-axis. Black bars indicate 
the actual value, and the red line shows the theoretical curve expected in 
the case of the random break model. The two distribution functions are 
not statistically different (Kolmogorov-Smirnov test, p >> 5%).
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bon sources normally available mainly to basidiomycetes.
Interestingly, P. anserina is closely related to xylariales, a
group of ascomycete fungi that seems to contain true white
rot fungi capable of degrading lignin [72]; also, P. anserina
has the most complete enzymatic toolkit involved in lignin
degradation when compared to the three other ascomycetes
included in Table 5. The comparison with N. crassa is partic-
ularly striking. This is in line with the fact that N. crassa in its
less competitive biotope may have access to more easily
digestible carbon sources.

As mentioned above, P. anserina is considered a late growing
ascomycete on herbivorous dung. This suggests that the fun-
gus is likely to target lignocellulose as a carbon source, since
most hemicellulose and pectin would probably be consumed
by zygomycetes and early ascomycetes. A close examination
of the genome sequence of P. anserina for the presence of car-

bohydrate active functions (Additional data file 6) and a com-
parison with the genome sequence of other fungi confirmed
the adaptation capacity of P. anserina to growth on lignocel-
lulose. The total number of putative glycoside hydrolases
(GHs), glycoside transferases, polysaccharide lyases (PLs)
and carbohydrate esterases (CEs) are similar to those of other
ascomycetes, such as A. niger [20] and M. grisea [73], but P.
anserina has the highest number of carbohydrate-binding
modules (CBMs) of all the fungal genomes sequenced to date.
Despite possessing similar numbers of putative enzymes, the
distribution of the possible enzyme functions related to plant
cell wall degradation (Table 6) is significantly different in P.
anserina from that of other fungi. P. anserina has the largest
fungal set of candidate enzymes for cellulose degradation
described to date. This is particularly remarkable in GH
family 61 (GH61) with 33 members, two-fold higher than the
phytopathogen ascomycete M. grisea and the white rot basid-

Repartition of transposons (top in red) and segmental duplications (bottom in blue) in the P. anserina genomeFigure 5
Repartition of transposons (top in red) and segmental duplications (bottom in blue) in the P. anserina genome. Chromosome numbering and orientation is 
that of the genetic map [85]. The double arrows indicate the putative centromere positions. Two regions have been expanded to show the interspacing of 
segmental duplications (in blue) with transposons (other colors); numbering refers to the nucleotide position with respect to the beginning of the scaffolds.
Genome Biology 2008, 9:R77
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iomycete P. chrysosporium. Similar patterns are visible for
other cellulose-degrading families (for example, GH6, GH7,
GH45) and in the high number of CBM1 (possibly cellulose-
binding) modules found, which are only equivalent to the sets
of P. chrysosporium and M. grisea.

Strikingly, P. anserina also has an increased potential for
xylan degradation, with abundant enzyme sets in families
GH10 and GH11, together with a relative abundance of exo-
acting enzymes in families GH3 and GH43. Interestingly, no
α-fucosidases of families GH29 and GH95 are found, suggest-
ing a depletion of xyloglucan prior to growth of P. anserina.
During the stage at which P. anserina grows in dung, signifi-
cant amounts of cellulose, but also xylan, are still available.
Xylan can be cross-linked to lignin through ferulic acid [74] or

4-O-methyl-glucuronic acid [75]. In light of the potential of P.
anserina for lignin degradation, it is conceivable that this
fungus particularly consumes lignin-linked xylan that could
not be degraded by 'earlier' growing organisms that lack a
lignin-degradation system. The relatively high number of
putative CE1 acetyl xylan and feruloyl esterases found in P.
anserina by comparison with other fungi correlates with this
hypothesis.

In contrast to the increased potential for cellulose and xylan
degradation, a significantly weak potential for pectin degra-
dation was observed for P. anserina. No members of GH28
(containing pectin hydrolases) were detected in the genome
and only a single α-rhamnosidase (GH78). In comparison, A.
niger contains 21 GH28 members and 8 GH78 members [20].

Gene gain and loss in fungal genomesFigure 6
Gene gain and loss in fungal genomes. (a-c) Unrooted phylogenetic trees of putative alkaline phosphatase D precusors (a), putative HC-toxin efflux carrier 
proteins related to ToXA from Cochliobolus carbonum (b), and putative chitinases related to the killer toxin of Kluyveromyces lactis (c). The putative CDSs 
were aligned with ProbCons 1.10 [101] and manually edited to eliminate poorly conserved regions, resulting in alignment over 565, 544, 505 amino acids, 
respectively. Phylogenetic trees were constructed with Phyml 2.4.4 [102] under the WAG model of amino acid substitution. The proportion of variable 
sites and the gamma distribution parameters of four categories of substitution rate were estimated by phyml. For each tree, we performed 100 boostrap 
replicates. The recently duplicated P. anserina paralogues are highlighted in red and the divergent duplication of chitinases in green. Trees with similar 
topologies and statistical support (1,000 boostrap replicates) were recovered with the neighbor joining method. Especially, recent duplication of 
Pa_4_1520/Pa_6_8120, Pa_2_7900/Pa_6_8600 and Pa_4_5560/Pa_5_1570 as well as the distinction of the two subfamilies of chitinases were recovered 
with 100% confidence. AN, A. nidulans; MGG, M. grisea; NC, N. crassa; Pa, P. anserina.
Genome Biology 2008, 9:R77



http://genomebiology.com/2008/9/5/R77 Genome Biology 2008,     Volume 9, Issue 5, Article R77       Espagne et al. R77.12
Table 5

CDSs putatively involved in lignin degradation

P. anserina

Reference Secretion* N. crassa M. grisea A. nidulans

GMC oxidoreductases [124] Pa_0_190 + NCU09798.3 MGG_07580.5 AN2175.3

Pa_5_1280 +? NCU04938.3 MGG_07941.5 AN7998.3

Pa_1_15920 + NCU01853.3 MGG_08438.5 AN4006.3

Pa_5_4870 - NCU07113.3 MGG_10479.5 AN3229.3

Pa_4_5130 + NCU09024.3 MGG_05055.5 AN4212.3

Pa_5_5180 +? NCU08977.3 MGG_10933.5 AN9011.3

Pa_6_6430 -? MGG_11204.5 AN7267.3

Pa_1_23060 + MGG_12623.5 AN9348.3

Pa_6_7550 + MGG_12626.5 AN6445.3

Pa_2_7270 + MGG_14477.5 AN7812.3

Pa_1_470 + MGG_02127.5 AN1093.3

Pa_5_9820 - MGG_09072.5 AN2704.3

Pa_6_1080 + MGG_06596.5 AN3531.3

Pa_1_24480 - MGG_00779.5 AN7408.3

Pa_0_340 - MGG_02371.5 AN1429.3

Pa_4_880 + MGG_10948.5 AN8329.3

Pa_7_4250 + MGG_11676.5 AN8547.3

Pa_5_12190 + MGG_13253.5 AN3206.3

Pa_4_4320 +? MGG_11317.5 AN0567.3

Pa_3_11130 +? MGG_13583.5 AN3960.3

Pa_1_21970 - MGG_08487.5 AN7890.3

Pa_3_1060 + MGG_09189.5 AN7832.3

Pa_7_4780 + MGG_07569.5 AN7056.3

Pa_0_440 +
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Pa_5_4150 +

Pa_6_11490 +

Pa_5_12200 +

Pa_5_13040 -?

Pa_6_11360 -

Cellobiose dehydrogenases [125] Pa_7_2650 + NCU00206.3 MGG_11036.5 AN7230.3

Pa_0_280 + NCU05923.3 MGG_13809.5

Pyranose oxidases [126] Pa_6_8060 ? - - AN5281.3

Galactose oxidases [127] Pa_1_18310 + NCU09209.3 MGG_10878.5 -

MGG_12681.5

Copper radical oxidases [128] Pa_1_7300 + NCU09267.3 MGG_01655.5 -

MGG_05865.5

Quinone reductase [129] Pa_1_6390 -? NCU02948.3 MGG_01569.5 AN0297.3

Laccases [130] Pa_5_1200 +? NCU04528.3 MGG_09102.5 AN0901.3

Pa_5_4660 + NCU05113.3 MGG_08523.5 AN6635.3

Pa_7_4200 + NCU05604.3 MGG_07771.5 AN0878.3

Pa_5_9860 + NCU09279.3 MGG_02876.5 AN6830.3

Pa_7_3560 +? NCU02201.3 MGG_09139.5 AN5397.3

Pa_6_10630 + NCU00526.3 MGG_05790.5 AN9170.3

Pa_1_15470 + NCU07920.3 MGG_11608.5

Pa_6_7880 - NCU09023.3 MGG_08127.5

Pa_1_16470 + MGG_13464.5

Pa_5_4140 ?

lip/Mn/versatile peroxidases [70,131] Pa_1_5970 ? - MG_07790.5 -

MGG_03873.5

*Orthologues were identified by the best reciprocal hit method. Putative secretion was evaluated by searching for the presence of a secretion signal 
peptide with Interproscan or by evaluating the most probable localization with WolfPSORT. In most instances, both methods yielded the same result. 
'+', protein likely secreted; '-', protein likely not secreted; '?', no firm conclusion could be reached as to the actual localisation. GMC, glucose/
methanol/choline.

Table 5 (Continued)

CDSs putatively involved in lignin degradation
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Table 6

Comparison of relevant CAZy family content related to plant cell wall polysaccharide degradation

CAZy family Main substrate P. anserina N. crassa M. grisea A. nidulans A. niger P. chrysosporium

Plant cell wall degradation

GH1 Cellulose/hemicellulose 1 1 2 3 3 2

GH2 Hemicellulose 8 5 6 10 6 2

GH3 Cellulose/hemicellulose/xylan 11 9 19 21 17 11

GH5 Cellulose 15 7 13 16 10 20

GH6 Cellulose 4 3 3 2 2 1

GH7 Cellulose 6 5 6 3 2 9

GH10 Xylan 9 4 5 3 1 6

GH11 Xylan 6 2 5 2 4 1

GH12 Cellulose/xylan 2 1 3 1 3 2

GH28 Pectin 0 2 3 10 21 4

GH29 Hemicellulose 0 0 4 0 1 0

GH35 Hemicellulose 1 2 0 4 5 3

GH36 Hemicellulose 1 1 2 4 3 0

GH43 Hemicellulose 13 7 19 18 10 4

GH45 Cellulose 2 1 1 1 0 0

GH51 Hemicellulose 1 1 3 3 3 2

GH53 Hemicellulose 1 1 1 1 2 1

GH54 Hemicellulose 0 1 1 1 1 0

GH61 Cellulose 33 14 17 9 7 15

GH62 Hemicellulose 2 0 3 2 1 0

GH67 Xylan 1 1 1 1 1 0

GH74 Hemicellulose 1 1 1 2 1 4

GH78 Pectin 1 0 1 9 8 1

GH88 Pectin 0 0 1 3 1 1

GH93 Hemicellulose 3 2 1 2 0 0

GH94 Cellulose 1 1 1 0 0 0

GH95 Hemicellulose 0 0 1 3 2 1

GH105 Pectin 0 1 3 4 2 0

PL1 Pectin 4 1 2 9 6 0

PL3 Pectin 2 1 1 5 0 0

PL4 Pectin 1 1 1 4 2 0

PL9 Pectin 0 0 0 1 0 0

PL11 Pectin 0 0 0 1 0 0

CE1 Xylan 14 7 10 4 3 5

CE8 Xylan 1 1 1 3 3 2

CE12 Xylan 1 1 2 2 2 0

CBM1 Cellulose 28 20 22 7 8 30

Other relevant families

GH18 Chitin 20 12 14 20 14 11

GH32 Sucrose/inulin 0 1 5 2 6 0

CBM18 Chitin 30 3 29 19 13 1
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The number of putative pectin lyases is also much smaller
than that observed for A. niger. The auxiliary activities of
GH88 and GH105, likely to act on pectin lyase degradation
products, are equally absent from P. anserina while present
in all pectin-degrading organisms (Table 6). The absence of
the potential to degrade sucrose and inulin is concluded from
the lack of enzymes in the GH32 family. This also correlates
with the low capacity of P. anserina to grow on rapidly degra-
dable carbohydrates that are most likely depleted by 'earlier'
organisms. Furthermore, the large number of GH18 and
CBM18 modules, 20 and 30 respectively, could indicate that
P. anserina has the ability to degrade exogenous chitin and
possibly to depend on available fungal cell material (derived
from the set of fungi that grow earlier on dung of herbivores
and that P. anserina may kill by hyphal interference [76]).

To evaluate whether the enzymatic potential reflects the abil-
ity of P. anserina to degrade plant polymeric substrates,
growth was monitored on minimal medium plates containing
lignin, cellulose, beech wood xylan, apple pectin, inulin and
25 mM sucrose, D-glucose, D-fructose or D-xylose (Figure 7).
P. anserina did grow on lignin, indicating that it is able to
degrade lignin. However, it is suspected that in nature lignin
degradation, an energy consuming process, may not be to
obtain a carbon source, but mainly to gain access to the
(hemi-)cellulose. Growth on cellulose, xylan and D-xylose
was significantly faster than on pectin, which agrees with the
enzymatic potential based on the genome sequence as
described above. No growth was observed on inulin or
sucrose, while efficient growth was observed on D-fructose
and D-glucose. This is in agreement with the absence of genes
required to degrade sucrose and inulin from the genome of P.

anserina. Overall, these data suggest that P. anserina has all
the enzymatic complement necessary to efficiently scavenge
the carbohydrates it encounters in its natural biotope. Selec-
tion has in fact evolved its genome to deal efficiently with
these carbon sources, first by duplicating genes involved in
cellulose degradation, as shown by the high number of GH61
CDSs, and second by deleting genes required to use carbon
sources not commonly encountered (for example, pectin, inu-
lin, and sucrose). This demonstrates the high environmental
pressure on evolution as well as the high level of specializa-
tion that occurs in the fungal kingdom.

Conclusion
Our analysis of the genome sequence of P. anserina, a sapro-
phytic model ascomycete, provides new insights into the
genomic evolution of fungi. EST analysis indicates that
similar to other eukaryotes, the transcription machinery gen-
erates a large array of RNAs with potential regulatory roles.
Functional characterization of these RNAs might be one of
the most interesting perspectives of this study. Strikingly, in
addition to abundant inversions of chromosome segments
and gene losses, substantial gene duplications were
uncovered. Since this fungus displays a mild RIP, these find-
ings allow us to ask whether the RIP process, when relatively
inefficient, might be more of a genome evolution tool rather
than a genome defense mechanism.

Moreover, availability of the genome sequence has also
already permitted the development of new tools that will bol-
ster research in P. anserina. The polymorphic markers
designed to plot scaffolds onto the genetic map are now suc-

Carbohydrate utilization in P. anserinaFigure 7
Carbohydrate utilization in P. anserina. Cultures were incubated for one week with 1% of the indicated compounds as carbon source.
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cessfully used for positional cloning. Gene deletion is facili-
tated thanks to the availability of the PaKu70 mutant strain,
which greatly enhanced homologous recombination [77],
similarly to the deletion of the homologous gene in N. crassa,
mus-51 [78]. The identification of the PaPKS1 gene by a can-
didate gene approach permits us to envision the design of new
genetic tools based on mycelium or ascospore color [63]. The
design of microarrays for transcriptome analyses is under
way.

As for other saprophytic fungi, the P. anserina genome
sequence has opened new avenues in the comprehensive
study of a variety of biological processes. Of importance is the
novel discovery of a large array of P. anserina genes poten-
tially involved in lignin and cellulose degradation, some of
which may be used for biotechnology applications. It also
demonstrates how P. anserina is well adapted at the genome
level to its natural environment, which was confirmed by the
analysis of growth profiles. This result emphasizes the neces-
sity to study several less well-tracked organisms in addition to
those well known in the scientific community, as these may
yield unexpected new insights into biological phenomena of
general interest.

Materials and methods
Strains and culture conditions
The sequenced strain is the S mat+ homokaryotic strain [79].
Culture conditions for this organism were described [61], and
currently used methods and culture media can be accessed at
the Podospora anserina Genome Project web site [80].

Genomic DNA library construction
Nuclear genomic DNA was extracted and separated from
mitochondrial DNA as described [81]. Residual mitochon-
drial DNA present in the preparation was sufficient to allow
sequencing of the full mitochondrial DNA circular chromo-
some. Construction of plasmid DNA libraries was made at
Genoscope. The construction of the bacterial artificial chro-
mosome (BAC) library is described in [24].

Construction of cDNA library
Two strategies were used to construct the cDNA libraries.
First, a mycelium library was constructed in the yeast expres-
sion vector pFL61 [82]. Total RNA was extracted from the s
wild-type strain (mat-) and polyA+ RNA was purified twice on
oligo (dT)-cellulose columns (mRNA purification kit, Amer-
sham Pharmacia Biotech, GE Healthcare Bio-Sciences AB,
Uppsala, Sweden). Anchored dT25 primers were used to
obtain double-stranded DNA (cDNA kit, Amersham Pharma-
cia Biotech, GE Healthcare Bio-Sciences AB, Uppsala,
Sweden). Three cDNA libraries, corresponding to three
ranges of molecular weight cDNA (0.2-1 kb, 1-2.5 kb, > 2.5 kb)
were cloned using BstX1 adaptators in the pFL61 vector
between the 5' (promoter) and 3' (terminator) sequences of
the S. cerevisiae pgk1 gene as described previously [82].

Second, total RNA obtained under various physiological con-
ditions (Table 4) was extracted as described [83], using the
'RNeasy Maxi Kit' (Qiagen, Germantown, MD, USA). PolyA+

mRNAs were extracted with the 'Oligotex mRNA Maxi Kit'
(Qiagen), reverse transcribed and cloned with the
'cloneMiner cDNA library construction Kit' into plasmid
pDONR222 (Invitrogen, Carlsbad, CA, USA).

Sequencing and assembly strategy
The genome of P. anserina was sequenced using a 'whole
genome shotgun and assembly' strategy. We generated
510,886 individual sequences from two plasmid libraries of
3.3 and 12 kb insert sizes, and from one BAC library of about
90 kb insert size. This corresponds to genome coverage of 9.7-
fold. The reads were automatically assembled using Arachne
[84], and the initial assembly was improved by eliminating
small redundant scaffolds. Additionally, in cases when the
genetic map indicated the proximity of two scaffolds (see
below), we joined them if there was some additional read pair
information between them that was not used by Arachne.
Some inter-contig gaps were also filled by placing a contig
between two other contigs when matches and read pair infor-
mation existed and were coherent. The final automatic
assembly consisted of 2,784 contigs of N50 size 43 kb,
grouped in 728 scaffolds of N50 size 638 kb, for a total
genome size (without gaps) of 35.7 Mb. Manual sequence gap
filling and removal of contigs corresponding to rDNA genes
permitted the decrease of scaffolds and contig numbers to
1,196 contigs clustered into 78 scaffolds.

To connect the genome sequence with the genetic map [85],
two approaches were followed. First, sequenced genes, whose
positions on the genetic map were known, were mapped by
searching the corresponding sequence in the scaffolds, ena-
bling the attribution of some scaffolds to known chromo-
somes. Second, potential molecular polymorphic markers
(microsatellites, minisatellites and indels) were searched and
their polymorphisms were assessed in geographic isolates D,
E M, T and U. It rapidly appeared that strain T was the genet-
ically most distant strain from strain S, since about three-
quarters of tested markers were actually polymorphic
between the two strains. A cross between the T and S strains
was set up and 51 homokaryotic progenies from this cross
were assayed for 120 polymorphic sites scattered onto the 36
largest scaffolds that represented all the coding parts of the
genome (except for one putative CDS). Linkage analysis made
it possible to define seven linkage groups that were matched
with the chromosomes thanks to the already known genes
mapped on the sequence by the first approach. Additional
polymorphic markers were then used to confirm local assem-
bly, resulting in the new genome map, which contain 325
markers (Additional data file 1). No discrepancy was observed
between the established genetic map, the newly defined link-
age groups and the sequence assembly. Presently, all but one
CDS-containing scaffold are attributed to a chromosome
position, although in a few cases orientation of some scaffolds
Genome Biology 2008, 9:R77
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within the chromosome could not be accurately defined
because of their small size. One 33 kb scaffold containing one
predicted CDS as well as small scaffolds exclusively made up
of repeated sequences are presently not mapped. Collectively,
they represent about 1% of the genome.

EMBL accession numbers
Chromosome 1: CU633438; CU633901; CU633867;
CU633899; CU633445; CU633897. Chromosome 2:
CU633446; CU640366; CU633447. Chromosome 3:
CU633448; CU633447; CU633453. Chromosome 4:
CU633454; CU633455; CU633456; CU633895. Chromosome
5: CU633457; CU633458; CU633459; CU633866;
CU633871; CU607053; CU633461, CU633870, CU633865,
CU633876. Chromosome 6: CU633898; CU638744;
CU633463, CU633872. Chromosome 7: CU633900;
CU633464; CU633873.

Annotation and analysis of genomic sequences
CDSs were annotated by a combination of semi-automatic
procedures. First, P. anserina open reading frames longer
than 20 codons that are evolutionary conserved in N. crassa
were retrieved by TBLASTN analysis. Candidates with an e-
value lower than 10-18 were conserved as hypothetical exons.
Exons separated by less than 200 nucleotides were merged
into putative CDSs and putative introns were predicted
thanks to the P. anserina consensus sequences defined in the
pilot project [24]. Then, 5' and 3' smaller exons were searched
by the same procedure except that open reading frames
longer than five codons surrounding putative CDSs were
analyzed by BLAST with the homologous N. crassa region.
Candidates with an e-value lower than 10-5 were conserved
and added to the putative CDSs. CDS and intron predictions
were edited with Artemis [86] and manually corrected after
comparison with available ESTs. Finally, ab initio prediction
with GeneID [87] using the N. crassa and Chaetomium glo-
bosum parameter files were performed on regions devoid of
annotated features. Manual verification was then applied to
improve prediction. This resulted in the definition of 10,545
putative CDSs.

A canonic rDNA unit was assembled. A junction sequence
between the left arm of chromosome 3 and an rDNA unit was
observed, confirming the position of the cluster on this chro-
mosome based on pulse field electrophoresis data [28]. On
the other end of the cluster a junction between an incomplete
rDNA repeat and CCCTAA telomeric repeats [88] was
detected showing that the cluster is in a subtelomeric posi-
tion. Similar to the previously investigated filamentous fungi
[89], 5S rRNAs were detected by comparison with the N.
crassa 5S genes. They are encoded by a set of 87 genes,
including 72 full-length copies dispersed in the genome.
tRNAs were identified with tRNAscan [90]. A total of 361
genes encode the cytosolic tRNA set, which is composed of 48
different acceptor families containing up to 22 members. This
set enabled us to decode the 61 sense codons with the classical

wobble rule. Other non-coding RNAs were detected with a
combination of the Erpin [91], Blast [92] and Yass [93] pro-
grams. Homology search included all RNAs contained in the
RFAM V.8 [94] and ncRNAdb [95] databases. Any hit from
either program with an e-value below 10-4 was retained, pro-
ducing a list of 28 annotated non-coding RNA genes or
elements, including 12 spliceosomal RNAs, 15 snoRNAs
(mostly of the C/D box class) and one thiamine
pyrophosphateriboswitch.

Alignment of EST sequences on the P. anserina genome
A two-step strategy was used to align the EST sequences on
the P. anserina genome. As a first step, BLAST [92] served to
generate the alignments between the microsatellite repeat-
masked EST sequences and the genomic sequence using the
following settings: W = 20, X = 8, match score = 5, mismatch
score = -4. The sum of scores of the high-scoring pairs was
then calculated for each possible location, then the location
with the highest score was retained if the sum of scores was
more than 1,000. Once the location of the transcript sequence
was determined, the corresponding genomic region was
extended by 5 kb on either side. Transcript sequences were
then realigned on the extended region using EST_GENOME
[96] (mismatch 2, gap penalty 3) to define transcript exons
[97]. These transcript models were fused by a single linkage
clustering approach, in which transcripts from the same
genomic region sharing at least 100 bp are merged [98].
These clusters were used to detect alternative splicing events
[99].

Detection, functional annotation and comparative 
analysis of carbohydrate-active enzymes
Catalytic modules specific to carbohydrate-active enzymes
(CAZymes: GHs, glycoside transferases, PLs and CEs) and
their ancillary CBMs in fungi were searched by comparison
with a library of modules derived from all entries of the Car-
bohydrate-Active enZymes (CAZy) database [73]. Each pro-
tein model was compared with a library of over 100,000
constitutive modules (catalytic modules, CBMs and other
non-catalytic modules or domains of unknown function)
using BLASTP. Models that returned an e-value passing the
0.1 threshold were automatically sorted and manually ana-
lyzed. The presence of the catalytic machinery was verified for
distant relatives whenever known in the family. The models
that displayed significant similarities were retained for
functional annotation and classified in the appropriate
classes and families.

Many of the sequence similarity-based families present in
CAZy do not coincide with a single substrate or product spe-
cificity and, therefore, they are susceptible to grouping pro-
teins with different Enzyme Commission (EC) numbers.
Similarly to what has been provided for other genome anno-
tation efforts, we aimed at producing annotations for each
protein model that will survive experimental validation,
avoiding over-interpretation. A strong similarity to an
Genome Biology 2008, 9:R77
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enzyme with a characterized activity allows annotation as
'candidate activity', but often for a safe prediction of substrate
specificity, annotation such as 'candidate α- or β-glycosidase'
may be provided, as the stereochemistry of the α- or β-glyco-
sidic bond is more conserved than the nature of the sugar
itself. Each protein model was compared to the manually
curated CAZy database, and a functional annotation was
assigned according to the relevance. All uncharacterized pro-
tein models were thus annotated as 'candidates' or 'related to'
or 'distantly related to' their characterized match as a function
of their similarity. The overall results of the annotation of the
set of CAZymes from P. anserina were compared to the con-
tent and distribution of CAZymes in several fungal species
(Danchin et al., in preparation) in order to identify singulari-
ties in the families' distributions and sizes per genome (data
not shown). This allowed the identification of significant
expansions and reductions of specific CAZyme families in P.
anserina.

Growth tests
M2 minimal medium contained per liter: 0.25 g KH2PO4, 0.3
g K2HPO4, 0.25 g MgSO4·7H2O, 0.5 g urea, 0.05 mg thiamine,
0.25 μg biotine and trace elements [100], 12.5 g agar; it was
adjusted to pH 7 with KH2PO4. Standard M2 contains also 5.5
g/l dextrine, which was replaced by the other tested carbon
sources. Sucrose, D-glucose, D-fructose, D-xylose, inulin,
Apple pectin, carboxymethyl cellulose and Birchwood xylan
were from Sigma-Aldrich (Gillingham, UK) and were added
before autoclaving. P. anserina was grown for 7 days at 25°C.

Abbreviations
BAC, bacterial artificial chromosome; CAZymes, carbohy-
drate-active enzymes; CBM, carbohydrate binding module;
CDS, coding sequence; CE, carbohydrate esterase; EST,
expressed sequence tag; GH, glycoside hydrolase; MSUD,
meiotic silencing of unpaired DNA; PKS, polyketide synthase;
PL, polysaccharide lyase; RIP, repeat induced point
mutation.
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version of this paper. Additional data file 1 is a figure of the P.
anserina genome map as defined by classic genetic markers
and molecular markers, mainly microsatellites, that are poly-
morphic between strains S and T. Additional data file 2 is a
table listing CDSs potentially expressed through frame-shift
and read-through. Additional data file 3 is a table listing
transposons and transposon-like elements of the P. anserina
genome. Additional data file 4 is a table listing segmental
duplications in the P. anserina genome. Additional data file 5
is a table listing CDSs putatively involved in genome protec-
tion mechanisms. Additional data file 6 is a list of putative
CDSs involved in (hemi-)cellulose and pectin degradation.
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