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Abstract

Cascade Stochastic Differential Equation (SDE), a continuous time model for energy dissipation in turbulence, is

a generalization of the Yaglom discrete cascade model. We extend this SDE to a model in random environment

by assuming that its two parameters are switched by a continuous time Markov chain whose states represent the

states of the environment. Moreover, a Dirichlet process is placed as a prior on the space of sample paths of this

chain. We propose a Bayesian estimation method of this model which is tested both on simulated data and on

real data of wind speed measured at the entrance of the mangrove ecosystem in Guadeloupe.
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1. Introduction

In atmospheric turbulent flows, whirlwinds of various sizes can be observed. These whirlwinds whose sizes

range from a largest scale L to a smallest scale lo determine energy transfer amplitudes. Micrometeorolog-

ical measures confirm important variations of the energy disspation, putting in evidence an intermittency

phenomenon (see Fig. 1 below).

Turbulent flows are characterized by their high Reynolds number R = vL/ν where v is the fluid mean

velocity and ν the fluid viscosity. At small scales l0 = ν/v the flow is laminar (that is stable with smooth

dependence on the flow data). At this length scale, dissipation effects dominate and energy is rapidly con-

verted into heat. At length scales comparable to L, the flow is dominated by system dependent features,

e.g., large vortices in the flow pattern. Thus neither the small nor the large length scales should be con-

sidered to be stochastic. For length scales in the range l0 ≤ l ≤ L, called the inertial range, Kolmogorov

hypothesis states that turbulence is independent on the Reynolds number R and is isotropic. In this

range, energy is transferred from larger vortices to smaller ones, a process referred to as cascades. This is

the range of length scales to which stochastic modelling applies. Kolmogorov and Obukhov established

that

< △lv
2 >=< |V (x + l) − V (x)|2 >≈< ε3/2 > l3/2

where the dissipation parameter ε is assumed to be a random variable with a log-normal distribution

([15], [17]), < . > denoting expectation. Taking into account experimental studies which showed that

the dissipation field has a long-range power law correlations ([9], [19]), Yaglom [26] proposed a discrete

multiplicative random cascade model with long-range correlations and small scale log-normal statistics

for ε . Yaglom cascades are described using a formalism involving infinitely divisible probability measures.

This has leaded F. Schmitt and D. Marsan [20] to prove that the limit of discrete cascade model defines

a stochastic dissipation process ε, with a continuum of scale levels, which verifies a stochastic differential

equation (SDE), called here cascade SDE, which depends on an intermittency parameter µ and a scale

parameter λ. Actually the singularity process γλ(t) = log(ǫλ(t)) satisfies the SDE

γλ(t) = −µ

2
lnλ + µ1/2

∫ t

t+1−λ

(t + 1 − u)−1/2dB(u). (1)
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The aim of this paper is to propose an extension of this cascade SDE to a model in random environment by

defining a dissipation process subject to regime changes. More precisely we assume that the parameters µ

and λ are driven by a continuous time Markov chain (Xt)t≥0 that takes values in a set S = {1, 2, . . . ,M}

representing the environment regimes. Further, the new idea of this paper, which at our knowledge has

never been considered before in turbulence domain, is to make the model more flexible by putting on the

space of sample paths of the Markov chain, a Dirichlet prior D(αH) centered around a basic probability

measure H. The rationale for using such a model with regime changes came from observing the variations

of µ and λ estimated on sliding windows of wind speed data measured at the entrance of the mangrove

ecosystem in Guadeloupe island [1], where the intermittency phenomenon allows an equilibrium between

the wind turbulent flow and the vegetal cover (see [4], [7], and [25]). Our model, which is a complex

mixture of cascade SDEs, better encompasses such variations.
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Fig. 1. Intermittency of the dissipation ε(t) over the Guadeloup mangrove ecosystem

The paper is organized as follows. Section 2 reviews the cascade models: the discrete multiplicative

cascade model and the continuous multiplicative cascades one. This last one, in the log-normal case,

leads to the cascade SDE upon which hinges our model. Section 3 introduces the Cascade SDE with

Markov switching regimes. After reviewing the Dirichlet process and its stick-breaking represention in

section 4, section 5 is concerned with the complete model specification, its Bayesian estimation procedure

through computations of posterior distributions as done in Ishwaran and Zarepour [10], Ishwaran and

James [11].Section 6 presents numerical results on both simulated and real data and we conclude in the

last section by giving some perspectives on further research.
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2. Cascade SDE

2.1. Discrete mutiplicative Cascades

Random multiplicative cascade models have been introduced by Novikov and Stewart [16] and by Yaglom

[26] in 1966 as a simple way to describe stochastic transfer of energy along the inertial range. Yaglom

model can be seen as a weigthed random tree depending on a family of positive random variables (r.v.)

(Wp,i). There are n levels on the path from the root to any leaf node and each internal node of the tree

has λ1 > 1 children nodes. The root node is associated with W1,1 and with the external scale number

L = l0λ
n
1 where lo is the dissipation scale number. Moreover to the edge i, (i = 1, . . . , λp

1) in layer p is

associated with a random variable Wp,i, and a scale number L/λp
1 = l0λ

n−p
1 . Besides, for two different

levels p and p′, the r.v. Wp,. and Wp′,. are independent and identically distributed (i.i.d.) with a common

distribution W that satisfies the conservative property < W >= 1. Hence each node is associated with

the product of the Wp,i’s which are on the path from the root to this node. In particular, a leaf node x

is associated with a r.v.

ε(x) =

n∏

p=1

Wp,x(p) (2)

where x(p) is the ides of the level p edge on the path from the root to node x.

Similar constructions are done for random Polya trees [18] or in Kraft construction of a continuous random

distribution [14]. Since, the Wp,x(p) are assumed independent by construction, the moments of order q > 0

of ε are given by:

< (ε(x))q > = <

(
n∏

i=1

Wp,x(p)

)q

>

=

n∏

i=1

<
(
Wp,x(p)

)q
>

= < W q >n .

Moreover, the correlation properties of ε are derived in Schmitt [20] and we reproduce them here for

completeness:
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< ε(x)ε(x + r) > = <

n∏

p=1

Wp,x(p)

n∏

p′=1

Wp′,(x+r)(p′) >

=
n−m∏

p=1

< W 2
p,x(p) >

n∏

p=n−m+1

< Wp,x(p) >
n∏

p′=n−p+1

< Wp′,(x+r)(p′) >

= < W 2 >n−m< W >2m

where m is such that λm
1 ≈ r. Introducing the total scale ratio λ = L/l0 = λn

1 , we get

< εq
λ >= λK(q) (3)

< ελ(x)ελ(x + r) >≈ λK(2)r−K(2) (4)

where K(q) = logλ1
< W q > and K(2) = µ.

2.2. Continuous multiplicative Cascades

2.2.1. Definition

Continuous cascades are obtained by letting the depth n → +∞ while the total scale ratio λ = L/l0 = λn
1

is kept fixed (but large) so that λ1 = λ1/n → 1+ (see [21], [23], [24]). In the previous section, cascades have

been presented in space. When considering cascades developing in time, ελ may be seen as a stochastic

process and equation (1) writes

< ελ(t)ελ(t + τ) >≈ λK(2)τ−K(2),

showing that (ελ(t))t has long-range correlations for time increment τ with parameter µ = K(2) for fixed

λ.

2.2.2. The stochastic equation

As shown by F.G. Schmitt [20], if all the W ’s are log-normal, that is

W = exp(
√

µ ln 2go −
µ

2
ln 2),

where g0 is a standard Gaussian, we obtain a dissipation stochastic process:
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ελ(t) = λ−µ
2 exp(µ

1
2

∫ t

t+1−λ

(t + 1 − u)−1/2dB(u)), (5)

and its generator, called singularity process:

γλ(t) = ln ελ(t) = −µ

2
lnλ + µ1/2

∫ t

t+1−λ

(t + 1 − u)−1/2dB(u). (6)

This last process γλ(t) has a stochastic drift:

dγλ(t) = −µ1/2

2

(∫ t

t+1−λ

(t + 1 − u)−3/2dB(u)

)

dt + µ1/2dB(t) − λ−1/2dB(t + 1 − λ).

For large scale ratios λ ≫ 1 the term λ−1/2dB(t + 1 − λ) is negligible, so

dγ(t) ≈ µ1/2

(

dB(t) − 1

2

∫ t

t+1−λ

(t + 1 − u)−3/2dB(u)dt

)

. (7)

3. Cascade SDE with Markov regime-switching

In order to take in account environment changes, we assume that the above parameters λ and µ are

themselves stochastic processes, namely governed by a continuous-time Markov chain. This idea is well-

known in mathematical finance when modelling regime switching markets with stochastic volatility (see

e.g. [3], [8]).

Consider the following cascade stochastic equation

γ(t) = −µX(t)

2
log(λX(t)) + µ

1/2
X(t)

∫ t

t+1−λX(t)

(t + 1 − u)−1/2dB(u), (8)

where (Bt) is a standard Brownian motion, X = (X(t))t≥0 is a continuous time Markov chain taking

values in a finite set S = {1, 2, . . . ,M} that represents different regimes of the environment.

µ = (µ1, . . . , µM ) and λ = (λ1, . . . , λM ) are random vectors such that:

µi
i.i.d.∼ Γ1 for i = 1, ...,M,

λi
i.i.d.∼ Γ2 for i = 1, ...,M,

Γ1 and Γ2 being arbitrarily fixed distributions.

The meaning of this setting is that during regime i the intermittency parameter and the scale parameter

are constant and equal to µi and λi respectively. If, at a given time t, the state of the chain is i, that is
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if X(t) = i, (i ∈ S), then the environment is in regime i so that µX(t) = µi and λX(t) = λi.

Observe that the distribution of γ appears as a mixture of distributions of cascade SDE. The chain spends

an exponential amount of time with parameter βi in state i ∈ S, and then jumps to state j ∈ S, j 6= i

with probability pij . The transition rate matrix Q = (qij)i,j∈S is such that off-diagonal entries qij are

nonnegative reals values, and the diagonal element qii is constrained to be qii = −∑j 6=i qij , so that the

raw sums of rows of Q are zero. We take βi = −qii > 0 for all i ∈ S, and pij = −qij/qii for i 6= j.

4. Dirichlet process and Stick-breaking

As introduced in (Emilion, Faires, Iyer, 2008) [5], we complete the above model by placing a Dirichlet

process (DP) as a prior on the path space of the Markov chain X. This will lead us to a Bayesian

estimation of the model. In this section we review some properties of the DP that will be needed. Let

(Ω,B,P) be a fixed probability space and let V be a Polish space, that is a complete separable metric

space. Let P(V) denote the set of all probability measures defined on V. It is well-know that if V is a

Polish space, so is P(V).

Definition : A random distribution (RD) on V is a measurable map from Ω to P(V).

Note that if X : Ω −→ P(V) is a RD then its distribution PX is a probability measure on P(V).

4.1. Finite dimensional Dirichlet distribution

If V is a finite set with cardinality l then P(V) can be identified to the simplex

△l = {y = (y1, ..., yl), yj ≥ 0,

l∑

j=1

yj = 1}

and any RD to a random vector

X = (X1, ...,Xl) : (Ω,P) → R
l
+,

l∑

k=1

Xk = 1.

Definition : Let α = (α1, ..., αl), with α1 ≥ 0, ..., αl ≥ 0, and let Z1, ..., Zl be l independent real random

variables with gamma distributions Γ(α1, 1), ...,Γ(αl, 1) respectively. The Dirichlet distribution with pa-

7



rameter α, denoted D(α1, ..., αl) or Dα, is defined as the distribution of the random vector (Z1

Z , ..., Zl

Z )

where Z = Z1 + ... + Zl.

Recall that the density of a Gamma random variable is

Γ(a, b)(x) =
1

Γ(a)
bae−bxxa−1I(x>0).

Let

▽l = {p = (p1, ..., pl−1), pj ≥ 0,

l−1∑

j=1

pj ≤ 1}.

It can be seen that if X = (X1, ...,Xl) ∼ D(α1, ..., αl) then X = (X1, ...,Xl−1) has a probability density

function

π(p1, ..., pl−1) =
Γ
(
∑l

i=1 αi

)

∏l
i=1 Γ(αi)

l−1∏

i=1

pαi−1
i (1 −

l−1∑

j=1

pj)
αl−1

Ip∈▽l

with respect to the Lebesgue measure in R
l−1.

Definition (Ferguson 1973): Let H be a probability measure on V and α a positive number. A random

distribution X : Ω −→ P(V) is a Dirichlet process with scaling parameter α and base distribution

H, shortly X ∼ D(αH), if for any integer k ≥ 2 and any measurable partition B1, ..., Bk of V, the

joint distribution of the random vector (X(B1), ...,X(Bk)) is a Dirichlet distribution with parameters

(αH(B1), ..., αH(Bk)).

Shortly,

(X(B1), ...,X(Bk)) ∼ D(αH(B1), ..., αH(Bk)) (9)

It can be shown that D(αH) is centered around H, that is, for any measurable set B ∈ B,

E(X(B)) = H(B)

and

V ar(X(B)) =
H(B)(1 − H(B))

1 + α
.

Probability measures drawn from a Dirichlet process are discrete with probability one (Ferguson 1973).

This property is made explicit by the following stick-breaking construction due to Sethuraman (1994).
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4.2. Stick-breaking representation of Dirichlet process

A constructive approach to the Dirichlet process is the so called stick-breaking scheme. Let H be a

probability distribution on V and let N ≥ 2 be an integer. Let Vk
i.i.d.∼ Beta(ak, bk) k = 1 . . . N − 1 with

shape parameters ak, bk > 0 and let VN = 1. Let p1 . . . pN be defined by

p1 = V1, pk = (1 − V1)(1 − V2)...(1 − Vk−1)Vk, k ≥ 2. (10)

Note that the pk
′s sum to 1. Let Zk

i.i.d.∼ H (k = 1, . . . , N) be independent of (pk)k=1...N . The random

measure PN defined by

PN =

N∑

k=1

pkδZk
(.) (11)

is said to be a stick-breaking construction. The Ferguson Dirichlet process D(αH) is the best known

example of an infinite stick-breaking prior. This is made explicit by the following proposition due to

Sethuraman (1994):

Proposition 4.1

PN (.) =

N∑

k=1

pkδZk
(.)

a.s.−→ D(αH).

This proposition yields an efficient approximation of a Dirichlet process that is very useful in Bayesian

nonparametrics statistics. The following lemma will be crucial in our estimation procedure.

Lemma 1 Let X : Ω → {1, . . . , N} be a r.v. with conditional distribution Pr(X ∈ .|P ) =
∑N

k=1 pkδk(.),

where P is defined by the stick-breaking construction (10). Then the conditional distribution of P given

X is also defined by (10), where now, the Vk’s are independent Beta(a∗, b∗) r.v.’s with

a∗ = ak + I{X=k} (12)

b∗ = b +

N∑

j=k+1

I{X=j}. (13)

5. Complete model specification and estimation

In addition to the conditions precised in section 3 after equation (8)
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γ(t) = −µX(t)

2
log(λX(t)) + µ

1/2
X(t)

∫ t

t+1−λX(t)

(t + 1 − u)−1/2dB(u),

we place a Dirichlet prior on the path space D((0,∞), S) of the process X, that is







(X|P, α) ∼ P

(P |α) ∼ D(αH)

(α) ∼ Gamma(η1, η2)

(14)

where H is the distribution of a specific Markov chain determined by a transition rate matrix Q and an

initial distribution π0. Here π0 will be the uniform distribution π0 = (1/M, ...., 1/M) and Q = (qij) with

qij = βipij i 6= j where βi = β > 0, pij = 1/(M − 1) and qii = −∑j 6=i qij .

In practice, process (8) is sampled at time t1, . . . , tn, providing a finite random vector γ = (γ1, ..., γn) of

observations, where γi is the value recorded at time ti. It will be proved in the next section (Prop. 5.1

below) that the conditional distribution of the vector γ is Gaussian so that we arrive at the following

hierarchical model that we want estimate from the observed data:







(γ|X,µ, λ, P ) ∼ Nn(m(X),Σ)

µ1, ..., µM
iid∼ Γ1

λ1, ..., λM
iid∼ Γ2

(X|P, α) ∼ P

(P |α) ∼ D(αH)

(α) ∼ Gamma(η1, η2)

(15)

5.1. Conditional distributions

The estimation procedure of the various parameters of the model hinges on Gibbs sampling scheme which

implementation requires the computation of the following conditional distributions:
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(γ|X,µ, λ, p)

(µ|γ, λ,X)

(λ|γ, µ,X)

(X|p, α)

(p|α).

For simplicity, γ(ti) and X(ti) will be denoted below by γi and X(i), respectively.

5.1.1. Conditional for γ

Proposition 5.1

(γ|X,µ, λ, p) ∼ Nn(m,Σ)

with

m =

(

−1

2
µX(1) log(λX(1)), . . . ,

1

2
µX(n) log(λX(n))

)

and Σ = (σst)s,t=1,...,n

where

σst = (µX(s)µX(t))
1/2COV (

∫ s

s+1−λX(s)

(s + 1 − u)−1/2dB(u),

∫ t

t+1−λX(t)

(t + 1 − u)−1/2dB(u)).

The coefficients σst can be given explicitly using a computation of F. G. Schmitt ([20] pages 89-90).

Proposition 5.2

Let s and t be integers, let w = min(s, t), a = max(s + 1 − λX(s), t + 1 − λX(t) and τ = |(s − t)|. Then

σst = 2(µX(s).µX(t))
1/2 log

(√
w + 1 − a +

√
w + 1 − a + τ

1 +
√

1 + τ

)

.

If j is a state reached by the Markov chain, let t1j , . . . , tnjj be the times at which j is reached and let

γj = (γt1j
, . . . , γtnjj

) (16)
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Corollary 2

γj |µ, λ,X ∼ Nnj
(−µj

2
log(λj)(1, 1, . . . , 1

︸ ︷︷ ︸

nj times

), µjΣj),

where Σj = (σj(kℓ)), is a nj × nj matrix with

σj(kℓ) = µjCOV (

∫ tk

tk+1−λj

(tk + 1 − u)−1/2dB(u),

∫ tℓ

tℓ+1−λj

(tℓ + 1 − v)−1/2dB(v)).

In the following sections, the probability densities of Nn and Nnj
will be denoted by fn and fnj

respec-

tively, that is

fn(γ, µ, λ) =
exp

(
− 1

2 (γ − m)Σ−1(γ − m)T
)

(2π)
n/2

(det(µΣ))1/2
. (17)

fnj
(γj , µj , λj) =

exp
(
− 1

2 (γj − mj)(µjΣj)
−1(γj − mj)

T
)

(2π)
nj/2

(det(µjΣj))1/2
.

where mj = −µj

2 log(λj)(1, 1, . . . , 1
︸ ︷︷ ︸

nj times

)

5.1.2. Conditional for X.

Proposition 5.3 Let N be a positive integer.

(

X|p =
N∑

i=1

piδXi
, γ, µ, λ

)

∝
N∑

i=1

p∗i δXi

where p∗i = pifn(γ, µ, λ), fn being defined in (17).

5.1.3. Conditional for p

Proposition 5.4

(p1|X) ∼ V ∗
1 , (pk|X) ∼ V ∗

k

k−1∏

i=1

(1 − V ∗
k ) k = 2, 3, . . . , N − 1 (18)

where V ∗
k

ind∼ Beta (a∗
k, b∗k) for k = 1, . . . , N and a∗

k, b∗k are given by Lemma 1.

Proof

By proposition (5.3), (X|p) ∝∑N
i=1 p∗i δXi

. The result then follows from Lemma 1.

Remark 3 The fact stated in this proposition is that the current value of parameter ak increases by 1

each time the path k is chosen. What this does is that as we repeat the process of generating from the
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conditional within each iteration many times, the Beta distributions will gradually concentrate on paths

that best explain the data.

5.1.4. Conditional for α

Proposition 5.5

(α|p) ∼ Gamma

(

N + η1 − 1, η2 −
N−1∑

i=1

log(1 − V ∗
i )

)

,

where the V ∗
i are like those obtained in the conditional of p.

5.1.5. Conditional for µ

Let j ∈ S be a state of X and π1 be the prior for µj .

Proposition 5.6 If for all t ∈ {1, . . . , n} X(t) 6= j then

(µj |γ, λj ,X, α) ∼ π1

otherwise

(µj |γ, λj ,X, α) ∼ Γ1 ∝ Nnj
(mj , µjΣj).π1

where mj = −µj

2 log(λj)(1, 1, . . . , 1
︸ ︷︷ ︸

nj times

).

5.1.6. Conditional for λ

Let j ∈ S be a state of X and let π2 be the prior for λj . Similarly to the case of µ, if for all t ∈ {1, . . . , n}

X(t) 6= j then

(λj |γ, µj ,X, α) ∼ π2

otherwise, for each of the other values of j ∈ S,

(λj |γ, µj ,X, α) ∼ Γ2 ∝ (γ|λj , µj ,X, α)π2. (19)
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5.2. Estimation procedure

Our estimation procedure is described as follows. Observe that steps (i), (iv), (v), (viii) and (ix) are new

with regard to Ishwaran-Zarepour (2000) [10] and Ishwaran-James (2002) [11] procedures.

(i) Choose a large integer N and generate N paths X1, . . . ,XN of the continuous time Markov chain

with distribution H.

(ii) Draw α from Gamma(η1, η2) and draw p1, . . . , pN according to (10) with ak = 1 and bk = α.

(iii) Draw λ = (λ1, . . . , λM ) and µ = (µ1, . . . , µM ) from their priors π1, π2 respectively.

(iv) Draw one of the paths X1, . . . ,XN with probability p1, . . . , pN , respectively.

Iterate over the following steps (v) through (ix):

(v) - Compute σij = COV (γi, γj) from Proposition 5.2

- Define p∗j ∝ pjfn(γ|m,Σ), using Proposition 5.1

- Excecute (iv) with pj replaced by p∗j .

(vi) - Define a∗
k and b∗k using (12) and (13) where X is the index of the chosen path.

- Compute p1 = V ∗
1 , and pk = (1 − V ∗

1 ) · · · (1 − V ∗
k−1)V

∗
k , k = 2, 3, . . . , N − 1

where V ∗
k

ind∼ Beta(a∗
k, b∗k).

(vii) Draw α from (α|p) ∼ Gamma
(

N + η1 − 1, η2 −
∑N−1

i=1 log(1 − V ∗
i )
)

.

(viii) Given γ, λ and a chosen path X, for each state j ∈ S,

- If X(t) 6= j for all t ∈ {1, . . . , n}, then draw µj from the prior π1.

- otherwise, deternime the times t1j , . . . , tnj ,j at which the Markov chain takes the value j and

compute σj(kℓ) from Proposition 5.2.

- draw µj from the conditional distribution of µj given by Proposition 5.6.

(ix) - If X(t) 6= j for all t ∈ {1, . . . , n}, then draw λj from the prior π2.

- otherwise, deternime the times t1j , . . . , tnj ,j at which the Markov chain takes the value j and

compute σj(kℓ) from Proposition 5.2.

- draw λj from the conditional distribution of λj given by (19)

Remark 4 Since n will be very large for the application that we have in mind (n ≈ 72, 000), it may be
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hard to compute the above since we have to invert the matrix Σ. Hence breaking the data set into smaller

pieces will help. However we keep the size large enough to estimate the largest significant correlation.

Remark 5 Another way to simulate λ is to generate a path of the Brownian motion B. For all times

t1j , . . . , tnjj for which X takes value j, solve equation (8) in λj numerically, using a discretization of

[tj + 1− λj , tj ]. This gives values λ1j , . . . , λnj ,j . Use the values obtained this way for a large number of

Brownian paths to compute the conditional for λj and draw value of λj from this conditional.

The algorithm below summarizes the estimation procedure. In practice it will be implemented using the

Gibbs sampling technique.

(i) Initialization

- Let γ be the vector of observations

- Choose the hyperameters η1 , η2 and N

- Generate α from Gamma(η1, η2)

- Generate N paths of the Markov chain

- Draw p = p1 . . . pN from stick-breaking(α, N)

- Choose one of the N paths according to p

- Generate µ and λ from their priors

(ii) Iterations

- Compute fn(γ, µ, λ) and update pk, k being the index of the chosen path.

- Choose one of the N paths according to p

- For each state j, draw µj , drawλj

- Draw α

- Draw a new p

5.3. Truncation error bound

Let γ(t) be defined as in (8) and let γ = (γ1, . . . , γn) be a n sample from the process γ(t). Let mN (γ)

and m∞(γ) denote the marginal density of γ subject to PN and D(αH) respectively. Using a result in

Ishwaran 2002 [11] it can be shown that
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∫

Rn

|mN (γ) − m∞(γ)|dγ ≤ 4exp(−(N − 1)/α).

This result provides an error bound for the truncated Dirichlet process and shows that the sample size

n has no effect on the bound. The adequacy of the truncation then depends on N and α. Of course the

value of α changes during the different iterations of our Gibbs sampler; but , since the bound decreases

exponentially, even for a fairy large value α = 3 for example, a truncation of N = 30 leads to an error

bound of 25.10−5. For the computations in the next section we have chosen a value of N = 50.

6. Numerical results

6.1. Simulated data

The present subsection aims at testing the reliability of the model. We perform numerical simulations of

the stochastic process γ(t). We consider a model with five regimes. The associated Markov chain then

has five states and is defined by the following uniform transition rate matrix















−1 0.25 0.25 0.25 0.25

0.25 −1 0.25 0.25 0.25

Q = 0.25 0.25 −1 0.25 0.25

0.25 0.25 0.25 −1 0.25

0.25 0.25 0.25 0.25 −1















and the initial distribution πo = [0.20 0.20 0.20 0.20 0.20]. We first run 1,500 burn-in iterations and

at the end of each of these iterations we estimate from the obtained path, the transition probabilities and

the average time the chain spends in each regime. We get:















0 0.2 0.7 0 0.1

0.5 0 0.1 0.26 0.14

P = 0.6 0.18 0 0.17 0.05

0.55 0.13 0.1 0 0.22

0.08 0.43 0.16 0.33 0















16



and

Regime 1 Regime 2 Regime 3 Regime 4 Regime 5

βi 0.05 0.1 0.02 0.2 0.041

where βi is the parameter of the exponential distribution that gives the time spent by the chain in state

i. This leads to a new transition rate matrix















−0.05 0.01 0.035 0 0.005

0.05 −0.1 0.01 0.026 0.014

QO = 0.012 0.0036 −0.02 0.0034 0.001

0.11 0.026 0.02 −0.2 0.044

0.00328 0.01763 0.00656 0.01353 −0.041















We choose the prior of µ and λ to be independent truncated Gaussian distributions, and simulate the

parameters µ = (µ1, ..., µ5) and λ = (λ1, ..., λ5), coresponding to the five regimes. We also simulate a path

of length n = 600 of the Markov chain. Using µ, λ and the Markov chain, we simulate a sample path γ

of the stochastic process γ(t).

0 100 200 300 400 500 600
−10

−8

−6

−4

−2

0

2

4

γ(t)

Fig. 2. A sample path of the stochastic process γ(t)

Taking the data γ as input, we estimate the parameters of the model through the algorithm presented

in Section 5. For the purpose, we performed 500 separate Gibbs sampling runs of length 1, 000 each one.

The values of the last iteration of each run were retained, leading to the following statistics.
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Regime1 Regime 2 Regime 3 Regime 4 Regime 5

Simulated Values 0.19 0.33 0.36 0.41 0.45

Estimated Values 0.22 0.31 0.38 0.42 0.46

95% confidence Interval [0.189, 0.25] [0.285, 0.335] [0.35, 0.40] [0.405, 0.43] [0.44, 0.48]

Table 1: Summary statistics of µ.

Regime1 Regime 2 Regime 3 Regime 4 Regime 5

Simulated Values 1067 997 1234 1743 1408

Estimated Values 1070 996 1234 1742 1410

95% confidence Interval [1064, 1075] [992, 1000] [1228, 1240] [1734, 1749] [1403, 1416]

Table 2: Summary statistics of λ .

At each run of the Gibbs sampling, we also choose the path with maximum likelihood. At the end of

the procedure, we chose among the 500 paths retained, the one with the highest likelihood. It has the

following characteristics:

Regime1 Regime 2 Regime 3 Regime 4 Regime 5

µ 0.22 0.31 0.38 0.43 0.46

λ 1070 996 1234 1742 1410

Table 3: Regime characteristics of the process γ(t)

6.2. Wind speed data

This section is aimed at testing the model on real data. We consider a dataset collected at the entrance of

the mangrove ecosystem in Guadeloupe island. Wind velocity was recorded at a frequency of 20Hz by its

18



3D components vx, vy and vz. As we are interessed by the longitudinal velocity, only the component vx and

vy are considered. Our observation time interval is one hour, providing a 2D series of length n = 72, 000.

Let u = 1√
(vx)2+(vy)2

(v̄x, v̄y) be the mean longitudinal velocity vector and w = 1√
(vx)2+(v)2y

(−v̄y, v̄x). Let

(S1, S2) be the new coordinates of (vx, vy) in the basis (u,w) and let S =
√

S2 + S2
2 be the wind modulus.

Computing the energy dissipation series ε(t) = (S(t + 1)−S(t))2/(1/20), the aim is to fit our model (15)

to the series γ(t) = log(S(t)).

Estimates of µ and λ, using energy spectrum and equation (3) on sliding windows of 60 seconds length,

show that these parameters remain quite constant for random durations of time and then jump to another

value. Regimes can be observed in Fig. 2 below as mentioned in the Introduction section.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

µ

0 1000 2000 3000 4000 5000
1230

1235

1240

1245

1250

1255

1260

1265

1270

λ

Fig. 3. Regime changes for µ (left) and λ (right).

Considering the histogram of the values of µ (resp. of λ) over the above sliding windows (see Fig. 3

below), a truncated Gaussian (resp. a Gamma) distribution is taken as inital prior for µ (resp. for λ).

The results of our algorithm for 500 Gibbs sampling runs of length 1,000 each after 3,000 burn-in

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48
0

100

200

300

400

500

600

µ
1230 1235 1240 1245 1250 1255 1260 1265 1270
0

200

400

600

800

1000

1200

1400

1600

1800

2000

λ

Fig. 4. Histograms of µ (left) and λ (right)

iterations, are displayed in the following table. We first ran the algorithm with M = 5 states but some

values of the parameters were not significantly different so that we took M = 4 states. We also evaluated
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the likelihood of the paths selected at each of the 1, 000 iterations of a Gibbs sampling run and we chose

the path with maximum likelihood. Among these paths, the one with the highest likelihood has the

following characteristics:

Regime 1 Regime 2 Regime 3 Regime 4

µ 0.33 0.37 0.41 0.47

λ 1248 1262 1236 1280

% of occupation 11.9% 26.8% 47% 14.3%

Table 4: Characteritics of the path with highest likelihood.

Regimes 2 1 3 1 3 4 3 2 3 4 1 3 4

Duration 58 24 112 44 23 34 53 103 73 36 4 21 16

Table 5: Sequence of regimes in the highest likelihood path.

7. Conclusion

We have proposed a new model for dissipation: cascade SDE with Markov regime switching to represent

the environment randomness, and Dirichlet prior on the path space of the continuous time Marlov chain

to make the model more flexible. It can be seen that this model is a complex mixture hierarchical model.

The numerical results obtained lead us to think that such mixture model better fit to the real world than

usual SDE models. The proposed Bayesian algorithmic method, whose key idea is the simulation of paths,

can be extended to many other situations as soon as posterior distributions can be computed or simu-

lated and priors used cautiously. A nice topic for further research may consist in replacing the continuous

time Markov chain by a diffusion process. This requires a deeper study of the behaviour of the parameters.
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APPENDIX: PROOFS

Proof of Lemma 1

Note that Pr(X = j|p) = pj = (1 − V1) · · · (1 − Vj−1)Vj . Thus, if A1, ..., An are measurable subsets of

[0,1], and if π is the joint distribution of the Vi’s, we have,

Pr(V1 ∈ A1, ...VN ∈ AN ,X = j) =

∫ N∏

k=1

I{Vk∈Ak}Pr(X = j|V1, .., VN )π(dV1, ..., dVN )

=

∫ N∏

k=1

I{Vk∈Ak}(1 − V1) · · · (1 − Vj−1)Vjπ(dV1, ..., VN )

=

∫

I{xk∈Ak,k=1,...,N}(1 − x1) · · · (1 − xj−1)xj

N∏

k=1

xak−1
k (1 − xk)bk−1(dx1, ..., dxN )

=

∫

I{xk∈Ak,k=1,...,N}x
aj

j (1 − xj)
bj−1

j−1
∏

k=1

xak−1
k (1 − xk)bk

N∏

k=j+1

xak−1
k (1 − xk)bk−1(dx1, ..., dxN ).

This implies that

Vj |X = j ∼ Beta(aj + 1, bj)

Vk|X = j ∼ Beta(ak, bk + 1)) for 0 < k < j

Vk|X = j ∼ Beta(ak, bk) for k > j

as sumarized in the Lemma.

Proof of Propositon 5.1

According to definition (8), each component γi of γ is a Gaussian r.v. with mean

mi(X) = −1

2
µX(i) log(λX(i))

since 〈
∫ i

i+1−λX(i)

(i + 1 − u)−1/2dB(u)

〉

= 0.

Therefore

< γ >= m(X) =

(

−1

2
µX(1) log(λX(1)), . . . ,

1

2
µX(n) log(λX(n))

)

.
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Now let Z =
∑J

j=1 αjγj be a linear combination of components of γ.

Z =
J∑

j=1

αj

(

−µX(tj)

2
log(λX(j)) + (µX(j))

1/2

∫ tj

tj+1−λX(j)

(tj + 1 − u)−1/2dB(u)

)

which can be written in the form

Z = AJ +
J∑

j=1

αj(µX(j))
1/2

∫

(tj + 1 − u)−1/2I[tj+1−λX(j), tj]dB(u)

that is

Z = AJ +

∫

(tj + 1 − u)−1/2BJI[tj+1−λX(j), tj]dB(u),

showing that Z is a Gaussian r.v. It follows that γ is a Gaussian random vector.

Moreover

σst = Cov(γs(X), γt(X)) = 〈γs(X) − ms(X), γt(X) − mt(X)〉

=

〈

(µX(s))
1/2

∫ s

s+1−λX(s)

(s + 1 − u)−1/2dB(u), (µ
1/2
X(t)

∫ t

t+1−λX(t)

(t + 1 − v)−1/2dB(v)

〉

= (µX(s))µX(t))
1/2

〈
∫ s

s+1−λX(s)

(s + 1 − u)−1/2dB(u),

∫ t

t+1−λX(t)

(t + 1 − v)−1/2dB(v)

〉

. 2

Proof of Propositon 5.2

The covariance matrix coefficients σst = COV (γs, γt) involve two Gaussian stochastic integrals:

σst = (µX(s)µX(t))
1/2

〈
∫ s

s+1−λX(s)

(s + 1 − u)−1/2dB(u),

∫ t

t+1−λX(t)

(t + 1 − u)−1/2dB(u)

〉

.

Recall that Gaussian stochastic integrals are zero mean Gaussian r.v.s that have the property

〈∫

E1

F (x)dB(x)

∫

E2

G(x)dB(x)

〉

=

∫

E1∩E2

F (x)G(x)dx.

So, if

I =

∫ a

b

F (x)dB(x)

then

σ2
I =

∫ a

b

F 2(x)dx.
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Suppose that s < t, then w = s and t = s + τ . Let

K =

〈
∫ s

s+1−λX(s)

(s + 1 − u)−1/2dB(u),

∫ t

t+1−λX(t)

(t + 1 − u)−1/2dB(u)

〉

.

It follows that

K =

∫ s

a

(s + 1 − u)−1/2(t + 1 − u)−1/2du.

As in Schmitt [20] we see that

K =

∫ s

a

du
√

(s + 1 − u)(t + 1 − u)

=

∫ s

a

du
√

(s + 1 − u)(s + 1 − u + τ)

=

∫ 1+s−a

1

dx
√

x(x + τ)

= 2 log

(√
s + 1 − a +

√
s + 1 − a + τ

1 +
√

1 + τ

)

where we have made the variable change x = s + 1 − u and used the identity

∫
dx

√

x(x + τ)
= 2 log

(√
x +

√
x + τ

)
.

Therefore

σst = 2(µX(s)µX(t))
1/2 log

(√
w + 1 − a +

√
w + 1 − a + τ

1 +
√

1 + τ

)

. 2

Proof of Propositon 5.3

We know that the conditional density of X is

(X = x|p = y, γ = g, µ = m,λ = l) =
(X, p, γ, µ, λ)(x, y, g,m, l)

∫
(X, p, γ, µ, λ)(x, y, g,m, l)dP (x)

.
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But,

(X, p, γ, µ, λ)(x, y, g,m, l) = (γ = g|X = x, p = y, µ = m,λ = l)(X = x, p = y, µ = m,λ = l)

= (γ = g|X = x, p = y, µ = m,λ = l)(X = x|p = y, µ = m,λ = l)

×(p = y, µ = m,λ = l)

= fn(g,m, l)(X = x|p = y, µ = m,λ = l)(p = y, µ = m,λ = l).

Since

(X = x|p, µ, λ) =

N∑

i=1

piδXi
({x}) ,

and since the distribution of (p, µ, λ) does not depends on X, we have

(X, p, γ, µ, λ)(x, y, g,m, l) = fn(g,m, l)

N∑

i=1

piδXi
({x}) .

Using that f(x)δXi
({x}) = f(Xi)δXi

({x}), for any function f , we get

(X, p, γ, µ, λ)(x, p, g,m, l) =
N∑

i=1

fn(g,m, l)piδXi
({x})

=
N∑

i=1

p∗i δXi
({x})

(X|p, γ, µ, λ) ∝
N∑

i=1

p∗i δXi
.

Proof of Propositon 5.5

By Connor and Mosimann [2], the probability density of p defined by equation (10) is

{
N−1∏

k=1

Γ(ak, bk)

Γ(ak)Γ(bk)

}

pa1−1
1 . . . p

aN−1−1
N−1 p

bN−1−1
N × (1 − P1)

b1−(a2+b2) . . . (1 − P
bN−2−(aN−1+bN−1)
N−2 ), (20)

where Pk = p1 + . . . + pk. When ak = 1 and bk = α, using Γ(1 + α) = αΓ(α), we get that the conditional

density of p given α is

f(p|α) ∝ αN−1pα−1
N = αN−1e(α−1) log(pN ).

As f(α|p) ∝ f(p|α)f(α) and the prior for α is Gamma(η1, η2), we get

f(α|p) ∝ αN−1+η1e−(η2−log(pN ))α
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So, (α|p) ∼ Gamma (N + η1 − 1, η2 − log(pN )), that is

(α|p) ∼ Gamma

(

N + η1 − 1, η2 −
N−1∑

i=1

log(1 − V ∗
i )

)

.

Proof of Propositon 5.6

Let t1j , . . . , tnjj be the times at which the Markov chain takes value j.

We know from corollary (2) that,

(γt1j
, . . . , γtnjj

)|µ,λ ∼ Nnj
(−µj

2
log(λj)(1, 1, . . . , 1), µjΣj).

Moreover

(γ, µj , λj ,X, α) = (γ|µj , λj ,X, α) ⊗ (µj , λj ,X, α) = (γ|µj , λj ,X, α) ⊗ (µj ⊗ λj ⊗ X ⊗ α)

since X,µj , λj and α are independent. It follows that

(µj |γ, λj ,X, α) =
(γ|µj , λj ,X, α) ⊗ µj ⊗ λj ⊗ X ⊗ α

∫
(γ, µj , λj ,X, α)dP (µj)

.

As λj , X and α do not depend on µj we have

(µj |γ, λj ,X, α) ∝ (γ|µj , λj ,X, α) ⊗ µj

That is

(µj |γ, λj ,X, α) ∼ Γ1 ∝ Nnj
(mj , µjΣj).π1. 2
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