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Conformal embeddings and quantum graphs with self-fusion

R. Coquereaux 1,2,

Abstract

After a short description of the notion of quantum subgroups and quantum modules of
quantum groups at roots of unity, in the framework of category theory, and a presentation of
the known classifications (that we relate with the theory of conformal embeddings), we sketch
several general methods of study and illustrate them on the particular example of a quantum
subgroup of the non simple Lie group SU(2) × SU(3) stemming from a conformal embedding
of the later, at level (16, 6), into E8. The graph describing its module structure over the
corresponding fusion algebra incorporates several known components graphs of type SU(2) and
SU(3), and it has self-fusion, but some of its components don’t.

Keywords: quantum symmetries; modular invariance; conformal field theories; quantum groupöıds.

1 General presentation

To any conformal embedding K ⊂ G, interpreted either in terms of affine Lie algebras or in terms
of quantum groups at roots of unity, one can associate a module-category E(K) endowed with
an action of a modular category A(K) defined either as the fusion category of K at some level,
or as a category of representations with non-zero q-dimension of the quantum group K, at a root
of unity determined by the level of the embedding. These module-categories enjoy self-fusion:
such “quantum modules” can therefore be considered as “quantum subgroups” of the group K.
After a brief description of the general situation and a summary of the known classification
of quantum modules when K is SU(2), SU(3) or SU(4), classification that associates a graph
describing the action of the generators of the Grothendieck ring of A(K) on the simple objects
of E(K), we give a classification of quantum subgroups, stemming from the known conformal
embeddings. Then, we study one particular example where the given classical Lie group K
is not simple, namely K = SU(2) × SU(3), and where G = E8. It gives rise to a quantum
subgroup of K whose graph components incorporate the Dynkin diagrams E7 = E16(SU(2))
and D10 = D16(SU(2)), but also several known graphs of type SU(3), namely D6(SU(3)) and
D6

c(SU(3)). It is known that D10 and D6(SU(3)) enjoy self-fusion, but E7 and D6
c(SU(3))

don’t. This suggests that conformal embeddings not only give rise to quantum subgroups of Lie
groups K (which are not necessarily simple) but, when followed by contraction or twisting, they
may provide a way to obtain all quantum modules.

1Centre de Physique Théorique(CPT), Luminy, Marseille.
2Lecture presented at the XVII Coloquio Latinoamericano de Algebra, Medellin, Colombia, July 23 to 27, 2007.
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1.1 Categorical description of the framework

Category theory offers a synthetic presentation of the framework and we present it here in a few
lines. However most of the constructions that will be found in this paper are made at the level
of groups and rings, so that familiarity with category theory itself is not required to read this
paper.

The starting point is the fusion category Ak = Ak(K) associated with a Lie group K and
an integer k called the level (see for instance [28]). This category, both monoidal and ribbon,
can be defined either1 in terms of representation theory of an affine Lie algebra (simple objects
are highest weight integrable irreducible representations) or in terms of representation theory
of a quantum group at a root of unity q determined by the level (simple objects are irreducible
representations of non-vanishing quantum dimension). One should keep in mind the distinction
between this category (with its objects and morphisms), its Grothendieck ring (the fusion ring),
and the Cayley graph describing multiplication by its generators, but they are denoted by the
same symbol. In simple terms, and at the level of rings, simple objects of this category are
irreducible representations of a Lie group K that are such that their level is bounded by a given
integer k (in the case of groups of type SU(n), the level of an irreducible representation specified
by a Young diagram is given by its maximum size, the width or the height of the diagram).

The next ingredient is an additive category Ek = Ek(K), on which the previous monoidal
category acts. Action of a monoidal category on a category is defined whenever we are given
a (monoidal) functor from Ak to the (monoidal) category of endofunctors of Ek. The reader
can think of this situation as being an analogue of the action of a group on a given space. It
may be sometimes interesting to think that E can be acted upon in more than one way, so that
we can think of the action of Ak as a particular enrichment of Ek, or that Ek is an actegory (a
nice substantive coined by R. Street). In general Ek has no-self-fusion (no compatible monoidal
structure) but in some cases it does. Here again, the category itself, its Grothendieck group,
and the graph describing the action of generators of Ak(K) are denoted by the same symbol.
The later graph will be called the McKay graph of Ek, or simply, “the quantum graph”. Using
Ocneanu terminology [23] [24] , one say that such an Ek is a quantum module of K (at some root
of unity), and if it happens that this quantum module has self-fusion, it is called a quantum
subgroup of K. In the classical situation, this indeed happens when E is a subgroup: Take
for instance K = SU(2), k = ∞, A the ring generated by all irreducible representations of
SU(2) (they are specified by an integer or half-integer s, the spin), and E the ring generated by
irreducible representations (up to equivalence) of some binary polyhedral subgroup.

The last ingredient is the centralizer (or dual) category O = O(Ek) of Ek(K) with respect to
the action of Ak(K). It is monoidal and comes with its own ring, called the Ocneanu algebra
of quantum symmetries, which is a bimodule over the fusion ring, and a graph (the Ocneanu
graph) which is the Cayley graph describing multiplication by the generators. See [22, 2, 25].

The category Ak can be realized as the tensor category of representations of a certain weak
Hopf algebra, this is a theorem proved by Y. Hayashi [16]. One way to obtain a realization
of the above collection of data is therefore to construct a finite dimensional weak bialgebra B,
which should be such that Ak can be realized as Rep(B), and also such that O can be realized as
Rep(B̂), where B̂ is the dual of B. These two algebras are finite dimensional, actually semisimple
in our case, and one algebra structure (say B̂) can be traded against a coalgebra structure on
its dual. B is a weak bialgebra, not a bialgebra, because ∆1l 6= 1l⊗ 1l, where ∆ is the coproduct
in B, and 1l is its unit. B is not only a weak bialgebra but a weak Hopf algebra (a quantum
groupoid): one can define an antipode, with the expected properties. Such quantum groupoids
B(Ek(K)) defined as module-categories over a given fusion algebra Ak(K) attached to a Lie
group K and a positive integer k are sometimes called “Ocneanu quantum groupoids of type
K”. A description of this setup for the case of SU(2), in the framework of category theory, was
presented by [25, 11].

Let us conclude this presentation by mentioning that simple objects of Ek can be thought

1there is an equivalence of categories [10, 20].
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as would-be spaces of sections for quantum bundles over the quantum space determined by the
pair (Ak, Ek), and therefore as modules over an algebra F , actually a Frobenius monoid, in
the monoidal category Ak. We shall not use Frobenius algebras in our article but we should
nevertheless mention that such a point of view was developped in [12], [25] and that [21] proved
that Ek is monoidal (existence of self-fusion, so that it is a “quantum subgroup”, not only a
“quantum module”) if and only if F is commutative. Terminological warning: in the older paper
[21] this commutativity property was part of the definition and such algebras were called rigid,
both requirement and terminology were later abandoned.

1.2 The classification problem

The problem is to obtain a description of all possible quantum modules E(K), where K is some
arbitrarily given semi-simple (or reductive) Lie group. For each of them, ideally, one wants to
be able of giving a set of generators for the Grothendieck group of the category, a collection
of matrices implementing the various algebra and module structures, and a presentation of the
associated quantum groupoid (multiplication on B and on its dual, pairing).

In order to describe these related structures, one introduces the following notations and
terminology: fusion matrices Nn = (Nnpq) encode the structure constants of the ring Ak,
annular matrices Fn = (Fnab) encode the structure constants of the module Ek over the ring
Ak, graph matrices Ga = (Gabc) describe the monoidal structure of Ek when it exists (existence
of self-fusion), matrices of quantum symmetries Ox = (Oxyz) encode the structure constants of
the ring O, toric matrices Wxy = (Wxy)mn and double fusion matrices Vmn = (Vmn)xy related to
one another by (Vmn)xy = (Wxy)mn describe the bi-module structure of O over Ak, dual annular
matrices Sx = (Sx)ab describe the module structure of Ek over O, Ocneanu cells {a, n, b; c, x, d}
give the pairing between the bialgebra B and its dual [23]. In this article, indices m,n, p . . . label
simple objects of Ak, a, b, c . . . simple objects of Ek and x, y, z, . . . simple objects of O.

2 Quantum modules and quantum subgroups

2.1 A brief description of the SU(2), SU(3), SU(4) cases

SU(2). In this case, the classification of quantum modules is equivalent to the classification
of modular invariant partition functions for WZW conformal field theories of type SU(2) which
was obtained long ago by theoretical physicists: this is the ADE classification found by [3].

The module structure of Ek is fully described, in this case, by the annular matrix F1, since
the character ring of SU(2) has only one generator. From quantum group theory we know that
the quantum dimension of the fundamental representation is also the Perron-Frobenius norm β
of F1 and it is smaller than 2 when q is a root of unity. Moreover, from the fact that matrix
elements of F1 are non-negative integers, one is immediately led to a classification in terms of
Dynkin diagrams (set F1 = 2 Cartan matrix − 1l). The rigidity condition2 in the case of sl(2)
implies that the annular matrix F1 is symmetric, this condition excludes the non simply laced
diagrams Br, Cr, F4 and G2. We are left with the ADE diagrams and the tadpoles. A detailed
analysis of the situation ([22], [25]) shows that tadpole graphs do not give rise to any category
endowed with an action of Ak(SU(2)). In those SU(2) cases, the McKay graphs of the quantum
modules Ek are precisely given by the simply laced Dynkin diagrams. Among them, E7 ( level
is 16) and D2s+1 (level is k = 4s − 2), do not have self-fusion, but the others cases do: Ar
(level is k = r − 1), D2s (then k = 4s − 4), E6 (then k = 10), and E8 (then k = 28) indeed
describe SU(2) quantum subgroups. At the level of graphs, the D diagrams (even or odd) are
Z2 orbifolds of the A diagrams at the same level. All these quantum modules of SU(2), arising
when q2+k = −1, can be obtained as follows.

2Rigidity of the category Ak (existence of duals) implies that fusion ring is “rigid” i.e., that (Nn)pq = (Nn)qp,
where n refers to the dual object (conjugate representation), or that it is based Z+ ring in the sense of [25]. At the
level of modules, this property also implies that the module E is rigid, in other words: (Fn)ab = (Fn)ba.
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The Ak(SU(2)) = Ak+1 are immediately obtained by truncation of the Weyl chamber
of SU(2) at level k. Ek=10(SU(2)) = E6 which is a module over A10(SU(2)) = A11 is a
quantum subgroup obtained from the conformal embedding of SU(2)10 in Spin(5) ' Sp(2).
Ek=28(SU(2)) = E8 which is a module over A28(SU(2)) = A29 is a quantum subgroup obtained
from the conformal embedding of SU(2)10 in G2. Dk=4(SU(2)) = D4 which is a module over
A4(SU(2)) = A5 is a quantum subgroup obtained from the conformal embedding of SU(2)4 in
SU(3), this is the smallest member of the Deven series, which has self-fusion; the other members
of this series are not obtained from a (direct) conformal embedding. Indeed, conformal embed-
dings of SU(2)k × SU(k)2 in SU(2k) give rise to quantum subgroups of the semi-simple (but
not simple) quantum group SU(2) × SU(k) and the property of self-fusion for it is automatic,
but it may be lost in the process of contraction with respect to either of the simple factors : take
k even (if it is odd one does not obtain any new module), then if we contract with respect to
SU(k), we obtain quantum modules of SU(2) and their McKay diagrams are Dynkin diagrams
of type Ds, with s = k/2 + 2, and they have self-fusion if s is even but they don’t when s is odd.
Finally we have the conformal embedding of SU(2)16 × SU(3)6 into E8. We shall study this
example in the last section and see that it gives rise to a quantum subgroup of SU(2)× SU(3)
whose McKay graph contains one graph D10 = D16(SU(2)), two graphs E7 = E16(SU(2)), one
graph D6(SU(3)) together with its module D6

c(SU(3)). Contraction with respect to SU(3)
gives one D10 (which has self-fusion) and two E7 (which has not). Contraction with respect to
SU(2) gives also two graphs of SU(3), one with self-fusion (D6) and one without (D6

c).
Starting from a non-simple conformal embedding i.e., K ⊂ G with G simple, but K semi-

simple, non simple, one can perform a contraction at the level of modular invariants (the above
example, after subtraction of the D10 part provides a standard way to obtain the modular
invariant of E7, as described, for instance, in [8]) but if we do not contract, we obtain a quantum
subgroup of the semi-simple group K.

SU(3) In this case, the classification of Z+ modules over the corresponding fusion rings at
level k is not tractable, and would not be useful, anyway, for our purposes. However there is
another route stemming from the classification (mostly based on arithmetical considerations)
of modular invariant partition functions of type SU(3), obtained by T. Gannon [13]. Using a
variety of techniques, one then obtains the McKay graphs for the quantum modules of type
SU(3): they are given by the Di Francesco - Zuber diagrams [9] (one of the diagrams belonging
to the original list was later removed by A. Ocneanu, very much like the tadpole graphs of sl(2)).

Several sl(3) quantum modules have self - fusion, namely: Ak itself, the Dk (when k is
divisible by 3), whose McKay diagrams are Z3 orbifolds of those of Ak, and three exceptional
cases called E5, E9 and E21, at levels 5, 9 and 21. The other modules (without self-fusion) are:
the conjugated series Ack, for which the number of simple objects is equal to the number of
self-dual simple objects in Ak, the Dk series, when k = 1 or 2 mod 3, the conjugated series Dck,
for all k, two modules of exceptionals called E5/3, E9/3, and finally the exceptional case Dt9 (a
generalization of E7 that can be obtained from D9 by using an exceptional twist), along with
a “conjugated case” called D9

tc. Some of the graphs of that system have double lines, like E9,
so that it is not appropriate to say that they are“simply laced”: better to consider them as
“higher ADE”. In all cases, with self-fusion or not, the rigidity property implied by Ak holds
(the condition (Fn)ab = (Fn)ba does not forbid double lines). A new feature that appears in
the SU(3) situations (compared with SU(2)) is that one can sometimes find several graphs, and
therefore several module-categories, with the same partition function. The quantum modules
of SU(3), arising when q3+k = −1, are related as follows with conformal embeddings (we use a
notation where the level k appears as a subscript, and a quantum module at level k is always
a module over Ak): The Ak(SU(3)) are obtained by truncation of the Weyl chamber of SU(3)
at level k. E5(SU(3)), E9(SU(3)) and E21(SU(3))are exceptional quantum subgroups obtained
from the conformal embedding of SU(3)5 in SU(6), of SU(3)9 in E6 and of SU(3)21 in E7.
Quantum modules of type Dk(SU(3)) are obtained from non-simple conformal embeddings of
SU(3)k × SU(k)3 in SU(3k) (giving rise to quantum subgroups of SU(3)× SU(k)) followed by
contraction with respect to SU(k). As recalled previously, we have also a twisted exceptional
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case D9
tc. The smallest member D3(SU(3)) of the series with self-fusion D3s(SU(3)) can be

obtained directly from a conformal embedding of SU(3)3 in Spin(8). IfM denotes some modular
invariant of SU(3) type, and if C denotes the permutation matrix describing complex conjugation
on the set of irreducible representations of Ak(SU(3)), one obtains another modular invariant
(sometimes the same) by taking Mc =MC. Starting from Ak, Dk, E5 or E9, one builds in this
way the conjugated series and graphs Akc, Dkc, E5c and E9c.

SU(4). In this case, the classification of modular invariant partition functions was not a priori
known, but people knew a list of examples. From this list and using modular splitting techniques
– see a later section – the classification of SU(4) Cayley graphs associated with WZW models,
i.e., the classification of quantum modules of type SU(4), was completed by A. Ocneanu and
presented in [24]. The SU(4) family includes the Ak(SU(4)) series and its conjugate for all k,
two kinds of orbifolds, the D(2)

k = Ak/2 series for all k (with self-fusion when k is even) and
the D(4)

k = Ak/4 series for k = 0, 2, 6 mod 8 (with self-fusion when k is divisible by 8), their
corresponding conjugated series, one exceptional case obtained by twisting, D(4)t

8 , without self-
fusion (a generalization of E7) and finally three exceptional quantum graphs with self-fusion, at
levels 4, 6 and 8, denoted E4, E6 and E8, together with one exceptional module for each of the last
two. These exceptional quantum subgroups at levels 4, 6, 8 can be respectively obtained from
the study of the conformal embeddings of SU(4) into Spin(15), SU(10) and Spin(20), see [7];
their modules (for the last two, since E4 doesn’t have any) are obtained as a by-product of the
determination of their algebras of quantum symmetries. We should also mention the existence
of a conformal embedding of SU(4), at level 2, in SU(6), but it gives rise to D(2)

2 = A2/2, the
first member of the D(2)

k series, which can itself be obtained by conformal embedding of the non
simple SU(4)× SU(k) in SU(4k), followed by reduction.

2.2 Quantum modules for general Lie groups K

To every quantum module (or quantum subgroup) one can associate a modular invariant parti-
tion function, but on general grounds, one would not hope that this information alone could be
sufficient to reverse the machine. In any case, one could immediately object that the list of all
modular invariant partition functions of type K (an arbitrary Lie group, that we may assume
to be simple or semi-simple) is not known. Such an argument seems to indicate that a general
classification is out of reach. One could nevertheless point out the fact that classifying modular
invariant partition functions does not coincide exactly with the problem of classifying quantum
modules of a given Lie group K. For this later problem, it appears that the situation is not as
bad as it may seem, because of the important role played by those quantum modules that are
related to conformal embeddings (more about it later).

The fact that a given quantum module of type K is also a quantum subgroup (existence of
self-fusion) was often considered, in the past, as a curiosity. However, a detailed analysis of all
known quantum modules indicates that quantum subgroups play a prominent role in the sense
that all known cases, even if they do not possess self-fusion, can be somehow deduced from
the quantum subgroups themselves. One possibility is to start from a quantum subgroup of a
non simple Lie group K, and then perform reduction possibly followed by charge conjugation
or twisting. Another possibility arises as follows: one starts from a conformal embedding, and
obtains the associated modular invariant partition function. Then, solving modular splitting
equations leads to an Ocneanu graph, and by construction the span of left (or right) generators
build a graph with self-fusion that gives rise to a quantum subgroup, but in some cases a
quantum module appears in the Ocneanu graph (it can be associated with the same partition
function as the quantum subgroup we started with, or not). Warning: in the cases obtained by
(direct) conformal embedding, the Ocneanu graph contains the McKay graph, but this property
does not always hold for more general cases, for instance the Dodd cases of SU(2) have graphs
of quantum symmetries that can be identified with Dynkin diagrams of type A and therefore
do not contain components of type D.
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Although we have no proof that any quantum subgroup or quantum module of a given type
(say K) can be obtained in one of these ways (direct or “indirect” conformal embedding) we are
not aware of a single exception and it is tempting to conjecture that this is always so. Then,
classifying quantum subgroups of type K (and therefore classifying their associated modular
invariants) would be achieved first by analyzing all possible conformal embeddings of K̃ in
some larger G, with K̃ a semi-simple (maybe reductive) Lie group containing K as a simple
factor, then studying quantum symmetries and performing contraction or using conjugation and
twisting on the resulting component graphs.

3 General methods

The methods that we describe now, at least at the beginning of this section, can be used in full
generality as soon as we have a modular invariant partition function to start with. However, some
properties will only hold in those cases where we actually started from a conformal embedding.
To simplify the exposition, and because it is anyway in the spirit of this article, this is what we
suppose from now on.

Expressions for representatives of the generators s and t of the modular group, can be
obtained from the Kac-Peterson formula [18] for any Lie group and for any level. Using then
the Verlinde formula [29] (generalizing the SU(2) Hurwitz formula [17]) one can obtain matrix
representatives for all possible fusion matrices. Practically, the most efficient method is to
determine first the fusion matrices Nf associated with fundamental representations of K and
then to use known recursion formulae (representation theory of K) to determine the others. The
ring Ak(K) is therefore totally determined at this step.

We assume that we are given some chosen conformal embedding of K at level k (i.e., for a
root of unity q with qgK+k = −1), where gK is the dual Coxeter number, into a larger group
G at level 1 (i.e., for a root of unity q with qgG+1 = −1). From this conformal embedding,
one determines the modular invariant M, which is a matrix rA × rA, where rA is the number
of simple objects of Ak(K). One obtains immediately the dimensions rE = Tr(M) of E and
rO = Tr(M†M) of O. It is also useful to determine the number rW of independent toric
matrices, which is equal to the number of non-zero matrix elements ofM (this number may be
smaller than rO).

In order to proceed, there are two possible roads. One is to determine first the algebra O
of quantum symmetries and obtain the graph of E as a by-product (we are assuming self-fusion
since we started from a conformal embedding). This is a two step process: one has first to solve
an equation called “modular splitting equation” (see below) leading to a determination of all
toric matrices of type Wx0, of size rA × rA, and then to determine the fundamental generators
Of of O (of size rO×rO) by solving a set of intertwining equations (see later), there are two such
generators, called left and right, for each fundamental representation of K. The second possible
road is to bypass the determination of O by solving the so-called “chiral modular splitting
equation” (see below), this leads directly to the determination of E , this is technically shorter
that the first method, but it provides of course less information.

The modular splitting equation is a consequence of the module compatibility equation ex-
pressing O as an Ak bimodule : (m (nx p) q) = (mn)x (p q). It is obtained by writing this
equation in terms of fusion matrices and toric matrices, and then choosing x = 0. Explicitly,
for each choice of the pair (m,n) (i.e., r2A possibilities), this equation reads:

NmMN tr
n =

rO−1∑
x=0

(W0x)mnWx0 .

The left hand side involves only known fusion matrices and the modular invariant (M is identified
with W00), whereas the right hand side is interpreted as a decomposition of the left hand side on
a family (not always a base when rW < rO) of toric matrices Wx0 to be determined. Remember
that matrix elements of these toric matrices are non-negative integers. This equation is huge
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(the left hand side can be seen as an array with r4A components) but it can be solved – i.e., one
can find the Wx0 thank’s to a variety of techniques that will not be described here.

The quantum symmetry generators OfL,R, where f refers to the three fundamental repre-
sentations of K, are then obtained by solving the intertwining equations:

Nf Wx0N0
tr =

∑
y

(OfL)xyWy0 and N0Wx0Nf
tr =

∑
y

(OfR)xyWy0

These are linear equations and the left hand side is known from the previous study, but one
could a priori expect many solutions, however, taking into account the fact that matrix ele-
ments of Of are non-negative integers, and using several other properties (for instance the fact
that these generators should obey polynomial equations expressing the vanishing of irreducible
representations of level higher than k), one usually finds a unique solution, up to permutation
matrices expressing the existence of possible isomorphisms for the Ocneanu graph O, which is
actually a collection of graphs (two for each fundamental generator of K) that can, themselves,
be non-connected. Matrices OfL,R, obtained at the end of the last step, are the adjacency
matrices of O. These generators are “fundamental” in the sense that all other linear generators
of O appear when we decompose products of these elements. The graph O, which is the Cayley
graph of multiplication by these fundamental generators, has a left and a right part (they are
isomorphic), respectively associated with Of

L and Of
R, but each part usually decomposes as

a union of disconnected components, because of the existence of modules. Left and right chiral
subalgebras are defined as the particular modules containing the identity element of O. The
graph E itself is also a union of graphs, one for each f , and it describes multiplication within
these (isomorphic) chiral subalgebras; existence of self-fusion is, in our case3, automatic since E
is recovered as chiral subalgebra of O.

The “chiral method” that we summarize now is technically shorter that the first (the general
one) since it uses only the first line of the modular invariant matrix and involves only r2A
equations rather than r4A, but it also gives less information. For instance one cannot discover the
possible existence of quantum modules from the structure of the algebra of quantum symmetries,
since the later is not obtained from this simplified method. The chiral modular splitting equation
is a consequence of the module compatibility equation expressing E as anAk module: ((mn) a) =
(m (n (a))), where m and n are vertices of Ak and a is a vertex of E . This is immediately
translated in terms of a relation between annular and fusion matrices. A particular case reads∑
p Nmnp Fp00 =

∑
b Fn0b Fmb0. The final ingredient is that, for a quantum subgroup E that

can be identified with a chiral subalgebra of O, property that holds in the present case, (Fp)00
coincides4 with the first line (W00)(p0) = Mp0 of the modular matrix. The above equation,
whose left hand side, that we call Kmn =

∑
pNmnpMp0, is known, should then be solved

over non-negative integers, for all m,n, leading to a determination of the rectangular matrix
E0 = (E0)nb = (Fn)0b sometimes called essential intertwiner [4]. The main fact that allows
one to solve this set of equations is the following observation: choose a scalar product in the
vector space E for which the simple generators a are orthonormal and consider the vector
Kn =

∑
b (Fn)0b b ∈ E . Because of the fact that the chiral modular splitting equation should be

obeyed, the norm of this vector, equal to
∑
b |(Fn)0b|2 =

∑
b(Fn)0b(Fn)b0 can be read from the

expression of the known matrix K : ||Kn|| = Knn. Because coefficients are non negative integers
this information is usually sufficient to determine the different columns (“essential vectors”) of
the rectangular matrix E0. Practically, for each choice of m we calculate the vector Km and
determine its norm as indicated. Those of norm 1 already define columns of E0; in particular
one recovers (E0)p0 = (M)p0 as the first column. Then we consider vectors Km of increasing
norms 1, 2, 3 . . .. The process ultimately stops since the rank is finite. A complication, leading

3we already mentioned the fact that there are cases – not of the type studied in this section – where E cannot be
identified with a component of O.

4For modular invariants M obtained by conformal embedding one can identify the first column of E0 with the
first column of M but it is not so in other cases, although one can always recover the full invariant M as the first
toric matrix W00.
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to ambiguities in the decomposition of Kmn, stems from the fact that the family made of the
different columns of E0 is usually not free (the rank of the matrix K, with matrix elements Kmn
may be smaller than rE).

Once E0 is known, the next and final step is to solve a simplified version of the intertwin-
ing equations, namely to find Gf , the adjacency matrix Gf of the quantum graph E for each
fundamental generator f of K (so, there are as many adjacency matrices Gf as the rank of
K): it should be such that Nf E0 = E0Gf , where Nf is the fusion matrix of the fundamental
representation f . Of course, in order to solve these equations, one has to use the fact that all
matrix elements of the Gf ’s are non-negative integers. In the last section, we shall illustrate
these techniques (the chiral method) on a particular example. The reader interested in seeing
how the general machinery works (the general method using the full collection of modular split-
ting equations and the determination of the graph O) is referred for instance to the non trivial
examples studied in [7].

If the group K is semi-simple rather than simple, there is standard method, called contrac-
tion, described for instance in [8], that allows one to obtain a modular invariant for a simple
component of K, starting from an invariant of K. This is generally a two-step process: One
starts from a non-simple conformal embedding K = K1 ×K2 ⊂ G and a modular invariant of
G at level 1 (which is not necessarily diagonal), then uses the corresponding branching rules to
obtain a modular invariant for K; finally one performs the contraction with respect to a modular
invariant associated with a chosen component, say K1, of K (this invariant is not required to be
diagonal either) and one obtains an invariant for K2. This method, which leads to a quantum
module of K2, does not require the determination of the graph of the quantum subgroup of K
since it is enough to perform the contraction at the level of the invariant. Once we have the
invariant for K2, we may apply the above general techniques, but one should be warned that, in
such a case, some properties may be lost, for instance self-fusion (the obtained quantum module
may not be a quantum subgroup) and there is no guarantee, a priori, that the chiral modular
splitting method can be applied, since one does not a priori know if the equality between Mp0

and (E0)p0 holds.

4 Quantum subgroups of Lie groups from conformal em-
beddings

4.1 General

All the pairs (K ⊂ G) listed below, known as conformal pairs, were known more than twenty
years ago (see [1], [27], [19]), the novelty in our presentation is only a change of perspective since,
rather than listing conformal subalgebras of G, we are interested in quantum subgroups of K,
generically denoted Ek(K), k being the level. Therefore we fix K and look for “overgroups” G
such that the pair (K,G) is conformal. The fact that each such pair gives rise to a quantum
subgroup of K results from investigations carried out more recently (in the last ten years) but
we should stress than few of them have been worked out explicitly: only the SU(N) cases
with N = 2, 3, 4 are described (their associated graphs and algebras of quantum symmetries
are known) in the available literature [23, 4, 26, 24, 5, 14, 15, 6, 7]. We always assume that
G is simple. In the first part, we take K is simple, and in the next, K semi-simple, but non
simple. Warning: because they require a special treatment, we do not mention the possible
quantum subgroups arising from those conformal embeddings for which K would possess a U(1)
factor. Finally, we also assume that those conformal embeddings are maximal since non maximal
ones can be constructed by considering chains of inclusions of maximal embeddings, with the
constraint that only the last one may have a Dynkin index not equal to one. Not all conformal
embeddings K ⊂ G correspond to isotropy-irreducible pairs (see [30] for the list of such pairs)
and not all isotropy-irreducible homogeneous spaces (whether they are symmetric or not) define
conformal embeddings, however the two lists almost coincide, this is why we mention below this
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property. Notice that an embedding5 K ⊂ Spin(dim(K)), at a level equal to the dual Coxeter
number of K, is always conformal (it is called “adjoint”, for obvious reasons).

For unitary cases, the so called rank-duality property states that whenever there exists a
quantum subgroup of SU(N) at level k, there exists also a quantum subgroup of SU(k) at level
N . The quantum subgroups that we describe in the next subsection are obtained by ”direct”
conformal embeddings (ie not followed by contraction). On general grounds, for every such
example, one can also consider its rank-level dual. It may be that such a dual can itself be
constructed from a direct conformal embedding (so it would appear in the list given next).
When it is not so, the dual will result from from some non-simple conformal embedding (ie with
a non simple K included into some G) followed by a contraction. Let us illustrate this with a
simple example: at level 10 we have an exceptional E6 invariant of SU(2) from the inclusion of
SU(2) into Spin(5). Therefore we should have also an exceptional invariant of SU(10) at level
2; the corresponding quantum subgroup E2(SU(10)) does not appear in the lists given in the
next section, but it does exist, and its modular invariant can be obtained from the non-simple
conformal embedding SU(2) × SU(10) ⊂ SU(20), starting from the diagonal invariant of the
later at level 1 followed by a contraction on the E6 invariant of SU(2).

4.2 Quantum subgroups of simple Lie groups K

SU(N). When N 6= 2, 3, 4, 6, 8, 9 there are only three conformal embeddings, into SU(N(N −
1)/2), Spin(N2−1) and SU(N(N+1)/2); they are called antisymmetric, adjoint, and symmetric,
and they occur at respective levels k equal to N−2, N and N+2. The corresponding exceptional
quantum subgroups are therefore denoted EN−2(SU(N)), EN (SU(N)) and EN+2(SU(N)). For
small N , one of them may coincide with the smallest member of some D series.

WhenN = 2, only the standard case k = N+2 is non trivial (giving rise toD4 = D4(SU(2))),
but we have also very exceptional embeddings into Spin(5) (giving rise to E6 = E10(SU(2)))
and into G2 giving rise to E8 = E28(SU(2))).

When N = 3, only the standard cases k = N (giving rise to D3(SU(3))) and k = N + 2
(giving rise to E5(SU(3))) are non trivial, but we have also two very exceptional embeddings
into E6 (giving rise to E9(SU(3))) and into E7 (giving rise to E21(SU(3))).

When N = 4, the three standard cases do exist and give rise respectively to D2(SU(4)),
E4(SU(4)) and E6(SU(4)), but we have a very exceptional embedding into Spin(20) giving rise
to E8(SU(4)). The later is actually the smallest member of a series existing only for SO(2N)
groups (but we know that SU(4) ' SO(6)).

When N = 6, the three standard cases exist and give rise to E4(SU(6)), E6(SU(6)) and
E8(SU(6)), but there is a very exceptional embedding into Sp(10) giving rise to another excep-
tional quantum subgroup at level 6: E ′6(SU(6)).

When N = 8, the three standard cases exist and give rise to E6(SU(8)), E8(SU(8)) and
E10(SU(8)), but there are two very exceptional embedding: one into E7 giving rise to E1(SU(8)),
and one into SO(70) giving rise to another E ′10(SU(8)) at level 10.

When N = 9, on top of the three standard cases E7(SU(9)), E9(SU(9)) and E11(SU(9)), we
have a very exceptional quantum subgroup E1(SU(9)) coming from an embedding into E8.

In all cases, one can construct the associated rank-level dual quantum subgroups (see our
comment in the last section).

SO(2N). When 2N 6= 6, 10, 12, 16 there are only three conformal embeddings: into SU(2N),
for k = 2, into SO(2N2−N), for k = 2N−2 and into SO(2N2+N−1), for k = 2N+2. The case
N = 6 coincides with the case SU(4). For N = 10, 12, 16, on top of these standard exceptional
cases, we have non standard quantum subgroups E4(SO(10)) coming from an embedding into
SU(16), E8(SO(12)) coming from an embedding into Sp(16), and two other exceptional cases

5In what follows, we shall usually write SO(N) for the orthogonal group, with the understanding that, in most
cases, one should instead consider its universal cover Spin(N).
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for SO(16): E1(SO(16)) coming from an embedding into E8 and E16(SO(16)) coming from an
embedding into SO(128).

SO(2N+1). When 2N+1 6= 3, 5, 9 there are only three conformal embeddings: into SU(2N+
1) for k = 2, the adjoint embedding into SO(N(2N + 1)) at level k = 2N − 1, and a last one
into SO(N(2N + 3)) for k = 2N + 3. The particular case SO(3) coincides with SU(2). The
particular case SO(5) coincides with Sp(2) (see next entry), so here we have the three quantum
subgroups arising from conformal embeddings into SU(5), SO(10) and SO(14), but there is
also an embedding of SO(5) ⊂ E8 giving rise to an exceptional E12(SO(5)) which is the only
one in the whole list (with K simple) for which the space G/K is not isotropy irreducible.
Finally SO(9), on top of its three standard exceptional quantum subgroups, has a non standard
E2(SO(9)) coming from its embedding into SO(16).

Sp(N). When6 N 6= 2, 3, 4 we have only the adjoint embedding into SO(N(2N + 1)), at level
N+1, and also an embedding into SO(N(2N+1)) at level N−1. The case N = 2 coincides with
SO(5) so that we have conformal embeddings into SU(5), SO(10), SO(14) and E8 at respective
levels 2, 3, 7 and 12. When N = 3, we have also a non standard exceptional E5(Sp(3)) coming
from an embedding into Sp(7), and when N = 4 one obtains two other quantum subgroups :
E1(Sp(4)) from an embedding into E6, and E7(Sp(4)) from an embedding into SO(42).

E6. One finds E6(E6) coming from an embedding into SU(27), and E12(E6) coming from the
adjoint embedding into Spin(78).

E7. One finds E12(E7) coming from an embedding into Sp(28), and E18(E7) coming from the
adjoint embedding into Spin(133).

E8. We have only E30(E8) coming from the adjoint embedding into Spin(248).

F4. One finds E3(F4) coming from an embedding into Spin(26), and E9(F4) coming from the
adjoint embedding into Spin(52).

G2. One finds E3(G2) coming from an embedding into E6, and E4(G2) coming from the adjoint
embedding into Spin(14).

4.3 Quantum subgroups of semi-simple but non-simple Lie groups K

Each of the following conformal embeddings, of the type K ⊂ G, gives rise to a quantum
subgroup of the semi-simple (but not simple) group K. After reduction (diagonal or not) with
respect to some factor, one obtains a quantum module (not always a quantum subgroup) of
the remaining factor. Many of them can be obtained in more than one way. Like in [1] we
list separately those cases corresponding to isotropy irreducible pairs (K,G) but the general
analysis is the same.

Cases arising from isotropy irreducible conformal embeddings SU(2) × E7 ⊂
E8 (k = (1, 1)), SU(2) × F4 ⊂ E7 (k = (3, 1)), SU(2) × SU(6) ⊂ E6 (k = (1, 1)), SU(2) ×
SO(12) ⊂ E7, (k = (1, 1)), SU(2) × Sp(3) ⊂ F4 (k = (1, 1)), SU(2) × SU(2) ⊂ G2 (k = (1, 3)),
SU(2)×G2 ⊂ F4 (k = (8, 1)), SU(3)×G2 ⊂ E6 (k = (2, 1)), SU(3)× SU(6) ⊂ E7 (k = (1, 1)),
SU(3) × SU(3) ⊂ F4 (k = (1, 2)), SU(3) × SU(3) × SU(3) ⊂ E6 (k = (1, 1, 1)), SU(3) × E6 ⊂
E8 (k = (1, 1)), G2 × Sp(3) ⊂ E7 (k = (1, 1)), F4 × G2 ⊂ E8 (k = (1, 1)). We have also
the series SU(2) × SO(q) ⊂ Sp(q) (k = (q, 4)) and SU(p) × SU(q) ⊂ SU(pq) (k = (q, p),
and SO(p) × SO(q) ⊂ SO(p + q), with k = (1, 1), that also exists for p = 4 with SO(4) '
SU(2)× SU(2)).

6Warning : Sp(N) is sometimes denoted Sp(2N) in the literature.
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Non isotropy irreducible conformal embeddings SO(p) × SO(q) ⊂ SO(pq), k =
(q, p) (which also exists when p = 4, with SO(4) ' SU(2)× SU(2)), Sp(p)× Sp(q) ⊂ SO(4pq),
k = (q, p), SU(5) × SU(5) ⊂ E8, k = (1, 1), SU(2) ×G2 ⊂ E7, k = (7, 2), and finally SU(2) ×
SU(3) ⊂ E8, k = (16, 6) that we choose below as an example.

5 Example of a quantum subgroup of SU(2)× SU(3)

The homogenous space G/K. Take K = SU(2) × SU(3) ⊂ G = E8. This embedding
is maximal, but the space G/K is not symmetric and is not isotropy-irreducible either. Indeed,
reduction of the adjoint representation of G reads7 (the second bracket gives the decomposition
of the isotropy representation) : 248 7→ [(3× 1) + (1× 8)] + [7× 8 + 5× 10 + 5× 10 + 3× 27].

The Dynkin index of the representations. The index of the adjoint representation
of a Lie group coincides with its dual Coxeter number, so we obtain immediately IE8 = 30,
ISU(2) = 2, ISU(3) = 3. For the other representations, one has to use the following: The
Dynkin index Iλ of a representation λ of a Lie group K is obtained by the standard formula
Iλ = dim(λ)

2 dim(K) 〈λ, λ+2ρ〉 where ρ is the Weyl vector and where 〈 , 〉 is the fundamental quadratic
form (the inverse of the Cartan matrix). In the case of SU(2), ρ = {1} and the quadratic form

is (1/2). In the case of SU(3), ρ = {1, 1} and the quadratic form is 1
3

(
2 1
1 2

)
. One obtains in

this way the following indices for the representations appearing in the previous branching rule:

30 7→ [(2, 0) (0, 3)] , [ (28, 3) (10, 15/2) (10, 15/2) (2, 27)]

The Dynkin index of this embedding. The Dynkin index k of an embedding K ⊂ G
defined by a branching rule µ 7→

∑
j αjνj , αj being multiplicities, is given by

k =
∑
j

αj Iνj/Iµ

where Iµ, Iν . . . are quadratic Dynkin indices for the corresponding representations.

SU(2) : k1 =
1
30

[1× 2 + 8× 0 + 8× 28 + 10× 10 + 10× 10 + 27× 2] = 16

SU(3) : k2 =
1
30

[3× 0 + 1× 3 + 7× 3 + 5× 15/2 + 5× 15/2 + 3× 27] = 6

The Dynkin index of this embedding of SU(2)× SU(3) in E8 is therefore (k1, k2) = (16, 6).

This embedding is conformal. Use K1 = SU(2),K2 = SU(3),K = K1×K2, G = E8 to
calculate the following quantities (central charges): c1 = dim(K1)×k1

k1+gK1
= (3× 16)/(16 + 2) = 8/3,

c2 = dim(K2)×k2
k2+gK2

= (8×6)/(6+3) = 16/3, cK = c1 +c2 = 8. This embedding of SU(2) (level 16)
times SU(3) (level 6) times into E8 (level 1) is conformal since the following identity is satisfied:
cK = cG, indeed cG = dim(G)×1

1+gG
= (248× 1)/(1 + 30) = 248/31 = 8.

Fusion matrices of SU(2) × SU(3). The fusion matrices Np(SU(2)) at level 16 are of
dimension 17 × 17, since rA = k1 + 1 for the ring Ak1(SU(2)); they are obtained from the
recurrence relation for SU(2) representations (Tchebychef polynomials), using N0 = Id17 and
N1, the adjacency matrix for the graph A17 = A16(SU(2)) associated with the fundamental
weight {1}.

7irreducible representations are labeled by their dimensions since there is no ambiguity here.
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The fusion matrices Np(SU(3)) at level 6 are of dimension (7× 8)/2× (7× 8)/2 = 28× 28,
since rA = (k2 + 1)(k2 + 2)/2! for the ring Ak2(SU(3)); they are obtained from the recurrence
relation for SU(3) representations, using N0 = Id28 and N10, the adjacency matrix for the graph
A6(SU(3)) associated with the fundamental weight {10} and N01 = N10

tr associated with the
fundamental weight {01}.

The fusion matrices Np(SU(2) × SU(3)) at level k are therefore of dimension (17 × 28) ×
(17 × 28) = 476 × 476 and are obtained by taking tensor product of fusion matrices of SU(2)
and SU(3).

The quantum (or affine) branching rules The unique integrable representation, with
highest weight λ, at level 1 of E8 is the identity representation. This can be seen for example by
using the integrability condition 1 ≥ 〈λ, θ〉, where θ is the highest root of the chosen Lie algebra.
Alternatively, one may calculate the q-dimensions of the fundamental representations of E8 at
a root of unity q and keep only those that do not vanish at level 1, i.e., when q is specialized to
the value q = exp(iπ/κ), with κ = gG + 1 = 31.

To any irreducible representation λ (with non-zero q-trace) of G or of K, one associates a
conformal weight defined by hλ = 〈λ,λ+2ρ〉

2(k+g) where g is the dual Coxeter number of the chosen
Lie algebra, k is the level (for G, one chooses k = 1), ρ is the Weyl vector (of G, or of K).
One builds the list of irreducible objects λ of G at level 1 (here we have only one) and calculate
their conformal weights hλ; then, one builds the list of irreducible objects µ of K at level k and
calculate their conformal weights hµ. A necessary – but not sufficient – condition for an (affine
or quantum) branching from λ to µ is that hµ = hλ +m for some non-negative integer m. One
can establish in this way a list of candidates for the branching rules λ ↪→

∑
n cn µn, where cn

are positive integers to be determined; there exist several techniques (that we shall not describe
here) to determine the coefficients cn (some of them can be 0). The final result giving the
quantum branching rule for the reduction of the identity representation of E8 (with q31 = −1)
with respect to SU(2) × SU(3), respectively taken at roots of unity q1, q2 with q1

18 = −1,
q2

9 = −1, is as follows (we label the representations by their highest weights): (00000000) →
(s0 + s16) ⊗ (t00 + t60 + t06) + (s4 + s12) ⊗ (t30 + t33 + t03) + (s2 + s14 + 2s8) ⊗ (t22) + (s6 +
s10)⊗ (t11 + t41 + t14).

The modular invariant. We write the diagonal invariant of type G = E8 as a sum∑
e λeλe. Here it contains only one term: the square of λe = {00000000}. Its associated quantum

graph is denoted J = A1(E8) has only one vertex. Using the previous branching rule, we
replace, in this expression, each λe (here, only one) by the corresponding sum of representations
for K. The modular invariant M of type K that we are looking for is parametrized by Z =∑
e∈J (

∑
n cn(e)µn(e))(

∑
n cn(e)µn(e)). Using an obvious ordering, associated with increasing

levels on the set of representations, one obtains immediately the associated matrixM by writing
Z =

∑
m,n µmMmn µ̄n. Its dimension is 476× 476 but it is very sparse.

Solving the chiral modular splitting equations There are 22 non-zero entries on the
first line ofM at positions {1, 1}, {17, 1}, {13, 10}, {5, 10}, {1, 28}, {17, 28}, {11, 5}, {7, 5}, {11, 20},
{7, 20}, {15, 13}, {3, 13}, {9, 13}, {9, 13}, {13, 7}, {5, 7}, {13, 25}, {5, 25}, {11, 17}, {7, 17}, {1, 22}
and {17, 22}. We calculate the tensor K =

∑
p Np(SU(2)× SU(3))Mp0. It is a (sparse) array

(K)mn of dimension 476×476 with 33598 non-zero entries. Its rank, and therefore also the rank
of the family of essential vectors is 21. However, the number of vertices of the McKay graph of
this quantum subgroup E of SU(2) × SU(3) is rE = Tr(M) = 24 > 21, therefore we have to
obtain 476 annular matrices Fp of dimension 24 × 24. As we shall see later, the 24 vertices of
the graph decomposes into three particular subsets (24 = 10 + 7 + 7) with respect to SU(2) and
into two particular subsets (24 = 12 + 12) with respect to SU(3).

There are 120 vectors Kn of norm 1 but there are many repetitions in this family: only
16 of them are unequal (and independent), at positions 1, 2, 4, 11, 12, 14, 20, 21, 22, 29, 40, 48, 57,
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85, 141, 197. These independent vectors already give us the first 16 columns of the essential
matrix E0.

The family of vectors Kn of norm 2 (those that should be written as sums of 2 column vectors
of the essential matrix E0) contains 63 entries, and among them, only 9 are distinct, however
only those at positions 39, 96, 49, 104 and 225 will concern us. Indeed, a detailed analysis of
the chiral modular splitting equation for this family implies that we should add the following 8
vectors to complete our list : (K39 + K96)/3, ((2/3)K39 − (1/3)K96), (−(1/3)K39 + (2/3)K96),
(K49 + K104)/3, ((2/3)K49 − (1/3)K104), (−(1/3)K49 + (2/3)K104), and K225/2,K225/2, which
indeed appears twice in the list (components of K225 are all even integers). We build in this way
the rectangular matrix E0 with 476 lines, 24 columns, the rank of this family of column vectors
is 21, as expected. Despite of the appearance of non integer (and non positive) coefficients in the
above linear combinations, the matrix elements (columns of E0) are indeed non negative integers.
The last step is to check that all chiral modular splitting equations are satisfied. The obtained
rectangular matrix E0, sometimes called “the intertwiner”, describes the induction-restriction
functor between SU(2)×SU(3) at level (16, 6) and its quantum subgroup E (the non-zero entries
in its first column, which is also the first column of M, show the existence of non-commutative
analogs for the Klein polynomials that appear in the theory of binary polynomial subgroups of
SU(2)).

Solving the chiral intertwining equations These equations, determining the adja-
cency matrices G{1}, G{10} and G{01} = (G{01})

tr, of dimension 24× 24, of the graphs, are:

N{1},{00} . E0 = E0 . (G{1} ⊗ 1l28)
N{0},{10} . E0 = E0 . (1l17 ⊗G{10}), N{0},{01} . E0 = E0 . (1l17 ⊗G{01})

with N{λ},{λ1λ2} = N{λ} ⊗N{λ1λ2}

The solution (one has to take into account the fact that coefficients are non-negative integers,
of course) reads as follows:

G{1} =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

. . . . . . . . . 1 . . . . . . . . . . . . . .

. . . . . . . . . . . . . 1 1 . . . . . . . . .

. . . . . . . . . . . . . . 1 1 . . . . . . . .

. . . . . . . . . . . . . . . . . . 1 1 . . . .

. . . . . . . . . . 1 . . . . . . . . . . . . .

. . . . . . . . . . 1 . . . . . . . 1 . 1 . . .

. . . . . . . . . . . 1 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . 1 1 .

. . . . . . . . . . . 1 . . . . . . . . . 1 . 1
1 . . . . . . . . . . . 1 . . . . . . . . . . .
. . . . 1 1 . . . . . . . . . . . . . . . . . .
. . . . . . 1 . 1 . . . . . . . . . . . . . . .
. . . . . . . . . 1 . . . 1 . . . . . . . . . .
. 1 . . . . . . . . . . 1 . . . . . . . . . . .
. 1 1 . . . . . . . . . . . . . . . . . . . . .
. . 1 . . . . . . . . . . . . . 1 1 . . . . . .
. . . . . . . . . . . . . . . 1 . . . . . . . .
. . . . . . . . . . . . . . . 1 . . . . . . . .
. . . 1 . 1 . . . . . . . . . . . . . . . . . .
. . . 1 . . . . . . . . . . . . . . . . . . . .
. . . . . 1 . . . . . . . . . . . . . . . . . .
. . . . . . . 1 1 . . . . . . . . . . . . . . .
. . . . . . . 1 . . . . . . . . . . . . . . . .
. . . . . . . . 1 . . . . . . . . . . . . . . .

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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G{10} =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

. . . . 1 . . . . . . . . . . . . . . . . . . .

. . . 1 . 1 . . . . . . . . . . . . . . . . . .

. . . 1 1 1 . . . . . . . . . . . . . . . . . .

. . . . . . 1 . 1 . . . . . . . . . . . . . . .

. . . . . . 1 1 . . . . . . . . . . . . . . . .

. . . . . . . 1 2 . . . . . . . . . . . . . . .
1 . 1 . . . . . . . . . . . . . . . . . . . . .
. 1 1 . . . . . . . . . . . . . . . . . . . . .
. 1 1 . . . . . . . . . 1 . . . 1 1 . . . . . .
. . . . . . . . . . 1 . . . . . . . . . . . . .
. . . . . . . . . . . 1 . . . . . . . . . 1 1 .
. . . . . . . . . 1 . . . . 1 1 . . . . . . . .
. . . . . 1 . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1 . 1 . . .
. . . . . . . . . . 1 . . . . . . . 1 1 . . . .
. . . . . . . . . . 1 . . . . . . . 1 . 1 . . .
. . . . . 1 . . . . . . . . . . . . . . . . . .
. . . . . 1 . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 1 . . . . . . . . . 1 . 1
. . . . . . . . . . . 1 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 1 . 1
. . . . . . . . . . . . . 1 1 1 . . . . . . . .
. . . . . . . . . . . . . . 1 . . . . . . . . .
. . . . . . . . . . . . . 1 . 1 . . . . . . . .

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

and G01 = G10
tr.

They are adjacency matrices for the following graphs : see figs 1 and 2. The first is the
union of three component graphs of SU(2) type, namely the Dynkin diagrams D10 and E7

(twice), the other is the union of two components of SU(3) type, namely D6 and its conjugated
graph D6(SU(3))c. The graph of G01 is obtained from G10 by reversing the arrows. Since the
underlying sets of vertices are the same for G1 and G10 (they denote irreducible objects for
this quantum subgroup of SU(2) × SU(3)), it is better to draw them together, as on figure
3. It is worth pointing out the fact that this later graph, with 24 vertices, has self-fusion (it
represents a quantum subgroup of SU(2)×SU(3) !) whereas, it is not so for all its components,
taken alone: D10 = D16(SU(2)) and D6(SU(3)) have self-fusion, but E7 = E16(SU(2)) and
D6(SU(3))c don’t.

Before ending this section, we should stress the fact that what we did here was to solve the
chiral modular splitting equations (only) for this subgroups of SU(2) × SU(3). A full analysis
of this example (that would determine toric matrices and the Ocneanu graph) would require to
solve the full set of equations, not only the chiral part.

Using the conformal embedding of SU(2)×SU(3) in E8, followed by contraction with respect
to SU(3), subtraction of theD10 invariant of SU(2) and division by 2, is a standard way to obtain
the E7 invariant of SU(2), see for instance [8]. This is therefore by no means a new result. The
point that we want to make here is that the fact that E7 and, for that matters, D6(SU(3))c,
do not have nice properties (no self-fusion, lack of “flatness” in subfactor terminology) is a
result of the contraction process: if one does not perform contraction with respect to any of
the two simple factors but just determine the McKay graph of the whole thing by using some
of the general techniques sketched in previous pages, one obtains a “nice” quantum subgroup
of SU(2) × SU(3). Instead of trying to classify and describe all quantum modules (and their
modular invariant partition function) for a given simple Lie group K, it may be easier, and
possibly more interesting, to consider only those that indeed define quantum subgroups (self-
fusion), while at the same time relaxing the simplicity hypothesis in the choice of K.
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Figure 1: The graph of G1. One recognizes the Dynkin diagrams D10, and E7, that appears twice. They
describe the quantum subgroup D16(SU(2)) and two copies of the quantum module E16(SU(2)).

Figure 2: The graph of G10. One recognizes the graphs of the quantum subgroup D6(SU(3)) (displayed on
top, with the origin as its rightmost vertex), and its conjugate, the quantum module D6(SU(3))c.
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Figure 3: The graph of a quantum subgroup of SU(2)×SU(3). The two subgraphs of type E7 = E16(SU(2))
appear with dotted lines (brown), the subgraph D10 = D16(SU(2)) with a plain line (red), the subgraph
D6(SU(3)) is oriented and plain (magenta), the subgraph D6

c(SU(3)) is oriented and dotted (blue). One of
the edges of the later is double, see the second component of fig. 2. The origin is located on the rightmost
vertex.
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