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ABBREVIATIONS 

 

TDU: Tongue Display Unit 

CoP: center of foot pressure 

CNS: central nervous system 

DZ: Dead Zone 

ANOVA: analysis of variance 

SD: standard deviation 
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ABSTRACT 

We investigated the effects of a plantar pressure-based tongue-placed electrotactile 

biofeedback on postural control during quiet standing under normal and altered vestibular and 

neck proprioceptive conditions. To achieve this goal, fourteen young healthy adults were 

asked to stand upright as immobile as possible with their eyes closed in two Neutral and 

Extended head postures and two conditions of No-biofeedback and Biofeedback. The 

underlying principle of the biofeedback consisted of providing supplementary information 

related to foot sole pressure distribution through a wireless embedded tongue-placed tactile 

output device. Centre of foot pressure (CoP) displacements were recorded using a plantar 

pressure data acquisition system. Results showed that (1) the Extended head posture yielded 

increased CoP displacements relative to the Neutral head posture in the No-biofeedback 

condition, with a greater effect along the anteroposterior than mediolateral axis, whereas (2) 

no significant difference between the two Neutral and Extended head postures was observed 

in the Biofeedback condition. The present findings suggested that the availability of the 

plantar pressure-based tongue-placed electrotactile biofeedback allowed the subjects to 

suppress the destabilizing effect induced by the disruption of vestibular and neck 

proprioceptive inputs associated with the head extended posture. These results are discussed 

according to the sensory re-weighting hypothesis, whereby the central nervous system would 

dynamically and selectively adjust the relative contributions of sensory inputs (i.e., the 

sensory weights) to maintain upright stance depending on the sensory contexts and the 

neuromuscular constraints acting on the subject. 

 

Key-words: Balance; Biofeedback; Tongue Display Unit; Head extension; Centre of foot 

pressure; Sensory re-weighting.
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INTRODUCTION 

 Biofeedback systems for balance control consist in supplying individuals with 

additional artificial information about body orientation and motion to supplement the natural 

visual, somatosensory and vestibular sensory cues. Considering the important contribution of 

plantar cutaneous information in the regulation of postural sway during quiet standing (e.g. 

Kavounoudias et al., 1998; Meyer et al., 2004; Vuillerme and Pinsault, 2007), we recently 

developed a biofeedback system whose underlying principle consists in supplying the user 

with supplementary sensory information related to foot sole pressure distribution through a 

tongue-placed tactile output device generating electrotactile stimulation of the tongue 

(Vuillerme et al., 2007b,c,d,e, 2008). There were several reasons to use the tongue as a 

substrate for electrotactile stimulation (Bach-y-Rita et al., 1998, 2003). Because of its dense 

mechanoreceptive innervations (Trulsson and Essick, 1997) and large somatosensory cortical 

representation (Picard and Olivier, 1983), the tongue can convey higher-resolution 

information than the skin can (Sampaio et al., 2001; van Boven and Johnson, 1994). In 

addition, due to the excellent conductivity offered by the saliva, electrotactile stimulation of 

the tongue can be applied with much lower voltage and current than is required for the skin 

(Bach-y-Rita et al., 1998). Finally, the tongue is in the protected environment of the mouth 

and is normally out of sight and out of the way, which could make a tongue-placed tactile 

display aesthetically acceptable. 

While the effectiveness of this biofeedback in improving postural control during quiet 

standing has recently been demonstrated in young healthy subjects, under reliable sensory 

conditions and normal neuromuscular state (Vuillerme et al., 2007b,c,d,e, 2008), whether the 

central nervous system (CNS) is able to integrate this biofeedback when subjected to 

challenging postural conditions is yet to be established. In the present experiment, we 

assessed the postural effects of a plantar pressure-based tongue-placed electrotactile 
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biofeedback under normal and altered conditions of vestibular and neck proprioceptive 

sensory information.  

It was hypothesised that:  

(1) the alteration of vestibular and neck proprioceptive information would increase 

centre of foot pressure (CoP) displacements, 

(2) the availability of plantar pressure-based tongue-placed electrotactile biofeedback 

would decrease CoP displacements, and  

(3) the availability of plantar pressure-based tongue-placed electrotactile biofeedback 

would limit the destabilizing effect induced by the alteration of vestibular and neck 

proprioceptive information. 

 

EXPERIMENTAL PROCEDURES 

Subjects 

 Fourteen young healthy university students (age: 25.0 ± 3.8 years; body weight: 69.9 ± 

11.8 kg; height: 175.0 ± 10.5 cm; mean ± SD) participated in the experiment. Subjects had to 

be healthy without a history of neck pain, neurological or vestibular impairment, injury or 

operation in the cervical spine. They gave their informed consent to the experimental 

procedure as required by the Helsinki declaration (1964) and the local Ethics Committee.  

 

Task and procedure 

Eyes closed, subjects stood barefoot, feet together, their hands hanging at the sides, on 

a plantar pressure data acquisition system (Force Sensitive Applications (FSA) Orthotest Mat, 

Vista Medical Ltd.). Subject’s task was to sway as little as possible in two Neutral and 

Extended head postures. The head extended posture is recognised to induce (1) a modification 

in the orientation of the vestibular organs that may place the utricular otoliths well beyond 
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their working range and render balance related vestibular information unreliable to the CNS 

(e.g., Brandt et al., 1981, 1986; Jackson and Epstein, 1991; Straube et al., 1992) and (2) 

abnormal sensory inputs arising from neck proprioceptors (e.g. Jackson and Epstein, 1991; 

Karlberg, 1995; Ryan and Cope, 1955), that represent a challenge for the postural control 

system. In the Neutral head posture, subjects were asked to keep their head in a straight-ahead 

direction. In the Extended head posture, they were asked to tilt their head backward for at 

least 45° in the sagittal plane as previously done by other authors (e.g., Anand et al., 2002, 

2003; Brandt et al., 1981; Buckley et al., 2005; Jackson and Epstein, 1991; Simoneau et al., 

1992; Vuillerme and Rougier, 2005). The experimenter always stood by the subjects to 

monitor their posture and their head position throughout the trial. Subjects were asked to 

adopt the required posture and to stabilise their body sway for a 40 s period. These two 

postures were executed in two conditions of No-biofeedback and Biofeedback. Regardless of 

the experimental condition, the first 10 s of each trial were not considered for further 

analyses. In the Biofeedback condition, this 10 s period was used to scale the threshold of a 

plantar pressure-based, tongue-placed tactile biofeedback system with which subjects were 

asked to perform the postural task. This biofeedback system comprises two major 

components: (1) the sensory unit and (2) the tongue-placed tactile output unit. The plantar 

pressure data acquisition system (Force Sensitive Applications (FSA) Orthotest Mat, Vista 

Medical Ltd.) was used as sensory unit. This pressure mat (sensing area : 350 × 350 mm = 

122500 mm²), contains a 32 × 32 grid of piezo resistive sensors (sensor number : 1024; 

sensors dimensions : 3.94 × 3.94 mm ; space between sensors : 2.7 mm ; 0.84 sensor/cm²), 

allowing the magnitude of pressure exerted on each left and right foot sole at each sensor 

location to be transduced into the calculation of the positions of the resultant CoP (sampling 

frequency : 10 Hz). Resultant CoP data were then fed back in real time to a tongue-placed 

tactile output device (temporal latency : 300 ms). This so-called Tongue Display Unit (TDU), 
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initially introduced by Bach-y-Rita et al. (1998, 2003), comprises a 2D array (15 × 15 mm) of 

36 electrotactile electrodes each with a 1.4 mm diameter, arranged in a 6 × 6 matrix 

positioned in close contact with the anterior-superior surface of the tongue. While this matrix 

of electrodes was originally connected to an external electronic device via a flat cable passing 

out of the mouth in a previous version (e.g. Vuillerme et al., 2007a,b,c,e), we recently 

developed a wireless radio-controlled version of this tongue-placed tactile output device 

(Vuillerme et al., 2007d, 2008) including microelectronics, antenna and battery, which can be 

worn inside the mouth like an orthodontic retainer (Figure 1). In the Biofeedback condition, 

subjects were asked to actively and carefully hold their tongue against the matrix of 

electrodes. 

------------------------------------ 

Please insert Figure 1 about here 

------------------------------------ 

The underlying principle of this biofeedback system was to supply the user with 

supplementary information about the position of the CoP relative to a predetermined 

adjustable “dead zone” (DZ) through the TDU (Vuillerme et al., 2007b,c,d,e) (Figure 2).  

------------------------------------ 

Please insert Figure 2 about here 

------------------------------------ 

As mentioned above, in the present experiment, anteroposterior and mediolateral 

bounds of the DZ were set as the standard deviation of subject’s CoP displacements recorded 

for 10 s preceding each experimental trial.  

To avoid an overload of sensory information presented to the user, a simple and 

intuitive coding scheme for the TDU, consisting in a “threshold-alarm” type of feedback 

rather than a continuous feedback about ongoing position of the CoP, was then used:  
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(1) when the position of the CoP was determined to be within the DZ, no electrical 

activation of any of the electrodes of the matrix was provided; 

(2) for the entire time the position of the CoP was determined to be outside the DZ, - 

i.e., when it was most needed, electrical activation of either the anterior, posterior, right or left 

zone of the matrix (1 × 4 electrodes) (i.e. electrotactile stimulation of front, rear, right of left 

portion of the tongue) was provided depending on whether the actual position of the CoP was 

in a too anterior, posterior, right or left position relative to the DZ, respectively. Interestingly, 

this type of sensory coding scheme for the TDU allows the activation of distinct and exclusive 

electrodes for a given position of the CoP with respect to the DZ (Figure 2). 

Finally, in the present experiment, the intensity of the electrical stimulating current 

was adjusted for each subject, and for each of the front, rear, right and left portions of the 

tongue. 

Several practice runs were performed prior to the test to ensure that subjects had 

mastered the relationship between the position of the CoP relative to the DZ and lingual 

stimulations.  

Five trials for each condition were recorded. The order of presentation of the two 

Neutral and Extended head postures and the No-biofeedback and Biofeedback conditions was 

counterbalanced. Subjects were not given feedback about their postural performance. 

 

Analysis 

Two dependent variables were used to describe subject’s postural behaviour: (1) the 

standard deviation and (2) the range extracted from of the CoP displacements along the 

mediolateral and anteroposterior axes averaged for the last 30 s period of each trial. The 

calculation of the standard deviation of the CoP displacements provides a measure of spatial 

variability of CoP around the mean position. The range of the CoP displacements indicates 
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the difference between the maximum and minimum values of the CoP. A large value in the 

range of the CoP displacements indicates that the resultant forces are displaced towards the 

balance stability boundaries of the participant and could challenge their postural stability (e.g. 

Patton et al. 2000). 

Two Head postures (Neutral vs. Extended) × 2 Biofeedback (No-biofeedback vs. 

Biofeedback) × 2 Axes (Mediolateral vs. Anteroposterior) analyses of variances (ANOVAs) 

with repeated measures on all factors were applied to the data. Post-hoc analyses (Newman-

Keuls) were performed whenever necessary. Level of significance was set at 0.05. 

 

RESULTS 

Analysis of the standard deviation of the CoP displacements showed main effects of 

Head posture (F(1,13) = 13.47, P < 0.01) and Biofeedback (F(1,13) = 11.22, P < 0.01), two 

significant two way-interactions of Head posture × Biofeedback (F(1,13) = 8.38, P < 0.05) 

and Head posture × Axis (F(1,13) = 6.87, P < 0.05), and a significant three-way interaction of 

Head posture × Biofeedback × Axis (F(1,13) = 10.73, P < 0.01). As illustrated in Figure 3, the 

decomposition of the three-way interaction into its simple main effects indicated that (1) the 

Extended head posture yielded larger standard deviation of the CoP displacements relative to 

the Neutral head position in the No-biofeedback condition (Ps < 0.01), (2) this destabilizing 

effect was more accentuated along the anteroposterior (P < 0.001)than mediolateral axis (P < 

0.01), whereas (3) no significant difference between the two Neutral and Extended head 

postures was observed in the Biofeedback condition (Ps > 0.05).  

------------------------------------ 

Please insert Figure 3 about here 

------------------------------------ 
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Results obtained for the range of the CoP displacements were consistent with those 

obtained for the standard deviation of the CoP displacements. The ANOVA showed main 

effects of Head posture (F(1,13) = 16.25, P < 0.01) and Biofeedback (F(1,13) = 11.60, P < 

0.01), two significant two way-interactions of Head posture × Biofeedback (F(1,13) = 8.43, P 

< 0.05) and Head posture × Axis (F(1,13) = 5.32, P < 0.05), and a significant three-way 

interaction of Head posture × Biofeedback × Axis (F(1,13) = 9.92, P < 0.01). As illustrated in 

Figure 4, the decomposition of the three-way interaction into its simple main effects indicated 

that (1) the Extended head posture yielded larger range of the CoP displacements relative to 

the Neutral head posture in the No-biofeedback condition (Ps < 0.01), (2) this destabilizing 

effect was more accentuated along the anteroposterior (P < 0.001) than mediolateral axis (P < 

0.001), whereas (3) no significant difference between the two Neutral and Extended head 

postures was observed in the Biofeedback condition (Ps > 0.05). 

------------------------------------ 

Please insert Figure 4 about here 

------------------------------------ 

 

DISCUSSION 

We investigated the effects of a plantar pressure-based tongue-placed electrotactile 

biofeedback on postural control during quiet standing under normal and altered vestibular and 

neck proprioceptive conditions.  

To achieve this goal, fourteen young healthy adults were asked to stand upright as 

immobile as possible with their eyes closed in two Neutral and Extended head postures and 

two conditions of No-biofeedback and Biofeedback. The underlying principle of the 

biofeedback consisted of providing supplementary information related to foot sole pressure 



Vuillerme et al., Neuroscience 11 

distribution through a wireless embedded tongue-placed tactile output device (Figure 1 and 

Figure 2).  

On the one hand, these results showed that the extended head posture deteriorated 

postural control, with a greater destabilizing effect along the anteroposterior than mediolateral 

axis, as indicated by the significant interactions of Head posture × Axis observed for the 

standard deviation (Figure 3) and range of the CoP displacements (Figure 4). These results 

were expected (hypothesis 1), in accordance with previous observations (e.g., Anand et al., 

2002, 2003; Brandt et al., 1981, 1986; Buckley et al., 2005; Jackson and Epstein, 1991; 

Kogler et al., 2000; Norré, 1995; Paloski et al., 2006; Simoneau et al., 1992; Straube et al., 

1992; Vuillerme and Rougier, 2005).  

 On the other hand, the availability of the biofeedback improved postural control, as 

indicated by the decreased standard deviation (Figure 3) and range of the CoP displacements 

(Figure 4) observed in the Biofeedback relative to the No-biofeedback condition. This result 

also was expected (hypothesis 2). It confirms the ability of the CNS to efficiently integrate an 

artificial plantar pressure information delivered through electrotactile stimulation of the 

tongue to improve postural control during quiet standing (Vuillerme et al., 2007b,c,d,e, 2008).  

Finally, the availability of the biofeedback allowed the subjects to suppress the 

destabilizing effect induced by the extension of the head, as indicated by the significant 

interactions Head posture × Biofeedback observed for the standard deviation (Figure 3) and 

the range the CoP displacements (Figure 4). This result confirms our hypothesis 3. 

Furthermore, as indicated by the significant three-way interactions of Head posture × 

Biofeedback × Axis observed for the standard deviation (Figure 3) and the range of the CoP 

displacements (Figure 4), the stabilizing effect of the Biofeedback was more pronounced 

along the anteroposterior than mediolateral axis. Together with the greater destabilizing effect 

of the extended head posture observed along the anteroposterior than the mediolateral axis, 
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these results suggest that the effectiveness of the biofeedback in reducing the CoP 

displacements depends on the amount of postural sway observed when the biofeedback was 

not available. Interestingly, this finding is consistent with a recent study, reporting that the 

degree of postural stabilization induced by the use of a plantar pressure-based tongue-placed 

electrotactile depends on subject’s balance control capabilities, the biofeedback yielding a 

greater stabilizing effect in subjects exhibiting the greatest CoP displacements when standing 

in the No-biofeedback condition (Vuillerme et al., 2007c). At this point, another possible 

reason leading to these results could be that the use of the tongue-placed electro-tactile 

biofeedback may have lead subjects to pay more attention to the regulation of their CoP 

displacements. However, in a recent study, in which were instructed to deliberately focus their 

attention on their body sway and to increase their active intervention into postural control, 

postural oscillations were not reduced (Vuillerme and Nafati, 2007). We thus believe that the 

postural improvement observed in the Biofeedback condition could not be attributed to the 

subjects’ paying more attention to the regulation of their CoP displacements, but rather to 

their ability to effectively integrate the artificial plantar pressure information delivered 

through electro-tactile stimulation of the tongue. 

On the whole, the present results could be attributable to sensory re-weighting 

hypothesis (e.g. Horak and MacPherson, 1996; Peterka, 2002; Peterka and Loughlin, 2004; 

Vuillerme et al., 2001, 2002, 2005, 2006a; Vuillerme and Pinsault, 2007), whereby the CNS 

dynamically and selectively adjusts the relative contributions of sensory inputs (i.e., the 

sensory weights) to maintain upright stance depending on the sensory contexts and the 

neuromuscular constraints acting on the subject. An example of this is the adaptive 

capabilities of the postural control system to cope with a degradation of proprioceptive signals 

from the ankle consecutive to muscle fatigue. In condition of ankle muscle fatigue, indeed, 

the sensory integration process has been shown to (1) decrease the contribution of 
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proprioceptive cues from the ankle, degraded by the fatiguing exercise (Vuillerme et al., 

2007a), and (2) increase the contribution of vision (Ledin et al., 2004; Vuillerme et al., 

2006a), cutaneous inputs from the foot and shank (Vuillerme and Demetz, 2007) and haptic 

cues from the finger (Vuillerme and Nougier, 2003), providing reliable and accurate sensory 

information for controlling posture. Following this train of thought, the decreased CoP 

displacements observed in the Extended head posture when the Biofeedback was in use 

relative to when it was not suggests an increased reliance on sensory information related to 

the plantar pressure, in condition of altered vestibular and neck proprioceptive information. 

Interestingly, this interpretation is consistent with the increased postural responses to the 

alteration of somatosensory information from the foot and ankle, either induced by requiring 

healthy subjects to stand on a compliant (Anand et al., 2002, 2003; Buckley et al., 2005) or on 

a sway-referenced (Kogler et al., 2000; Paloski et al., 2006) support surface, or by applying 

vibratory proprioceptive stimulation to the calf muscles (Ledin et al., 2003), previously 

observed in an extended relative to a neutral head posture. 

Finally, in addition to its relevance on the field of neuroscience, the present findings 

also could have implications in clinical and rehabilitative areas for restoring balance control 

in individuals with impaired vestibular and/or neck proprioceptive capacity. Investigations 

involving patients with chronic whiplash injury and with vestibular loss are planned to 

address this issue. 
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Figure captions 

 

Figure 1. Photograph of the wireless radio-controlled tongue-placed tactile output device 

used in the present experiment. It consists in a 2D electrodes array arranged in a 6 × 6 matrix 

glued onto the inferior part of the orthodontic retainer which also includes microelectronics, 

antenna and battery.  

 

Figure 2. Principle of the plantar pressure-based tongue-placed electrotactile biofeedback for 

balance.  

The central black rectangle located on the base of support and the thin black trace 

inside represent the predetermined dead zone (DZ) and the trajectory of the CoP (central 

panel).  

The four grey squares and the black dots inside represent the 6 × 6 matrix of 

electrotactile electrodes of the wireless radio-controlled version of the Tongue Display Unit 

(TDU) maintained in contact with the anterior-superior surface of the tongue, and the 

activated electrodes, respectively.  

There were 5 possible stimulation patterns of the TDU: 

 (1) no electrical activation of any of the electrodes of the matrix was provided when 

the CoP position was determined to be within the DZ (central panel).  

 (2) electrical activation of either the anterior, posterior, right or left zone of the matrix 

(1 × 4 electrodes) were provided, when the CoP positions were determined to be outside the 

DZ, located towards the front, rear, left and right of the DZ, respectively (four peripheral 

panels). These 4 stimulation patterns correspond to the stimulations of the front, rear, left and 

right portions of the tongue dorsum, respectively.” 
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Figure 3. Mean and standard deviation of the standard deviation of the CoP displacements 

along the mediolateral and anteroposterior directions obtained in the two Neutral and 

Extended head postures and the two conditions of No-biofeedback and Biofeedback. The two 

conditions of No-biofeedback and Biofeedback are presented with different symbols: No-

biofeedback (white circle) and Biofeedback (black square).  

 

Figure 4. Mean and standard deviation of the range of the CoP displacements along the 

mediolateral and anteroposterior directions obtained in the two Neutral and Extended head 

postures and the two conditions of No-biofeedback and Biofeedback. The two conditions of 

No-biofeedback and Biofeedback are presented with different symbols: No-biofeedback 

(white circle) and Biofeedback (black square).  
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Figure 1 
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Figure 2 
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Figure 4 
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