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Semigroup inequalities, stochastic domination,
Hardy’s inequality, and strong ergodicity

Carl Graham∗

June 6, 2008

Abstract

For the classicalLp-spaces of signed measures onN, we devise a framework in
which bounds for a sub-Markovian semigroup of interest can be obtained, up to
a constant factor, from bounds for another tractable semigroup that dominates
stochastically the first one. The main tools are the Hardy inequality, the defini-
tion of related auxiliaryLp spaces suited to take advantage of the domination, and
the proof that the norms are equivalent to the classical onesif the reference mea-
sure is quasi-geometrically decreasing. We illustrate theresults using birth-death
and single-birth processes.
KEYWORDS: semigroup inequalities, stochastic order, Hardy’s inequality, strong
ergodicity, exponential stability, spectral gap, birth-death and single-birth pro-
cesses
MSC 2000: 37A25, 37A30, 60E15, 47A30, 47A63

1 Introduction

The long-time behavior of sub-Markovian semigroups of signed measures is often stud-
ied in the classicalLp-spaces of the densities with respect to a reference measure. In
this setting, we establish a framework in which bounds for a semigroup of interest can
be deduced from bounds obtained for another semigroup thatstochastically dominates
the first semigroup.
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Usually, semigroups are given through their generators, and the semigroup of in-
terest arises in the study of a particular problem and lacks structure and nice features.
The dominating semigroup and reference measure can then be chosen adequately, for
instance so as to satisfy exponential stability bounds. Powerful tools to prove such
bounds are,e.g., the Dirichlet form when the reference measure is invariant, or the spec-
tral decomposition when the reference measure is self-adjoint, together with spectral
gap estimates.

Such results on bound transfers are mainly found in the literature in cases when the
semigroup of interest isterm-wise dominatedby another one [1, 9, 14, 17, 23]. This
very strong assumption unsurprisingly yields results, butis seldom true, in particular it
cannot be satisfied between different semigroups of probability measures.

Hereafter in this paper,dominationbetween measures or semigroups refers tostochas-
tic domination. This is a natural probabilistic notion, easily expressed also in the dual
functional space perspective. It is powerfully related tocouplingmethods, and sample-
path intuition may help find a convenient dominating semigroup for a complicated semi-
group of interest.

We introduce a new family of auxiliaryLp spaces related to stochastic domination
and the Hardy inequality. Under the mild assumption that thereference measure is
quasi-geometrically decreasing (has exponential tails),we show that the norms of the
classical and auxiliaryLp spaces are equivalent forp > 1. This enables the transfer
of bounds from the dominating semigroup to the dominated one, up to a controlled
constant factor.

Such ideas initially appeared in Graham [10], and yielded global exponential stabil-
ity results, first for sub-Markovian semigroups, then for a non-linear dynamical system
by adequate comparisons with the former. Even though the main sub-Markovian semi-
group of interest was self-adjoint in a Hilbert space with very strong norm, the goals
of [10] required bounds for weaker scalar products, applicable to much more general
initial conditions.

We have a wider scope in the present paper, and the novel use ofthe Hardy inequality
yields clearer arguments and nicer auxiliaryLp spaces. We consider sub-Markovian
semigroups of bounded signed measures onN = {0,1, . . .}, and expect these techniques
have wider applicability. Such semigroups may be rendered Markovian by adjoining a
cemetery or absorbing state toN, assumed to be the least state and denoted by−1.

The signed measure spaces are in duality with functional spaces, and the results
apply to semigroups in both kinds of spaces. The methods and results can be readily
extended to time-dependent “generators”, or flows of lineartime-inhomogeneous equa-
tions instead of semigroups, as long as the controls we use can be taken uniformly in
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time.
We illustrate the results with birth-death processes and single-birth processes. For

the former, various spectral gap criteria and bounds exist,as in Callaert [3, 4], van
Doorn [6, 7, 8] and Chen [5], We discuss a striking result of Liggett [16, Cor. 3.8],
[5, Theorem 5.5 p. 93], showing that the assumption on quasi-geometrical decrease is
nearly optimal.

Stochastic monotonicity properties of birth-death processes were used in van Doorn’s
monograph [6] for different purposes than ours.

2 The framework and main result

2.1 Signed measures and sub-Markovian semigroups

For µ in the spaceM = M (N) of signed measures, we denote by|µ| its total variation
measure and byµ+ andµ− its positive and negative parts, so that|µ| = µ+ + µ− and
µ = µ+−µ−, and the duality bracket betweenM and the functional spaceL∞ = L∞(N)

by

〈µ, f 〉 =
∫

f dµ = ∑
k∈N

µ(k) f (k) , µ ∈ M , f ∈ L∞ ,

for which dual spaces, adjoints, etc., will be denoted classically using asterisks. The
spaceM is Banach for the strong dual norm, which is the total variation norm

‖µ‖TV = |µ|(N) = ∑
k∈N

|µ(k)| = sup
‖ f ‖∞≤1

〈µ, f 〉 , µ ∈ M .

We consider sub-Markovian semigroups: positivity-preserving contraction semi-
groups(Tt)t≥0 on L∞, satisfyingTt+s = TtTs and‖Tt f‖∞ ≤ ‖ f‖∞ andTt f ≥ 0 for all
t,s≥ 0 and f ≥ 0 in L∞. The infinitesimal generators of such semigroups act on dense
subspaces. The adjoint semigroup(T∗

t )t≥0 given by〈T∗
t µ, f 〉 = 〈µ,Tt f 〉 for µ in M

and f in L∞ is also positivity-preserving and contractive onM .
The decomposition of signed measures in their positive and negative parts allows to

restrict our attention to probability measures (and even Dirac masses) as initial data
for the adjoint sub-Markovian semigroups, which then evolve in the subset of sub-
probability measures. Markovian semigroups preserve the set of probability measures.
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2.2 Some classic Banach spaces

For α > 0 in M and conjugate exponents 1< p,q < ∞ (satisfying1
p + 1

q = 1) we have

|〈µ, f 〉| =
∣

∣

∣

∣

∣

∑
k≥0

µ(k)
α(k)

f (k)α(k)

∣

∣

∣

∣

∣

≤
(

∑
k≥0

∣

∣

∣

∣

µ(k)
α(k)

∣

∣

∣

∣

p

α(k)

)1/p(

∑
k≥0

| f (k)|qα(k)

)1/q

by Hölder’s inequality, and thus the functional space

Lq(α) =

{

f : ‖ f‖q
Lq(α)

= 〈| f |q,α〉 = ∑
k≥0

| f (k)|qα(k) < ∞

}

is in duality with the Banach space for signed measures

M
p(α) =

{

µ ∈ M : ‖µ‖p
M p(α) = ∑

k≥0

∣

∣

∣

∣

µ(k)
α(k)

∣

∣

∣

∣

p

α(k) = ∑
k≥0

|µ(k)|pα(k)1−p < ∞

}

.

We have
‖µ‖p

M p(α) = ‖|µ|‖p
M p(α) = ‖µ+‖p

M p(α) +‖µ−‖p
M p(α)

and Hölder’s inequality implies that for 1≤ a≤ b < ∞ we have dense continuous injec-
tions

M
b(α) ⊂ M

a(α) ⊂ M
1(α) = M , ‖α‖−1/a

TV ‖µ‖M a(α) ≤ ‖α‖−1/b
TV ‖µ‖M b(α) .

We state the following elementary fact as a lemma for furtherreference.

Lemma 1. For p > 1, the M p(α) norm dominates theM p(β ) norm if and only if
α = O(β ), and these two norms are equivalent if and only ifα = Θ(β ).

The spacesLp(α) are a classic choice for the study of stability bounds for semi-
groups, as in Saloff-Coste [21] and Roberts and Rosenthal [19]. When the semigroup
hasα as an invariant measure or is self-adjoint (or reversible) with respect toα, then the
Hilbert spaceL2(α) is a natural setting, in which Dirichlet forms, the resolution of the
identity (see Rudin [20]) or other spectral decompositionssuch as Karlin and McGre-
gor’s [12, 13] for birth and death processes, see also [3, 4, 6, 7], may yield exponential
stability bounds through spectral gap estimates. The book of Chen [5] gives many such
stability bounds.
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2.3 The Hardy inequality and some related Banach spaces

We write Hardy’s inequality as follows: for any measureλ and functionf on R and
p > 1,

∫

∣

∣

∣

∣

∣

∫

[x,∞[ f (y)λ (dy)

λ [x,∞[

∣

∣

∣

∣

∣

p

λ (dx) ≤
(

p
p−1

)p∫

| f (x)|pλ (dx) . (1)

This is obtained considering the image ofλ and f by x 7→ −x from the inequality

∫

∣

∣

∣

∣

∣

∫

]−∞,x] f (y)λ (dy)

λ ]−∞,x]

∣

∣

∣

∣

∣

p

λ (dx) ≤
(

p
p−1

)p∫

| f (x)|pλ (dx)

itself derived from Hardy’s classical result [11, Theorem 330] for the Lebesgue measure
onR+ by Sinnamon [22, Theorem 1.1] using the non-increasing rearrangementf ∗ of f
with respect toλ . A related alternative derivation, more amenable to probabilists, uses
thatλ is the image of the Lebesgue measure byG(x) = inf{y∈ R : x≤ λ ]−∞,y]}, the
left-continuous inverse of the cumulative distribution function.

We considerα > 0 in M and forp≥ 1 the Banach spaces for signed measures

B
p(α) =

{

µ ∈ M : ‖µ‖p
Bp(α)

= ∑
k≥0

( |µ|[k,∞[

α[k,∞[

)p

α(k) < ∞

}

where|µ|[k,∞[ = ∑i≥k |µ(i)| = |µ(k)|+ |µ(k+1)|+ · · · .

Theorem 1. Let α > 0 be inM , C(α) = supk≥0
α[k,∞[
α(k) ∈ ]1,∞] and p> 1. Then

‖ · ‖Bp(α) ≤
p

p−1
‖ · ‖M p(α) , ‖ · ‖M p(α) ≤C(α)‖ · ‖Bp(α) ,

and if C(α) < ∞ then theM p(α) andBp(α) norms are equivalent.

Proof. The Hardy inequality (1) withλ = α = ∑k∈N α(k)δk and f =
d|µ|
dα yields

∑
k≥0

( |µ|[k,∞[

α[k,∞[

)p

α(k) ≤
(

p
p−1

)p

∑
k≥0

∣

∣

∣

∣

µ(k)
α(k)

∣

∣

∣

∣

p

α(k)

and clearly

∑
k≥0

( |µ|[k,∞[

α[k,∞[

)p

α(k) ≥ ∑
k≥0

(

α(k)
α[k,∞[

)p ∣
∣

∣

∣

µ(k)
α(k)

∣

∣

∣

∣

p

α(k) ≥ 1
C(α)p ∑

k≥0

∣

∣

∣

∣

µ(k)
α(k)

∣

∣

∣

∣

p

α(k) .
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WhenC(α) < ∞ we say thatα is quasi-geometrically decreasing, or has anexpo-
nential tail. We will explain in the study of birth-death processes in Section 3 below
how a result of Liggett [16, Cor. 3.8] (also [5, Theorem 5.5 p.93]) shows that this is a
rather weak assumption for our purposes. We recall a classical characterization [15].

Lemma 2. The measureα is quasi-geometrically decreasing if and only if there are
constants m≥ 1 and r< 1 and R< ∞ such that, for all k∈ N,

α(k+m) ≤ rα(k) , α(k+1) ≤ Rα(k) .

Then C(α) ≤ 1
1−r

1−Rm

1−R for R 6= 1, C(α) ≤ m
1−r for R= 1, andα(k) = O(rk/m).

Proof. The sufficiency and upper bound follow from

α[k,∞[ = ∑
i≥0

m−1

∑
j=0

α(k+ im+ j) ≤ α(k)∑
i≥0

r i
m−1

∑
j=0

Rj .

The necessity follows from the fact that ifC(α) < ∞, then for anyn∈ N,

C(α)α(k) ≥ α(k)+ · · ·+α(k+n) ≥
(

n
C(α)

+1

)

α(k+n) , C(α)α(k) ≥ α(k+1) ,

so that we may takem in N large enough thatC(α)2

m+C(α) ≤ r < 1 andR= C(α).

For µ > 0 we have

‖µ‖p
Bp(α) = ∑

k≥0

( |µ|[k,∞[

µ(k)

)p( α(k)
α[k,∞[

)p ∣
∣

∣

∣

µ(k)
α(k)

∣

∣

∣

∣

p

α(k)

and the second inequality in Theorem 2 is asymptotically saturated byα(k) = ak and
µ(k) = mk for 0 < m < a < 1 asm goes to 0, sinceC(α) = 1

1−a and ‖µ‖Bp(α) =
1−a
1−m‖µ‖M p(α) < ∞. Hence, this inequality is optimal.

Since f ∈ Lp(R+,dx) 7→ 1
x

∫ x
0 f (y)dy∈ Lp(R+,dx) is one-to-one but not onto, it

is hopeless to try to find such reverse Hardy inequalities forcompletely general inte-
grands. Results such as those in [2, (26)], [18, Theorem 4] and [15] have very restrictive
assumptions, such as non-decreasing integrands orp ≤ 1, and cannot be used for our
purposes.
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2.4 Stochastic domination and inequality transfer

In M we writeµ ≤d ν or ν ≥d µ and say thatµ is dominated byν or thatν dominates
µ if

|µ|[k,∞[ ≤ |ν|[k,∞[ , ∀k∈ N . (2)

For probability measures this is the notion of stochastic domination, for sub-probability
measures of stochastic domination on the extended state-spaceN∪{−1}. It is much
weaker than term-wise domination.

If SandT are operators onL∞ such thatS∗µ ≤d T∗µ for all µ ∈ M , we say thatS
is dominated byT or S∗ is dominated byT∗, and denote it byS≤d T or S∗ ≤d T∗, etc.
If the operators are positivity-preserving, it is enough tocheck this for Dirac massesµ,
and equivalentlyS f ≤ T f for all positive increasingf (it suffices to take the 1I[k,∞[).

We extend these notions to operators onLq(α) for α > 0 in M andq > 1, which
have adjoint operator onM p(α) for the conjugate exponentp > 1.

We have introduced this custom-made framework for the following theorem, which
is the main result of the paper. Its deceptively short proof involves all the above ideas
and tools.

Theorem 2. Let α > 0 in M be such that C(α) = supk≥0
α[k,∞[
α(k) < ∞ and conjugate

exponents1 < p,q < ∞. If S and T are operators on Lq(α) such that S≤d T then

‖S∗µ‖M p(α) ≤
p

p−1
C(α)‖T∗µ‖M p(α) , µ ∈ M

p(α) .

Proof. We have

‖S∗µ‖M p(α) ≤C(α)‖S∗µ‖Bp(α) ≤C(α)‖T∗µ‖Bp(α) ≤C(α)
p

p−1
‖T∗µ‖M p(α)

using Theorem 1, and the definition of domination and ofBp(α).

This result will be applied to semigroups such thatSt ≤d Tt for all t ≥ 0, yielding that
the generators also satisfy the inequality. In this situation, if (T∗

t )t≥0 is exponentially
stable then so is(S∗t )t≥0, with the same exponent: forp > 1 andµ in M p(α) andγ > 0
andKµ < ∞,

‖T∗
t µ‖M p(α) ≤ Kµe−γt ⇒‖S∗t µ‖M p(α) ≤

p
p−1

C(α)Kµe−γt , t ≥ 0.

This can be used for proofs of strong ergodicity in the sense of Chen [5].
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2.5 Intrinsic formulations versus identifications

A natural identification betweenM and the summable sequence spaceℓ1, and between
L∞ and the bounded sequence spaceℓ∞, is obtained by identifying a signed measure and
the sequence of its atoms, and a function with the sequence ofits values.

Thus, a semigroup(Tt)t≥0 may be identified with its sub-stochastic matrix indexed
by N×N in the canonical basis, and its generator with a matrix with positive terms off
the diagonal and negative row sums (in the wide sense), sometimes called aQ-matrix.
The row sum is null for Markovian generators.

In matrix notation we further identifyµ ∈M to a row vector andf ∈ L∞ to a column
vector, and adjunction may be replaced by multiplication tothe left of the matrices, so
that

〈µ, f 〉 = µ f , T∗
t µ = µTt , 〈T∗

t µ, f 〉 = 〈µ,Tt f 〉 = µTt f .

These practical notations will be used in the sequel.
Intrinsic notations helped clarify the above arguments, and other interesting identi-

fications exist. For instance, in the study of self-adjoint operators onL2(α), one often
identifiesµ ∈ M p(α) and its densitydµ

dα ∈ L2(α), and the duality bracket between
measures and functions with theL2(α) scalar product, see [21, 19].

3 Some applications using birth and death processes

3.1 Preliminaries

Karlin and McGregor [12, 13] studied irreducible sub-Markovian birth and death pro-
cesses onN, with birth ratesλn = A(n,n+ 1) > 0 in statesn ≥ 0, death ratesµn =

A(n,n−1) > 0 in statesn ≥ 1, and a killing rateµ0 ≥ 0 in state 0. Whenµ0 > 0 the
process may be rendered Markovian by adding a cemetery or absorbing state−1. The
casesµ0 > 0 andµ0 = 0 may be related by a duality procedure.

The infinitesimal generator onN of such processes is given in matrix form by

A= (A(i, j))i, j∈N =



















−(λ0+ µ0) λ0 0 0 · · ·
µ1 −(λ1+ µ1) λ1 0 · · ·
0 µ2 −(λ2+ µ2) λ2 · · ·
0 0 µ3 −(λ3+ µ3) · · ·
...

...
...

...



















(1)
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and itspotential coefficientsis given by the row vector

α = (α(n))n∈N , α(n) =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
, (2)

which solves the detailed balance equationsα(x)A(x,y) = α(y)A(y,x) for x,y∈ N, so
that A is self-adjoint inL2(α). If µ0 = 0 thenα is an invariant measure, but not if
µ0 > 0.

The notation of [12, 13] forα is π , but we reserve it for the invariant law when it
exists, which impliesµ0 = 0.

We are interested in the existence and uniqueness for the (possibly defective) process
and for its backward and forward Kolmogorov equations. The forward equatioṅνt = νtA
is developed, with the conventionλ−1νt(−1) = 0, into

ν̇t(n) = λn−1νt(n−1)− (λn+ µn)νt(n)+ µn+1νt(n+1) , n≥ 0. (3)

We assume from now on that

∞

∑
n=0

(

α(n)+
1

λnα(n)

)

= ∞ , ‖α‖TV = ∑
k∈N

α(k) < ∞ . (4)

The first condition is necessary and sufficient for these existence and uniqueness
results, in particular for (3) inM and if ν0 is in P(N) then νt is a sub-probability
measure, see Karlin and McGregor [13, Introduction], [12, Theorems 14,15].

The second is the “ergodic” case: eitherµ0 = 0, the process is recurrent positive,
and

π :=
α

‖α‖TV
∈ M

2(α) (5)

is its unique invariant law [13, Theorem 2], or elseµ0 > 0, the process is absorbed
ergodically at 0, and there is no invariant law [13, Sect. 5].

The condition [5, (1.24) p. 9] (in whichµ0 = 0 and the notations are different) is
obviously equivalent to (4).

In Callaert and Keilson [3, p. 209] the conditions in (4) are respectively called̄A
andB̄, which together implyC̄ andD̄ (denoted byC andD in [6]), and then the process
has a natural boundary at infinity (intuitively, there is no loss or gain of probability at
infinity).
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3.2 Karlin and McGregor’s spectral decomposition

The representation of Karlin and McGregor [12, 13] yields inparticular the results in
the previous subsection. Moreover, van Doorn and Zeifman [8] pointed out that this
representation is valid for a birth and death process with killing in everystate (not only 0)
by relating it to a conservative one (without any killing).

The equationAQ(x) = −xQ(x) for an eigenvectorQ(x) = (Qn(x))n≥0 of eigenvalue
−x (wherex∈ R+) is developed into

λ0Q1(x)= (λ0+µ0−x)Q0(x) , λnQn+1(x) = (λn+µn−x)Qn(x)−µnQn−1(x) , n≥1.

With the natural choiceQ0 = 1 and conventionQ−1 = 0 we obtain inductivelyQn as the
polynomial of degreen satisfying

−xQn(x) = µnQn−1(x)− (λn+ µn)Qn(x)+λnQn+1(x) , n≥ 0. (6)

These recursions correspond to [12, (2.1)] and [7, (2.15)].A crucial fact is that a se-
quence of polynomials satisfying such a recursion is orthogonal with respect to a prob-
ability measureψ onR+, and precisely

∫ ∞

0
Qi(x)

2ψ(dx) = α(i)−1 ,
∫ ∞

0
Qi(x)Q j(x)ψ(dx) = 0, i 6= j ∈ N ,

or in matrix notation, withQ considered as a row vector,
∫ ∞

0
Q(x)Q(x)∗ψ(dx) = diag

(

α−1) .

LetPt =(Pt(i, j))i, j∈N denote the sub-stochastic transition matrix forA, in semigroup
notationPt = eAt. The fundamental solution for the forward Kolmogorov equation (3)
is given byP∗

t = eA∗t , or byPt = eAt with left-multiplication by row vectors. Karlin and
McGregor’s representation formula [12, (1.7)], [13, (0.12)], [7, (1.2),(2.18)], is

Pt(i, j) = α( j)
∫ ∞

0
e−xtQi(x)Q j(x)ψ(dx) , i, j ∈ N , (7)

or in matrix notation

Pt = eAt =
∫ ∞

0
e−xtQ(x)Q(x)∗ψ(dx)diag(α) .

The probability measureψ is called the spectral measure, and its supportS, called the
spectrum, is intimately related to the set of zeros of the orthogonal polynomials. Since
Pt = eAt is self-adjoint inL2(α), the spectral representation yields

‖νPt‖2
M 2(α) := ‖νeAt‖2

M 2(α) =
(

νe2At,ν
)

M 2(α)
= ν

∫

S
e−2xtQ(x)Q(x)∗ψ(dx)diag(α)ν∗ .

(8)
Karlin and McGregor’s spectral decomposition is not a resolution of the identity, see

Rudin [20, pp. 301–311], but the spectrum is obviously the same.

10



3.3 Long time behavior and exponential stability

We obtain from (7) and dominated convergence that

lim
t→∞

Pt(i, j) = ψ(0)α( j) , i, j ∈ N ,

so that (8) yields for

γ = min(S−{0}) , H = ⊥M 2(α)ψ(0)α ,

that
‖νPt‖2

M 2(α) := ‖νeAt‖2
M 2(α) ≤ e−2γt‖ν‖2

M 2(α) , ν ∈ H . (9)

The alternative surrounding (5) then yields the following alternative:

• if µ0 = 0 thenψ(0) > 0 and hence

H =

{

ν ∈ M
2(α) : ∑

n∈N

ν(n) = 0

}

= Span
(

P(N)−P(N)
)

∩M
2(α)

so that instantaneous lawspt = p0Pt = p0eAt andqt = q0Pt = q0eAt, t ≥ 0, satisfy

‖pt −qt‖M 2(α) ≤ e−γt‖p0−q0‖M 2(α) , p0,q0 ∈ P(N)∩M
2(α) ,

which is true in particular forqt = q0 = π given in (5), the invariant law,

• if µ0 > 0 thenψ(0) = 0 and
H = M

2(α)

so that

‖pt‖M 2(α) ≤ e−γt‖p0‖M 2(α) , p0 ∈ P(N)∩M
2(α) .

More generally, the forward Kolmogorov equationν̇t = νtA starting atν0 = ν, made
explicit in (3), has solutionνt = νeAt for t ≥ 0, so that (9) implies that ifγ > 0 then this
equation is globally exponentially stable at 0 inH and globally exponentially stable at

(

‖ν+
0 ‖TV −‖ν−

0 ‖TV
)

1Iµ0=0π ∈ M
2(α) .
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3.4 Spectral gap criteria and estimates

Many tractable spectral gap criteria and upper and lower bounds exist, see Callaert [3, 4]
and van Doorn [6, 7, 8] who use Karlin and McGregor’s spectraldecomposition, and the
impressive wealth of information and bibliography in Chen [5, Index p. 226, birth-death
process].

In particular, a beautiful result of Liggett [16, Cor. 3.8],see also [5, Theorem 5.5
p. 93], sheds titillating light on the assumption of quasi-geometrical decrease.

Theorem 3 (T. Liggett). Let an irreducible birth and death process satisfy

µ0 = 0, 0 < inf
n≥0

λn < sup
n≥0

λn < ∞ ,

and have an invariant lawπ . Then there exists a spectral gap if and only ifπ is quasi-
geometrically decreasing: with the notations of Theorems 1and 2,

γ > 0⇔C(π) < ∞ ⇔C(α) < ∞ .

Under these assumptions, Lemma 2 implies thatC(α) < ∞ ⇒ infn≥1 µn > 0.
Also, following Van Doorn [6, Sect. 2.2], [7, Sect. 2.3],Qn hasn increasing zeros

(xn,i)1≤i≤n such that

0 < · · · < xn+1,i < xn,i < xn+1,i+1 < · · ·

and henceξi = limn→∞ xn,i ≥ 0 exists,ξi ≤ ξi+1, andσ = lim i→∞ ξi exists in [0,∞].
Moreover

γ > 0⇔ σ > 0

andσ is not affected by afinite number of changes in the birth and death rates, see [7,
Theorem 5.1] and the explanation thereafter, whereasγ may varygreatly.

Many practical upper and lower bounds forσ exist, such as

σ ≥ lim inf
n→∞

{

λn+ µn−
√

λn−1µn−
√

λnµn+1
}

(10)

given in [7, Theorem 5.3 (i)] which implies for instance thatγ > 0 if

lim inf
n→∞

µn > 0, lim inf
n→∞

λn

µn
= ρ > 0, limsup

n→∞

{

√

λn−1

λn
+

√

µn+1

µn

}

<
ρ +1√ρ

. (11)
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3.5 An application to operators which are not necessarily self-adjoint

The infinitesimal generatorB= (B(i, j))i, j∈N of a sub-Markovian process onN satisfies

B(i, j)≥ 0 (i 6= j) , b(i) := − ∑
j∈N

B(i, j) ≥ 0,

and the killing rateb(i) can be interpreted as the absorption rate into a cemetery state
−1.

We assume that for a birth and death sub-Markovian generatorA satisfying the as-
sumptions in Subsection 3.1, we have

B(i, j) = 0 ( j > i +1) , B(i, i +1)≤ λi := A(i, i +1) ,

b(i)+ ∑
j<i

B(i, j) := −B(i, i)−B(i, i +1)≥ µi := A(i, i −1) .

Such generatorsB are widely studied, and called single birthQ-matrices by Chen [5].
A simple coupling argument shows that ifp0 ≤d q0 are inP(N) thenp0eBt ≤d q0eAt

for all t ≥ 0, and this extends by linearity and sign preservation to initial data inM (N),
so that we may apply Theorem 2 for anyα satisfying its assumptions.

We assume thatC(α) < ∞ so as to use Theorem 2, and that there is a spectral gap
γ > 0, for which there are numerous tractable criteria and lowerbounds, see Section 3.4.
Then Subsection 3.3 shows thatB is exponentially stable onH : there isK < ∞ with an
explicit upper bound in terms of the rates such that

‖νeBt‖M 2(α) ≤ e−γtK‖ν‖M 2(α) , ν ∈ H ,

‖p0eBt −q0eBt‖M 2(α) ≤ e−γtK‖p0−q0‖M 2(α) , p0,q0 ∈ P(N)∩M
2(α) .

The stochastic domination assumption implies using positive recurrence that ifµ0 = 0
then B is Markovian and has a unique invariant law, which is inM 2(α) (this also
follows from a classical fixed-point argument), and we have exponential convergence of
the instantaneous lawspt to this invariant law inM 2(α) for any initial law p0 in this
space.

This result implies strong ergodicity for the process in thesense of Chen [5].
Note thatB mayonly be self-adjoint when it is itself the infinitesimal generator of

a birth-death process, and even then we may thus obtain a result for a weaker scalar
product than the one for which it is self-adjoint. Results for suchweakernorms can
actually bestrongerin the sense that they are applicable to much more general initial
values.
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This concept was essential in Graham [10], where the global exponential stability
result was used to prove tightness of the initial values of the fluctuations in equilibrium,
interpreted as long-time limits, see the discussion therein. The situation was such that
µ0 > 0.
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