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Abstract

For the classicalP-spaces of signed measures nwe devise a framework in
which bounds for a sub-Markovian semigroup of interest camltained, up to
a constant factor, from bounds for another tractable semjgithat dominates
stochastically the first one. The main tools are the Hardguabty, the defini-
tion of related auxiliankP spaces suited to take advantage of the domination, and
the proof that the norms are equivalent to the classical dribs reference mea-
sure is quasi-geometrically decreasing. We illustrater¢iselts using birth-death
and single-birth processes.

KEYWORDS semigroup inequalities, stochastic order, Hardy’s iradity) strong
ergodicity, exponential stability, spectral gap, birmath and single-birth pro-
cesses

MSC 2000: 37A25, 37A30, 60E15, 47A30, 47A63

1 Introduction

The long-time behavior of sub-Markovian semigroups of s@ymeasures is often stud-
ied in the classical P-spaces of the densities with respect to a reference measure
this setting, we establish a framework in which bounds foermigroup of interest can

be deduced from bounds obtained for another semigrougstbelhastically dominates

the first semigroup.
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carl@cmapx.polytechnique.fr



Usually, semigroups are given through their generatord,the@ semigroup of in-
terest arises in the study of a particular problem and latrkietsire and nice features.
The dominating semigroup and reference measure can thelndserc adequately, for
instance so as to satisfy exponential stability bounds. dpilvtools to prove such
bounds areg.g, the Dirichlet form when the reference measure is invayiarhe spec-
tral decomposition when the reference measure is seliradjogether with spectral
gap estimates.

Such results on bound transfers are mainly found in thealibee in cases when the
semigroup of interest ierm-wise dominatetdy another one[J1] 9, 14, [1F,]23]. This
very strong assumption unsurprisingly yields results,i®seldom true, in particular it
cannot be satisfied between different semigroups of préhalmeasures.

Hereafter in this papedominatiorbetween measures or semigroups refestdgohas-
tic domination This is a natural probabilistic notion, easily expressisd & the dual
functional space perspective. It is powerfully relate@¢doplingmethods, and sample-
path intuition may help find a convenient dominating semigrfor a complicated semi-
group of interest.

We introduce a new family of auxiliarlP spaces related to stochastic domination
and the Hardy inequality. Under the mild assumption thatréference measure is
guasi-geometrically decreasing (has exponential talls)show that the norms of the
classical and auxiliary.P spaces are equivalent f@r> 1. This enables the transfer
of bounds from the dominating semigroup to the dominated apeto a controlled
constant factor.

Such ideas initially appeared in Grahgm|[10], and yieldetbgl exponential stabil-
ity results, first for sub-Markovian semigroups, then forom+linear dynamical system
by adequate comparisons with the former. Even though the swdi-Markovian semi-
group of interest was self-adjoint in a Hilbert space witlhyvstrong norm, the goals
of [LQ] required bounds for weaker scalar products, appleedo much more general
initial conditions.

We have a wider scope in the present paper, and the novel trszlgérdy inequality
yields clearer arguments and nicer auxili&fy spaces. We consider sub-Markovian
semigroups of bounded signed measurelien{0,1,...}, and expect these techniques
have wider applicability. Such semigroups may be renderackbvian by adjoining a
cemetery or absorbing statelfhp assumed to be the least state and denotedly

The signed measure spaces are in duality with functionatespaand the results
apply to semigroups in both kinds of spaces. The methodsesuts can be readily
extended to time-dependent “generators”, or flows of lii@ae-inhomogeneous equa-
tions instead of semigroups, as long as the controls we usbed@aken uniformly in



time.

We illustrate the results with birth-death processes anglsibirth processes. For
the former, various spectral gap criteria and bounds eaistn Callaert[[3[]4], van
Doorn [6,[Y,[B] and Cherf][5], We discuss a striking result ajgstt [I6, Cor. 3.8],
[B, Theorem 5.5 p. 93], showing that the assumption on ogesimetrical decrease is
nearly optimal.

Stochastic monotonicity properties of birth-death preessvere used in van Doorn’s
monograph([[B] for different purposes than ours.

2 The framework and main result

2.1 Signed measures and sub-Markovian semigroups

For u in the space# = .# (N) of signed measures, we denote|pyits total variation
measure and by™ and ™ its positive and negative parts, so that = y* + u~ and
pu = put —pu~, and the duality bracket betwee# and the functional spade® = L*(N)
by

()= [fdu=5 k), pes, fel”,

keN

for which dual spaces, adjoints, etc., will be denoted ataly using asterisks. The
space# is Banach for the strong dual norm, which is the total vasiatiorm

[kllrv = [uI(N) = % [u(k)]= sup (u,f),  pe..
KEN =t

We consider sub-Markovian semigroups: positivity-presey contraction semi-
groups(Tt)t>o0 on L*, satisfyingTi.s = TtTs and || Ty f || < || || @and T f > 0O for all
t,s>0andf > 0inL”. The infinitesimal generators of such semigroups act onalens
subspaces. The adjoint semigroly’)i>o given by (T u, f) = (u, Tt f) for y in .#
andf in L” is also positivity-preserving and contractive .ofi.

The decomposition of signed measures in their positive agative parts allows to
restrict our attention to probability measures (and evera®masses) as initial data
for the adjoint sub-Markovian semigroups, which then egalv the subset of sub-
probability measures. Markovian semigroups preservedhefgrobability measures.



2.2 Some classic Banach spaces

p(k)

Fora > 0in.# and conjugate exponents<lp,q < o (satisfying% + é = 1) we have

P 1/q
q
§<Z a(® ‘“”) (Z rals )

by Holder’s inequality, and thus the functional space

Lq(a)z{finHﬁq( = ([f|%a) = Z}\ (K)[%ar (k) }

is in duality with the Banach space for signed measures

=Y [u(k)[Pa(k?t p<°°}-

k>0

uk

CI

k>0

ol

MP(a) = {Il S . =2 1q

k>0 (

We have
1P oay = ey = 11y + 11 1P

and Holder’s inequality implies that ford a < b < « we have dense continuous injec-
tions

AP (a) ca¥a)c )=, ol Ibllsa@) < ol PIHILgo) -

We state the following elementary fact as a lemma for furtb&rence.

Lemma 1. For p > 1, the .#ZP(a) norm dominates theZP(B) norm if and only if
a = O(B), and these two norms are equivalent if and only i ©(3).

The spacedP(a) are a classic choice for the study of stability bounds forisem
groups, as in Saloff-Costé [21] and Roberts and RosentBhl @When the semigroup
hasa as an invariant measure or is self-adjoint (or reversibl#) vespect tax, then the
Hilbert space_?(a) is a natural setting, in which Dirichlet forms, the resadatiof the
identity (see Rudin[[20]) or other spectral decompositismsh as Karlin and McGre-
gor’s [12,[IB] for birth and death processes, see &ls@d [3.[4], Bhay yield exponential
stability bounds through spectral gap estimates. The bbaken [$] gives many such
stability bounds.



2.3 The Hardy inequality and some related Banach spaces

We write Hardy’s inequality as follows: for any measureand functionf on R and

p>1,
/ A(d¥) < )/\ (X)[PA (dX). L)

This is obtained considering the imagedand f by x — —x from the inequality

/if o] mx](dy) M) < ( )/| ([P (X

itself derived from Hardy’s classical resUlt[11, Theore®®Bfor the Lebesgue measure
onR, by Sinnamon[[22, Theorem 1.1] using the non-increasingaagement * of f
with respect toA. A related alternative derivation, more amenable to proiséd uses
thatA is the image of the Lebesgue measuredjy) = inf{y e R : x < A]—o0,y] }, the
left-continuous inverse of the cumulative distributiondtion.

We consideir > 0 in.# and forp > 1 the Banach spaces for signed measures

P(ar) = {ue//z TS (‘“'7 [) <k><oo}

where| |k, oo = Siok ()] = [H(K)| +p(k+ D] +---.

Sl T A () P
A[X, 00]

Theorem 1. Leta > 0be in.Z, C(a) = sufg OE )[ ]1,0] and p> 1. Then

p
) < p—H .av(a) | ey < Cla) - | zp(a)

and if C(a) < « then theZP(a) and £P(a) norms are equivalent.

I 0@

Proof. The Hardy inequality[{1) with = o = Sy a(K) andf = d““ yields

u(k) [P

| [k, o[\ P P\ o |HK
k§o<a[k7°°[) a(k)§<p—1) kgo a(k) alk)
and clearly
|1k, o[\ P a(k) \Puk)|P 1 p(k) [P
3 (Gicar) @002 3 (acer) |o00] 9 a2, o9 °®




WhenC(a) < o we say thatr is quasi-geometrically decreasingr has arexpo-
nential tail. We will explain in the study of birth-death processes int®ed3 below
how a result of Liggett[[16, Cor. 3.8] (alsf] [5, Theorem 5.®8]) shows that this is a
rather weak assumption for our purposes. We recall a celssharacterizatior[[]5].

Lemma 2. The measurex is quasi-geometrically decreasing if and only if there are
constants m> 1 and r < 1 and R< o« such that, for all ke N,

ak+m <ra(k),  a(k+1)<Ra(k).
ThenQa) < £- 2R for R# 1, C(a) < {M for R=1, anda (k) = O(r¥/™).

Proof. The sufficiency and upper bound follow from

alk, o] = i;?ga(k+im+ i) <a(k) i;ri TZ_:Rj :

The necessity follows from the fact thatGf a) < o, then for anyn € N,

Cla)a(k) > a(k)+---+a(k+n) > <% +1) atk+n), Cla)a(k)> a(k+1),

so that we may takmin N large enough thay% <r<landR=C(a). O

For u > 0 we have

o< (Iulke\P [ a(k) \P
44570y = k;( i) (akee)
and the second inequality in Theorém 2 is asymptoticallyrssed bya (k) = a¢ and
u(k) =mk for 0 < m<a<1asmgoes to 0, sinc€(a) = 135 and [|u| o) =
2111l zp(a) < . Hence, this inequality is optimal.
Since f € LP(R;,dx) — % [3 f(y)dy € LP(R,,dx) is one-to-one but not onto, it
is hopeless to try to find such reverse Hardy inequalitiesémnpletely general inte-
grands. Results such as thosd]n [2, (26)]] [18, Theoremdt]fEd] have very restrictive

assumptions, such as non-decreasing integran@s<of.,, and cannot be used for our
purposes.

p(K)
a(k)

a (k)




2.4 Stochastic domination and inequality transfer

In . we writeu <% v orv >9  and say thaj: is dominated by or thatv dominates
W if

ko[ < |v|[koo[,  VkeN. ©)
For probability measures this is the notion of stochastmidation, for sub-probability
measures of stochastic domination on the extended state’pJ {—1}. It is much
weaker than term-wise domination.

If SandT are operators oh® such thaS'u <9 T*u for all 4 € .#, we say that
is dominated byT or S is dominated byl *, and denote it bys <9 T or S <9 T*, etc.
If the operators are positivity-preserving, it is enouglcheck this for Dirac masses
and equivalentlys f < T f for all positive increasing (it suffices to take the jll,).

We extend these notions to operatorsldiia) for a > 0 in .# andq > 1, which
have adjoint operator a7 P(a ) for the conjugate exponept> 1.

We have introduced this custom-made framework for the Wafig theorem, which
is the main result of the paper. Its deceptively short prawbives all the above ideas
and tools.

Theorem 2. Leta > 0 in .# be such that Ca) = sup(zo% < o and conjugate

exponentd < p,q < o. If Sand T are operators orfila) such that S<¢ T then

P

IS" Hll.zp(a) < ﬁC(O’)HT*HH//p(a), pe.#P(a).

Proof. We have

* P «
IS" | zr(ay < CLO)[IS Ul z0(a) < C(a)[|T || 20(0) < C(O’)HHT Ul zr(a)
using Theoren|1, and the definition of domination and& a). O

This result will be applied to semigroups such tiat? T; for all t > 0, yielding that
the generators also satisfy the inequality. In this siamtif (T;*);>0 is exponentially
stable then so i65)>0, with the same exponent: fgr> 1 andu in .ZP(a) andy > 0
andK, < o,

* _ P _
I kllp(a) < Ku€™ = S H]Lao(a) < mC(G)Kue n, t>o0.

This can be used for proofs of strong ergodicity in the sefi§€¢hen [5].



2.5 Intrinsic formulations versus identifications

A natural identification between? and the summable sequence spécand between
L” and the bounded sequence spé&tas obtained by identifying a signed measure and
the sequence of its atoms, and a function with the sequentewaiues.

Thus, a semigroupl; ;>0 may be identified with its sub-stochastic matrix indexed
by N x N in the canonical basis, and its generator with a matrix wabifve terms off
the diagonal and negative row sums (in the wide sense), soegetalled &-matrix.
The row sum is null for Markovian generators.

In matrix notation we further identify € .# to a row vector and € L* to a column
vector, and adjunction may be replaced by multiplicatioth®left of the matrices, so
that

(u,fy=pf,  Tu=puT, (T'uf)=Tf)=uTf.

These practical notations will be used in the sequel.

Intrinsic notations helped clarify the above arguments, @iher interesting identi-
fications exist. For instance, in the study of self-adjoip¢xators oriL?(a), one often
identifiesy € .#ZP(a) and its densityg—g € L?(a), and the duality bracket between
measures and functions with thé(a) scalar product, seE J2f]19].

3 Some applications using birth and death processes

3.1 Preliminaries

Karlin and McGregor[[32] 13] studied irreducible sub-Marim birth and death pro-
cesses omN, with birth ratesA, = A(n,n+ 1) > 0 in statesn > 0, death rategi, =
A(n,n—1) > 0 in statesn > 1, and a killing rateuy > 0 in state 0. When > 0 the
process may be rendered Markovian by adding a cemetery orlabg state-—1. The
caseglp > 0 andug = 0 may be related by a duality procedure.

The infinitesimal generator dN of such processes is given in matrix form by

—(Ao+ Ho) Ao 0 0
Ha —(A1+ ) A 0
A= (A(i, ))ijen = 0 Lo — Ao+ o) A @
0 0 3 —(A3+ u3)




and itspotential coefficientss given by the row vector

AoA1---An-1
a= (@M, am=""" )

which solves the detailed balance equatiarig)A(x,y) = a(y)A(y,x) for x,y € N, so
that A is self-adjoint inL?(a). If pp = 0 thena is an invariant measure, but not if
Mo > 0.

The notation of[1]2] 13] fou is 1, but we reserve it for the invariant law when it
exists, which impliegi = 0.

We are interested in the existence and uniqueness for thsifjipdefective) process
and for its backward and forward Kolmogorov equations. Thevérd equatiow; = VA
is developed, with the conventidn ;v (—1) =0, into

w(n) = An-avt(n—1) = (An+pn)vt(N) +pnpae(n+1),  n=0.  (3)

We assume from now on that

00

1
a0+ g ) == k=3 al <. @
3, (0 s Py
The first condition is necessary and sufficient for thesetemce and uniqueness
results, in particular for[[3) in# and if vy is in 2(N) then v is a sub-probability
measure, see Karlin and McGregpr][13, Introduction]] [12edrems 14,15].
The second is the “ergodic” case: eithgy= 0, the process is recurrent positive,

and
a

oty
is its unigue invariant law[J13, Theorem 2], or elgg > 0, the process is absorbed
ergodically at 0, and there is no invariant Igw][13, Sect. 5].

The condition[[b, (1.24) p. 9] (in whicli = 0 and the notations are different) is
obviously equivalent tgd{4).

In Callaert and Keilson[]J3, p. 209] the conditions [ (4) aespectively calledh
andB, which together implfandﬁ (denoted byC andD in [f]), and then the process
has a natural boundary at infinity (intuitively, there is 084 or gain of probability at
infinity).

TT:

€ .M*(a) (5)



3.2 Karlin and McGregor’s spectral decomposition

The representation of Karlin and McGregr][12] 13] yieldparticular the results in
the previous subsection. Moreover, van Doorn and Zeifmiupédted out that this
representation is valid for a birth and death process wilimgiin everystate (not only 0)
by relating it to a conservative one (without any killing).

The equatiorAQ(x) = —xQ(x) for an eigenvecto®(X) = (Qn(X))n>0 Of eigenvalue
—X (wherex € R,) is developed into
A0Q1(X) = (Ao+Ho—X)Qo(X),  AnQns1(X) = (An+tn —X)Qn(X) — UnQn-1(X), N> 1.
With the natural choic€ = 1 and conventio_1 = 0 we obtain inductively@, as the
polynomial of degre@ satisfying

—XQn(X) = UnQn-1(X) — (An+ Hn)Qn(X) +AnQnt1(X), n>0. (6)

These recursions correspond [o][12, (2.1)] dnd [7, (2.18)¢rucial fact is that a se-
guence of polynomials satisfying such a recursion is orvnagywith respect to a prob-
ability measurap onR ., and precisely

|t —ai)t [TQmQuidg=0, i£jer,
0 0

or in matrix notation, withQ considered as a row vector,
|| Q0)Qe0" w(dx) = diagla ).

LetR = (R(i, j))i,jen denote the sub-stochastic transition matrix&pin semigroup
notationR, = e The fundamental solution for the forward Kolmogorov eiprai3)
is given byP = é*'t, or by R = &' with left-multiplication by row vectors. Karlin and
McGregor’s representation formufa]12, (1.7)[,][13, (O]1#], (1.2),(2.18)], is

R1) = a(i) [ e QQwE,  ijeN, @)
or in matrix notation
R=eM= /0 e Q) Q)" W(dx) diag(a).

The probability measurg is called the spectral measure, and its supfoctlled the
spectrum, is intimately related to the set of zeros of theagbnal polynomials. Since
R = e''is self-adjoint inL?(a), the spectral representation yields

IVRIZ ()= IV ) = (V€)= v [ €2 QUIQN" (e dinglar)v”
®)

Karlin and McGregor’s spectral decomposition is not a nesoh of the identity, see
Rudin [20, pp. 301-311], but the spectrum is obviously theea

10



3.3 Long time behavior and exponential stability

We obtain from [(J7) and dominated convergence that

lim R(i, j) =¢@a(j), i,jeN,

t—oo

so that [B) yields for
y=min(S—{0}), A =1 Y (0)a,

that
|’VH"3//2(Q) = "VeAt"i/Z(a) < eizytHVHLZ///Z(g)v ves. 9

The alternative surrounding] (5) then yields the followiltg@ative:
e if tp =0 theny(0) > 0 and hence
H = {v e.M¥a): Y v(n) = o} = Spar(Z(N) — Z2(N)) n.4*(a)
neN

so that instantaneous laws= poR = poe™ andg; = R = e, t > 0, satisfy
Ipt—akll 2@ <€ "IPo—ll s2@),  Po,Go€ 2(N)N.Z%(a),
which is true in particular fog: = qo = mgiven in (), the invariant law,

e if Lo > 0 theny(0) =0 and
A= M%)

so that
1Pt 2y <€ MIPoll sz, Po€ P(N)NA#*(a).

More generally, the forward Kolmogorov equatian= v;A starting atvg = v, made
explicitin @), has solution; = ve® for t > 0, so that[[9) implies that if > 0 then this
equation is globally exponentially stable at 04 and globally exponentially stable at

(Ivg v = lIvg llrv) Age—omt € 2%(a).

11



3.4 Spectral gap criteria and estimates

Many tractable spectral gap criteria and upper and lowentsexist, see Callaefii[3, 4]
and van Doorn[[d,] 1] 8] who use Karlin and McGregor’s spectegomposition, and the
impressive wealth of information and bibliography in ChBnlpdex p. 226, birth-death
process].

In particular, a beautiful result of Liggeft |16, Cor. 3.8ke also[]5, Theorem 5.5
p. 93], sheds titillating light on the assumption of quasoemetrical decrease.

Theorem 3 (T. Liggett). Let an irreducible birth and death process satisfy

Uo=0, O<|nf)\n<sup)\n<oo
n>0 n>0
and have an invariant lawr. Then there exists a spectral gap if and onlyrifs quasi-
geometrically decreasing: with the notations of Theorgrasd[2,

y>0&C(m) <o C(a) <oo.

Under these assumptions, Lemfha 2 implies @{@) < c = infy>1 pn > 0.
Also, following Van Doorn [[p, Sect. 2.2][][7, Sect. 2.8), hasn increasing zeros
(Xn,i)1<i<n Such that

0< - < Xniti < Xnj < Xnpgitt <:o-

and hencefj = limp_eXnj > 0 exists, & < &1, and 0 = limj_.« & exists in[0,].
Moreover
y>0<0>0

ando is not affected by dinite number of changes in the birth and death rates, [$ee [7,
Theorem 5.1] and the explanation thereafter, wheyaaay varygreatly.
Many practical upper and lower bounds eexist, such as

o> ”Q“_,i{jf{)\n + Hn — \/)\n—llJn - \/)\nIJn+1} (10)

given in [{, Theorem 5.3 (i)] which implies for instance tlyat O if

limin iy > 0, nmmfz——p 0, Iimsup{\/)\ \/“”“} Pl 1
—s 00 N—o0 n n—oo

12




3.5 Anapplication to operators which are not necessarily $eadjoint

The infinitesimal generatd = (B(i, j))i jen Of a sub-Markovian process dhsatisfies

B(i,j)>0 (i#]). b(i):=— Y B(ij)>0,

and the killing rateb(i) can be interpreted as the absorption rate into a cemetdey sta
—1.

We assume that for a birth and death sub-Markovian genefasgatisfying the as-
sumptions in Subsectidn 8.1, we have

B(i,j)=0 (j >i+1), B(i,i+1) <Ai:=A(,i+1),
b(i)+ ZB(i, j):=-=B(,i)—B(i,i+1) >y :=A(l,i—1).
I<I
Such generatorB are widely studied, and called single bifhmatrices by Cher]5].
A simple coupling argument shows thapif <9 qo are inZ(N) thenpoe® <9 e
for allt > 0, and this extends by linearity and sign preservation tirdata in.# (N),
so that we may apply Theord 2 for amysatisfying its assumptions.
We assume tha@(a) < « so as to use Theorefh 2, and that there is a spectral gap
y > 0, for which there are numerous tractable criteria and |dweinds, see Sectign B.4.
Then Subsectiof 3.3 shows tlfiais exponentially stable ox#’: there isK < o with an
explicit upper bound in terms of the rates such that

Ve | y2a) < € KIVI_s2(ay Ve,
Ipoe™ — doe™ || y2(q) < € "KllPo—Coll 2@y, Po,do€ P(N)N.#7(a).

The stochastic domination assumption implies using p@srecurrence that ifip = 0
then B is Markovian and has a unique invariant law, which is.i#f?(a) (this also
follows from a classical fixed-point argument), and we haygo@ential convergence of
the instantaneous laws to this invariant law in#?(a) for any initial law po in this
space.

This result implies strong ergodicity for the process inskase of Cherf][5].

Note thatB may only be self-adjoint when it is itself the infinitesimal generabd
a birth-death process, and even then we may thus obtain kb fesa weaker scalar
product than the one for which it is self-adjoint. Results achweakernorms can
actually bestrongerin the sense that they are applicable to much more genetiall ini
values.

13



This concept was essential in Grahgm] [10], where the gloiadreential stability
result was used to prove tightness of the initial values eflinctuations in equilibrium,
interpreted as long-time limits, see the discussion ther€he situation was such that
Mo > 0.
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