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In this paper we investigate existence and characterization of non-radial pseudo-radial (or separable) solutions of some semi-linear elliptic equations on symmetric 2-dimensional domains. The problem reduces to the phase plane analysis of a dynamical system. In particular, we give a full description of the set of pseudo-radial solutions of equations of the form ∆u = ±a 2 (|x|)u|u| q-1 , with q > 0, q = 1. We also study such equations over spherical or hyperbolic symmetric domains.

Introduction

A very rich literature has been devoted during the last decades to the study of semi-linear elliptic equations of the form ∆u = εu|u| q-1

(1) over a symmetric Euclidean domain Ω, where ε = ±1 and q is a positive real number, q = 1. In particular, it is known that when the domain Ω is an Euclidean ball, then any positive solution of (1) with q > 1, satisfying Dirichlet boundary conditions, is radial (see [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF], see also [START_REF] Gidas | Symmetry and positive solutions of nonlinear equations in R N[END_REF] for the case Ω = R n ), while on an annular domain Ω = {0 < R < |x| < R + c}, the equation (1) admits positive non-radial solutions for ε = -1 and any q > 1 (see [START_REF] Brézis | Positive solutions of non-linear elliptic equations involving critical Sobolev exponents[END_REF][START_REF] Coffman | A non-linear boundary value problem with many positive solutions[END_REF][START_REF] Suzuki | Lifting of local subdifferentiations and elliptic boundary value problems on symmetric domains. I[END_REF][START_REF] Suzuki | Symmetric domains and elliptic equations[END_REF]). See also the important work of Rabinowitz [START_REF] Rabinowitz | Minimax methods in critical point theory with applications to differential equations[END_REF] where sufficient conditions are given for the existence of infinitely many non necessarily radial solutions to such equations.

The existence of non-radial solutions is generally based on minimization techniques (see [START_REF] Suzuki | Symmetric domains and elliptic equations[END_REF] for a survey). Another natural approach toward the existence of non-radial solutions consists in searching solutions of the form u(r, θ) = h(r)w(θ), where (r, θ) are polar coordinates and w is a 2π-periodic function. Such a solution is sometimes called "separable" or "pseudo-radial" (see for instance [START_REF] Kichenassamy | Singular solutions of the p-Laplace operator[END_REF]). Of course, u is non-radial as far as w is nonconstant. Moreover, we say that u is of mode k ∈ N if the least period of w is 2π k (Thus, radial solutions could be considered as being of mode +∞). Notice that singular pseudo-radial solutions play an important role in the study and classification of singularities of solutions of semi-linear equations.

In the present work, we make use of this last approach in order to investigate the existence of possibly singular non-radial solutions to (a) "weighted" equations of the form ∆u = εa 2 (r)u|u| q-1 ,

on a rotationally symmetric (non necessarily bounded) Euclidean domain Ω ⊂ R 2 (see for instance [START_REF] Nagasaki | Radial Nonpositive Solutions for Nonlinear equation ∆u+ |x| ℓ |u| p-1 u = 0 on the Ball[END_REF][START_REF] Ni | Uniqueness of solutions of nonlinear Dirichlet problems[END_REF][START_REF] Ni | Uniqueness and nonuniqueness for positive solutions of ∆u + f (u, r) = 0[END_REF] for results concerning radial solutions), (b) equation ( 1) over rotationally symmetric non necessarily flat domains like geodesic discs or annular domains of the sphere S 2 , the hyperbolic plane H 2 , a revolution surface, etc.

Notice that our study includes the "sublinear" case 0 < q < 1 which is of particular interest since it is not much treated in the literature. The natural general setting in which these topics can be put is the following. We consider Equation (1) on I × S 1 , where I is an interval, I ⊂ (0, ∞), endowed with a Riemannian metric of the form

g = a 2 (r)dr 2 + b 2 (r)dθ 2 ,
where a and b are two positive differentiable functions on I. The Laplace operator associated with the metric g is given by

∆ g = 1 a 2 ∂ 2 ∂r 2 + 1 ab b a ′ ∂ ∂r + 1 b 2 ∂ 2 ∂θ 2 . ( 3 
)
Recall that a rotationally symmetric domain Ω ⊂ R 2 , S 2 or H 2 can be identified, using appropriate polar coordinates (r, θ), with a cylinder I × S 1 endowed with the Riemannian metric g

= dr 2 + b 2 (r)dθ 2 , with b(r) =    r
in the Euclidean case sin r in the spherical case sinh r in the hyperbolic case.

Here, the r variable represents in each case the geodesic distance to the center of the domain. On the other hand, the weighted equation ∆u = εa 2 (r)u|u| q-1 of item (a) above is equivalent to the equation

∆ g u = εu|u| q-1 , where g = a 2 (r)g R 2 = a 2 (r)(dr 2 + r 2 dθ 2 ) is a Riemannian metric conformal to the Euclidean one g R 2 .
Hence, we consider for any Riemannian metric g = a 2 (r)

dr 2 + b 2 (r)dθ 2 on I × S 1 , the PDE ∆ g u = εu|u| q-1 , (4) 
where ε = ±1, and look for non-radial pseudo-radial solutions. We first show (Theorem 1) that a necessary and sufficient condition for equation ( 4) to admit such a non-radial pseudo-radial solution consists in the existence of a real number µ such that:

(i) (condition on the metric g)

a -1 b 2 1-q b ′ ′ = µ (1 -q) 2 ab 1+q 1-q , (5) 
(ii) the following ODE admits a nonconstant 2π-periodic solution

w ′′ (θ) + µw(θ) = εw(θ)|w(θ)| q-1 . (6) 
Moreover, when (i) and (ii) are satisfied, then u(r, θ) = b 2 1-q (r)w(θ) is a solution of (4). Notice that a more general version is actually given in Theorem 1.

For example, condition (i) is satisfied for the Euclidean metric (a = 1 and b = r) with µ = 4

(1-q) 2 , the spherical metric (a = 1 and b = sin r) with µ = 1 and q = 3, and the hyperbolic metric (a = 1 and b = sinh r) with µ = 1 and q = 3. On the other hand, in the conformal case (i.e. b(r) = ra(r)), a consequence of condition (i) is that, if the weighted equation ∆u = εa 2 (r)u|u| q-1 admits a non-radial pseudo-radial solution in a rotationally symmetric Ω ⊂ R 2 , then the function a(r) has one of the following forms (Theorem 2):

a(r) = r -1 (M r α + N r -α ) 1-q 2 , a(r) = r -1 (M + N ln r) 1-q 2 , or a(r) = r -1 [M cos(α ln r) + N sin(α ln r)] 1-q 2
with M , N ∈ R and α > 0.

Condition (ii) leads us to study the ODE (6) and seek its 2π-periodic solutions, according to the values of ε, q and µ. Actually, this study constitutes the main part of this paper. The case ε = +1, 0 < q < 1 and µ > 0 is the more interesting and novel one because of the lack of regularity of the nonlinear term at the origin. Notice that some earlier results concerning the ODE [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF] have been obtained for particular values of ε, q and µ (see for instance [START_REF] Bidaut-Véron | On Characterization of solutions of some nonlinear differential equations and application[END_REF][START_REF] Chafee | A bifurcation problem for a nonlinear partial differential eqution of parabolic type[END_REF][START_REF] Véron | Some existence and uniqueness results for solution of some quasilinear elliptic equations on compact Riemannian manifolds[END_REF]).

In particular, for the weighted equation

∆u = εr -2 (M r α + N r -α ) 1-q u|u| q-1 , (7) 
in R 2 \ {O}, the corresponding µ is equal to α 2 and we obtain (Theorem 3), as an application of the ODE analysis, that :

• if ε = -1, then, for every q = 1, α > 0, equation ( 7) admits for any integer k > α, a unique (up to sign) pseudo-radial solution of mode k which is sign changing,

• if ε = +1, q > 1 and α > 1, then for every k ≥ 1, equation ( 7) admits a unique (up to sign) pseudo-radial solution of mode k which is sign changing,

• if ε = +1, 0 < q < 1 and α > 1, then equation ( 7) admits, for any integer k ∈ ( 1-q 2 α, α), a unique (up to sign) sign changing pseudo-radial solution of mode k, and, for any possible integer k ∈ ((1-q)α, √ 1q α), a unique positive pseudo-radial solution of mode k. Moreover, if (1q)α is an integer, then there exists a unique nonnegative pseudoradial solution of mode (1q)α,

• if ε = +1 and 0 < α ≤ 1, then any pseudo-radial solution of ( 7) is radial.

In all cases, the radial part of pseudo-radial solutions is given by h(r) = M r α + N r -α . In a similar manner, we describe the set of non-radial pseudo-radial solutions of the weighted equations (see Theorems 4 and 5) ∆u = εr -2 [M + N ln r] 1-q u|u| q-1 and ∆u = εr -2 [M cos(α ln r) + N sin(α ln r)] 1-q u|u| q-1 .

Concerning the equation ∆ S 2 u = εu|u| q-1 (resp. ∆ H 2 u = εu|u| q-1 ) on a rotationally symmetric domain of the sphere (resp. the hyperbolic plane), it turns out that any pseudo-radial solution is radial unless for ε = +1 and q = 3 where, for any integer k ≥ 2, there exists a unique (up to sign) pseudo-radial solution of mode k which is sign changing.

The paper is organized as follows. In the second section we prove Theorem 1 giving necessary and sufficient conditions for equation ( 4) to admit a non-radial pseudo-radial solution. The third section is devoted to the study of the resulting ODE [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF]. In the last section we apply our results to answer completely the question of existence of positive and sign-changing non-radial pseudo-radial solutions in the conformal case as well as the case of symmetric domains of standard spaces.

A general result

Let Ω ⊂ R N be a rotationally symmetric domain (e.g. a ball, a spherical shell, R N \{O}, etc.) that we parametrize by spherical coordinates (r, σ) ∈ I × S N -1 → rσ ∈ Ω. We endow Ω (or, equivalently, I × S N -1 ) with the Riemannian metric

g = a 2 (r)dr 2 + b 2 (r)dσ 2 ,
where a and b are two positive differentiable functions on I. The Laplace-Beltrami operator associated with the metric g is given by

∆ g = 1 b 2 c 2 ∂ 2 ∂r 2 + (N -1)cc ′ ∂ ∂r + ∆ S N-1 , (8) 
where c2 = b 2 a 2 and ∆ S N-1 stands for the Laplace-Beltrami operator of the standard sphere. Consider the equation

∆ g u = εu|u| q-1 , (9) 
where ε = ±1 and q is a positive real number, q = 1. A solution u in Ω is said to be "pseudo-radial" if it can be written, with respect to the (r, σ) coordinates, as u(r, σ) = h(r)w(σ).

Theorem 1 Equation ( 9) admits a non radial pseudo-radial solution if and only if there exists µ ∈ R such that:

(i) (Condition on the metric g)

c 2 (b 2 1-q ) ′′ + (N -1)cc ′ (b 2 1-q ) ′ = µb 2 1-q . ( 10 
)
(ii) the following equation admits a nonconstant solution on S N -1

∆ S N-1 w + µw = εw|w| q-1 . (11) 
Moreover, when (i) and (ii) are satisfied, then any non radial pseudo-radial solution of ( 9) is of the form u(r, σ) = b

Notice that in dimension N=2, the condition on the metric (10) reads

a -1 b 2 1-q b ′ ′ = µ(1 -q) 2 ab 1+q 1-q , ( 12 
)
while the equation ( 11) reduces to the ODE ( 6)

w ′′ (θ) + µw(θ) = εw(θ)|w(θ)| q-1 ,
where w is a 2π-periodic function.

The proof of Theorem 1 relies on the following elementary lemma.

Lemma 1 Let a, b and c be three nontrivial real-valued functions on a set X and let α, β and γ be three differentiable functions on an interval I ⊂ R such that γ admits no zeros in I. Assume that, for every (x, y)

∈ I × X, α(x)a(y) + β(x)b(y) = γ(x)c(y), (13) then, 
• either α and β are proportional to γ on I,

• or a, b and c are mutually proportional on X.

Proof. Dividing (13) by γ(x) and, then, differentiating with respect to the x variable, one obtains, for every (x, y) ∈ I × X,

ᾱ(x)a(y) + β(x)b(y) = c(y) (14) 
and ᾱ′ (x)a(y) = -β′ (x)b(y), [START_REF] Suzuki | Lifting of local subdifferentiations and elliptic boundary value problems on symmetric domains. II[END_REF] where ᾱ := α γ and β := β γ . Two cases are to be considered.

1. Assume that ab ≡ 0. Multiplying (15) by a and, then, by b, we deduce that ᾱ′ = β′ ≡ 0. Hence, ᾱ and β are constants which means that α and β are proportional to γ on I.

2. Assume that there exists y 0 ∈ X such that a(y 0 )b(y 0 ) = 0. Setting K = b(y 0 )/a(y 0 ), we deduce from (15) that ᾱ′ (x) = -K β′ (x), that is ᾱ(x) = -K β(x) + C for some C ∈ R, and, either ᾱ′ = β′ ≡ 0 or b(y) = Ka(y). Therefore, using [START_REF] Suzuki | Lifting of local subdifferentiations and elliptic boundary value problems on symmetric domains. I[END_REF], either α and β are proportional to γ on I, or b and c are proportional to a on X.

Proof of Theorem 1. If u(r, σ) = h(r)w(σ) is a non-radial pseudo-radial solution of (9), then

c 2 h ′′ (r) + (N -1)cc ′ h ′ (r) w(σ) + h(r)∆ S N-1 w(σ) = εb 2 (r)h(r)|h(r)| q-1 w(σ)|w(σ)| q-1 . ( 16 
)
Let us apply the last lemma on I 1 × S N -1 , where I 1 is a subinterval on which the function h has no zeros. Since w is not constant (u is assumed to be non-radial) and q = 1, the function w|w| q-1 can never be proportional to w on S N -1 . Hence, there exist two constants λ and µ such that

h(r) = λb 2 (r)h(r)|h(r)| q-1 , (17) 
c 2 h ′′ + (N -1)cc ′ h ′ = µh, (18) 
and, hence,

∆ S N-1 w(σ) + µw(σ) = ε λ w(σ)|w(σ)| q-1 . (19) 
From [START_REF] Véron | Some existence and uniqueness results for solution of some quasilinear elliptic equations on compact Riemannian manifolds[END_REF] we have |h(r)| = (λb 2 )

-1
q-1 . Hence, the function |h| is proportional to b -2 q-1 as long as it does not vanish. For continuity reasons, this implies that |h(r)| = (λb 2 ) -1 q-1 on the whole I. In particular, h does not vanish on I and one can assume, without loss of generality, that

h = b -2 q-1 .
Indeed, it is clear that if u is a solution of (4) then -u is also a solution.

On the other hand, replacing h by λ

-1
q-1 h and w by λ 1 q-1 w, the solution u remains unchanged and the PDE (19) reduces to [START_REF] Ni | Uniqueness of solutions of nonlinear Dirichlet problems[END_REF]. Finally, replacing h by b -2 q-1 in (18) one gets [START_REF] Ni | Uniqueness and nonuniqueness for positive solutions of ∆u + f (u, r) = 0[END_REF]. Conversely, it is easy to check that if conditions (i) and (ii) are satisfied, then the function u(r, σ) = b 2 1-q (r)w(σ), where w is a nonconstant solution of [START_REF] Ni | Uniqueness of solutions of nonlinear Dirichlet problems[END_REF], is a solution of (9).

Study of the ODE

In this section we investigate the existence of 2π-periodic solutions of the ODE [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF] w

′′ (θ) + µw(θ) = εw(θ)|w(θ)| q-1
according to the values of the parameters ε, q and µ.

In order to transform the ODE into a dynamical system we put x = w and y = w ′ . We then get (S)

   x ′ = P (y) := y, y ′ = Q(x) := -µx + εx|x| q-1 .
The origin is either a critical point (q > 1) or the only singular point (0 < q < 1) of the system (S). Notice that solutions of (6) satisfy

w ′2 (t) = w ′2 (0) -µ w 2 (t) -w 2 (0) + 2ε q + 1 |w(t)| q+1 -|w(0)| q+1 . (20)
Equivalently, the orbit of (S) passing through the point (x 0 , y 0 ) is given by the equation

y 2 -y 2 0 = -µ x 2 -x 2 0 + 2ε q + 1 |x| q+1 -|x 0 | q+1 .
If an orbit of (S) intersects one of the coordinates axes, then the intersection occurs perpendicularly (indeed, if (x(t), y(t)) satisfies (S), then x(t 0 ) = 0 implies y ′ (t 0 ) = 0 and y(t 0 ) = 0 implies x ′ (t 0 ) = 0). Moreover, the system is clearly invariant under the transformations Φ x : (t, x, y) → (-t, -x, y) and Φ y : (t, x, y) → (-t, x, -y). The following lemma is a quasi-immediate consequence of these observations. Lemma 2 The coordinates axes are axes of symmetry of the dynamical system (S) and the origin is a center of symmetry.

Any orbit which intersects both the two coordinates axes is necessarily closed.

3.1 Case q > 1 and ε = -1

3.1.1 Assume µ ≥ 0
A classical study of the phase plane of the system (S) in this case shows that all solutions are periodic that turn around the origin. This can be seen considering for example the following Lyapounov function

E(w, w ′ ) := µw 2 + 2 q + 1 |w| q+1 + w ′2 .
Moreover, periodic solutions are given by the equation

E(x, y) = y 2 0
where y 0 = y(0) = w ′ (0).

Lemma 3

The period function y 0 ∈ (0, ∞) → T (y 0 ), where T (y 0 ) is the period of the solution of (S) passing through the point (0, y 0 ), is decreasing with

T (0, ∞) = (0, 2π √ µ ) if µ > 0 (0, ∞) if µ = 0.
Proof. Notice that P is homogeneous and Q is sub homogeneous of degree 1 (indeed, Q(ν x) -νQ(x) = (νν q )x q < 0 for all x > 0 and all ν > 1). Applying [8, Theorem 3], we get the monotony of the period function.

Let O be the orbit of a periodic solution w such that w(0) = 0 and w ′ (0) = s, with s > 0. For symmetry reasons, it suffices to work with the quarter of the orbit lying in the region (x ≥ 0) ∩ (y ≥ 0). In this region, one has, from (20), w ′ (t) = s 2 -U (w(t)), where U (x) = µx 2 + 2 q+1 x q+1 . Denoting by (x(s), 0) the first intersection point of the orbit with the x-axis, we have w(T (s)/4) = x(s), U (x(s)) = s 2 and, then,

T (s) = 4 x(s) 0 dx s 2 -U (x) = 4 1 0 x(s)dτ U (x(s)) -U (x(s)τ ) = 4 1 0 dτ (1 -τ 2 )µ + 2 q+1 x(s) q-1 (1 -τ q+1 )
. Since x(s) → 0 as s → 0, and

1 0 dτ √ (1-τ 2 )
= π 2 , we deduce using standard convergence results, A direct consequence of Lemma 3 is the following Proposition 1 Assume that q > 1, µ ≥ 0 and ε = -1. Then for all integers k > √ µ the ODE (6) admits a unique (up to sign) 2π k -periodic solution. Moreover, all the solutions are sign changing.

lim s→0 T (s) = 2π √ µ if µ > 0 ∞ if µ = 0. Since x(s) → ∞ as s → ∞,

Assume µ < 0

This case was studied by Bidaut-Véron and Bouhar [START_REF] Bidaut-Véron | On Characterization of solutions of some nonlinear differential equations and application[END_REF]. They obtained the following Proposition 2 ([2, Lemma 1.1 and Lemma 1.2]) Assume that µ < 0, q > 1 and ε = -1. Then 1. For all positive integer k there exists a unique (up to sign) sign changing 2π k -periodic solution of the ODE (6). 2. The ODE (6) admits positive 2π-periodic solutions if and only if -µ(q-1) > 1. Moreover, in this case, for any integer 1 < k < -µ(q -1), the ODE (6) admits a unique positive 2π k -periodic solution.

3.2 Case q > 1 and ε = +1

3.2.1 Assume µ ≤ 0
This is an obvious case since the Laplace operator w → w ′′ is nonpositive on the circle. Therefore, the only periodic solution of ( 6) is the trivial one w = 0.

Assume µ > 0

This case was studied by Chafee and Infante [START_REF] Chafee | A bifurcation problem for a nonlinear partial differential eqution of parabolic type[END_REF]. Here we give a different approach based on the analysis of the dynamical system (S).

A direct calculation shows that the critical points of (S) are the origin and the two points (-c, 0) and (c, 0), where c = µ 1 q-1 . The origin is a center while the two others are saddle points.

A classical study of the dynamical system gives the following Lemma 4 Assume that µ > 0, q > 1 and ε = +1. Then the dynamical system (S) satisfies the following properties:

1. There exists a unique heteroclinic orbit emanating from (-c, 0) which tends to (c, 0) as t → ∞ in the upper half plane and one heteroclinic orbit emanating from (c, 0) which tends to (-c, 0) as t → ∞ in the lower half plane. The equations of these orbits are given by

y 2 = -µ x 2 -c 2 + 2 q + 1 |x| q+1 -c q+1 .
2. Every point in the open bounded region delimited by these two heteroclinic orbits belongs to a periodic orbit which turns around the origin.

3. The period function y 0 ∈ (0, γ) → T (y 0 ), where T (y 0 ) is the period of the solution passing through the point (0, y 0 ) and γ = µc 2 -2 q+1 c q+1 , is increasing with T (0, γ) = 2π √ µ , ∞ .

Proof. By classical arguments one can show that for y 0 > 0 small enough, orbits emanating from (0, y 0 ) turn around the origin, while for y 0 > 0 large enough, they still contained in a half plane {y > α} for some α > 0. This ensures the existence, and by regularity, the uniqueness, of the heteroclinic orbits described above.

To study the period function, one follows the same arguments as in the proof of Lemma 3 (in this case, the expression of U must be U (x) = µx 2 -2 q+1 x q+1 ). We get

T (s) = 4 x(s) 0 dx s 2 -U (x) = 4 1 0 x(s)dτ U (x(s)) -U (x(s)τ ) = 4 1 0 dτ µ(1 -τ 2 ) -2 q+1 x(s) q-1 (1 -τ q+1 )
.

Hence, lim s→0 T (s) = 4 √ µ 1 0 dτ √ 1-τ 2 = 2π √ µ . Since x(s) → c = µ 1 q-1 as s → γ = U (c) (recall that U (x(s)) = s 2
) and that the integral

1 0 dτ µ(1 -τ 2 ) -2µ q+1 (1 -τ q+1 )
is infinite, we deduce that lim s→γ T (s) = ∞.

As a consequence we have Proposition 3 Assume that q > 1, µ > 0 and ε = +1. The ODE ( 6) admits 2π-periodic solutions if and only if µ > 1. Moreover, in this case, for all positive integer k < √ µ, the ODE ( 6) admits a unique (up to sign) 2π k -periodic solution which is sign changing.

3.3 Case 0 < q < 1 and ε = -1

3.3.1 Assume µ ≥ 0
The system (S) is of class C 1 in R 2 \{O}, the origin being its unique singular point. However the analysis is almost the same as for q > 1. Indeed, using Bendixson-Poincaré theory, closed orbits must turn around the origin. Using arguments like in the proof of Lemma 3 and the Lyapounov function E(w, w ′ ) = µw 2 + 2 q + 1 w q+1 + w ′2 , one can show the following Lemma 5 The period function y 0 ∈ (0, ∞) → T (y 0 ), where T (y 0 ) is the period of the solution of (S) passing through the point (0, y 0 ), is increasing with

T (0, ∞) = (0, 2π √ µ ) if µ > 0 (0, ∞) if µ = 0.
Consequently, one obtains the following Proposition 4 Assume that 0 < q < 1, µ ≥ 0 and ε = -1. Then for all integers k > √ µ, the ODE (6) admits a unique (up to sign) 2π k -periodic solution. Moreover, all these solutions are sign changing.

Assume µ < 0

A direct calculation shows that the critical points of (S) are the two saddle points (-c, 0) and (c, 0), where c = (-µ) 1 q-1 . The origin is a singular point. The proof of the following lemma is a slight modification of that of Lemma 4.

Lemma 6 Assume that µ < 0, 0 < q < 1 and ε = -1. Then the dynamical system (S) satisfies the following properties:

1. There exists a unique heteroclinic orbit emanating from (-c, 0) which tends to (c, 0) as t → ∞ in the upper half plane and one heteroclinic orbit emanating from (c, 0) which tends to (-c, 0) as t → ∞ in the lower half plane. The equations of these orbits are given by

y 2 = -µ x 2 -c 2 + 2 q + 1 x|x| q -c q+1 .
2. Every point, except the origin, in the bounded region delimited by these two heteroclinic orbits belongs to a periodic orbit which turns around the origin.

3. The period function y 0 ∈ (0, γ) → T (y 0 ), where T (y 0 ) is the period of the solution passing through the point (0, y 0 ) and γ = µc 2 + 2 q+1 c q+1 , is increasing with T (0, γ) = (0, ∞).

Proof. The existence and uniqueness of the heteroclinic orbits rely on the same observation as in the proof of Lemma 4. Moreover, using the same arguments as in the proof of Lemma 3, one obtains for the period function (here, we have U (x) = µx 2 + 2 q+1 x q+1 ),

T (s) = 4 x(s) 0 dx s 2 -U (x) = 4 1 0 x(s)dτ U (x(s)) -U (x(s)τ ) = 4x(s) 1-q 2 1 0 dτ µx(s) 1-q (1 -τ 2 ) + 2 q+1 (1 -τ q+1 )
.

As before, we deduce that lim s→0 T (s) = 0 and, since x(s) → c = (-µ)

1 q-1 as s → γ = U (c), lim s→γ T (s) = 4 √ -µ 1 0 dτ 2 q+1 (1 -τ q+1 ) -(1 -τ 2 ) = +∞.
As a consequence we have Proposition 5 Assume that µ < 0, 0 < q < 1 and ε = -1. For all positive integer k, the ODE (6) admits a unique (up to sign) 2π k -periodic solution. Moreover, all these solutions are sign changing.

3.4 Case 0 < q < 1 and ε = +1

3.4.1 Assume µ ≤ 0
As in subsection 3.2.1, in this case the only periodic solution is the trivial one.

Assume µ > 0

The critical points of the system (S) are the two points (-c, 0) and (c, 0), with c = µ 1 q-1 , and they are centers.

Remark 1 Notice that Q ′ (x) = -µ + q|x| q-1 is negative for x > c. Hence, Q(x) is positive for 0 < x < c and negative and decreasing for x > c.

Lemma 7

The orbits of the dynamical system (S) never admit horizontal or vertical asymptotes.

Proof. The existence of a vertical asymptote for (x(t), y(t)) means that there exists a ∈ R such that x(t) → a and y(t) → ±∞ as t → ∞, which contradicts the equation x ′ (t) = y(t).

In a similar manner, we can exclude horizontal asymptotes by noticing that y ′ (t) = Q(x(t)) with Q(x) → ±∞ as x → ±∞.

Lemma 8

1. Every orbit which intersects the y-axis at y 0 = 0 is periodic and turns around the origin and the two critical points.

2. Every orbit which intersects the x-axis at x 0 ∈ (-c, c), x 0 = 0 is periodic and turns around the critical point (c, 0) if x 0 > 0, and around the point (-c, 0) if x 0 < 0.

Proof. 1. Using time shift invariance and symmetry, one can assume that the orbit starts at (0, y 0 ) with y 0 > 0. From y ′ = Q(x) and Lemma 7, one deduces that y increases for 0 < x < c, then decreases for x > c and intersects the x-axis at finite time. Applying Lemma 2 the orbit is periodic.

2. By the same analysis, every orbit which starts at (x 0 , 0) with 0 < x 0 < c must intersect the x-axis at finite time and, hence, is periodic. By symmetry the same result holds for -c < x 0 < c.

Lemma 9 There exists exactly one homoclinic-like orbit emanating from the origin in the right (resp. left) half-plane and enclosing the critical point (c, 0) (resp. (-c, 0)). Moreover the equation of this orbit is given by

y 2 + µx 2 = 2 1 + q |x| 1+q . ( 21 
)
Remark 2 In the particular case µ = 4 (1-q) 2 , which corresponds to the Euclidean metric, the orbit (21) could be parametrized by (x(t), x ′ (t)) where

x(t) := x * | sin(t)| √ µ (22) with x * := 2 (1 + q)µ 1 1-q .
Proof. Existence. Integrating the differential equation dy dx = -µx + x q y from 0 to t, we get

y 2 + U (x) = y 2 (0) + U (x(0)), (23) 
where U (x) := µx 2 -2 q+1 x q+1 . Thus the equation of the orbit passing through the origin is given by

y 2 = -U (x) = -µx 2 + 2 q + 1 x q+1 .
Uniqueness. Since the origin is a singular point, we cannot use classical theorems to deduce uniqueness of the special homoclinic orbits given by (21).

To show uniqueness, consider the change of variables X := ϕ(x) and Y := y, where y = ϕ(x) is the equation of the upper part of the positive special homoclinic orbit defined by (21). Then

X ′ = d dt (ϕ(x)) = x ′ ϕ ′ (x) = yϕ ′ (x) with ϕ ′ (x) = Q(x)/ϕ(x). On the other hand, Y ′ = y ′ = Q(x). Thus X ′ = Q(x)y/ϕ(x) = Y ′ Y /X, i.e. d dt X 2 = 2X ′ X = 2Y ′ Y = d dt Y 2 . Therefore X 2 (t) -Y 2 (t) = X 2 (0) -Y 2 ( 
0) which gives the uniqueness.

Variation of the period

Sign changing solutions

Lemma 10 The period function y 0 ∈ (0, ∞) → T (y 0 ), where T (y 0 ) is the period of the solution passing through the point (0, y 0 ), is decreasing and

T (0, ∞) = 2π √ µ , 4π (1-q) 
√ µ .

Proof. We follow the same arguments as in the proof of Lemma 3, we obtain, with the same notations. In this case, the expression of U is U (x) = µx 2 -2 q+1 x q+1 . We get

T (s) = 4 x(s) 0 dx s 2 -U (x) = 4 1 0 x(s)dτ U (x(s)) -U (x(s)τ ) = 4 1 0 dτ µ(1 -τ 2 ) -2 q+1 x(s) q-1 (1 -τ q+1 ) . Since x(s) → ∞ as s → ∞, we have lim s→∞ T (s) = 4 √ µ 1 0 dτ √ 1 -τ 2 = 2π √ µ .
On the other hand, when s goes to 0, x(s) tends to x * , the positive solution of U (x * ) = 0 (i.e. x q-1 * = q+1 2 µ). Therefore,

lim s→0 T (s) = 4 x * 0 dx -U (x) ,
and, using the change of variable x = x * sin 2 1-q t, we get

lim s→0 T (s) = 8 1 -q π 2 0 cos t dt 2 q+1 x q-1 * -µ sin 2 t = 8 (1 -q) √ µ π 2 0 dt = 4π (1 -q) √ µ .

Positive solutions

Observe that the homoclinic-like solution given by ( 22) is 2π

(1-q)

√ µ -periodic. On the other hand, the linearized equation at (c, 0) is

w ′′ + µ(1 -q)w = 0.
Roughly speaking the period function takes the value √ µ at the homoclinic-like orbit.

Lemma 11 The period function s ∈ (0, γ) → T (s), where T (s) is the period of the solution passing through the point (c, s) and γ > 0 such that γ

2 = -µc 2 + 2 q+1 c q+1 , is increasing with T (0, γ) = 2π √ µ(1-q) , 2π (1-q) 
√ µ .

Proof. For any s ∈ (0, γ) we denote by (y(s), 0) and (z(s), 0), with 0 < y(s) < c < z(s) < x * , the intersection points of the orbit passing through the point (c, s) with the x-axis. Following an idea of [START_REF] Aronson | Stabilization of solutions of degenerate nonlinear diffusion problem[END_REF] (see also [START_REF] Bidaut-Véron | On Characterization of solutions of some nonlinear differential equations and application[END_REF]), since y 2 = s 2 -U (x) + U (c), we have 

For the first inequality, it suffices to show that

F := U ′2 + 2U ′′ [U (c) -U (z)] + U ′3 U (3) (c) 3U ′′2 (c) ≥ 0
on (c, x * ). In fact we will show that this is true even on (0, +∞). Indeed, notice first that F ′ = 2U (3) [U (c) -U ] + U (3) (c) U ′′2 (c) U ′2 U ′′ ≤ 0 on (0, q 1 1-q c). On the other hand, set H := -F U ′′ on (q 1 1-q c, ∞), then we have H ′ = -K U ′2 U (3) U ′′2 , where

K = -1 + U (3) (c) 3U ′′2 (c) 3 U ′′2 U (3) -U ′ .
Now,

K ′ = U (3) (c)U ′′ 3U ′′2 (c)(U ( 3 
) ) 2 5(U (3) ) 2 -3U (4) U ′′ > 0 with K(c) = 0, then K is nonpositive on (q 1 1-q c, c) and nonnegative on (c, ∞). Hence, H ′ is nonnegative on (q 1 1-q c, c) and nonpositive on (c, ∞) and since H(c) = 0 we get H ≤ 0. Thus F ≥ 0 on (q 1 1-q c, ∞), Therefore, F ≥ 0 on (0, ∞). In a similar manner, one can show the second inequality in (24).

The following proposition summarizes the consequences of Lemmas 9, 10 and 11.

  we obtain using the same calculations, lim s→∞ T (s) = 0.

2 - 1 0 1 -t 2 .z 1 -t 2 . 2 U

 2112122 U (u) + U (c) = (z ′ (st)y ′ (st)) dt √In particular, since γ 2 = -U (c), end of the proof ofLemma 10). On the other hand, since y(s) and z(s) satisfy 0 = U (y(s)) -U (c)s 2 = U (z(s)) -U (c)s 2 , show the monotony of the function T , we first observe that ′′ (st)y ′′ (st) tdt √ Thus, it suffices to show that z ′′y ′′ is nonnegative. From the equation U (z(s)) -U (c)s 2 = 0 we get z ′ (s) = 2s/U ′ (z(s)) and, hence,z ′′ (s) = 2 U ′2 (z(s)) + 2(U (c) -U (z(s)))U ′′ (z(s)) U ′3 (z(s)) .Since z(s) → c as s → 0, U is smooth, U ′ (c) = 0 and U ′′ (c) = 0, expanding U up to order 4 in the neighborhood of c shows thatlim s→0 ′2 (z(s)) + 2(U (c) -U (z(s)))U ′′ (z(s)) U ′3 (z(s)) = -2U (3) (c) U ′′2 (c) . Thus, lim s→0 z ′′ (0) = -2U (3) (c) 3U ′′2 (c) = lim s→0 y ′′ (0).Let us show that z ′′ (s) ≥ -2U(3) (c) U ′′2 (c) ≥ y ′′ (s).

1-q (r)w(σ), where w is a nonconstant solution of[START_REF] Ni | Uniqueness of solutions of nonlinear Dirichlet problems[END_REF].

The description of the set of non-radial pseudo-radial solutions of these equations is the same as for equations ( 27), ( 28) and ( 29) respectively. Indeed, the statement of Theorem 3 remains valid for equation (35) provided that M |x| α + N |x| -α is replaced by A cosh αr + B sinh αr. Similarly, Theorem 4 applies to (36) replacing M +N ln |x| by A+Br, and Theorem 5 applies to (37) replacing M cos(α ln |x|) + N sin(α ln |x|) by A cos αr + B sin αr.

The first author is supported by a grant from the Lebanese University.

Proposition 6 Assume that µ > 0, ε = +1 and 0 < q < 1. Then 1. The ODE [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF] admits nonconstant 2π-periodic sign changing solutions if and only if µ > 1. Moreover, in this case, for all integer k ∈ 1-q 2

√ µ, √ µ the ODE (6) admits a unique (up to sign) sign changing 2π k -periodic solution. 2. The ODE [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF] admits nonconstant 2π-periodic positive solutions if and only if (1q) √ µ, µ(1q) ∩ N = ∅. Moreover, in this case, for all integer (1q) √ µ < k < µ(1q), the ODE (6) admits a unique positive 2π k -periodic solution. 3. There exists a unique 2π (1-q) √ µ -periodic nonnegative solution of [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF]. It vanishes only once in a period and its orbit is given by (21).

Applications

In this section we apply the results above to the existence problem of nonradial pseudo-radial solutions of the PDE (4) and its particular case (2).

Case of a metric

In this case b(r) = ra(r). Note that ∆ g u = 1 a 2 (r) ∆u, where ∆ is the Euclidean Laplacian. Hence, the PDE ∆ g u = εu|u| q-1 is equivalent to the following one ∆u = εa 2 (|x|)u|u| q-1 (25)

that we consider on a disc or an annular domain Ω :

Theorem 2 If the equation ( 25) admits a non-radial pseudo-radial solution in Ω, then the function r → a(r) has one of the three following forms:

where α > 0 and

where M, N ∈ R are such that M + N ln r > 0 on (R 1 , R 2 ), or

where α > 0 and M, N ∈ R.

Proof. Applying Theorem 1, the equation ( 18) becomes (with c = b/a = r and h = b

The general solution of (26) is given by

Hence, for our purpose, the only relevant equations of the form ∆u = εa 2 (|x|)u|u| q-1 in Ω are

where α, M and N are as in Theorem 2. For (27), the set of pseudo-radial non-radial solutions can be described in the following way:

1. If ε = +1 and 0 < α ≤ 1, then any pseudo-radial solution of (27) is radial.

Define, for ε

Then the set of sign changing non-radial pseudo-radial solutions of ( 27) is parameterized by A(ε, q, α) in the sense that it consists in the functions

where, for every k ∈ A(ε, q, α), w k is the unique (up to sign) sign changing 2π k -periodic solution of (6).

3. Equation ( 27) admits positive non-radial pseudo-radial solutions if and only if ε = +1, 0 < q < 1 and B(+1, q, α) := (α(1-q), α √ 1q)∩ N = ∅. Moreover, all these solutions are of the form

where, for every k ∈ B(+1, q, α), v k is the unique positive 2π k -periodic solution of (6).

4. If (1q)α ∈ N, then equation ( 27) admits a unique nonnegative pseudo-radial solution given by

where v is the unique nonnegative periodic solution of (6) (corresponding to the homoclinic-like orbit) which vanishes once in a period.

Concerning (28), we have the following

Theorem 4

1. If ε = +1, then, for every q > 0, q = 1, any pseudoradial solution of (28) is radial.

2. If ε = -1, then, for every q > 0, q = 1, the set of non-radial pseudoradial solutions of ( 28) is parameterized by N * and consists in the functions

where, for every k ∈ N * , w k is the unique (up to sign) sign changing 2π k -periodic solution of (6). Remark 3 A particular case of ( 27) is ∆u = ε|x| p u|u| q-1 , p ∈ R\ {-2} .

(30)

One can apply Theorem 3 with α = p+2 q-1 , (M, N ) = (1, 0) if p+2 q-1 < 0 and (M, N ) = (0, 1) if p+2 q-1 > 0. The case p = -2 corresponds to (28) with M = 1 and N = 1 and is covered by Theorem 4.

Concerning (29), we have the following

Theorem 5

1. If ε = +1, then, for every q > 0, q = 1, any pseudoradial solution of (29) is radial.

2. For ε = -1, the set of sign changing non-radial pseudo-radial solutions of ( 29) is parameterized by N * and consists in the functions

where, for every k ∈ N * , w k is the unique (up to sign) sign changing 2π k -periodic solution of (6). 3. Equation ( 29) admits positive non-radial pseudo-radial solutions if and only if ε = -1, q > 1 and α √ q -1 > 2. Moreover, all these solutions are of the form

where, for every k ∈ (1, α √ q -1) ∩ N, v k is the unique positive 2π kperiodic solution of (6).

4.2

The spherical case: a(r) = 1 and b(r) = sin r

In this case, condition (12) implies

which is only possible if q = 3 and µ = 1. Applying Propositions 1 and 3 we get Theorem 6 Let Ω ⊂ S 2 be a rotationally symmetric domain of the standard sphere and consider in Ω the following equation:

where ∆ S 2 is the standard Laplacian of S 2 .

i) If ε = +1 or q = 3, then any pseudo-radial solution of (32) is radial.

ii) The equation ∆ S 2 u = -u 3 admits infinitely many non-radial pseudoradial solutions in Ω which are all of the form

where, for any integer k ≥ 2, w k is the unique (up to sign) 2π k -periodic solution of (6).

4.3

The hyperbolic metric case: a(r) = 1 and b(r) = sinh r Here also, condition [START_REF] Ni | Uniqueness and nonuniqueness for positive solutions of ∆u + f (u, r) = 0[END_REF] is satisfied if and only if q = 3 and µ = 1. Like in the spherical case, we get the following Theorem 7 Let Ω ⊂ H 2 be a rotationally symmetric domain of the hyperbolic plane and consider in Ω the following equation:

where ∆ H 2 is the Laplacian of H 2 .

i) If ε = +1 or q = 3, then any pseudo radial solution of (33) is radial.

ii) The equation ∆ H 2 u = -u 3 admits infinitely many non-radial pseudoradial solutions in Ω which are all of the form

where, for any integer k ≥ 2, w k is the unique (up to sign) 2π k -periodic solution of (6).

Case of a metric conformal to the cylindrical one: a = b

The standard metric of the cylinder C = (R 1 , R 2 ) × S 1 is the product metric dr 2 + dθ 2 , its Laplacian is given by ∆

is then equivalent to ∆ g u = εu|u| q-1 .

Condition [START_REF] Ni | Uniqueness and nonuniqueness for positive solutions of ∆u + f (u, r) = 0[END_REF] gives, with a = b, a 1+q 1-q a ′ ′ = µ 2 (1q)a 2 1-q .

Setting γ = 1+q 1-q , this last equation becomes (a γ+1 ) ′′ = µa γ+1 which gives

where A and B are such that the right hand side is positive on (R 1 , R 2 ). Therefore, for our purpose, the only relevant equations of the form (34) are ∆ C u = ε[A cosh αr + B sinh αr] 1-q u|u| q-1 , (35) ∆u = ε[A + Br] 1-q u|u| q-1 , (36) and ∆u = ε[A cos αr + B sin αr] 1-q u|u| q-1 ,

where α > 0.