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Pseudo-radial solutions of semi-linear elliptic

equations

on symmetric domains

Ahmad El Soufi and Mustapha Jazar∗

Abstract

In this paper we investigate existence and characterization of non-radial
pseudo-radial (or separable) solutions of some semi-linear elliptic equa-
tions on symmetric 2-dimensional domains. The problem reduces to the
phase plane analysis of a dynamical system. In particular, we give a full
description of the set of pseudo-radial solutions of equations of the form
∆u = ±a2(|x|)u|u|q−1, with q > 0, q 6= 1. We also study such equations
over spherical or hyperbolic symmetric domains.
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35B99, 35C99
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mains, Ordinary differential equations

1 Introduction

A very rich literature has been devoted during the last decades to the study
of semi-linear elliptic equations of the form

∆u = εu|u|q−1 (1)

over a symmetric Euclidean domain Ω, where ε = ±1 and q is a positive
real number, q 6= 1. In particular, it is known that when the domain Ω is
an Euclidean ball, then any positive solution of (1) with q > 1, satisfying
Dirichlet boundary conditions, is radial (see [6], see also [7] for the case Ω =
R

n), while on an annular domain Ω = {0 < R < |x| < R + c}, the equation
(1) admits positive non-radial solutions for ε = −1 and any q > 1 (see
[3, 5, 14, 16]). See also the important work of Rabinowitz [13] where sufficient
conditions are given for the existence of infinitely many non necessarily radial
solutions to such equations.

∗The first author is supported by a grant from the Lebanese University.
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The existence of non-radial solutions is generally based on minimization
techniques (see [16] for a survey). Another natural approach toward the
existence of non-radial solutions consists in searching solutions of the form

u(r, θ) = h(r)w(θ),

where (r, θ) are polar coordinates and w is a 2π-periodic function. Such a
solution is sometimes called “separable” or “pseudo-radial” (see for instance
[9]). Of course, u is non-radial as far as w is nonconstant. Moreover, we
say that u is of mode k ∈ N if the least period of w is 2π

k
(Thus, radial

solutions could be considered as being of mode +∞). Notice that singular
pseudo-radial solutions play an important role in the study and classification
of singularities of solutions of semi-linear equations.

In the present work, we make use of this last approach in order to inves-
tigate the existence of possibly singular non-radial solutions to

(a) “weighted” equations of the form

∆u = εa2(r)u|u|q−1, (2)

on a rotationally symmetric (non necessarily bounded) Euclidean do-
main Ω ⊂ R

2 (see for instance [10, 11, 12] for results concerning radial
solutions),

(b) equation (1) over rotationally symmetric non necessarily flat domains
like geodesic discs or annular domains of the sphere S

2, the hyperbolic
plane H

2, a revolution surface, etc.

Notice that our study includes the “sublinear” case 0 < q < 1 which is of
particular interest since it is not much treated in the literature.

The natural general setting in which these topics can be put is the follow-
ing. We consider Equation (1) on I × S

1, where I is an interval, I ⊂ (0,∞),
endowed with a Riemannian metric of the form

g = a2(r)dr2 + b2(r)dθ2,

where a and b are two positive differentiable functions on I. The Laplace
operator associated with the metric g is given by

∆g =
1

a2

∂2

∂r2
+

1

ab

(

b

a

)′ ∂

∂r
+

1

b2

∂2

∂θ2
. (3)

Recall that a rotationally symmetric domain Ω ⊂ R
2, S

2 or H
2 can be

identified, using appropriate polar coordinates (r, θ), with a cylinder I × S
1

endowed with the Riemannian metric g = dr2 + b2(r)dθ2, with

b(r) =







r in the Euclidean case
sin r in the spherical case
sinh r in the hyperbolic case.
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Here, the r variable represents in each case the geodesic distance to the
center of the domain. On the other hand, the weighted equation ∆u =
εa2(r)u|u|q−1 of item (a) above is equivalent to the equation

∆gu = εu|u|q−1,

where g = a2(r)gR2 = a2(r)(dr2 + r2dθ2) is a Riemannian metric conformal
to the Euclidean one gR2 .

Hence, we consider for any Riemannian metric g = a2(r)dr2 + b2(r)dθ2

on I × S
1, the PDE

∆gu = εu|u|q−1, (4)

where ε = ±1, and look for non-radial pseudo-radial solutions. We first
show (Theorem 1) that a necessary and sufficient condition for equation (4)
to admit such a non-radial pseudo-radial solution consists in the existence
of a real number µ such that:

(i) (condition on the metric g)

(

a−1b
2

1−q b′
)′

= µ
(1 − q)

2
ab

1+q

1−q , (5)

(ii) the following ODE admits a nonconstant 2π-periodic solution

w′′(θ) + µw(θ) = εw(θ)|w(θ)|q−1. (6)

Moreover, when (i) and (ii) are satisfied, then u(r, θ) = b
2

1−q (r)w(θ) is a
solution of (4). Notice that a more general version is actually given in
Theorem 1.

For example, condition (i) is satisfied for the Euclidean metric (a = 1
and b = r) with µ = 4

(1−q)2
, the spherical metric (a = 1 and b = sin r) with

µ = 1 and q = 3, and the hyperbolic metric (a = 1 and b = sinh r) with
µ = 1 and q = 3. On the other hand, in the conformal case (i.e. b(r) =
ra(r)), a consequence of condition (i) is that, if the weighted equation ∆u =
εa2(r)u|u|q−1 admits a non-radial pseudo-radial solution in a rotationally
symmetric Ω ⊂ R2, then the function a(r) has one of the following forms
(Theorem 2):

a(r) = r−1(Mrα + Nr−α)
1−q

2 ,

a(r) = r−1(M + N ln r)
1−q

2 ,

or
a(r) = r−1[M cos(α ln r) + N sin(α ln r)]

1−q

2

with M , N ∈ R and α > 0.
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Condition (ii) leads us to study the ODE (6) and seek its 2π-periodic
solutions, according to the values of ε, q and µ. Actually, this study consti-
tutes the main part of this paper. The case ε = +1, 0 < q < 1 and µ > 0 is
the more interesting and novel one because of the lack of regularity of the
nonlinear term at the origin. Notice that some earlier results concerning
the ODE (6) have been obtained for particular values of ε, q and µ (see for
instance [2, 4, 17]).

In particular, for the weighted equation

∆u = εr−2(Mrα + Nr−α)1−qu|u|q−1, (7)

in R
2\ {O}, the corresponding µ is equal to α2 and we obtain (Theorem 3),

as an application of the ODE analysis, that :

• if ε = −1, then, for every q 6= 1, α > 0, equation (7) admits for any
integer k > α, a unique (up to sign) pseudo-radial solution of mode k
which is sign changing,

• if ε = +1, q > 1 and α > 1, then for every k ≥ 1, equation (7) admits
a unique (up to sign) pseudo-radial solution of mode k which is sign
changing,

• if ε = +1, 0 < q < 1 and α > 1, then equation (7) admits, for any inte-
ger k ∈ (1−q

2 α,α), a unique (up to sign) sign changing pseudo-radial so-
lution of mode k, and, for any possible integer k ∈ ((1−q)α,

√
1 − q α),

a unique positive pseudo-radial solution of mode k. Moreover, if
(1− q)α is an integer, then there exists a unique nonnegative pseudo-
radial solution of mode (1 − q)α,

• if ε = +1 and 0 < α ≤ 1, then any pseudo-radial solution of (7) is
radial.

In all cases, the radial part of pseudo-radial solutions is given by h(r) =
Mrα + Nr−α.

In a similar manner, we describe the set of non-radial pseudo-radial
solutions of the weighted equations (see Theorems 4 and 5)

∆u = εr−2[M + N ln r]1−qu|u|q−1

and
∆u = εr−2[M cos(α ln r) + N sin(α ln r)]1−qu|u|q−1.

Concerning the equation ∆S2u = εu|u|q−1 (resp. ∆H2u = εu|u|q−1) on a
rotationally symmetric domain of the sphere (resp. the hyperbolic plane),
it turns out that any pseudo-radial solution is radial unless for ε = +1 and
q = 3 where, for any integer k ≥ 2, there exists a unique (up to sign)
pseudo-radial solution of mode k which is sign changing.
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The paper is organized as follows. In the second section we prove The-
orem 1 giving necessary and sufficient conditions for equation (4) to admit
a non-radial pseudo-radial solution. The third section is devoted to the
study of the resulting ODE (6). In the last section we apply our results to
answer completely the question of existence of positive and sign-changing
non-radial pseudo-radial solutions in the conformal case as well as the case
of symmetric domains of standard spaces.

2 A general result

Let Ω ⊂ R
N be a rotationally symmetric domain (e.g. a ball, a spherical

shell, R
N\{O}, etc.) that we parametrize by spherical coordinates (r, σ) ∈

I × SN−1 7→ rσ ∈ Ω. We endow Ω (or, equivalently, I × SN−1) with the
Riemannian metric

g = a2(r)dr2 + b2(r)dσ2,

where a and b are two positive differentiable functions on I. The Laplace-
Beltrami operator associated with the metric g is given by

∆g =
1

b2

[

c2 ∂2

∂r2
+ (N − 1)cc′

∂

∂r
+ ∆SN−1

]

, (8)

where c2 = b2

a2 and ∆SN−1 stands for the Laplace-Beltrami operator of the
standard sphere. Consider the equation

∆gu = εu|u|q−1, (9)

where ε = ±1 and q is a positive real number, q 6= 1. A solution u in Ω
is said to be “pseudo-radial” if it can be written, with respect to the (r, σ)
coordinates, as

u(r, σ) = h(r)w(σ).

Theorem 1 Equation (9) admits a non radial pseudo-radial solution if and
only if there exists µ ∈ R such that:

(i) (Condition on the metric g)

c2(b
2

1−q )′′ + (N − 1)cc′(b
2

1−q )′ = µb
2

1−q . (10)

(ii) the following equation admits a nonconstant solution on S
N−1

∆SN−1w + µw = εw|w|q−1. (11)

Moreover, when (i) and (ii) are satisfied, then any non radial pseudo-radial

solution of (9) is of the form u(r, σ) = b
2

1−q (r)w(σ), where w is a noncon-
stant solution of (11).
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Notice that in dimension N=2, the condition on the metric (10) reads

(

a−1b
2

1−q b′
)′

=
µ(1 − q)

2
ab

1+q

1−q , (12)

while the equation (11) reduces to the ODE (6)

w′′(θ) + µw(θ) = εw(θ)|w(θ)|q−1,

where w is a 2π-periodic function.

The proof of Theorem 1 relies on the following elementary lemma.

Lemma 1 Let a, b and c be three nontrivial real-valued functions on a set
X and let α, β and γ be three differentiable functions on an interval I ⊂ R

such that γ admits no zeros in I. Assume that, for every (x, y) ∈ I × X,

α(x)a(y) + β(x)b(y) = γ(x)c(y), (13)

then,

• either α and β are proportional to γ on I,

• or a, b and c are mutually proportional on X.

Proof. Dividing (13) by γ(x) and, then, differentiating with respect to the
x variable, one obtains, for every (x, y) ∈ I × X,

ᾱ(x)a(y) + β̄(x)b(y) = c(y) (14)

and
ᾱ′(x)a(y) = −β̄′(x)b(y), (15)

where ᾱ := α
γ

and β̄ := β
γ
. Two cases are to be considered.

1. Assume that ab ≡ 0. Multiplying (15) by a and, then, by b, we deduce
that ᾱ′ = β̄′ ≡ 0. Hence, ᾱ and β̄ are constants which means that α
and β are proportional to γ on I.

2. Assume that there exists y0 ∈ X such that a(y0)b(y0) 6= 0. Setting
K = b(y0)/a(y0), we deduce from (15) that ᾱ′(x) = −Kβ̄′(x), that
is ᾱ(x) = −Kβ̄(x) + C for some C ∈ R, and, either ᾱ′ = β̄′ ≡ 0 or
b(y) = Ka(y). Therefore, using (14), either α and β are proportional
to γ on I, or b and c are proportional to a on X.

�

Proof of Theorem 1. If u(r, σ) = h(r)w(σ) is a non-radial pseudo-radial
solution of (9), then

[

c2h′′(r) + (N − 1)cc′h′(r)
]

w(σ) + h(r)∆SN−1w(σ) =

εb2(r)h(r)|h(r)|q−1w(σ)|w(σ)|q−1 . (16)
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Let us apply the last lemma on I1 × S
N−1, where I1 is a subinterval on

which the function h has no zeros. Since w is not constant (u is assumed to
be non-radial) and q 6= 1, the function w|w|q−1 can never be proportional
to w on S

N−1. Hence, there exist two constants λ and µ such that

h(r) = λb2(r)h(r)|h(r)|q−1, (17)

c2h′′ + (N − 1)cc′h′ = µh, (18)

and, hence,

∆SN−1w(σ) + µw(σ) =
ε

λ
w(σ)|w(σ)|q−1 . (19)

From (17) we have |h(r)| = (λb2)
− 1

q−1 . Hence, the function |h| is pro-

portional to b−
2

q−1 as long as it does not vanish. For continuity reasons, this

implies that |h(r)| = (λb2)
− 1

q−1 on the whole I. In particular, h does not
vanish on I and one can assume, without loss of generality, that

h = b−
2

q−1 .

Indeed, it is clear that if u is a solution of (4) then −u is also a solution.

On the other hand, replacing h by λ
− 1

q−1 h and w by λ
1

q−1 w, the solution u
remains unchanged and the PDE (19) reduces to (11). Finally, replacing h

by b
− 2

q−1 in (18) one gets (12).
Conversely, it is easy to check that if conditions (i) and (ii) are satisfied,

then the function u(r, σ) = b
2

1−q (r)w(σ), where w is a nonconstant solution
of (11), is a solution of (9). �

3 Study of the ODE

In this section we investigate the existence of 2π-periodic solutions of the
ODE (6)

w′′(θ) + µw(θ) = εw(θ)|w(θ)|q−1

according to the values of the parameters ε, q and µ.
In order to transform the ODE into a dynamical system we put x = w

and y = w′. We then get

(S)







x′ = P (y) := y,

y′ = Q(x) := −µx + εx|x|q−1.

The origin is either a critical point (q > 1) or the only singular point (0 <
q < 1) of the system (S). Notice that solutions of (6) satisfy

w′2(t) = w′2(0) − µ
(

w2(t) − w2(0)
)

+
2ε

q + 1

[

|w(t)|q+1 − |w(0)|q+1
]

. (20)
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Equivalently, the orbit of (S) passing through the point (x0, y0) is given by
the equation

y2 − y2
0 = −µ

(

x2 − x2
0

)

+
2ε

q + 1

[

|x|q+1 − |x0|q+1
]

.

If an orbit of (S) intersects one of the coordinates axes, then the intersec-
tion occurs perpendicularly (indeed, if (x(t), y(t)) satisfies (S), then x(t0) =
0 implies y′(t0) = 0 and y(t0) = 0 implies x′(t0) = 0). Moreover, the system
is clearly invariant under the transformations Φx : (t, x, y) 7→ (−t,−x, y)
and Φy : (t, x, y) 7→ (−t, x,−y). The following lemma is a quasi-immediate
consequence of these observations.

Lemma 2 The coordinates axes are axes of symmetry of the dynamical sys-
tem (S) and the origin is a center of symmetry.

Any orbit which intersects both the two coordinates axes is necessarily
closed.

3.1 Case q > 1 and ε = −1

3.1.1 Assume µ ≥ 0

A classical study of the phase plane of the system (S) in this case shows
that all solutions are periodic that turn around the origin. This can be seen
considering for example the following Lyapounov function

E(w,w′) := µw2 +
2

q + 1
|w|q+1 + w′2.

Moreover, periodic solutions are given by the equation

E(x, y) = y2
0

where y0 = y(0) = w′(0).

Lemma 3 The period function y0 ∈ (0,∞) 7→ T (y0), where T (y0) is the
period of the solution of (S) passing through the point (0, y0), is decreasing
with

T (0,∞) =

{

(0, 2π√
µ
) if µ > 0

(0,∞) if µ = 0.

Proof. Notice that P is homogeneous and Q is sub homogeneous of degree
1 (indeed, Q(ν x) − νQ(x) = (ν − νq)xq < 0 for all x > 0 and all ν > 1).
Applying [8, Theorem 3], we get the monotony of the period function.

Let O be the orbit of a periodic solution w such that w(0) = 0 and
w′(0) = s, with s > 0. For symmetry reasons, it suffices to work with the
quarter of the orbit lying in the region (x ≥ 0) ∩ (y ≥ 0). In this region,
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one has, from (20), w′(t) =
√

s2 − U(w(t)), where U(x) = µx2 + 2
q+1xq+1.

Denoting by (x(s), 0) the first intersection point of the orbit with the x-axis,
we have w(T (s)/4) = x(s), U(x(s)) = s2 and, then,

T (s) = 4

∫ x(s)

0

dx
√

s2 − U(x)
= 4

∫ 1

0

x(s)dτ
√

U(x(s)) − U(x(s)τ)

= 4

∫ 1

0

dτ
√

(1 − τ2)µ + 2
q+1x(s)q−1(1 − τ q+1)

.

Since x(s) → 0 as s → 0, and
∫ 1
0

dτ√
(1−τ2)

= π
2 , we deduce using standard

convergence results,

lim
s→0

T (s) =

{

2π√
µ

if µ > 0

∞ if µ = 0.

Since x(s) → ∞ as s → ∞, we obtain using the same calculations,

lim
s→∞

T (s) = 0.

�

A direct consequence of Lemma 3 is the following

Proposition 1 Assume that q > 1, µ ≥ 0 and ε = −1. Then for all
integers k >

√
µ the ODE (6) admits a unique (up to sign) 2π

k
-periodic

solution. Moreover, all the solutions are sign changing.

3.1.2 Assume µ < 0

This case was studied by Bidaut-Véron and Bouhar [2]. They obtained the
following

Proposition 2 ([2, Lemma 1.1 and Lemma 1.2]) Assume that µ < 0, q > 1
and ε = −1. Then

1. For all positive integer k there exists a unique (up to sign) sign chang-
ing 2π

k
-periodic solution of the ODE (6).

2. The ODE (6) admits positive 2π-periodic solutions if and only if −µ(q−
1) > 1. Moreover, in this case, for any integer 1 < k <

√

−µ(q − 1),
the ODE (6) admits a unique positive 2π

k
-periodic solution.
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3.2 Case q > 1 and ε = +1

3.2.1 Assume µ ≤ 0

This is an obvious case since the Laplace operator w 7→ w′′ is nonpositive
on the circle. Therefore, the only periodic solution of (6) is the trivial one
w = 0.

3.2.2 Assume µ > 0

This case was studied by Chafee and Infante [4]. Here we give a different
approach based on the analysis of the dynamical system (S).

A direct calculation shows that the critical points of (S) are the origin

and the two points (−c, 0) and (c, 0), where c = µ
1

q−1 . The origin is a center
while the two others are saddle points.

A classical study of the dynamical system gives the following

Lemma 4 Assume that µ > 0, q > 1 and ε = +1. Then the dynamical
system (S) satisfies the following properties:

1. There exists a unique heteroclinic orbit emanating from (−c, 0) which
tends to (c, 0) as t → ∞ in the upper half plane and one heteroclinic
orbit emanating from (c, 0) which tends to (−c, 0) as t → ∞ in the
lower half plane. The equations of these orbits are given by

y2 = −µ
(

x2 − c2
)

+
2

q + 1

[

|x|q+1 − cq+1
]

.

2. Every point in the open bounded region delimited by these two hetero-
clinic orbits belongs to a periodic orbit which turns around the origin.

3. The period function y0 ∈ (0, γ) 7→ T (y0), where T (y0) is the period of

the solution passing through the point (0, y0) and γ =
√

µc2 − 2
q+1cq+1,

is increasing with T (0, γ) =
(

2π√
µ
,∞

)

.

Proof. By classical arguments one can show that for y0 > 0 small enough,
orbits emanating from (0, y0) turn around the origin, while for y0 > 0 large
enough, they still contained in a half plane {y > α} for some α > 0. This
ensures the existence, and by regularity, the uniqueness, of the heteroclinic
orbits described above.

To study the period function, one follows the same arguments as in
the proof of Lemma 3 (in this case, the expression of U must be U(x) =
µx2 − 2

q+1xq+1). We get

T (s) = 4

∫ x(s)

0

dx
√

s2 − U(x)
= 4

∫ 1

0

x(s)dτ
√

U(x(s)) − U(x(s)τ)

10



= 4

∫ 1

0

dτ
√

µ(1 − τ2) − 2
q+1x(s)q−1(1 − τ q+1)

.

Hence, lims→0 T (s) = 4√
µ

∫ 1
0

dτ√
1−τ2

= 2π√
µ
. Since x(s) → c = µ

1
q−1 as s →

γ =
√

U(c) (recall that U(x(s)) = s2) and that the integral

∫ 1

0

dτ
√

µ(1 − τ2) − 2µ
q+1(1 − τ q+1)

is infinite, we deduce that lims→γ T (s) = ∞. �

As a consequence we have

Proposition 3 Assume that q > 1, µ > 0 and ε = +1. The ODE (6)
admits 2π-periodic solutions if and only if µ > 1. Moreover, in this case,
for all positive integer k <

√
µ, the ODE (6) admits a unique (up to sign)

2π
k

-periodic solution which is sign changing.

3.3 Case 0 < q < 1 and ε = −1

3.3.1 Assume µ ≥ 0

The system (S) is of class C1 in R
2\{O}, the origin being its unique singular

point. However the analysis is almost the same as for q > 1. Indeed, using
Bendixson-Poincaré theory, closed orbits must turn around the origin.

Using arguments like in the proof of Lemma 3 and the Lyapounov func-
tion

E(w,w′) = µw2 +
2

q + 1
wq+1 + w′2,

one can show the following

Lemma 5 The period function y0 ∈ (0,∞) 7→ T (y0), where T (y0) is the
period of the solution of (S) passing through the point (0, y0), is increasing
with

T (0,∞) =

{

(0, 2π√
µ
) if µ > 0

(0,∞) if µ = 0.

Consequently, one obtains the following

Proposition 4 Assume that 0 < q < 1, µ ≥ 0 and ε = −1. Then for all
integers k >

√
µ, the ODE (6) admits a unique (up to sign) 2π

k
-periodic

solution. Moreover, all these solutions are sign changing.
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3.3.2 Assume µ < 0

A direct calculation shows that the critical points of (S) are the two saddle

points (−c, 0) and (c, 0), where c = (−µ)
1

q−1 . The origin is a singular point.
The proof of the following lemma is a slight modification of that of

Lemma 4.

Lemma 6 Assume that µ < 0, 0 < q < 1 and ε = −1. Then the dynamical
system (S) satisfies the following properties:

1. There exists a unique heteroclinic orbit emanating from (−c, 0) which
tends to (c, 0) as t → ∞ in the upper half plane and one heteroclinic
orbit emanating from (c, 0) which tends to (−c, 0) as t → ∞ in the
lower half plane. The equations of these orbits are given by

y2 = −µ
(

x2 − c2
)

+
2

q + 1

[

x|x|q − cq+1
]

.

2. Every point, except the origin, in the bounded region delimited by these
two heteroclinic orbits belongs to a periodic orbit which turns around
the origin.

3. The period function y0 ∈ (0, γ) 7→ T (y0), where T (y0) is the period of

the solution passing through the point (0, y0) and γ =
√

µc2 + 2
q+1cq+1,

is increasing with T (0, γ) = (0,∞).

Proof. The existence and uniqueness of the heteroclinic orbits rely on the
same observation as in the proof of Lemma 4. Moreover, using the same
arguments as in the proof of Lemma 3, one obtains for the period function
(here, we have U(x) = µx2 + 2

q+1xq+1),

T (s) = 4

∫ x(s)

0

dx
√

s2 − U(x)
= 4

∫ 1

0

x(s)dτ
√

U(x(s)) − U(x(s)τ)

= 4x(s)
1−q

2

∫ 1

0

dτ
√

µx(s)1−q(1 − τ2) + 2
q+1(1 − τ q+1)

.

As before, we deduce that lims→0 T (s) = 0 and, since x(s) → c = (−µ)
1

q−1

as s → γ =
√

U(c),

lim
s→γ

T (s) =
4√−µ

∫ 1

0

dτ
√

2
q+1(1 − τ q+1) − (1 − τ2)

= +∞.

�

As a consequence we have
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Proposition 5 Assume that µ < 0, 0 < q < 1 and ε = −1. For all positive
integer k, the ODE (6) admits a unique (up to sign) 2π

k
-periodic solution.

Moreover, all these solutions are sign changing.

3.4 Case 0 < q < 1 and ε = +1

3.4.1 Assume µ ≤ 0

As in subsection 3.2.1, in this case the only periodic solution is the trivial
one.

3.4.2 Assume µ > 0

The critical points of the system (S) are the two points (−c, 0) and (c, 0),

with c = µ
1

q−1 , and they are centers.

Remark 1 Notice that Q′(x) = −µ + q|x|q−1 is negative for x > c. Hence,
Q(x) is positive for 0 < x < c and negative and decreasing for x > c.

Lemma 7 The orbits of the dynamical system (S) never admit horizontal
or vertical asymptotes.

Proof. The existence of a vertical asymptote for (x(t), y(t)) means that
there exists a ∈ R such that x(t) → a and y(t) → ±∞ as t → ∞, which
contradicts the equation x′(t) = y(t).

In a similar manner, we can exclude horizontal asymptotes by noticing
that y′(t) = Q(x(t)) with Q(x) → ±∞ as x → ±∞. �

Lemma 8 1. Every orbit which intersects the y-axis at y0 6= 0 is periodic
and turns around the origin and the two critical points.

2. Every orbit which intersects the x-axis at x0 ∈ (−c, c), x0 6= 0 is
periodic and turns around the critical point (c, 0) if x0 > 0, and around
the point (−c, 0) if x0 < 0.

Proof. 1. Using time shift invariance and symmetry, one can assume that
the orbit starts at (0, y0) with y0 > 0. From y′ = Q(x) and Lemma 7,
one deduces that y increases for 0 < x < c, then decreases for x > c and
intersects the x-axis at finite time. Applying Lemma 2 the orbit is periodic.
2. By the same analysis, every orbit which starts at (x0, 0) with 0 < x0 < c
must intersect the x-axis at finite time and, hence, is periodic. By symmetry
the same result holds for −c < x0 < c. �

Lemma 9 There exists exactly one homoclinic-like orbit emanating from
the origin in the right (resp. left) half-plane and enclosing the critical point
(c, 0) (resp. (−c, 0)). Moreover the equation of this orbit is given by

y2 + µx2 =
2

1 + q
|x|1+q. (21)
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Remark 2 In the particular case µ = 4
(1−q)2

, which corresponds to the Eu-

clidean metric, the orbit (21) could be parametrized by (x(t), x′(t)) where

x(t) := x∗| sin(t)|
√

µ (22)

with x∗ :=

(

2

(1 + q)µ

)
1

1−q

.

Proof. Existence. Integrating the differential equation

dy

dx
=

−µx + xq

y

from 0 to t, we get

y2 + U(x) = y2(0) + U(x(0)), (23)

where U(x) := µx2 − 2
q+1xq+1. Thus the equation of the orbit passing

through the origin is given by

y2 = −U(x) = −µx2 +
2

q + 1
xq+1.

Uniqueness. Since the origin is a singular point, we cannot use classical
theorems to deduce uniqueness of the special homoclinic orbits given by (21).
To show uniqueness, consider the change of variables X := ϕ(x) and Y := y,
where y = ϕ(x) is the equation of the upper part of the positive special
homoclinic orbit defined by (21). Then X ′ = d

dt
(ϕ(x)) = x′ϕ′(x) = yϕ′(x)

with ϕ′(x) = Q(x)/ϕ(x). On the other hand, Y ′ = y′ = Q(x). Thus X ′ =
Q(x)y/ϕ(x) = Y ′Y/X, i.e. d

dt

(

X2
)

= 2X ′X = 2Y ′Y = d
dt

(

Y 2
)

. Therefore
X2(t) − Y 2(t) = X2(0) − Y 2(0) which gives the uniqueness. �

Variation of the period

Sign changing solutions

Lemma 10 The period function y0 ∈ (0,∞) 7→ T (y0), where T (y0) is the
period of the solution passing through the point (0, y0), is decreasing and

T (0,∞) =
(

2π√
µ
, 4π

(1−q)
√

µ

)

.

Proof. We follow the same arguments as in the proof of Lemma 3, we
obtain, with the same notations. In this case, the expression of U is U(x) =
µx2 − 2

q+1xq+1. We get

T (s) = 4

∫ x(s)

0

dx
√

s2 − U(x)
= 4

∫ 1

0

x(s)dτ
√

U(x(s)) − U(x(s)τ)

= 4

∫ 1

0

dτ
√

µ(1 − τ2) − 2
q+1x(s)q−1(1 − τ q+1)

.
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Since x(s) → ∞ as s → ∞, we have

lim
s→∞

T (s) =
4√
µ

∫ 1

0

dτ√
1 − τ2

=
2π√

µ
.

On the other hand, when s goes to 0, x(s) tends to x∗, the positive solution
of U(x∗) = 0 (i.e. xq−1

∗ = q+1
2 µ). Therefore,

lim
s→0

T (s) = 4

∫ x∗

0

dx
√

−U(x)
,

and, using the change of variable x = x∗ sin
2

1−q t, we get

lim
s→0

T (s) =
8

1 − q

∫ π
2

0

cos t dt
√

2
q+1xq−1

∗ − µ sin2 t
=

8

(1 − q)
√

µ

∫ π
2

0
dt =

4π

(1 − q)
√

µ
.

�
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Positive solutions
Observe that the homoclinic-like solution given by (22) is 2π

(1−q)
√

µ
-periodic.

On the other hand, the linearized equation at (c, 0) is

w′′ + µ(1 − q)w = 0.

Roughly speaking the period function takes the value 2π√
µ(1−q)

at the point

orbit (c, 0) and 2π
(1−q)

√
µ

at the homoclinic-like orbit.

Lemma 11 The period function s ∈ (0, γ) 7→ T (s), where T (s) is the period
of the solution passing through the point (c, s) and γ > 0 such that γ2 =

−µc2 + 2
q+1cq+1, is increasing with T (0, γ) =

(

2π√
µ(1−q)

, 2π
(1−q)

√
µ

)

.

Proof. For any s ∈ (0, γ) we denote by (y(s), 0) and (z(s), 0), with 0 <
y(s) < c < z(s) < x∗, the intersection points of the orbit passing through
the point (c, s) with the x-axis. Following an idea of [1] (see also [2]), since
y2 = s2 − U(x) + U(c), we have

T (s)/2 =

∫ z(s)

c

du
√

s2 − U(u) + U(c)
−

∫ y(s)

c

du
√

s2 − U(u) + U(c)

=

∫ 1

0
(z′(st) − y′(st))

dt√
1 − t2

.

In particular, since γ2 = −U(c),

lim
s→γ

T (s) =

∫ x∗

0

2du
√

γ2 − U(u) + U(c)
=

∫ x∗

0

2du
√

−U(u)
=

2π

(1 − q)
√

µ

(see the end of the proof of Lemma 10). On the other hand, since y(s) and
z(s) satisfy

0 = U(y(s)) − U(c) − s2 = U(z(s)) − U(c) − s2,

we easily get

lim
s→0

(

z′(s) − y′(s)
)

=
2

√

µ(1 − q)
.

Therefore

lim
s→0

T (s) =
2π

√

µ(1 − q)
.

Now, to show the monotony of the function T , we first observe that

d

ds
T (s) = 2

∫ 1

0

(

z′′(st) − y′′(st)
) tdt√

1 − t2
.
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Thus, it suffices to show that z′′ − y′′ is nonnegative. From the equation
U(z(s)) − U(c) − s2 = 0 we get z′(s) = 2s/U ′(z(s)) and, hence,

z′′(s) = 2
U ′2(z(s)) + 2(U(c) − U(z(s)))U ′′(z(s))

U ′3(z(s))
.

Since z(s) → c as s → 0, U is smooth, U ′(c) = 0 and U ′′(c) 6= 0, expanding
U up to order 4 in the neighborhood of c shows that

lim
s→0

2
U ′2(z(s)) + 2(U(c) − U(z(s)))U ′′(z(s))

U ′3(z(s))
= −2U (3)(c)

U ′′2(c)
.

Thus,

lim
s→0

z′′(0) = −2U (3)(c)

3U ′′2(c)
= lim

s→0
y′′(0).

Let us show that

z′′(s) ≥ −2U (3)(c)

U ′′2(c)
≥ y′′(s). (24)

For the first inequality, it suffices to show that

F := U ′2 + 2U ′′[U(c) − U(z)] +
U ′3U (3)(c)

3U ′′2(c)
≥ 0

on (c, x∗). In fact we will show that this is true even on (0,+∞). Indeed,
notice first that

F ′ = 2U (3)[U(c) − U ] +
U (3)(c)

U ′′2(c)
U ′2U ′′ ≤ 0

on (0, q
1

1−q c). On the other hand, set H := − F
U ′′ on (q

1
1−q c,∞), then we

have H ′ = −K U ′2U (3)

U ′′2 , where

K = −1 +
U (3)(c)

3U ′′2(c)

[

3
U ′′2

U (3)
− U ′

]

.

Now,

K ′ =
U (3)(c)U ′′

3U ′′2(c)(U (3))2

[

5(U (3))2 − 3U (4)U ′′
]

> 0

with K(c) = 0, then K is nonpositive on (q
1

1−q c, c) and nonnegative on

(c,∞). Hence, H ′ is nonnegative on (q
1

1−q c, c) and nonpositive on (c,∞)

and since H(c) = 0 we get H ≤ 0. Thus F ≥ 0 on (q
1

1−q c,∞), Therefore,
F ≥ 0 on (0,∞). In a similar manner, one can show the second inequality
in (24). �

The following proposition summarizes the consequences of Lemmas 9,
10 and 11.
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Proposition 6 Assume that µ > 0, ε = +1 and 0 < q < 1. Then

1. The ODE (6) admits nonconstant 2π-periodic sign changing solutions
if and only if µ > 1. Moreover, in this case, for all integer k ∈
(

1−q
2

√
µ,

√
µ
)

the ODE (6) admits a unique (up to sign) sign changing
2π
k

-periodic solution.

2. The ODE (6) admits nonconstant 2π-periodic positive solutions if and

only if
(

(1 − q)
√

µ,
√

µ(1 − q)
)

∩ N 6= ∅. Moreover, in this case, for

all integer (1− q)
√

µ < k <
√

µ(1 − q), the ODE (6) admits a unique
positive 2π

k
-periodic solution.

3. There exists a unique 2π
(1−q)

√
µ
-periodic nonnegative solution of (6). It

vanishes only once in a period and its orbit is given by (21).

4 Applications

In this section we apply the results above to the existence problem of non-
radial pseudo-radial solutions of the PDE (4) and its particular case (2).

4.1 Case of a metric g = a2(r)gR2

In this case b(r) = ra(r). Note that ∆gu = 1
a2(r)∆u, where ∆ is the Eu-

clidean Laplacian. Hence, the PDE

∆gu = εu|u|q−1

is equivalent to the following one

∆u = εa2(|x|)u|u|q−1 (25)

that we consider on a disc or an annular domain Ω := {0 ≤ R1 < |x| <
R2 ≤ +∞} of R

2.

Theorem 2 If the equation (25) admits a non-radial pseudo-radial solution
in Ω, then the function r 7→ a(r) has one of the three following forms:

a(r) = r−1
[

Mrα + Nr−α
]

1−q

2 ,

where α > 0 and M,N ∈ R are such that Mrα + Nr−α > 0 on (R1, R2),

a(r) = r−1[M + N ln r]
1−q

2 ,

where M,N ∈ R are such that M + N ln r > 0 on (R1, R2), or

a(r) = r−1[M cos(α ln r) + N sin(α ln r)]
1−q

2 ,

where α > 0 and M,N ∈ R.
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Proof. Applying Theorem 1, the equation (18) becomes (with c = b/a = r

and h = b
2

1−q )

(rh′)
′
= rh′′ + h′ = µ

h

r
. (26)

The general solution of (26) is given by

h(r) =























Mr
√

µ + Nr−
√

µ if µ > 0,

M + N ln r if µ = 0,

M cos(
√−µ ln r) + N sin(

√−µ ln r) if µ < 0.

�

Hence, for our purpose, the only relevant equations of the form ∆u =
εa2(|x|)u|u|q−1 in Ω are

∆u = ε|x|−2
[

M |x|α + N |x|−α
]1−q

u|u|q−1, (27)

∆u = ε|x|−2[M + N ln |x|]1−qu|u|q−1, (28)

and
∆u = ε|x|−2[M cos(α ln |x|) + N sin(α ln |x|)]1−qu|u|q−1, (29)

where α, M and N are as in Theorem 2.
For (27), the set of pseudo-radial non-radial solutions can be described

in the following way:

Theorem 3 1. If ε = +1 and 0 < α ≤ 1, then any pseudo-radial solution
of (27) is radial.

2. Define, for ε = −1 or α > 1, the subset A(ε, q, α) ⊂ N by

A(ε, q, α) =







(α,+∞) ∩ N, if ε = −1
(0,+∞) ∩ N if ε = +1, q > 1 and α > 1
(α(1 − q)/2, α) ∩ N if ε = +1, 0 < q < 1 and α > 1,

Then the set of sign changing non-radial pseudo-radial solutions of
(27) is parameterized by A(ε, q, α) in the sense that it consists in the
functions

uk(x) = ±[M |x|α + N |x|−α]wk(θ), k ∈ A(ε, q, α),

where, for every k ∈ A(ε, q, α), wk is the unique (up to sign) sign
changing 2π

k
-periodic solution of (6).
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3. Equation (27) admits positive non-radial pseudo-radial solutions if and
only if ε = +1, 0 < q < 1 and B(+1, q, α) := (α(1−q), α

√
1 − q)∩N 6=

∅. Moreover, all these solutions are of the form

uk(x) = [M |x|α + N |x|−α]vk(θ),

where, for every k ∈ B(+1, q, α), vk is the unique positive 2π
k

-periodic
solution of (6).

4. If (1 − q)α ∈ N, then equation (27) admits a unique nonnegative
pseudo-radial solution given by

u(x) = [M |x|α + N |x|−α]v(θ),

where v is the unique nonnegative periodic solution of (6) (correspond-
ing to the homoclinic-like orbit) which vanishes once in a period.

Concerning (28), we have the following

Theorem 4 1. If ε = +1, then, for every q > 0, q 6= 1, any pseudo-
radial solution of (28) is radial.

2. If ε = −1, then, for every q > 0, q 6= 1, the set of non-radial pseudo-
radial solutions of (28) is parameterized by N

∗ and consists in the
functions

uk(x) = ±[M + N ln |x|]wk(θ),

where, for every k ∈ N
∗, wk is the unique (up to sign) sign changing

2π
k

-periodic solution of (6).

Remark 3 A particular case of (27) is

∆u = ε|x|pu|u|q−1, p ∈ R\ {−2} . (30)

One can apply Theorem 3 with α =
∣

∣

∣

p+2
q−1

∣

∣

∣
, (M,N) = (1, 0) if p+2

q−1 < 0 and

(M,N) = (0, 1) if p+2
q−1 > 0.

The case p = −2 corresponds to (28) with M = 1 and N = 1 and is
covered by Theorem 4.

Concerning (29), we have the following

Theorem 5 1. If ε = +1, then, for every q > 0, q 6= 1, any pseudo-
radial solution of (29) is radial.

2. For ε = −1, the set of sign changing non-radial pseudo-radial solutions
of (29) is parameterized by N

∗ and consists in the functions

uk(x) = ±[M cos(α ln |x|) + N sin(α ln |x|)]wk(θ),

where, for every k ∈ N
∗, wk is the unique (up to sign) sign changing

2π
k

-periodic solution of (6).
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3. Equation (29) admits positive non-radial pseudo-radial solutions if and
only if ε = −1, q > 1 and α

√
q − 1 > 2. Moreover, all these solutions

are of the form

uk(x) = [M cos(α ln |x|) + N sin(α ln |x|)]vk(θ),

where, for every k ∈ (1, α
√

q − 1) ∩ N, vk is the unique positive 2π
k

-
periodic solution of (6).

4.2 The spherical case: a(r) = 1 and b(r) = sin r

In this case, condition (12) implies

µ
1 − q

2
=

2

1 − q
cos2 r − sin2 r, (31)

which is only possible if q = 3 and µ = 1. Applying Propositions 1 and 3
we get

Theorem 6 Let Ω ⊂ S
2 be a rotationally symmetric domain of the standard

sphere and consider in Ω the following equation:

∆S2u = εu|u|q−1, (32)

where ∆S2 is the standard Laplacian of S
2.

i) If ε = +1 or q 6= 3, then any pseudo-radial solution of (32) is radial.

ii) The equation ∆S2u = −u3 admits infinitely many non-radial pseudo-
radial solutions in Ω which are all of the form

uk(x) =
wk(θ)

sin r
,

where, for any integer k ≥ 2, wk is the unique (up to sign) 2π
k

-periodic
solution of (6).

4.3 The hyperbolic metric case: a(r) = 1 and b(r) = sinh r

Here also, condition (12) is satisfied if and only if q = 3 and µ = 1. Like in
the spherical case, we get the following

Theorem 7 Let Ω ⊂ H
2 be a rotationally symmetric domain of the hyper-

bolic plane and consider in Ω the following equation:

∆H2u = εu|u|q−1, (33)

where ∆H2 is the Laplacian of H
2.
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i) If ε = +1 or q 6= 3, then any pseudo radial solution of (33) is radial.

ii) The equation ∆H2u = −u3 admits infinitely many non-radial pseudo-
radial solutions in Ω which are all of the form

uk(x) =
wk(θ)

sinh r
,

where, for any integer k ≥ 2, wk is the unique (up to sign) 2π
k

-periodic
solution of (6).

4.4 Case of a metric conformal to the cylindrical one: a = b

The standard metric of the cylinder C = (R1, R2)×S
1 is the product metric

dr2 + dθ2, its Laplacian is given by ∆C = ∂2

∂r2 + ∂2

∂θ2 . For a conformal metric
g = a2(r)[dr2 + dθ2], the associated Laplacian is ∆g = a−2(r)∆C . The
equation

∆Su = εa(r)2u|u|q−1, (34)

is then equivalent to
∆gu = εu|u|q−1.

Condition (12) gives, with a = b,

[

a
1+q

1−q a′
]′

=
µ

2
(1 − q)a

2
1−q .

Setting γ = 1+q
1−q

, this last equation becomes

(aγ+1)′′ = µaγ+1

which gives

aγ+1(r) =























A cosh
√

µ r + B sinh
√

µ r if µ > 0

A + Br if µ = 0

A cos
√−µ r + B sin

√−µ r if µ < 0,

where A and B are such that the right hand side is positive on (R1, R2).
Therefore, for our purpose, the only relevant equations of the form (34) are

∆Cu = ε[A cosh αr + B sinh αr]1−qu|u|q−1, (35)

∆u = ε[A + Br]1−qu|u|q−1, (36)

and
∆u = ε[A cos αr + B sin αr]1−qu|u|q−1, (37)

where α > 0.
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The description of the set of non-radial pseudo-radial solutions of these
equations is the same as for equations (27), (28) and (29) respectively. In-
deed, the statement of Theorem 3 remains valid for equation (35) provided
that M |x|α + N |x|−α is replaced by A cosh αr + B sinhαr. Similarly, Theo-
rem 4 applies to (36) replacing M+N ln |x| by A+Br, and Theorem 5 applies
to (37) replacing M cos(α ln |x|) + N sin(α ln |x|) by A cos αr + B sin αr.
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[9] S. Kichenassamy and L. Véron, Singular solutions of the p-Laplace op-
erator, Math. Ann. 275 (1986) 599-615.

[10] K. Nagasaki, Radial Nonpositive Solutions for Nonlinear equation ∆u+
|x|ℓ|u|p−1u = 0 on the Ball, Proc. Japan Acad. Ser. A Math. Sci. 64

(1988), no. 1, 5–7.

[11] W. M. Ni, Uniqueness of solutions of nonlinear Dirichlet problems, J.
Diff. Equ., 50 (1983), 289–304.

23



[12] W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for
positive solutions of ∆u + f(u, r) = 0, Comm. Pure Appl. Math. 33

(1985), 67–108.

[13] P. H. Rabinowitz, Minimax methods in critical point theory with ap-
plications to differential equations, CBMS Regional Conference Series in
Mathematics, vol. 65, Published for the Conference Board of the Mathe-
matical Sciences, Washington, DC; 1986.

[14] T. Suzuki and K. Nagasaki, Lifting of local subdifferentiations and el-
liptic boundary value problems on symmetric domains. I, Proc. Japan
Acad. Ser. A Math. Sci. 64 (1988), 1–4.

[15] T. Suzuki and K. Nagasaki, Lifting of local subdifferentiations and el-
liptic boundary value problems on symmetric domains. II, Proc. Japan
Acad. Ser. A Math. Sci. 64 (1988), 29–32.

[16] T. Suzuki, Symmetric domains and elliptic equations. Recent topics in
nonlinear PDE, IV (Kyoto, 1988), 153–177, North-Holland Math. Stud.,
160, North-Holland, Amsterdam, 1989.
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