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ABSTRACT 
Due to the fact that Magnetic Barkhausen Noise (MBN) carries out information about the 
microstructure and stress behavior of ferromagnetic steels, it has been using as a basis for 
effective Non Destructive Testing (NDT) methods, opening new areas in NDT industrial 
applications. One of the factors that determines the quality and reliability of the MBN analysis is 
the way information is extracted from the signal. Commonly, simple scalar parameters are used 
to characterize the information content, such as, amplitude maxima, signal root mean square, and 
so on. This paper presents a new approach based on the MBN time-frequency analysis. The 
experimental case that illustrates this approach regards the use of MBN signals to characterize 
different types of steels. It is shown that, due to non-stationary characteristics of the MBN, time-
frequency representations can provide a rich and new panorama of these signals. Extraction 
techniques of some time-frequency parameters are used to allow a diagnostic process. A 
comparison with results obtained by the classical method highlights the improvement on the 
diagnosis provided by the proposed method. 
 
 
 
1. INTRODUCTION 
The Magnetic Barkhausen Noise (MBN) is a magnetic phenomenon produced when a variable 
magnetic field induces magnetic domain wall movements in ferromagnetic materials. These 
movements, not continuous but discrete, are caused by defects in the material microstructure, 
and generate magnetic pulses that can be measured by a coil placed on the material surface. 
Since the MBN is sensitive to the state of the material microstructure, to the presence of 
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deformations and of mechanical stresses, it can be (and has been) used in the development of 
Non-Destructive Essays regarding several industrial applications [811]. The success in the 
development of inspection systems based on the MBN depends on the synergetic use of 
knowledge from different areas such as material sciences, electronics, mechanics, and signal 
processing. 

A point put in evidence by MBN studies is the importance of a deeper study of signal processing 
methods allowing better highlighting and separation of MBN signal information concerning the 
various material states. 

The traditional MBN signal processing analysis methods can be classified in two classes: the 
scalar methods (or 0 dimension methods – 0D) and the vector methods (or 1 dimension methods 
– 1D). The 0D methods use parameters extracted from the MBN signal, such as Root Mean 
Square (RMS), energy, maximum value, number of MBN peaks at certain values, or else from 
the frequency domain, such as the energy at some frequency bands. The 1D class uses the 
envelope of the time signal or that of the spectral MBN signal. As one increases the dimension of 
the analysis methods, the quality and quantity of the available information carried out by the 
signal increases.   

However, due to the nature of the Barkhausen signal, e.g., a sequence of discrete magnetic pulses 
whose physical model is sometimes associated to avalanches belonging to the class of critically 
self-organized phenomena [7], it seems that other methods of signal analysis would be more 
adequate as, for example, time-scale methods permitting multiple time-frequency scale analysis, 
instead of linear analysis characterizing the time-frequency methods commonly used in non-
stationary phenomena. Very few works have been published about these subjects, related to the 
Magnetic Nondestructive methods [3,4]. 

By analyzing the signal envelope and the spectrum, it is observed that the signal is time limited 
and has a wide spectral band. Several questions remain unanswered by the one dimension 
analysis. For instance: how is the time-frequency structure of MBN? Is there any time-frequency 
structure that is related with the evolution of stress or with some microstructure variation in the 
material? Is there any time-scale structure? Is there some informational gain  in relation to  the 
traditional scalar and 1D methods? What are the more adequate method of time-frequency (TFR) 
and time-scale (TSR) representations, available in the international literature, that better describe 
the informational content of the MBN signal?   

This work presents the traditional methods of MBN signal analysis, and studies the use of some 
time-frequency and time-scale representations in the analysis of MBN signals measured in four 
different steels. Section 2 presents the experimental measurements. Section 3 and 4 sum up the 
time-frequency and time-scale methods we have considered. Section 5 comments the differences 
between the representations obtained. Section 6 presents the results of the study. In Section 7, a 
first result of automatic detection in the time-frequency plan is presented. 

 
2. EXPERIMENTAL MEASUREMENTS 
Samples of four different steels were used in the experiments: a high carbon AISI 1070, a 
pipeline steel X80, a tool steel AISI D2 and a ARBL steel (High Strength Low Alloy steel). In 
each sample, 6 MBNresponses were measured. 

Figure 1 shows a flow chart of the measurement arrangement. A Personal Computer with a data 
acquisition device (with A/D, D/A and D/D channels) supplies a sinusoidal wave of 10 Hz, 
which is amplified by a bipolar source, This sourcefeeds the magnetic circuit in order to 
magnetize the sample with a magnetic field, inducing saturation in the samples. The MBN sensor 
output is amplified, band pass filtered (1 - 100 kHz) and digitalized with a sampling frequency of 
200 kHz. Each signal records the magnetic response of 2 cycles of the magnetic excitation. 
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Figure. 1 Experimental setup for MBN signal measurements. 

 
 
3. TIME-FREQUENCY REPRESENTATIONS 
Time-frequency representations are characterized by a fixed resolution in all the time-frequency 
plan. We have considered 4 of them: 

- the spectrogram, the more classical and the more robust; 
- the Wigner-Ville and its smoothed version, which belong to the same class than the 

periodogram, the Cohen class, and well known for its higher resolution and the presence 
of interference; 

- the Capongram, middle between the Cohen class and the parametric representation, 
interesting for good statistical properties at the expense of computing time; 

- the ARgram, a parametric approach. 

The latter two have been adapted ton nonstationary signals by a simple gliding time window. 
 
3.1 Spectrogram 
A linear TFR based on the Fourier transform can be reached by pre-windowing the signal around 
a chosen time, calculating its Fourier Transform, and proceeding in the same way for each 
instant. This transform is known as Short Time–Frequency Transform and referred to as 
STFT(t,f) where t is the time variable and f the frequency variable. A quadratic form related with 
the Short Time–Frequency Transform can be obtained by taking the square of this transform. It 
is known as spectrogram and measures the spectral energy density of the signal in the time–
frequency plan. The spectrogram of a signal x(t) is referred to as SPECT(t,f). The following 
holds 

2

2 *  2   SPEC(t,f)  STFT(t,f) ( ) ( ) j fx h t e dπ ττ τ τ
∞

−

−∞

= = −∫ , (1) 

where h(t) is a sliding weighting window and the superscript *   denotes conjugate. 

The time resolution of the spectrogram is determined by the length of the selected sliding 
window h(t), and the frequency resolution isdefined as the –3 dB bandwidth of the spectral 
window, the spectral window being the spectrogram of the window h(t). The best frequency 
resolution is achieved with the natural window and defined as ∆f = 1/D, where D is the time 
duration of the window. Any other different window will degrade the resolution but improve the 
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estimation variance. The product ∆f x D  ≥   1 measures the joint time-frequency resolution of 
the method. This resolution limitation is the most significant drawback of the spectrogram. Other 
major problems can be cited: (a) the implicit windowing problem that causes the “leakage” 
phenomenon, and (b) the impossibility of averaging periodograms for reducing the estimation 
variance when working with short data. Nevertheless one advantage of this method is its 
robustness towards the nature of the signal. 
 
3.2 WV and SPWV 
The Cohen class is a general formulation for non-parametric time-frequency distribution, which 
includes the Wigner-Ville Distribution and relatives. The spectrogram can be considered as a 
special case of the Cohen class. The Wigner-Ville Distribution of a signal x(t) is referred to as 
WVD(t,f) and can be defined as [6] 

*  2   WVD(t,f) ( / 2) ( / 2) j fx t x t e dπ ττ τ τ
∞

−

−∞

= + −∫ . (2) 

Since the value of the WVD(t,f) is determined by all the values of the signal (and therefore, not 
limited by a time window), the Wigner-Ville Distribution overcomes the spectrogram tradeoff 
between time and frequency resolution, the hypothesis of short-term stationarity is no more 
necessary. This improvement comes at a price of the appearance of spectral cross-terms, which 
comes from the bilinear kernel of the transform. This spectral interference is critical in 
multicomponent signals, since it makes difficult the distinction of weaker signal components and 
it masks spectral features. 

To overcome this major drawback, several modifications have been proposed and can be found 
in the literature. One of them, the Smooth Pseudo Wigner Ville Distribution is of particular 
interest to this work since it will be used later to analyse experimental results. The Smooth 
Pseudo Wigner Ville Distribution of a signal x(t) referred to as SPWV(t,f)can be defined as [6] 

*  2   SPWVD(t,f) ( ) ( ) ( / 2) ( / 2)  j fh g t x x d e dπ ττ η η τ η τ η τ
∞ ∞

−

−∞ −∞

= − + −∫ ∫ , (3) 

where g(t) is the time smoothing window and h(t) the frequency smoothing window. With the 
introduction of these two windows it is possible to attenuate and to smooth the interference terms 
of the Wigner-Ville distribution, by independently choosing the type of window and its length. 
 
3.3 Capongram 
The Capon Method or Minimum Variance Method is a nonparametric spectral power estimator 
having higher frequency resolution than the Fourier Transform based methods. The quantity 
estimated, homogeneous to the power of signal x(t), is referred to as PCAP(t,f) and  is defined by 
[12] 

( )1

1
( , )

 ( )  ( )CAP H
p p p

P t f
f t f−=

e R e
,  (4) 

where ( )2    2      1, ,T i f ts i f p ts
pe e eπ π− −= … , ts is the sample interval, the superscripts H denotes 

conjugate transpose, p is the order of the Capon filter. Rp(t) is the correlation matrix of 
dimension (p+1) x (p+1) evaluated on a gliding time window centred at the time instant t. 

The signal power obtained by this approach can be seen as the output of a filter, of length p and 
with variable center frequency.  Parameter p has to be chosen by the user. 

The design of the Capon method allows the frequency resolution to be high on a short time 
window. This approach assumes signal stationarity over the time window and, therefore, is 
appropriated to analyze weakly non-stationary signals. 



 5

 
3.4 ARgram 
The gliding power spectrum density of the Autoregressive Model of a signal x(n), referred to as 
SAR(t,f), can be obtained by [13] 

AR 2

2   
,

1

S (t,f)  

 1  

w

p
j f k

k t
k

P

a e π−

=

=

+∑
,  (5) 

where Pw is the power of the white noise (or the prediction error), p is the model order and ak,t, 
the model coefficients evaluated on a time gliding window centred at t. This equation is also 
known as the Maximum Entropy Spectrum. The choice of the order p is done by the user and 
constitutes the main issue of this approach.  

As for the Capon method, the AR model allows the frequency  resolution to be high on a short 
time window. . This approach assumes signal stationarity over the time window and, therefore, is 
appropriated to analyze weakly non-stationary signals 
 
 
4. TIME-SCALE REPRESENTATION 
Two time-scale transform have been considered: 

- a scalogram as a classical time-scale transform; 
- a Mellingram as an adaptation of the Mellin transform for nonstationary signals. 
 

4.2 Scalogram 
The Scalogram is a time-scale representation based on the Wavelet Transform, referred to as 

( , ; )Tx t a Ψ  and  defined by [6] 

,( , ; ) ( ) ( )t aTx t a x s s ds
∞

−∞
Ψ = Ψ∫ ,      (6) 

where 
1/ 2

, ( )t a

s t
s a

a

− − Ψ = Ψ  
 

, and Ψ is the mother wavelet. Parameter a is the scale factor. 

Although the representation obtained is time-scale, it is possible to establish an associated time-
frequency representation, by using the relation f = f0 /a, where f0 is a reference frequency of the 
mother wavelet. 
 

4.2 Mellingram 
Several transforms have been proposed in order to operate a dominium transformation, with the 
objective of facilitating interpretation of a physical phenomenon. One of these transforms is the 
Mellin Transform. The gliding Mellin transform of a signal x(t) referred to a Mx(t ; p), can be 
deduced from  its general form [1,2] and is given by  

( ) ( ) 1

0
( ; ) p

xM t p x w t t dτ τ τ
∞ −= −∫ ,  (7) 

where p, a complex number, is the Mellin parameter and w(t) a time window. 

A particular form of the Mellin transform, also named Scale Transform, is obtained by using p = 
-jc+1/2, with c a real number. Therefore, adapted to nonstationary signals, a gliding Scale 
transform, referred to as Dx(t ; c), is 

( ) ( ) ( )1/ 2 ln

0

1
( ; )

2
jc

xD t c x w t e dττ τ τ
π

∞ − −= −∫ . (8) 
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If x(t) is a function and g(t) is a scaled version of x(t), then the amplitude of the transform will be 

the same. If x(t) has a scale periodicity of period τ, then ( ) ( )x t x tτ τ= . 
 
 
5. VANTAGES AND DISADVANTAGES OF EACH METHOD 
Table 1 presents the values of the parameters used in each method to calculate the TFRs, and the 
computational time consumption for each case. 

The Spectogram in (1) is fast and very easy to use, since the transform does not depend on some 
a priori information (order parameter) as in ARgram and Capongram cases. But the estimation 
has the highest variance and the lowest time-frequency resolution. 

The Wigner-Ville distribution (2) presents two major advantages: it is a non-parametric method 
and it has a good time-frequency resolution.. Its major drawback is the appearance of spectral 
cross-terms, which makes difficult the distinction of weaker signal components. Additionally, it 
masks spectral features. 

The Smoothed Pseudo Wigner-Ville distribution defined in (3) attenuates and smoothes the 
interference terms, at a cost of some degradation in time-frequency resolution. However, these 
two methods have a severe limitation related with the computational memory consumption. The 
amount of memory used in all the analyses was the same, but was not enough for the Wigner-
Ville distribution and Smoothed Pseudo Wigner-Ville distribution given the length of the 
recorded signals (see Table 1). 

Therefore the authors have considered these two methods are not competitive in face of the other 
ones, and they were abandoned. 

 
Table 1. Parameters used in the TFR and TSR calculations (microprocessor Centrino 1.8 GHz, 1 

GB RAM). 
 

TFR Parameters Computational Time  
Spectrogram Nwin=512; Noverlap=128; 0.35 
Capongram Nwin=512; Noverlap=128; order=100 108 
ARgram Nwin=512; Noverlap=128; 

Order=40 
10.3 

Scalogram Number of scales=50 165 
Mellingram Nwin=512; Noverlap=128; 9.1 

 

 

Capongram (4) has a higher time-frequency resolution and lower variance than Spectogram, but 
is more computationally time consuming than this last one and the ARgram method (see Table 
1). Although the Capongram does not impose a model in the signal, it is necessary to estimate a 
parameter, named “order” p that has a meaning different from the order of the ARgram. 
Meanwhile the AR model order is related with the degree of freedom of the system being 
modelled, the Capongram order describes the filter length. In the AR model, the order is optimal 
when its value is close to the system degree of freedom, whereas an increase in the Capon filter 
bank order increases the frequency resolution at the expense of deterioration of statistical 
stability. 

In other words, in the ARgram method the spectral information is contained inside the AR filter 
and, conversely, is in the output of the filter in the Capongram method 

The ARgram (5) is a time–frequency method more adequate to describe narrow band spectral 
components. The main drawback of this method is, maybe, that it implies an a priori knowledge 
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(or assumption) about the process from which the signal is taken. This a priori information is 
expressed by the selection of the model order p. A good choice of this parameter is essential for 
good spectral estimation, what implies an additional computational time in order to find a good 
value (see Table 1). Other disadvantage is the high computing time necessary to calculate the 
spectrum in each time moving window (see Table 1). The main advantage of the ARgram 
method is its high time and frequency resolution and its low variance. 

Although very time consuming, the highest among the used methods, the Scalogram (6) is 
simple to use, depending only on the choice of the number of analysis scales. Both, the 
Scalogram and Mellingram (8), are methods that can show scale structures in the signal, if they 
exist and in a different manner, not identifiable with the traditional time-frequency 
representations. 
 
 
6. RESULTS 
In what follows some results of experimental database analysis are shown in a sequence of 
increasing richness of information representation and, by consequence, also of increasing 
complexity of analysis and interpretation. 

Figure 2 shows the 4 MBN signals, for each type of steel, plotted in the same scale, for 
amplitude comparison. It is possible to notice that, for the same magnetic excitation, each 
material responds in a different manner. The aim of the signal processing process is to put in 
evidence the details of the MBN behaviour differences among them. 
 
 

 
Figure 2. MBN signals for different materials  

 

Figure 3 shows the average of 6 MBN RMS values, for each type of steel. It’s worth noting that 
X80 and D2 are hardly distinguished by this approach. 
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Figure 3. RMS MBN for different materials  

 
 

Figure 4 presents the average envelope of the MBN signal and the average envelope of the MBN 
spectrum. Since this kind of representation gives more information than the scalar parameters, 
the difference among the steels is more apparent. 

 

 
Figure 4. a) Average envelope of MBN signals; b) Average envelope of MBN spectra 

 
 

However, we will show that the TFRs and TSRs are much richer in details than the scalar 
parameters and envelope representations. The TFRs and TSRs were calculated for all the four 
steels types, but, due to space limitation in this paper, only the results for the D2 steel are shown. 

It is important to know that significant improvement in the quality of the TFRs representations 
can be reached by using averages of TFRs or TSRs. Therefore, all TFRs images shown in Figure 
5 and 6 are averaged over 6 TFRs evaluated on successive measurements of the same 
phenomenon and are presented with the same z-axe scale, in order to allow comparison among 
them. 

By analysing the graphical representations of Figure 5, it is interesting to notice that the 
Scalogram results are very similar to the TFRs ones. This means that there is no scale 
phenomenon, at least perceptible in this representation, in the MBN signals. Additionally, by 
analysing the Mellingram results, no scale structure could also be detected. Therefore, it seems 
that TFRs are enough to describe the informational content of MBN signals. 
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Figure 5. TFRs of D2 steel: a) Spectogram; b) Capongram; c) ARgram; d) Scalogram; e) 

Mellingram 
 

In Figure 6, the TFR of each one of the four steels is shown. 

Two main kinds of information can be taken from Figure 6. First several almost stationary 
narrow-band components, close to 50 kHz and 90 kHz, are visible all over the time duration of 
the signal). These frequencies cannot be related to MBN phenomenon and may come from some 
external interferences of the measurement equipment. Although these frequencies can be 
observed in the envelope of the MBN spectrum (Figure 4), their stationary nature, noticed only 
in the TFRs, allow concluding that they are not related to the MBN phenomenon. 

Second, the remaining information is on the non-stationarity part of the MBN signals. All the 
information presented in the MBN envelope and in the envelope of the MBN spectrum is 
combined in a synergetic way, resulting in the richest panorama that can be seen in the TFR’s of 
Figure 6. 

The differences among the MBN behaviours, for each steel, are clearly noticeable, mainly the 
shape of the spectral pattern, amplitudes, time and frequency distribution. 
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As a result, the authors choose the Capongram among the TFR’s and TSR’s taken in 
consideration in this paper, since this representation is able to highlight the differences between 
the four different steels studied. 
 

 

 
Figure 6. Average of Capongram TFR for steels (in clockwise direction): a) 1070; b) X80; c) 

ARBL; d) D2 
 
 
7. A TIME-FREQUENCY SOURCE SEPARATION 
This section is a first result in order to introduce future works, which will naturally attempt to 
propose an automatic diagnosis using time-frequency representations. As noted in section 0, a 
time-frequency representation of the MBN records shows two types of time-frequency patterns. 
In addition of the MBN, some components are visible and may come from some external 
interferences of the measurement equipment. The purpose of this section is to apply a method 
proposed in [14-15], which allows an automatic detection of the time-frequency patterns 
according to the assumption of what we decide to be the noise. In this MBN application, the 
signal of interest is in fact the noise, the MBN, whereas the electronic perturbations are the noise. 
We will then launch the method under the assumption of a non-stationary and non-white noise in 
order to detect the MBN signal in the noise part of the signal. 

The derivation of the method is out of the scope of this paper. Further details should be found in 
[14-15]. According to the progress of the development, we are not still able to present results on 
the Capongram but only on the spectrogram. Then, Figure 7 shows the results of the time-
frequency detection when applied on the spectrogram of the D2 steel on a longer duration than in 
Figure 5. The time-frequency plan in the upper right side is then an estimation of the MBN 
signal only. As a complement, the time-frequency plan in the lower right side gives the result of 
the detection of the components mixed with the MBN that is the electronic inferences. For 
getting the algorithm need no more a priori information than the properties of non-stationarity 
and non-whiteness of the noise. 
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Figure 7. Source separation by detection in the Spectrogram of D2 steel: spectrogram (top left), 
noise estimation –top right), candidates for detection (bottom left) and detection result (bottom 

right) 
 
8. CONCLUSIONS 
Three Time-Frequency Representations and two Time-Scale Representations were used in order 
to analyse Magnetic Barkhausen Noise signals measured in four different steels. The vantages 
and disadvantages of each method are commented. TFRs and TSRs images of same steel and 
images of a TFR method for four different steels are presented. These results allow higher 
information quality for the MBN phenomenon than the traditional methods. Additionally, the 
TSRs did not show scales structures in the MBN signals. 

Although the TFR method can supply rich information on the MBN signals very few studies 
were undertaken with TFRs methods in this magnetic phenomenon. On other hand, the richer the 
quality of the information, the harder the analysis and the comparison of different cases, for the 
amount of information is high. 

Therefore, future works should emphasize the development of methods of extraction of image 
characteristics, in order to allow classification tasks by means of MBN TFRs information. 
 
Acknowledgements 
The authors want to thank FAPESP (05/51100-9 and 06/04935-0) for the financial support and 
Eng. Freddy Franco for his add in the MBN measurements. 
 



 12

 
References 

1. De Sena A.; La Trasformata di Mellin: teoria ed applicazioni all’analisi di segnali 
audio; Tesi de Laurea, Università degli Studi de Verona, 2003. 

2. De Sena, A.; Rocchesso D.; A Fast Mellin and Scale Transform; EURASIP Journal on 
Advances in Signal Processing; Vol. 2007, Article ID 89170, 9 pages. 

3. Magalas, L. B.; Application of the wavelet transform in mechanical spectroscopy and in 
Barkhausen noise analysis; Journal of Alloys and Compounds 310 (2000) 269–275. 

4. Peter Maass, Gerd Teschke, Werner Willmann, and Günter Wollmann; Detection and 
classification of Material Attributes—A Practical Application of Wavelet Analysis; IEEE 
Trans. On Signal Processing, 48, August 2000.  

5. Padovese, L.R.; Hybrid time-frequency methods for non-stationary mechanical signal 
analysis; Mechanical Systems and Signal Processing, v.18, p.1047 - 1064, 2004. 

6. P. Flandrin,; Time-frequency/time scale, Academic Press, S. Diego, 1999. 
7. Urbach, JS; Madison, RD; Markert, J; Interface Depinning, Self-Organized Criticality, 

and the Barkhausen effect; Physical Review Letters; 75(2), p. 276-279, 1995. 
8.  Pérez-Benitez, J. ; Capo-Sanchez, J. ; Anglada J. R. ; Padovese, L. R. A study of plastic 

deformation around a defect using the Magnetic Barkhausen Noise in ASTM 36 steel. 
NDT & E International, v. 41, p. 53-58, 2008. 

9. Capo-Sanchez, J; Alberteris-Campos, M.; Padovese, L.R.; Magnetic Barkhausen 
measurements for evaluating the formation of Lüders bands in carbon steel, NDT & E 
Intern., 40, p. 520-524, 2007. 

10. Altpeter I. Nondestructive evaluation of cementite content in steel and white cast iron 
using inductive Barkhausen noise. Journal of Nondestructive Evaluation. 1996; 15 (2); 
45-60. 

11. Lachmann C, Nitschke-Pagel Th, Wohlfahrt, H. Characterisation of residual stress 
Relaxation in Fatigue Loaded Welded Joints by X-Ray Diffraction and Barkhausen Noise 
Method. Materials Science Forum. 2000;V 347-349, 374-379. 

12. N. Martin, Minimum Variance, Chapter 7, pp. 175-211. Book « Spectral Analysis », 
Edited by F. Castanié. Traité IC2, Editeur HERMES, pp 175-211, May 2006. 

13. N. Martin, An AR Spectral Analysis of Non Stationary Signals. Signal Processing, 10, pp. 
61-74, January 1986. 

14.  J. Huillery, Time-frequency support of an unknown signal embedded in an additive 
Gaussian noise, PhD Thesis, INPG, Grenoble, 9 July 2008 (in French). 

15. J. Huillery, Martin N.,  A Bayesian Approach for the Detection ofTime-Frequency 
Components of Signals, Seventh International Conference on Mathematics in Signal 
Processing, IMA 2006, Royal Agricultural College, Cirencester, UK., 17-20 December 
2006 

 


