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ABSTRACT

Due to the fact that Magnetic Barkhausen Noise (MRBMrries out information about the
microstructure and stress behavior of ferromagnstigels, it has been using as a basis for
effective Non Destructive Testing (NDT) methods,enipg new areas in NDT industrial
applications. One of the factors that determinesaiality and reliability of the MBN analysis is
the way information is extracted from the signabn@nonly, simple scalar parameters are used
to characterize the information content, such agldude maxima, signal root mean square, and
so on. This paper presents a new approach basd¢lddeolBN time-frequency analysis. The
experimental case that illustrates this approagards the use of MBN signals to characterize
different types of steels. It is shown that, duado-stationary characteristics of the MBN, time-
frequency representations can provide a rich ad p@norama of these signals. Extraction
techniqgues of some time-frequency parameters aeel s allow a diagnostic process. A
comparison with results obtained by the classicathod highlights the improvement on the
diagnosis provided by the proposed method.

1. INTRODUCTION

The Magnetic Barkhausen Noise (MBN) is a magnefienomenon produced when a variable
magnetic field induces magnetic domain wall movetmen ferromagnetic materials. These
movements, not continuous but discrete, are cabgedefects in the material microstructure,
and generate magnetic pulses that can be measyradcbil placed on the material surface.
Since the MBN is sensitive to the state of the mmatanicrostructure, to the presence of



deformations and of mechanical stresses, it ca(abé has been) used in the development of
Non-Destructive Essays regarding several indusagblications [811]. The success in the
development of inspection systems based on the MEBNends on the synergetic use of
knowledge from different areas such as materisdnags, electronics, mechanics, and signal
processing.

A point put in evidence by MBN studies is the infpoice of a deeper study of signal processing
methods allowing better highlighting and separatbBN signal information concerning the
various material states.

The traditional MBN signal processing analysis md# can be classified in two classes: the
scalar methods (or O dimension methods — 0D) aade¢istor methods (or 1 dimension methods
— 1D). The OD methods use parameters extracted th@rMBN signal, such as Root Mean
Square (RMS), energy, maximum value, number of Migldks at certain values, or else from
the frequency domain, such as the energy at soagdncy bands. The 1D class uses the
envelope of the time signal or that of the sped#BN signal. As one increases the dimension of
the analysis methods, the quality and quantityhef available information carried out by the
signal increases.

However, due to the nature of the Barkhausen signgl, a sequence of discrete magnetic pulses
whose physical model is sometimes associated tarazes belonging to the class of critically
self-organized phenomena [7], it seems that othethads of signal analysis would be more
adequate as, for example, time-scale methods gergnihultiple time-frequency scale analysis,
instead of linear analysis characterizing the tfreguency methods commonly used in non-
stationary phenomena. Very few works have beenighdd about these subjects, related to the
Magnetic Nondestructive methods [3,4].

By analyzing the signal envelope and the spectitirm,observed that the signal is time limited
and has a wide spectral band. Several questionaimeananswered by the one dimension
analysis. For instance: how is the time-frequerninycture of MBN? Is there any time-frequency
structure that is related with the evolution oesf or with some microstructure variation in the
material? Is there any time-scale structure? Ieeteeme informational gain in relation to the
traditional scalar and 1D methods? What are theeradequate method of time-frequency (TFR)
and time-scale (TSR) representations, availabtaerinternational literature, that better describe
the informational content of the MBN signal?

This work presents the traditional methods of MBgjhal analysis, and studies the use of some
time-frequency and time-scale representations enatimalysis of MBN signals measured in four
different steels. Section 2 presents the experiahenéasurements. Section 3 and 4 sum up the
time-frequency and time-scale methods we have dereil. Section 5 comments the differences
between the representations obtained. Sectiongepi® the results of the study. In Section 7, a
first result of automatic detection in the timeegfuency plan is presented.

2. EXPERIMENTAL MEASUREMENTS

Samples of four different steels were used in tkgeements: a high carbon AISI 1070, a
pipeline steel X80, a tool steel AISI D2 and a AR8kel (High Strength Low Alloy steel). In
each sample, 6 MBNresponses were measured.

Figure 1 shows a flow chart of the measuremenngament. A Personal Computer with a data
acquisition device (with A/D, D/A and D/D channel)pplies a sinusoidal wave of 10 Hz,

which is amplified by a bipolar source, This sofeeels the magnetic circuit in order to

magnetize the sample with a magnetic field, indg&aturation in the samples. The MBN sensor
output is amplified, band pass filtered (1 - 10Qkidnd digitalized with a sampling frequency of

200 kHz. Each signal records the magnetic respoh2eycles of the magnetic excitation.
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Figure. 1 Experimental setup for MBN signal measegts.

3. TIME-FREQUENCY REPRESENTATIONS

Time-frequency representations are characterizeal fiyed resolution in all the time-frequency
plan. We have considered 4 of them:
- the spectrogram, the more classical and the mdmestp
- the Wigner-Ville and its smoothed version, whicHobg to the same class than the
periodogram, the Cohen class, and well known ®higher resolution and the presence
of interference;
- the Capongram, middle between the Cohen class lamdo@rametric representation,
interesting for good statistical properties atélpense of computing time;
- the ARgram, a parametric approach.

The latter two have been adapted ton nonstatiaignals by a simple gliding time window.

3.1 Spectrogram

A linear TFR based on the Fourier transform canelaehed by pre-windowing the signal around
a chosen time, calculating its Fourier Transformg g@roceeding in the same way for each
instant. This transform is known as Short Time-bBesgy Transform and referred to as
STFT(t,f) where t is the time variable and f theguency variable. A quadratic form related with
the Short Time—Frequency Transform can be obtdyethking the square of this transform. It
Is known as spectrogram and measures the speogadyedensity of the signal in the time—
frequency plan. The spectrogram of a signal x(tleferred to as SPECT(t,f). The following

holds

SPEC(tfi=| STFT(Lf = Tx( Wog-tE Tl (1)

where h(t) is a sliding weighting window and th@earscript* denotes conjugate.

The time resolution of the spectrogram is deterohibg the length of the selected sliding
window h(t), and the frequency resolution isdefireesithe —3 dB bandwidth of the spectral
window, the spectral window being the spectrogranthe window h(t). The best frequency
resolution is achieved with the natural window atedined asAf = 1/D, where D is the time

duration of the window. Any other different windowll degrade the resolution but improve the
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estimation variance. The produtt x D 2 1 measures the joint time-frequency resolution of
the method. This resolution limitation is the msigiificant drawback of the spectrogram. Other
major problems can be cited: (a) the implicit windlog problem that causes the “leakage”
phenomenon, and (b) the impossibility of averagsegiodograms for reducing the estimation
variance when working with short data. Neverthelesge advantage of this method is its
robustness towards the nature of the signal.

3.2 WV and SPWV

The Cohen class is a general formulation for naupatric time-frequency distribution, which
includes the Wigner-Ville Distribution and relatsteThe spectrogram can be considered as a
special case of the Cohen class. The Wigner-ViirDution of a signal x(t) is referred to as
WVD(t,f) and can be defined as [6]

WVD(t,f) = j X(t+7/2)X (t-1/2)e' 2™ "o . (2)

Since the value of the WVD(t,f) is determined blytaé values of the signal (and therefore, not
limited by a time window), the Wigner-Ville Distnithon overcomes the spectrogram tradeoff
between time and frequency resolution, the hypathef short-term stationarity is no more
necessary. This improvement comes at a price oapipearance of spectral cross-terms, which
comes from the bilinear kernel of the transform.isTBpectral interference is critical in
multicomponent signals, since it makes difficuk thistinction of weaker signal components and
it masks spectral features.

To overcome this major drawback, several modifaraihave been proposed and can be found
in the literature. One of them, the Smooth Pseudgn®f Ville Distribution is of particular
interest to this work since it will be used later dnalyse experimental results. The Smooth
Pseudo Wigner Ville Distribution of a signe) referred to as SPWV(t,f)can be defined as [6]

SPWVD(t,f)= T h(r)T gt-n)x@p+7112)X -1 /2)dh €' " @, (3)

whereg(t) is the time smoothing window ar{t) the frequency smoothing window. With the
introduction of these two windows it is possibleattenuate and to smooth the interference terms
of the Wigner-Ville distribution, by independenttiioosing the type of window and its length.

3.3 Capongram

The Capon Method or Minimum Variance Method is aparametric spectral power estimator
having higher frequency resolution than the Foufiensform based methods. The quantity
estimated, homogeneous to the power of signal is(tgferred to asdzp(t,f) and is defined by
[12]

1

e (H)RE(t) e, (f)’

where €] :( 1, gZritee

Peap(t, )=

(4)

), ts is the sample interval, the superscripis denotes

conjugate transpose is the order of the Capon filter.,@® is the correlation matrix of
dimension(p+1) x (p+1) evaluated on a gliding time window centred atttine instant t.

The signal power obtained by this approach carebe ss the output of a filter, of length p and
with variable center frequency. Parameter p hé®tohosen by the user.

The design of the Capon method allows the frequessplution to be high on a short time
window. This approach assumes signal stationantgr aghe time window and, therefore, is
appropriated to analyze weakly non-stationary sggna



3.4 ARgram

The gliding power spectrum density of the Autoregiree Model of a signal x(n), referred to as
Sar(t,f), can be obtained by [13]
P
Sy (1) = w =, (5)

P
—j2 7t k
1+ a. €
k=1

where R, is the power of the white noise (or the predictaror),p is the model order araj ;,
the model coefficients evaluated on a time glidimigdow centred at t. This equation is also
known as the Maximum Entropy Spectrum. The choicthe order p is done by the user and
constitutes the main issue of this approach.

As for the Capon method, the AR model allows tlegj@iency resolution to be high on a short
time window. . This approach assumes signal statiphover the time window and, therefore, is
appropriated to analyze weakly non-stationary dggna

4. TIME-SCALE REPRESENTATION

Two time-scale transform have been considered:
- ascalogram as a classical time-scale transform;
- a Mellingram as an adaptation of the Mellin tramgfdor nonstationary signals.

4.2Scalogram

The Scalogram is a time-scale representation basetthe Wavelet Transform, referred to as
Tx(t,aW) and defined by [6]

T™X(taW)=[" (I¥..(3d, (6)

where W, ,(9) :|4_l/2w(s—_tj, andW¥ is the mother wavelet. Parameters the scale factor.
’ a

Although the representation obtained is time-sadalis, possible to establish an associated time-
frequency representation, by using the relationfd &, where § is a reference frequency of the
mother wavelet.

4.2 Mélingram

Several transforms have been proposed in ordepdoate a dominium transformation, with the
objective of facilitating interpretation of a phgal phenomenon. One of these transforms is the
Mellin Transform. The gliding Mellin transform of gignal x(t) referred to a Mt ; p), can be
deduced from its general form [1,2] and is givgn b

M. (t; p):jo“’ x(r)w(t-7) ¢ dr, 7)
wherep, a complex number, is the Mellin parameter and a{tme window.

A particular form of the Mellin transform, also nachScale Transform, is obtained by using
-jc+1/2, with ¢ a real number. Therefore, adapted to ratiostary signals, a gliding Scale
transform, referred to asi@; c), is

D, (t;c) =%J§° X(r)w(t-7) €1 o (8)



If x(t) is a function andj(t) is a scaled version aft), then the amplitude of the transform will be
the same. Ik(t) has a scale periodicity of periggthen x(t) =7 X(7t).

5. VANTAGESAND DISADVANTAGES OF EACH METHOD

Table 1 presents the values of the parametersinssth method to calculate the TFRs, and the
computational time consumption for each case.

The Spectogram in (1) is fast and very easy to sisee the transform does not depend on some
a priori information (order parameter) as in ARgram andddgpam cases. But the estimation
has the highest variance and the lowest time-frecyueesolution.

The Wigner-Ville distribution (2) presents two miapdvantages: it is a non-parametric method
and it has a good time-frequency resolution.. ligomdrawback is the appearance of spectral
cross-terms, which makes difficult the distinctioinweaker signal components. Additionally, it
masks spectral features.

The Smoothed Pseudo Wigner-Ville distribution definin (3) attenuates and smoothes the
interference terms, at a cost of some degradatidime-frequency resolution. However, these
two methods have a severe limitation related withdomputational memory consumption. The
amount of memory used in all the analyses was d@hees but was not enough for the Wigner-
Ville distribution and Smoothed Pseudo Wigner-Villigstribution given the length of the
recorded signals (see Table 1).

Therefore the authors have considered these twobatigtare not competitive in face of the other
ones, and they were abandoned.

Table 1. Parameters used in the TFR and TSR cdlook(microprocessor Centrino 1.8 GHz, 1

GB RAM).

TFR Parameters Computational Time
Spectrogram Nwin=512; Noverlap=128; 0.35

Capongram Nwin=512; Noverlap=128; order=100 108

ARgram Nwin=512; Noverlap=128; 10.3

Order=40
Scalogram Number of scales=50 165
Mellingram Nwin=512; Noverlap=128; 9.1

Capongram (4) has a higher time-frequency resalwitd lower variance than Spectogram, but
IS more computationally time consuming than th& lane and the ARgram method (see Table
1). Although the Capongram does not impose a miodidle signal, it is necessary to estimate a
parameter, named “order” p that has a meaning rdiiftefrom the order of the ARgram.
Meanwhile the AR model order is related with theyrée of freedom of the system being
modelled, the Capongram order describes the fétegth. In the AR model, the order is optimal
when its value is close to the system degree efdsen, whereas an increase in the Capon filter
bank order increases the frequency resolution atetkpense of deterioration of statistical
stability.

In other words, in the ARgram method the spectrdrimation is contained inside the AR filter
and, conversely, is in the output of the filtetlie Capongram method

The ARgram (5) is a time—frequency method more adtqto describe narrow band spectral
components. The main drawback of this method igb@athat it implies aa priori knowledge
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(or assumption) about the process from which tigaadiis taken. This priori information is
expressed by the selection of the model opde good choice of this parameter is essential for
good spectral estimation, what implies an addifi@moanputational time in order to find a good
value (see Table 1). Other disadvantage is the baghputing time necessary to calculate the
spectrum in each time moving window (see TableThle main advantage of the ARgram
method is its high time and frequency resolutiod & low variance.

Although very time consuming, the highest among tised methods, the Scalogram (6) is
simple to use, depending only on the choice of nbenber of analysis scales. Both, the
Scalogram and Mellingram (8), are methods thatstew scale structures in the signal, if they
exist and in a different manner, not identifiableithw the traditional time-frequency
representations.

6. RESULTS

In what follows some results of experimental dasgbanalysis are shown in a sequence of
increasing richness of information representatiowl, aby consequence, also of increasing
complexity of analysis and interpretation.

Figure 2 shows the 4 MBN signals, for each typestafel, plotted in the same scale, for
amplitude comparison. It is possible to notice ,tHat the same magnetic excitation, each
material responds in a different manner. The ainthefsignal processing process is to put in
evidence the details of the MBN behaviour diffeesmiamong them.

1070 X80
0.2
= =
= 0 =
m m
= =
-0.2

0 10 20 30 40 50 0 10 20 30 40 50
time{ms) time{ms)
ARBL
0.2
= =
= ] =
i) i)
= =

-0.2

1] 10 20 30 40 a0 10 20 30 40 a0
time(ms) time(ms)

—

Figure 2. MBN signals for different materials

Figure 3 shows the average of 6 MBN RMS valuesg#mh type of steel. It's worth noting that
X80 and D2 are hardly distinguished by this appnoac
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Figure 3. RMS MBN for different materials

Figure 4 presents the average envelope of the M&MNakand the average envelope of the MBN
spectrum. Since this kind of representation givesemnformation than the scalar parameters,
the difference among the steels is more apparent.

Different type of materials « 107 Different types of materials
0.12 T T T T T T T

— 1070 — 1070

0.06F

average of MBMN envelope

0.04F

average of spectral MBN env elope

0.0z P

0 I 1 1 1 1 1 I 1 I 0 I 1 1 1 1 1 I I I
0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 60 70 80 90 100
time (ms) Freq.ikHz)

Figure 4. a) Average envelope of MBN signals; grAge envelope of MBN spectra

However, we will show that the TFRs and TSRs arehmrcher in details than the scalar
parameters and envelope representations. The TRiRIBRs were calculated for all the four
steels types, but, due to space limitation in piager, only the results for the D2 steel are shown.

It is important to know that significant improventen the quality of the TFRs representations
can be reached by using averages of TFRs or TSisefbre, all TFRs images shown in Figure
5 and 6 are averaged over 6 TFRs evaluated on ssiceemeasurements of the same
phenomenon and are presented with the same z-ale st order to allow comparison among
them.

By analysing the graphical representations of Fghr it is interesting to notice that the
Scalogram results are very similar to the TFRs orldes means that there is no scale
phenomenon, at least perceptible in this repregentan the MBN signals. Additionally, by
analysing the Mellingram results, no scale striecttould also be detected. Therefore, it seems
that TFRs are enough to describe the informatiooatent of MBN signals.
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Mellingram

In Figure 6, the TFR of each one of the four steethown.

Two main kinds of information can be taken from g 6. First several almost stationary
narrow-band components, close to 50 kHz and 90 ki visible all over the time duration of

the signal). These frequencies cannot be relat&BiN phenomenon and may come from some
external interferences of the measurement equipmgltihough these frequencies can be
observed in the envelope of the MBN spectrum (Fagtl; their stationary nature, noticed only
in the TFRs, allow concluding that they are noated to the MBN phenomenon.

Second, the remaining information is on the notiestarity part of the MBN signals. All the
information presented in the MBN envelope and ia #nvelope of the MBN spectrum is

combined in a synergetic way, resulting in the egthpanorama that can be seen in the TFR'’s of
Figure 6.

The differences among the MBN behaviours, for estelel, are clearly noticeable, mainly the
shape of the spectral pattern, amplitudes, timefiggiency distribution.



As a result, the authors choose the Capongram ante@gTFR’'s and TSR’s taken in
consideration in this paper, since this represemtas able to highlight the differences between
the four different steels studied.
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Figure 6. Average of Capongram TFR for steels lgckwise direction): a) 1070; b) X80; c)
ARBL; d) D2

7.A TIME-FREQUENCY SOURCE SEPARATION

This section is a first result in order to introdutiture works, which will naturally attempt to
propose an automatic diagnosis using time-frequeapyesentations. As noted in section 0, a
time-frequency representation of the MBN recordswshtwo types of time-frequency patterns.
In addition of the MBN, some components are visialel may come from some external
interferences of the measurement equipment. Theoparof this section is to apply a method
proposed in [14-15], which allows an automatic dete of the time-frequency patterns
according to the assumption of what we decide tahleenoise. In this MBN application, the
signal of interest is in fact the noise, the MBNeseas the electronic perturbations are the noise.
We will then launch the method under the assumpifaan non-stationary and non-white noise in
order to detect the MBN signal in the noise parthefsignal.

The derivation of the method is out of the scopéhf paper. Further details should be found in
[14-15]. According to the progress of the developthere are not still able to present results on
the Capongram but only on the spectrogram. Thegur€&i 7 shows the results of the time-
frequency detection when applied on the spectrogrfatine D2 steel on a longer duration than in
Figure 5. The time-frequency plan in the upper trigide is then an estimation of the MBN

signal only. As a complement, the time-frequen@nph the lower right side gives the result of
the detection of the components mixed with the MBIdt is the electronic inferences. For
getting the algorithm need no maaepriori information than the properties of non-statiornarit

and non-whiteness of the noise.
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Figure 7. Source separation by detection in thecBpgram of D2 steel: spectrogram (top left),
noise estimation —top right), candidates for detat{bottom left) and detection result (bottom
right)

8. CONCLUSIONS

Three Time-Frequency Representations and two TioadeSRepresentations were used in order
to analyse Magnetic Barkhausen Noise signals medsuarfour different steels. The vantages
and disadvantages of each method are commenteds aR@R TSRs images of same steel and
images of a TFR method for four different steels presented. These results allow higher
information quality for the MBN phenomenon than tineditional methods. Additionally, the
TSRs did not show scales structures in the MBNadgn

Although the TFR method can supply rich informatimm the MBN signals very few studies
were undertaken with TFRs methods in this magmptenomenon. On other hand, the richer the
quality of the information, the harder the analyamigl the comparison of different cases, for the
amount of information is high.

Therefore, future works should emphasize the dgveémt of methods of extraction of image
characteristics, in order to allow classificatiasks by means of MBN TFRs information.
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