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ABSTRACT 
Whatever the application domains, when dealing with strongly nonstationary and nonlinear signals, 
Fourier-based methods and even classical time-frequency methods are no longer able to estimate 
and track the instantaneous amplitudes and frequencies of each signal component. One possibility to 
get away from the Heisenberg incertitude constraint is to set a model, which has to be as general as 
possible in order to be valid in many domains. In that context, we have proposed and studied a new 
model, which writes as a time-varying polynomial-amplitude and polynomial-phase signal. 
Parameter estimation is casting as the maximisation of the likelihood function, which is overcome 
by meta-heuristic approaches, such as simulating annealing. In that paper, based on simulations, we 
detail the performance of the Short Local Polynomial model-based method (Short-LP) we proposed 
for a number of particular cases when analysing one or two components on very short-time duration. 
We first assess the frequency resolution limit when analysing close frequency-modulated 
components. The performance is explained according to classical Fourier limits and more 
particularly the dynamic signal bandwidth, the signal being nonstationary. The analysis of 
amplitude-modulated components is then discussed according to the presence or not of the carrier 
frequency. Finally, we stress upon the performance of the amplitude estimation in the particular case 
where the instantaneous frequencies are known a priori. 
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I. INTRODUCTION 
Surveillance is based on indicator monitoring. When an indicator exceeds a threshold, an alarm is 
raised. An absolute threshold on scalar indicators is the most widespread approach but is not adapted 
to the detection of some damages. For instance in rotating machines, unbalances, misalignments, 
anisotropic rotors, flexible coupling or magnetic bearings infer excitation forces, which amplitude 
and frequency are modulated. In that case, typological indicators are essential for a reliable and early 
detection. A highly evolved indicator is capable to directly represent the vibration image of a default 
and to track its evolution. 

A time model of a measure provides an accurate description of this observation, which parameters 
can be such typological indicators. In previous publications [3-4-5-6-7-8-9], we have proposed a 
time model for signals having strong nonstationarities. Furthermore this model based on a Short 
Local Polynomial model (Short-LP) is relevant for processing short signals. In all the methods 
belonging to the Cohen class, the resolution is limited by the Heisenberg incertitude. To get away 
from this constraint and to be able to estimate nonlinear modulated signals with a better resolution 
need to add some hypothesis mostly if the signal analysis is of short duration. 

We will not handle the statistical properties of the Short-LP estimator proposed, this topic has been 
thoroughly covered in previous publications [3-4]. We will now focus on some important issues for 
the analysis of multicomponent signals. 

Based on simulations, we detail the performance of the algorithm for a number of particular cases 
when analysing components on very short-time duration. We first assess the frequency resolution 
limit when analysing close frequency-modulated components. The performance is explained 
according to classical Fourier limits and more particularly the dynamic signal bandwidth, the signal 
being nonstationary. The analysis of amplitude-modulated components is then discussed according 
to the presence or not of the carrier frequency. Finally, we stress upon the performance of the 
amplitude estimation in the particular case where the instantaneous frequencies are known a priori 

This paper is outlined as follows. Section II will recall the model used for modelling short 
nonstationary signals. Section III briefly describes the optimization algorithms chosen to estimate 
the model parameters whereas section IV deals with the multicomponent case. The last sections 
present new results elaborated for a number of simulated signals in order to highlight important 
properties of the algorithm proposed: the frequency resolution limit in section V, the behaviour of 
the algorithm face to amplitude modulation without carrier in section VI and the improve of 
performance with prior upon frequency modulation in section VII. Section VIII looks at the 
conclusions that can be drawn from this work. 

 

II. THE MODEL WITH A SPECIFIC BASE 

Let us consider a model [ ]x n  of a discrete signal defined as the sum of C components [ ]cx n , 
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where amplitudes ac[n]  are strictly positive, phases [ ]c nφ  are differentiable and show no 

discontinuity. The constraint on the amplitudes and the phases guaranty the unicity of the model [2, 
10]. 

A way of modelling the signal with a better accuracy is to increase the number of parameters to 
describe it without being over the point number of the signal. In [3], we propose a polynomial 
modelling of each amplitude ac[n]  and of each frequency fc[n] . The phases [ ]c nφ  of each 

component are then obtained by a discrete integration of fc[n]  up to 2π . For each c varying from 1 
to C, the approximation is given by 
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where Mac and Mfc are the approximation orders of the amplitude modulation and frequency 
modulation respectively. cϕ  stands for the initial phase of the signal in (1). 

The set [ ]{ } ( )0,max ,c c
m m Ma Mf

p n
=

 is a polynomial base. This base could be computed from the 

discretization of a continuous-time base, such as the canonical polynomial base or the orthogonal 
polynomial bases, such as Legendre, Tchebychev or Hermite. However the orthogonal property is 
lost when discretizing these functions. This property is fundamental to guarantee the independence 
between the parameters estimated. Therefore, in Short-LP, we use a discrete base we derived in [3] 
and which corresponds to the application of the Gram Schmidt procedure in discrete-time directly. 

The expressions for the set [ ]{ } ( )0,max ,c c
m m Ma Mf

p n
=

 are recall in Appendix. 

Finally the parameters to estimate can be gathered in a vector V  

   
T T

1 CV = V ...V  (3) 

with 

 ,0 , ,0 ,c c

T

c c Ma c c c Mfa a f fϕ =  cV … …  with c=1,C (4) 

The dimension of the vector V is equal to C×M with M=Mac+Mfc+3, the dimension of each vector 
Vc. 

In addition to the choice of the base, the choice of modelling the frequency instead of the phase and 
the centring of the polynomial at the signal middle to ensure a minimum variance, the idea was to 
also consider only small approximation orders in Short-LP [3]. Mac and Mfc are less than or equal to 
2. This rule does not induce a constraint since the signal analysed is assumed to be short enough to 
be adapted to this approximation. The signal duration should contain one or two periods at least. 

In order to generate the model (1), two approaches have been considered to estimate the vector V. 
One possible approach is to consider the maximisation of the likelihood function, which is 



equivalent to a minimization of the least square function ( )LSl V  when the error can be assumed to 

be a Gaussian noise. This minimization is 
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where [ ]s n  is the observation and [ ]x n  the model defined in (1). The error between the observation 

and the model, namely the difference [ ] [ ]( )s n x n− , represents the sum of the noise, in which the 

deterministic signal we want to estimate is embedded, and the model error. We verify a posteriori 
that this error is distributed as a Gaussian law. 

Direct minimization of (6) is extremely difficult due to the high non-linearity of the function and the 
parameter number. Classical optimization techniques such as gradient descent, Gauss-Newton and 
EM algorithm do not ensure convergence to the global minimum when local minima are numerous. 
This problem can be overcome with meta-heuristic approaches, and in particular, with the simulated 
annealing algorithm. The simulated annealing technique is efficiency, when a desired global 
extremum is hidden in many local extrema. The simulated annealing has an analogy with 
thermodynamics where metal cools and anneals. In the same way, after an initialization of the 
parameter vector to estimate, an iterative loop, controlled by a scalar referred to as a temperature, 
generates a new candidate of the vector that minimizes the cost function, namely the least square 
function ( )LSl V . This candidate is accepted or not according the acceptation Metropolis rule. 

In lieu of a likelihood maximum approach, a second approach can also be investigated upon a 

Bayesian point of view. In that case, the parameters in V and the variance of the error [ ] [ ]( )s n x n−  

are viewed as random variables for which a prior distribution has to be assigned. A straightforward 
calculation leads to an expression of the posterior distribution up to a normalisation constant. This 
function being highly nonlinear, we propose to use a Metropolis-Hasting MCMC algorithm to 
sample from this distribution. Once this distribution is estimated, the parameters are estimated by a 
Minimum Mean Square Error method [3]. 

By comparing both estimation algorithms [3], we concluded that the simulating annealing approach, 
in addition to a simple implementation, has provided a better compromise between the bias and 
mean square errors of the parameter estimates and the computation time. In this paper, we will then 
only use the simulating annealing based approach with the Short-LP. 

The method was extended to a monocomponent signal whatever its length and its modulations by 
considering a local approximation on nonsequential parts of the signal. This issue is not considered 
in this paper, the reader should refer to [4] for details about this extension. 

 

III. OPTIMIZATION TECHNIQUE FOR A MONOCOMPONENT SIGNAL 

Let us come back to the approximation of a short monocomponent signal [ ]cx n  defined in (1). In 

that case only one vector Vc of dimension M, as defined in (4), has to be estimated. Table 1 gives the 
tuning of the Short-LP running with a simulating annealing based algorithm. 



Inputs 
- [ ]s n  the observation over [ ]2, 2N N  

- Mac the order of the amplitude polynomial (by default 2) 
- Mfc  the order of the frequency polynomial (by default 2) 
- iter the number of iterations (by default 70 000) 
- Bp  the Bernoulli-distribution parameter (by default 0.01) 

- σε  the decrement of the parameter perturbation variance (by default 0.01) 

- τε  the decrement of the temperature (by default 0.01) 

- vb a rough estimation of the additive noise variance 
- zα α-quantile for the Gaussian distribution (by default α=31% and zα=1) 

Step 1. Initialization 
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( )( )0 2 0
M idiag σ=Σ   the M×M diagonal matrix of the initial parameter perturbation, 

( )
( )2 0

iσ  being the parameter variances (by default setting to max (s[n]) for the amplitude parameters, 2π for 

the initial phase and half of the sampling frequency for the frequency parameters, theses values being 
formulated in the chosen base) 

- ( ) ( )( )0 0
LS clτ = V     the initial temperature 

Step 2. Iterations from 1,t iter=  

- Generate a new parameter vector deviated from a Gaussian perturbation  
( ) ( ) ( )gen t t
c c c= +V V δV  with ( ) ( )( )0,t t

c M= ΣδV N  

- Compute the model from 
( )gen
cV  ( ) [ ] ( ) [ ] ( ) [ ]( )cosgen gen gen

c c cx n a n nφ=  

- Compute the LS function  ( )( )gen
LS cl V  

- Draw a random number according to a uniform distribution [ ]0,1u U∼  

- Apply the acceptation Metropolis rule 

If 
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- Draw a random number according to a Bernouilli distribution ( )Bu B p∼  

- If u=1     set ( )
( ) ( ) ( )

( )2 1 21i i

t t
σσ ε σ+ = −  ∀i and ( ) ( ) ( )1 1t t

ττ ε τ+ = −  

    otherwise set ( )
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i i
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- While t<iter    set t=t+1 and iterate step 2 

Stop criterion 

- If [ ]( ) ( ) ( )2 21 1iter
b be n v N z v Nα− + < +  set [ ]cx n  from ( )iter

c=cV V
⌢

 and stop the algorithm 

     otherwise repeat step 2  

Table 1 - The Short-LP with a simulating-annealing-based algorithm for a monocomponent signal 

 



IV. THE CASE OF MULTICOMPONENT SIGNALS 
In the case of a multicomponent signal, which is the purpose of this paper, the model is always 
defined in (1) but with C>1. The dimension of the parameter vector V, equal to C×M, is high and 
represents the dimension of the parameter space describing the signal. In order that the modelling 
makes sense, this dimension has to be lower than the degree of freedom of the signal. Subsequently, 
this dimension has to be lower than N+1, the length of the signal. We then deduce the largest 
number of components, 

 
N+1

C  ,
M

≤  (7) 

that the model can take into account. This constraint is strong in the context of short signals with 
non-linear modulations in frequency and in amplitude. Namely, this means that for a classical 
modelling with polynomial functions of order 2, M is equal to 7 and the number of components 
cannot be greater than 4 for a signal length of 32 points. This strong limit is due to the high precision 
of the model, which, as we will see in the following, will induce high performance at the expense of 
the computation time. 

In [6] and [7], two approaches have been considered for estimating the parameters. 

The first is referred to as the global algorithm and is a direct generalization of the previous 
algorithm. All of the parameters of all the components are estimated together. The algorithm derived 
is then optimal regarding the maximum likelihood, but it is important to notice that this property is 
true asymptotically only. 

The second one is a method by deflation, where the highest-energy component is first estimated, 
then extracted from the observation in order to estimate the following one. Due to its design, this 
algorithm is suboptimal but with a less computational time. 

The two following sections sum up these two approaches by pointing out the steps modified with 
respect to the algorithm developed in the monocomponent case. 

 

3.1. Global algorithm 

The global algorithm is close to the one presented in Table 1. In the initialization step, named step 1, 
the parameter vector Vc of each component is estimated by a deflation method applied on a Fourier 
transform, the number C of components being known. The perturbation matrix is now of dimension 

C×M and is initialized in the same way. 

In order to increase the convergence rate and to reduce the computational time, which can be very 
high according to the observations, the adaptation has consisted in reducing the random perturbation 
in the iteration step 2 of Table 1. 

Table 2 shows the new iteration step, referred to as step 2’ where the Metropolis rule is no more 
applied. 



Step 2’ - Iterations from 1,t iter=  

- Generate a new parameter vector deviated from a Gaussian perturbation  
( ) ( ) ( )gen t t= +V V δV  with ( ) ( )( )0,t t

C M×= ΣδV N  

- Compute the model from ( )genV   ( ) [ ] [ ]( )

1

C
gen gen

c
c

x n x n
=

=∑  

- Compute the LS function ( )( )gen
LSl V  

- If ( )( ) ( )( ) 0t gen
LS LSl l− >V V   set ( ) ( )1t gen+ =V V , ( )( ) ( )( )1t gen

LS LSl l+ =V V  

    otherwise generate a new parameter vector again 
- Draw a random number according to a uniform distribution [ ]0,1u U∼  

- If u < 2/3    set ( )
( ) ( ) ( )

( )2 1 21i i

t t
σσ ε σ+ = −  ∀i 

    otherwise set ( )
( ) ( ) ( )

( )2 1 21 1i i

t t
σσ ε σ+ = −  ∀i  

- While t<iter    set t=t+1 and iterate step 2’  

Table 2 – Step 2’ of the global algorithm of the Short-LP with an adapted simulating-annealing-based algorithm for a multi-
component signal - In this case and compared with step 2 of the monocomponent case, the decrement σε  of the parameter 

perturbation variance has a default value equal to 0.04 and there is no more temperature parameter. 

 

 

3.2. Sub-optimal Algorithm by deflation 

The deflation approach consists of a component-by-component algorithm. At iteration c, the cth 
component only is estimated through a vector we denote c→V

⌢

. Instead of the parameter vector V 

defined in (3), c→V
⌢

, defined as 

 1
( )

c c c
C c times

→ − −

 
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T T T T T
1V = V ...V V 0 ...0

⌢ ⌢
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with 0T the null vector of dimension M is partially filled in according to the iteration number. For 
the same reasons as in the previous section, a modified simulated-annealing technique is applied for 
estimating this vector. 

At each iteration c, the cth component of c→V
⌢

 is initialized as in Table 1 but from the Fourier 

Transform of the residue of the previous iteration. 

Table 3 shows the principle of this algorithm. Inside the deflation loop, the iteration step, referred to 
as step 2”, is close to step 2’ of Table 2 but for one component only. The perturbation matrix is of 
dimension M only. 

 



Inputs 
- [ ]s n  the observation over [ ]2, 2N N  

- C the component number 
- Mac the orders of the amplitude polynomial for each c=1,C  (by default 2) 
- Mfc  the order of the frequency polynomial for each c=1,C  (by default 2) 
- iter the number of iterations (by default 500) 
- σε  the decrement of the parameter perturbation variance (by default 0.01) 

Initialization of the residue [ ] [ ]1r n s n=  

Deflation loop - Iterations from c=1,C 

 Step 1 from Table 1 → Initialization ( )0
c→V

⌢

 from ( )
cr

FT f  

 Step 2” - Iterations from 1,t iter=  

 - Generate a new parameter vector deviated from a Gaussian perturbation  

 ( ) ( ) ( )gen t t
c c c= +V V δV  with ( ) ( )( )0,t t

c M= ΣδV N  

 - Compute the model from ( )gen
cV  ( ) [ ] ( ) [ ] ( ) [ ]( )cosgen gen gen

c c cx n a n nφ=  

 - Compute the LS function  ( )( )gen
LS cl V  

 - If ( )( ) ( )( ) 0t gen
LS c LS cl l− >V V   set ( ) ( )1t gen

c c
+ =V V , ( )( ) ( )( )1t gen

LS c LS cl l+ =V V  

     otherwise generate a new parameter vector again 
 - Draw a random number according to a uniform distribution [ ]0,1u U∼  

 - If u < 2/3   set ( )
( ) ( ) ( )

( )2 1 21i i

t t
σσ ε σ+ = −  ∀i 

     otherwise set ( )
( ) ( ) ( )

( )2 1 21 1i i

t t
σσ ε σ+ = −  ∀i 

 -While t<iter   t=t+1  and iterate step2“ 

Step 3 - Construction and deflation of the cth component 

 - Set ( )iter
cV  in c→V

⌢

 
- Compute [ ]cx n  from the cth component of c→V

⌢

 
 - Deflate this cth component from the observation  [ ] [ ] [ ]1c c cr n r n x n+ = −  

 - Until c<C set c=c+1 and iterate the deflation loop 

   otherwise set [ ]x n  from C c→=V V
⌢ ⌢

 and stop the algorithm 

Table 3 – The deflation algorithm of the Short-LP with an adapted simulating-annealing-based algorithm for a multi-component 
signal 

 

V.  FREQUENCY RESOLUTION LIMIT 
In this section, the limit of the frequency resolution of the Short-LP is evaluated by means of 
simulations. A set of signals, referred to as Testset 1, is simulated according model (1) with two 
close quadratic-frequency modulations. In order to break up the influence of the amplitude 
modulation, the amplitudes of both components are set to the same constant value. The parameter 
vectors Vc as defined in (4) are set up for each component to 

[ ]1 1 1

2 2,0 2 2

16 0.4 1.90 0.2 0.5 0, 2

16 1.0 0.2 0.5 0, 2

T

T

with Ma Mf

f with Ma Mf

= − − = =

 = − − = = 

V

V
 for Testset 1. (9) 

N is equal to 32 and the signal to noise ratio is 15 dB. The sampling period is 1s. At each date, the 
frequency distance between each component is a constant number ∆f, which lies in the range 
[0.0870 Hz, 0;0087 Hz]. This distance is set by means of the value of 2,0f , see Table 4. For an easier 

comparison with Fourier-based method, the last line of Table 4 gives ∆f in frequency bins. 



 

f2,0 in Hz 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.40 1.45 

( ) [ ]1,0 2,0 0f f f p n∆ = −  in Hz 0.0087 0.0174 0.0261 0.0348 0.0435 0.0522 0.0609 0.0696 0.0783  0.0870  

( 1)f N∆ × +  in frequency bins 0.2871 0.5742 0.8613 1.1484 1.4355 1.7226 2.0097 2.2968 2.5839 2.871 

Table 4 – Theoretical frequency resolutions of the Testset 1, 1,0f  being equal to 1.90 and [ ]0p n  to 1
1N+  with N=32 according to 

the discrete base used. The colour qualifies the results of the Short-LP: red, orange and green for bad, so-so and good respectively. 

 

In the algorithms proposed, the modulation orders are assumed to be unknown. As already specified 
in section II, we set the modulation orders to the maximum value that is 2. 

Figure 1 and Figure 2 show the results for some characteristic values of the frequency distance. 
Down to a frequency distance equal to 0.06 Hz, the algorithm is able to separate both components 
with an accurate estimation of the modulation functions. As already mentioned in the statistical 
study [6], estimating the magnitude is always more difficult especially at low frequencies. Despite 
this, the time model is close to the theoretical signal as shown by the curves at the top of Figure 1. 

 
Figure 1 - Good results of Short-LP with Testset 1 for 0.087f Hz∆ =  (left) and 0.0609f Hz∆ = (right). Top to bottom, both 

theoretical (-) and estimate (--): time signal, frequency modulations and amplitude modulations of both components 

 

Then, as illustrated in Figure 2, the algorithm behaves worse for a frequency distance lying in the 
range [0.03 Hz, 0.06 Hz]. At 0.0348f Hz∆ = , the frequency modulations are properly estimated, 
whereas the amplitude modulation presents a higher standard deviation. Then, at lower f∆ , such as 

0.0261f Hz∆ = , one component is estimated at a frequency equal to the frequency mean, the other 
one with a frequency modulation of any type rather in the low frequencies. Curiously, the 
modulation errors compensate each other in order that the time model always lies close to the 
theoretical signal as shown by the curves at the top of Figure 2. 

 



 
Figure 2 – Results of Short-LP with Testset 1 for 0.0348f Hz∆ =  (left) and 0.0261f Hz∆ = (right). Top to bottom, both theoretical (-) 

and estimate (--): time signal, frequency and amplitude modulations of both components. 

 

Under 0.03 Hz, this behaviour is accentuated. The algorithm estimates only one component at the 
mean frequency with amplitude equal to the sum of the two components. Given that the algorithm 
has one supplementary degree of freedom, the second component is estimated at low frequencies 
and amplitudes. Even at these frequency distances, the time model always lies close to the 
theoretical signal. Moreover, the estimation error is the lowest at these frequencies. 

 

 

Figure 3 –Mean square error of the time signal (left), frequency modulation (middle) and amplitude modulation (right), normalized 
by the signal power, of Testset 1 versus the frequency distance between the two components for 100 noise runs.  

 

Figure 3 presents the mean square errors versus the frequency distance and illustrates this behaviour. 
The three frequency ranges observed experimentally can be also detected on the mean square error 
evaluated between the time model and the theoretical signal. The error increases whereas the 
frequency distance decreases until a critical value, 0.0609 Hz, from which the errors decreases 
again. As expected, the mean square errors between the frequency or the amplitude modulations 
increase while the frequency distances decrease. In fact, this behaviour can be explained by the fact 
that the modulation orders are constant in the model. The degrees of freedom of the model permit an 
accurate modelling of the signal. Moreover, these simulations allow us to conclude that the error 



between the model and the observation should not be used as the only stop criterion when the 
modulation orders are constant. A whiteness criterion should be added. 

The critical value 0.0609 Hz equal to 2 bins can be assumed to be the frequency resolution of the 
algorithm at the given signal to noise ratio (15 dB) and for the given signal length (33 points). The 
location of the frequency modulation, in the signal frequency band, or the arch back of this 
modulation have no effect upon the result. We get the same result with a convex frequency 
modulation (Testset 2 with f1,0=1.2, f1,1= f2,1=+0.18, f1,2= f2,2=+0.3 and always N equal to 32 and 
the signal to noise ratio to 15 dB). 

In order to understand this value according to the theoretical modulation law of the signal, it may be 
interesting to determine the degree of energy concentration of the signal in the time-frequency plane. 
Rihaczek [11] has investigated this question by means of a time-frequency cell, Tr×Bd, within most 
of the signal energy is concentrated, and defined as the deviation of the phase from the linearity. The 
interval Tr, referred to as the relaxation time, is the time over which the signal phase may be 
considered linear, or the instantaneous frequency constant. The frequency band Bd, referred to as the 
dynamic signal bandwidth, is the frequency band swept during this time. Rihaczek shows that 
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with fc(t) the instantaneous frequency of the signal. The dynamic bandwidth depends on the rate of 
change of the instantaneous frequency. For nonlinear modulations the cell size varies with time. 

In the case of signals belonging to Testset 1 defined in (9), Figure 4 shows the variation of Bd, which 
lies in the range [0.0253 Hz, 0.1951 Hz]. Consequently, Tr varies between 5.1s when the modulation 
rate change is high, and 39.5s at the middle of the window when the modulation rate change is 
nearly null. The Short-LP frequency model is of order 2, so has no limit in time. In frequency, the 
Short-LP gives a good indication given that Bd is almost greater than the frequency resolution limit 
0.0609 Hz we observed in simulations. To compare with a classical analysis, a spectrogram with a 
Hanning window should attain 0.09 Hz only and over 16s, which stands for 2.97 bins of the full 
signal. Figure 5 should be compared with Figure 1 (right). 

These results have been obtained for a signal length of 33 points and at a signal to noise ratio equal 
to 15 dB. For a longer length and, works in progress seems to corroborate that the critical value of 2 
bins could be the resolution limit whatever the length. But further works are required to confirm this 
assumption and to assess the robustness to the noise level. 

 

 
Figure 4 – Dynamic signal bandwidth of the components of 

Testset 1 over the time support of 33 s (33 points) 

Figure 5 – Spectrogram with a Hanning window of length 
16 s (16 points) of Testset 1 for 0.0609f Hz∆ =  



 

VI. DISCRIMINATION AM VERSUS TWO FMS 
In this section we aim at evaluate the behaviour of the algorithm when analysing one component 
only according to the amplitude modulation properties. Indeed the spectrum of such a signal has two 
adjacent sidebands. We asked about the behaviour of the algorithm in this case. How many degrees 
of freedom does the algorithm require? Does the algorithm need one or two components for 
modelling one AM component? As in the previous section, our conclusions will be drawn from 
simulations. Two properties have to be considered: First the frequency distance between the two 
sidebands of the amplitude modulation. Second the sign of the amplitude. 

 

 
Figure 6 - Results of Short-LP with Testset 3.1 (left) and Testset 3.2 (right), 2 constant and linear FM parallel components (∆f = 

0.1741 Hz ) with constant AM. Top to bottom, both theoretical (-) and estimate (--): time signal, frequency and amplitude 
modulations of both components. C=2. 

 

Two testsets, Testset 3 and Testset 4 have been considered in order to answer this question, with 
always N equal to 32 and the signal to noise ratio to 15 dB. Features of theses Testsets and a sum up 
of the results of the Short-LP are given in Table 5.  

When the signal is made of two components and as expected, the Short-LP is not able to model it 
with one degree of freedom (C=1) as shown with Testset 3.1 and 3.2 in Table 5 and in Figure 6.  

When the signal is made of one amplitude-modulated component, the Short-LP will be able to 
manage whatever the degree of freedom. 



 Features of the Testsets 

33 points, signal to noise ratio 15 dB 
FM is for Frequency Modulation 
AM for Amplitude Modulation 

Peak number 
in the 

theoretical 
spectrum 

Normalized mean square error 
of the Short-LP 

C=2 C=1 

 

Testset 3 

1. 2 constant FM parallel components (∆f = 0.1741 
Hz > 0.0609 Hz) with constant AM 

2 peaks  0.1435 0.7042 

2. 2 linear FM parallel components (∆f = 0.1741 Hz> 
0.0609 Hz) with constant AM 

Two spectral 
patterns with 
several peaks 

0.1186 0.6909 

     

 

 

 

 

 

Testset 4 

1. 1 constant FM component with positive AM 
(∆fm between the two sidebands =2×0.00727 Hz = 
0,01454 Hz < 0.0609 Hz) 

2 sidebands 
non-resolved 
by a global 

Fourier 
spectrum 

0.1389 0.1547 

2. 1 constant FM component with non-positive AM 
(∆fm between the two sidebands = 2×0.027 Hz = 
0.054 Hz < 0.0609 Hz) 

2 sidebands 
resolved by a 
global Fourier 

spectrum  

0.3327 0.6204 

3. 1 linear FM component with positive AM 
(∆fm between the two sidebands = 2×0.0058 Hz = 
0.0116 Hz < 0.0609 Hz) 

1 spectral 
pattern with 
several peaks 

0.1061 0.2490 

4. 1 linear FM component with non-positive AM 
(∆fm between the two sidebands = 2×0.043 Hz = 
0.0868 Hz > 0.0609 Hz) 

2 sidebands 
resolved by a 
global Fourier 

spectrum 

0.3279 0.7408 

5. 1 constant FM component with non-positive AM 
and the carrier 
(∆fm between the two sidebands = 2×0.0428 Hz = 
0.0856 Hz > 0.0609 Hz and the difference between 
the carrier frequency 0,15 Hz and the AM wave 
frequency 0.0428 Hz = 0.1072 Hz > 0.0609 Hz) 

2 sidebands 
and the carrier 
peak resolved 
by a global 

Fourier 
spectrum 

0.3881 0.6930 

Table 5 – Features and mean square error, normalized by the signal power, of Testset 3 et Testset 4 when considering two different 
degrees of freedom of the Short-LP. The colour qualifies the results: red, orange and green for bad, so-so and good respectively. 

 

But, in this case, the sign of the amplitude is essential. We assumed that the model in (1) should 
have positive amplitude in order to maintain the uniqueness of the solution. This constraint can be a 
limitation in some cases. When the amplitude is positive, see Testset 4.1 and 4.3 in Table 5 and 
Figure 7, the Short-LP provides a good model, more accurate with C = 1 in opposition to the error 
values as already specified in the previous section. When C=2, given that the frequency distance 
between the two sidebands, referred as to ∆fm, are lower than the frequency resolution, the Short-LP 
models the carrier frequency transferring the modulation in the amplitude. The other component is 
estimated with any frequency modulation and zero-amplitude modulation. 

When the amplitude is negative as in Testset 4.2, 4.2 and 4.5 of Table 5 and as shown in Figure 8, 
the Short-LP will produce a better approximation with the highest degree of freedom. However and 
as expected, the amplitude modulation cannot be tracked in the negative parts and so the normalized 
mean square error is high whatever the degree of freedom. 

 



 
Figure 7 - Results of Short-LP with Testset 4.1, 1 constant FM component with positive AM, with C=2 (left) and C=1 (right). Top to 

bottom, both theoretical (-) and estimate (--): time signal, frequency and amplitude modulations of both components. 

 

If the modulation index is high as it was the case in the last example, Testset 4.5 of Table 5, the 
model has to be applied on shorter parts of the signal and the extension of the algorithm proposed in 
[4], [8] should be applied. 

In conclusion, the simulations tend to show that an amplitude-modulated component with a positive 
amplitude will be better estimated with a right degree of freedom, that is C=1. The normalized mean 
square error does not reflect this accurate modeling given that a higher degree-of-freedom model 
allows a diminution of the error thanks to a second component. Nevertheless the amplitude 
modulation and the frequency modulation of the component considered is closer to the theoretical 
one with C=1. 

Let us try to explain this behaviour. Indeed the positivity constraint on the amplitude corresponds to 
a signal with a time duration T that has to be shorter than half the period of the amplitude 
modulation for retaining the positive part of the modulation only, 
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with ∆fm being twice the frequency of the amplitude modulation. However, if we admit that the 
frequency resolution of the Short-LP is about 2 bins, that is the conclusion of the simulation study of 
section V, a model with a frequency resolution higher than this limit should verify 
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It is straightforward to conclude that constraints (11) and (12) do not match. Then setting positive 
amplitude necessarily leads to a frequency distance between the two sidebands, ∆fm, which is lower 
than the frequency resolution of the method. A model with one degree of freedom is then the best 



one. We have not simulated the case with a carrier frequency, which should need a higher degree of 
freedom. 

In the case of non-positive amplitude, the frequency distance between the two spectral sidebands can 
be either lower or higher than the frequency resolution, and in both cases, the model is not 
appropriate. A higher degree of freedom allows a better approximation. The model obtained can be 
quite good but the amplitude modulation will never be correct. The frequency modulations are close 
to the sidebands of the modulation. 

 

 
Figure 8 – Results of Short-LP with Testset 4.2, 1 constant FM component with non-positive AM, with C=2 (left) and C=1 (right). 

Top to bottom, both theoretical (-) and estimate (--): time signal, frequency and amplitude modulations of both components. 

 

VII. PRIOR UPON FREQUENCY MODULATION 
In the foregoing examples the amplitude modulation turns out to be the most difficult part of the 
Short-LP as in all model-based methods. However, the frequency modulation can be known in some 
particular applications. For instance, in mechanical systems such as turbines or gearboxes, time 
variations of the instantaneous frequency can be known a priori or estimated from independent 
synchronous measurements provided by tachometers. Assuming no error in this frequency 
estimation, this section aims at investigating the properties of the Short-LP for the estimation of the 
amplitude only, a crucial point in most applications. 

Testset 5 is made of two components with two quadratic-frequency modulation components, each 
with a quadratic-amplitude modulation. The frequency modulations are known and are set in the 
initialization step of the algorithm. The amplitude modulations cross each other over the time 
duration of the signal. The Short-LP is then investigated according to the signal to noise ratio. 

Figure 9 shows the result of the amplitude estimation averaged over 50 runs of an additive white 
noise for a signal to noise ratio equal to 15 dB and 5 dB. The exact frequency modulation is given 
just for information. At 15 dB the estimation of the amplitude estimation is accurate whereas a little 
bias appears at 5 dB. Table 6 shows the values of the mean square errors without and with a priori 



information on the frequency modulation. First and as already visible in Figure 3, the error comes 
essentially from the amplitude estimation. Second, when the frequency modulation is known, the 
error can come only from the amplitude estimation and is lower than in the previous case: 0.1685 
instead of 0.8254 at 15 dB. The difference is really noticeable. 

 

 

 
Figure 9 – Results of short-LP with Testset 5, two quadratic frequency and amplitude modulation with a priori known frequency 

modulation (top). Both theoretical(-) and mean  estimate (--) amplitude modulation over 50 runs of an additive white noise with a 

signal to noise ratio equal to 15 dB (middle) and 5dB (bottom). 

 

 
Normalized mean square error of 

the Short-LP 
15 dB 5 dB 

 Estimated FM A priori known FM Estimated FM A priori known FM 
Time signal 0.2338 0.1648 0.3870 0.5087 

Amplitude modulation 0.8254 0.1685 0.8074 0.6089 
Frequency modulation 0.0540 0 0.0533 0 

Table 6 - Mean square error of the time signal and the amplitude modulation, normalized by the signal power, of Testset 5 at two 
signal to noise ratio.  

 

 

Figure 10 shows the normalized mean square errors for a signal to noise ratio lying in the range 0 to 
20 dB. The behavior of the Short-LP is nearly linear according to the variation of the signal to noise 
ratio. 

 



 
Figure 10 - Mean square error of the time signal (left) and of the amplitude modulation (right), normalized by the signal power, of 

Testset 5 versus the signal to noise ratio for 50 noise runs. 

 

VIII. CONCLUSIONS 
This paper focuses on some important properties of the Short-LP method previously published by 
the authors. The Short-LP method estimates all the parameters of a time model, which provides an 
accurate description of a measured signal. The signals under consideration are multicomponents, 
nonlinear, nonstationary, and have short duration. 

A first set of signal-test allows us to give an approximation of the frequency resolution, which seems 
to be equal to 2 bins, without forgetting that the signal is nonstationary and nonlinear over a short 
time duration. The Short-LP is then over performing the Fourier-based method. Further works are in 
progress for validating this results according the length the signal and the signal to noise ratio. We 
also attempt to explain the value obtained according to the dynamic signal bandwidth, the signal 
being nonstationary.  

A second set of signal-test explains the number of degrees of freedom necessary for modelling one 
amplitude-modulation signal. Indeed, the constraint of positive amplitude set by the model 
definition guides the behaviour of the algorithm. This constraint induces that the amplitude 
modulation frequency is lower than the frequency resolution of the Short-LP and then the optimal 
model is a one-component model. If the amplitude is not positive the model is not optimal and the 
signal is better approximated by a higher degree of freedom. Increasing the degree of freedom will 
improve the time approximation but non necessarily the frequency and amplitude modulation. 

A third set of signal-test shows that an a priori knowledge of the frequency modulations, as it is 
possible in mechanical systems, allows the Short-LP method to reach higher performance for the 
amplitude estimation. 

 

Appendix: Expression of the discrete base 

In [3] we derived the base [ ]{ } ( )0,max ,c c
m m Ma Mf

p n
=

 used in the Short-LP model, 

 [ ] [ ]
( )( )

[ ]
( )( )( ) ( )

( )2
0 1 2

21 2 3 6 5

121 1 2 3 2 1 1

N N
p n p n p n n

N N N N N N N N N

 + 
= = = − 

+ + + + + + −  
, (13) 

with 2, 2n N N= −  and for Mac and Maf  being equal to 2. 
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