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ABSTRACT

Whatever the application domains, when dealing witbngly nonstationary and nonlinear signals,
Fourier-based methods and even classical time-&mumethods are no longer able to estimate
and track the instantaneous amplitudes and freigen€ each signal component. One possibility to
get away from the Heisenberg incertitude constiigimd set a model, which has to be as general as
possible in order to be valid in many domains.Hat tcontext, we have proposed and studied a new
model, which writes as a time-varying polynomialgmude and polynomial-phase signal.
Parameter estimation is casting as the maximisatiadhe likelihood function, which is overcome
by meta-heuristic approaches, such as simulatingaimg. In that paper, based on simulations, we
detail the performance of the Short Local Polyndmmadel-based method (Short-LP) we proposed
for a number of particular cases when analysingarsrieo components on very short-time duration.
We first assess the frequency resolution limit whamalysing close frequency-modulated
components. The performance is explained accordmgclassical Fourier limits and more
particularly the dynamic signal bandwidth, the sigreing nonstationary. The analysis of
amplitude-modulated components is then discusseordiag to the presence or not of the carrier
frequency. Finally, we stress upon the performaridbe amplitude estimation in the particular case
where the instantaneous frequencies are kreppiori.

KEYWORDS

Signal processing, time-frequency, nonstationamystantaneous frequency and amplitude,
polynomial phase signal, simulating annealing,Kirag-



l. INTRODUCTION

Surveillance is based on indicator monitoring. Wh@nindicator exceeds a threshold, an alarm is
raised. An absolute threshold on scalar indicatotise most widespread approach but is not adapted
to the detection of some damages. For instancetatimg machines, unbalances, misalignments,
anisotropic rotors, flexible coupling or magnetieabngs infer excitation forces, which amplitude
and frequency are modulated. In that case, typcédgndicators are essential for a reliable antiyear
detection. A highly evolved indicator is capablalirectly represent the vibration image of a defaul
and to track its evolution.

A time model of a measure provides an accuraterigien of this observation, which parameters

can be such typological indicators. In previous ljgations [3-4-5-6-7-8-9], we have proposed a

time model for signals having strong nonstatioresit Furthermore this model based on a Short
Local Polynomial model (Short-LP) is relevant faogessing short signals. In all the methods
belonging to the Cohen class, the resolution istdichby the Heisenberg incertitude. To get away
from this constraint and to be able to estimatelinear modulated signals with a better resolution
need to add some hypothesis mostly if the signallyars is of short duration.

We will not handle the statistical properties of tBhort-LP estimator proposed, this topic has been
thoroughly covered in previous publications [3¥je will now focus on some important issues for
the analysis of multicomponent signals.

Based on simulations, we detail the performancthefalgorithm for a number of particular cases

when analysing components on very short-time domativVe first assess the frequency resolution
limit when analysing close frequency-modulated congmts. The performance is explained

according to classical Fourier limits and more ipatarly the dynamic signal bandwidth, the signal

being nonstationary. The analysis of amplitude-ntetedd components is then discussed according
to the presence or not of the carrier frequencygalli, we stress upon the performance of the
amplitude estimation in the particular case wheeesihstantaneous frequencies are knavgmiori

This paper is outlined as follows. Section Il witcall the model used for modelling short
nonstationary signals. Section Il briefly descslibe optimization algorithms chosen to estimate
the model parameters whereas section IV deals thghmulticomponent case. The last sections
present new results elaborated for a number of lated signals in order to highlight important
properties of the algorithm proposed: the frequemsplution limit in section V, the behaviour of
the algorithm face to amplitude modulation witharrier in section VI and the improve of
performance with prior upon frequency modulation section VII. Section VIl looks at the
conclusions that can be drawn from this work.

II. THE MODEL WITH A SPECIFIC BASE

Let us consider a modeq n] of a discrete signal defined as the sum of C coreptsx.[n],

=3 <[

- (1)
with x[n]=3g[rcog(g[d) and n=- N 2N 2



where amplitudesaln] are strictly positive, phasesoc[n] are differentiable and show no
discontinuity. The constraint on the amplitudes Hr&phases guaranty the unicity of the model [2,
10].

A way of modelling the signal with a better accyras to increase the number of parameters to
describe it without being over the point numbertloé signal. In [3], we propose a polynomial

modelling of each amplitude]n] and of each frequencf[n]. The phasesg[n] of each

component are then obtainkby a discrete integration &fn] up to 277. For eaclct varying from1l
to C, the approximation is given by

a[=3a.n(1

o :z L opal @
all=s.2] 3 14- 3. 1[4]

where Ma, and Mf; are the approximation orders of the amplitude nfedchn and frequency
modulation respectivelyp, stands for the initial phase of the signal in (1).

The set{p,[n]}

discretization of a continuous-time base, suchhascanonical polynomial base or the orthogonal
polynomial bases, such as Legendre, Tchebycheweanite. However the orthogonal property is
lost when discretizing these functions. This propes fundamental to guarantee the independence
between the parameters estimated. Therefore, in-BRowe use a discrete base we derived in [3]
and which corresponds to the application of thenG&chmidt procedure in discrete-time directly.

The expressions for the sep, [ ]} are recall in Appendix.

0, max My, M) is a polynomial base. This base could be compditech the

m=0,max Ma, M)
Finally the parameters to estimate can be gatheradectov

V=V .v]] 3)
with

T .
Vo=[a0. g B foorr forg | Withc=1,C (4)

The dimension of the vectdf is equal toCxM with M=Ma +Mf+3, the dimension of each vector
Ve.

In addition to the choice of the base, the choicenadelling the frequency instead of the phase and

the centring of the polynomial at the signal midtieensure a minimum variance, the idea was to

also consider only small approximation orders ior&hP [3]. Ma; andMf. are less than or equal to

2. This rule does not induce a constraint sincestgeal analysed is assumed to be short enough to
be adapted to this approximation. The signal domashould contain one or two periods at least.

In order to generate the model (1), two approattae® been considered to estimate the veétor
One possible approach is to consider the maximisatf the likelihood function, which is



equivalent to a minimization of the least squanecfion |, (V) when the error can be assumed to
be a Gaussian noise. This minimization is

V= argvminILS(V), (5)

with
()= 3 [l ©)

where s n| is the observation ang[n| the model defined in (1). The error between theeokation

and the model, namely the differen@s{ n- ¥ r]) represents the sum of the noise, in which the

deterministic signal we want to estimate is embdddad the model error. We verifyposteriori
that this error is distributed as a Gaussian law.

Direct minimization of (6) is extremely difficultue to the high non-linearity of the function and th
parameter number. Classical optimization technicauesdh as gradient descent, Gauss-Newton and
EM algorithm do not ensure convergence to the globaimum when local minima are numerous.
This problem can be overcome with meta-heuristpregches, and in particular, with the simulated
annealing algorithm. The simulated annealing tesmmiis efficiency, when a desired global
extremum is hidden in many local extrema. The satmd annealing has an analogy with
thermodynamics where metal cools and anneals. dnsme way, after an initialization of the
parameter vector to estimate, an iterative looptrotled by a scalar referred to as a temperature,
generates a new candidate of the vector that nmesnihe cost function, namely the least square

function ILS(V). This candidate is accepted or not according theation Metropolis rule.

In lieu of a likelihood maximum approach, a secapproach can also be investigated upon a
Bayesian point of view. In that case, the pararsete¥ and the variance of the errfs[ |- { 1])

are viewed as random variables for which a pristritiution has to be assigned. A straightforward
calculation leads to an expression of the postaligtribution up to a normalisation constant. This
function being highly nonlinear, we propose to aséetropolis-Hasting MCMC algorithm to
sample from this distribution. Once this distriloutiis estimated, the parameters are estimated by a
Minimum Mean Square Error method [3].

By comparing both estimation algorithms [3], we doded that the simulating annealing approach,
in addition to a simple implementation, has prodide better compromise between the bias and
mean square errors of the parameter estimateshantbmputation time. In this paper, we will then
only use the simulating annealing based approatthtive Short-LP.

The method was extended to a monocomponent sigmatewer its length and its modulations by
considering a local approximation on nonsequep@ats of the signal. This issue is not considered
in this paper, the reader should refer to [4] fetails about this extension.

1. OPTIMIZATION TECHNIQUE FOR A MONOCOMPONENT SIGNAL

Let us come back to the approximation of a shom@somponent signakc[n] defined in (1). In

that case only one vect of dimensionM, as defined in (4), has to be estimated. Tablidsghe
tuning of the Short-LP running with a simulatinghaaling based algorithm.



the observation oveN/2,N/ 2|

the order of the amplitude polynomigly default 2)
the order of the frequency polynomialy default 2)
the number of iterationgy default 70 000)

the Bernoulli-distribution parametdry default 0.01)

the decrement of the parameter perturbation vagiéhcdefault 0.01)

the decrement of the temperat(iog default 0.01)

a rough estimation of the additive noise variance

a-quantile for the Gaussian distribution (by defas#81% and z=1)
Step 1. Initialization

- vO :[aﬁog 0.0 ¢ f90.. OJT the parameter vectavith

[+

n=+'y2
f% =arg mva>4 FT, ( f)‘ a“ :‘ FT, ( fo(o)) ¢ =arg FT, ( fo(o)) where FT_ ()= ;/ s[rn e

Ma, Mf. n 0
Ol= 3 dbald, =5 Ol ll=d0 v 3 N- 3 0]
m=0 m=0 k=-N/2 k=-N2

x[n] =7 r]cos(qéco)[ r]) the model evaluated fror®

N/2 B _
ILS(VSJ)) = n:_Zh;/z‘s[n] =X r‘]‘ the LS function

-z :diag(af)(”)) the MxM diagonal matrix of the initial parameter pertuiba,

af)(o) being the parameter variandgy default setting to max (s[n]) for the amplitudarameters, Zfor

the initial phase and half of the sampling freqay for the frequency parameters, theses valugg
formulated in the chosen ba

- 0= (VE")) the initial temperature

Step 2. Iterations fromt =1, iter

- Generate a new parameter vector deviated froraus§an perturbation
vl = v +av Y with av =N(0,}))

- Compute the model fronv/ (" L EES| ricos(qdc | r])

c

- Compute the LS function ls (V(ge"))

- Draw a random number according to a uniform itistion u-~u [O:I]

- Apply the acceptation Metropolis rule

lLS (Vg)) - Ls(v(cger»)
t

If u<ex
0

etV =V 1, (V) =1 (Vi)

otherwiseV™¥ =v¥ | (V£‘+1)) = LS(V(c‘))

- Draw a random number according to a Bernouisitrithution u~B(p)
-Ifu=1 seto\" =(1-¢,)o) Oiand 7" =(1-¢,)7"

(t)

(t+1)

otherwiseset 02'*? = g2 0i and 7'

=7
- While t<iter sett=t+1 anditerate step 2
Stop criterion

- If ‘(e“e’[n])2 -y N+1)‘ < 74 ¥( WD) setx.[n] from V, =V andstop the algorithm

otherwiserepeat step 2

Table 1 - The Short-LP with a simulating-annealivased algorithm for a monocomponent signal



V. THE CASE OF MULTICOMPONENT SIGNALS

In the case of a multicomponent signal, which i gurpose of this paper, the model is always
defined in (1) but withC>1. The dimensiorof the parameter vectd, equal toCxM, is high and
represents the dimension of the parameter spaceililag the signal. In order that the modelling
makes sense, this dimension has to be lower tfeaddgree of freedom of the signal. Subsequently,
this dimension has to be lower thal+1, the length of the signal. We then deduce the #&rge
number of components,

cs N1 o

that the model can take into account. This condtrigi strong in the context of short signals with
non-linear modulations in frequency and in ampkutlamely, this means that for a classical
modelling with polynomial functions of order B is equal to 7 and the number of components
cannot be greater than 4 for a signal length gidgts. This strong limit is due to the high prems

of the model, which, as we will see in the follogjmwill induce high performance at the expense of
the computation time.

In [6] and [7], two approaches have been considiredstimating the parameters.

The first is referred to as the global algorithrdas a direct generalization of the previous
algorithm. All of the parameters of all the compotseare estimated together. The algorithm derived
Is then optimal regarding the maximum likelihoodt i is important to notice that this property is
true asymptotically only.

The second one is a method by deflation, wherehitjeest-energy component is first estimated,
then extracted from the observation in order tanede the following one. Due to its design, this
algorithm is suboptimal but with a less computadidime.

The two following sections sum up these two appneaddy pointing out the steps modified with
respect to the algorithm developed in the monocarapbcase.

3.1. Global algorithm

The global algorithm is close to the one presemekhble 1. In the initialization step, nams@p 1
the parameter vect®. of each component is estimated by a deflation otetpplied on a Fourier
transform, the number C of components being kndviae. perturbation matrix is now of dimension
CxM and is initialized in the same way

In order to increase the convergence rate anddieceethe computational time, which can be very
high according to the observations, the adaptdtasconsisted in reducing the random perturbation
in the iteratiorstep 2of Table 1.

Table 2 shows the new iteration step, referredststep 2'where the Metropolis rule is no more
applied.



Step 2’ -lterations from t =1, iter
- Generate a new parameter vector deviated froraws§ian perturbation
v =vU 5V 0 with sv® =N(0,2,)

- Compute the model fron (" Ko [n] = i X[
c=1

- Compute the LS function ILS(V(QE"))

-1 15 (V9)-15(VE) >0 setV) =y (Vi) =1 (Vi)
otherwisegenerate a new parameter vector again

- Draw a random number according to a uniform tigtion u~Uufo,]

-lfu<2/3 seto" = (1-¢,) o) Di

otherwiseset oY =1/(1-¢,) o Di

- While t<iter sett=t+1 anditeratestep 2

Table 2 — Step 2’ of the global algorithm of th@®i.P with an adapted simulating-annealing-baségbaithm for a multi-
component signal - In this case and compared wép 8 of the monocomponent case, the decremgeinf the parameter

perturbation variance has a default value equad @4 and there is no more temperature parameter.

3.2. Sub-optimal Algorithm by deflation

The deflation approach consists of a componentdsgponent algorithm. At iteration, the ¢
component only is estimated through a vector weotleN _. Instead of the parameter vectér

defined in (3),V__, defined as

el Te (C-c)time

Vo, :[VJ...VT V] oT...oT}, (8)

with 0" the null vector of dimensioN! is partially filled in according to the iteratiorumber. For
the same reasons as in the previous section, digtbdimulated-annealing technique is applied for
estimating this vector.

At each iteration c, the" component ofV __ is initialized as in Table 1 but from the Fourier
Transform of the residue of the previous iteration.
Table 3 shows the principle of this algorithm. testhe deflation loop, the iteration step, refeeed

asstep 2”,is close to step 2’ of Table 2 but for one comparary. The perturbation matrix is of
dimensiorM only.



Inputs
- [ the observation oveiN/2,N/ 2]
the component number
the orders of the amplitude polynonmiat each c=1,C(by default 2)
the order of the frequency polynomfat each c=1,C(by default 2)
- iter the number of iteration@y default 500)
- &, the decrement of the parameter perturbation veeigcdefault 0.01)
Initialization of the residuer,[n] = s[ n
Deflation loop - Iterations from c=1,C
Step 1from Table 1 Initialization V_© from FT, (f)
Step 2" - Iterations fromt =1, iter
- Generate a new parameter vector deviated fr@awssian perturbation

Vi) =vl +sv () with sv =N(0,z}))

- Compute the model frory (®*” xloen [n]=4 { oo ')[ r]cos(qd geh[ d)

- Compute the LS function

-1l (Vg)) -l Ls(v(cgen)) >0 = v s (VSH)) = Ls(v(cgen))

otherwiseyenerate a new parameter vector again
- Draw a random number according to a unifornritistion u-~u [O:I]

-lfu<2/3 seto" = (1-¢,)o) O
otherwiseset g2"*" =]/(1— g,)oll) mi
-While t<iter t=t+1 anditeratestep2“
Step 3 - Construction and deflation of th& component
-setVv® in v |
- Computex_[n] from the & component of/
- Deflate this & component from the observation fea[n] =1 [n] = %[ ]

- Until c<C sec=c+1 and iterate theeflation loop
otherwise sek[n| from V. =V __ andstop the algorithm

Table 3 — The deflation algorithm of the Short-Lithvan adapted simulating-annealing-based algoritfoma multi-component
signal

V. FREQUENCY RESOLUTION LIMIT

In this section, the limit of the frequency resauat of the Short-LP is evaluated by means of
simulations. A set of signals, referred to Bestset 1js simulated according model (1) with two
close quadratic-frequency modulations. In orderbteak up the influence of the amplitude
modulation, the amplitudes of both components atasthe same constant value. The parameter
vectors \ as defined in (4) are set up for each component to

=[16 0.4 1.90- 0.2 0J5 withMa = OMf, =

. for Testset 1. 9)
V,=[16 1.0 f,;~0.2- 0.5 with Ma,= OMf,=

N is equal to 32 and the signal to noise ratioS<dB. The sampling period is 1s. At each date, the
frequency distance between each component is aardnsumberdf, which lies in the range
[0.0870 Hz, 0;0087 Hz]. This distance is set by nseaf the value off, ,, see Table 4. For an easier

comparison with Fourier-based method, the lastdingable 4 giveglf in frequency bins.



fpoin Hz 1.85 1.80 1.75 1.55 1.50 1.40 1.45

Af = (.o~ t,0) pon] in Hz| 0.0087 00174 | 0.0261 0.0609 | 0.069 | 0.0783 | 0.0870

Af x(N +1) in frequency bing 0.2871 | 0.5742 | 0.8613 2.0097 | 2.2968 | 2.5839 | 2.871

Table 4 — Theoretical frequency resolutions ofestset 1,f, ; being equal to 1.90 anqbo[n] to /m with N=32 according to
the discrete base used. The colour qualifies tealte of the Short-LP: red, orange and green foul ks0-so and good respectively.

In the algorithms proposed, the modulation ordeesaasumed to be unknown. As already specified
in section II, we set the modulation orders tortteximum value that is 2.

Figure 1 and Figure 2 show the results for someadheristic values of the frequency distance.
Down to a frequency distance equal to 0.06 Hz,allgerithm is able to separate both components
with an accurate estimation of the modulation fiord. As already mentioned in the statistical
study [6], estimating the magnitude is always mdifécult especially at low frequencies. Despite
this, the time model is close to the theoreticghal as shown by the curves at the top of Figure 1.
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Figure 1 - Good results of Short-LP with Tests&rlAf =0.08™Hz (left) and Af =0.060Hz (right). Top to bottom, both
theoretical (-) and estimate (--): time signal,dtency modulations and amplitude modulations dfi lsotnponents

Then, as illustrated in Figure 2, the algorithm deds worse for a frequency distance lying in the
range [0.03 Hz, 0.06 Hz]. Anf =0.03484z, the frequency modulations are properly estimated,

whereas the amplitude modulation presents a higaedard deviation. Then, at lowAf , such as
Af =0.026Hz, one component is estimated at a frequency equilet frequency mean, the other

one with a frequency modulation of any type ratirerthe low frequencies. Curiously, the
modulation errors compensate each other in ordar tthe time model always lies close to the
theoretical signal as shown by the curves at thetd-igure 2.
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Figure 2 — Results of Short-LP with Testset 1A6r=0.0348Hz (left) and Af =0.026Hz (right). Top to bottom, both theoretical (-)
and estimate (--): time signal, frequency and atadké modulations of both components.

Under 0.03 Hz, this behaviour is accentuated. Tgerithm estimates only one component at the
mean frequency with amplitude equal to the sunmhefttvo components. Given that the algorithm
has one supplementary degree of freedom, the semam@onent is estimated at low frequencies
and amplitudes. Even at these frequency distarntbes,time model always lies close to the
theoretical signal. Moreover, the estimation ersdhe lowest at these frequencies.
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Figure 3 —Mean square error of the time signaltfléfequency modulation (middle) and amplitude oiation (right), normalized
by the signal power, of Testset 1 versus the fregudistance between the two components for 16@& mons.

Figure 3 presents the mean square errors verstiethency distance and illustrates this behaviour.
The three frequency ranges observed experimerdaiiybe also detected on the mean square error
evaluated between the time model and the theotetigaal. The error increases whereas the
frequency distance decreases until a critical valu@609 Hz, from which the errors decreases
again. As expected, the mean square errors bettheefrequency or the amplitude modulations
increase while the frequency distances decreadacinthis behaviour can be explained by the fact
that the modulation orders are constant in the mndde degrees of freedom of the model permit an
accurate modelling of the signal. Moreover, thassukations allow us to conclude that the error



between the model and the observation should naiseel as the only stop criterion when the
modulation orders are constant. A whiteness coteshould be added.

The critical value 0.0609 Hz equal to 2 bins carabsumed to be the frequency resolution of the
algorithm at the given signal to noise ratio (15 @Rd for the given signal length (33 points). The
location of the frequency modulation, in the sigfe@quency band, or the arch back of this
modulation have no effect upon the result. We et same result with a convex frequency
modulation Testset with f; =1.2, f; ;= f,,=+0.18, f; = f,=+0.3 and alwaysN equal to 32 and
the signal to noise ratio to 15 §iB

In order to understand this value according totlle®retical modulation law of the signal, it may be
interesting to determine the degree of energy aunaon of the signal in the time-frequency plane.
Rihaczek [11] has investigated this question bymaea a time-frequency cell, xBy, within most

of the signal energy is concentrated, and defirseth@ deviation of the phase from the linearitye Th
interval T,, referred to as the relaxation time, is the tinmerowhich the signal phase may be
considered linear, or the instantaneous frequeangtant. The frequency baBg, referred to as the
dynamic signal bandwidth, is the frequency bandpwaring this time. Rihaczek shows that

_ idfc(t)zi
“Nomr dt T

r

(10)

with f¢(t) the instantaneous frequency of the signal. Thehyo bandwidth depends on the rate of
change of the instantaneous frequency. For nonlmeaulations the cell size varies with time.

In the case of signals belongingTestset Hefined in(9), Figure 4 shows the variation Bf, which

lies in the range [0.0253 Hz, 0.1951 Hz]. Consetuem; varies between 5.1s when the modulation
rate change is high, and 39.5s at the middle ofwimelow when the modulation rate change is
nearly null. The Short-LP frequency model is ofar@, so has no limit in time. In frequency, the
Short-LP gives a good indication given tiBatis almost greater than the frequency resolutionit li
0.0609 Hz we observed in simulations. To compaté wiclassical analysis, a spectrogram with a
Hanning window should attain 0.09 Hz only and o¥6s, which stands for 2.97 bins of the full
signal. Figure 5 should be compared with Figuraght).

These results have been obtained for a signalHesig83 points and at a signal to noise ratio equal
to 15 dB. For a longer length and, works in progresems to corroborate that the critical value of 2
bins could be the resolution limit whatever theglén But further works are required to confirm this
assumption and to assess the robustness to theelaod.

Frequency resolutio

2 ot \ 7 limit of ShortLP |

Time.

Time

Figure 4 — Dynamic signal bandwidth of the compdsef ~ Figure 5 — Spectrogram with a Hanning window ofgn
Testset 1 over the time support of 33 s (33 points) 16 s (16 points) of Testset 1 faf =0.060Hz



VI. DISCRIMINATION AM VERSUSTWO FMS

In this section we aim at evaluate the behaviouthef algorithm when analysing one component
only according to the amplitude modulation progertindeed the spectrum of such a signal has two
adjacent sidebands. We asked about the behavidhe @igorithm in this case. How many degrees
of freedom does the algorithm require? Does therdlgn need one or two components for
modelling one AM component? As in the previous isectour conclusions will be drawn from
simulations. Two properties have to be consideFadt the frequency distance between the two
sidebands of the amplitude modulation. Seconditirecf the amplitude.
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Figure 6 - Results of Short-LP with Testset 3.ft)(Bnd Testset 3.2 (right?, constant and linear FM parallel componefs<
0.1741 Hz ) with constant AMTIop to bottom, both theoretical (-) and estimatg time signal, frequency and amplitude
modulations of both components. C=2.

Two testsetsTestset 3and Testset shave been considered in order to answer this iguestith

alwaysN equal to 32 and the signal to noise ratio to B5keatures of theses Testsets and a sum up
of the results of the Short-LP are given in Table 5

When the signal is made of two components and peated, the Short-LP is not able to model it
with one degree of freedor@£1) as shown witiestset 3.and3.2in Table 5 and in Figure 6.

When the signal is made of one amplitude-modul@@aponent, the Short-LP will be able to
manage whatever the degree of freedom.



Features of the Testsets Peak number | Normalized mean square errop
33 points, signal to noise ratio 15 dB th n th? of the Shor-LP
. : eoretical
FM is for Frequency Modulation spectrum c=2 c=1
AM for Amplitude Modulatic
1. 2 constant FM parallel componentsf & 0.1741 2 peaks 0.1435 0.7042
Hz > 0.0609 H2 with constant AM
Testset 3
2.2 linear FM parallel componentaf(= 0.1741 Hz | Two spectral 0.1186 0.6909
0.0609 H} with constant AM patterns with
several peaks
1.1 constant FM component with positive AM 2 sidebands 0.1389 0.1547
(Af,, between the two sidebands x€200727 Hz 5 non-resolved
0,01454 Hz < 0.0609 Hz) by a global
Fourier
spectrum
2.1 constant FM component with 2 sidebands
(Af,, between the two sidebands =(02027 Hz = resolved by a
Testset4 | 0.054 Hz <0.0609 Hz global Fourier
spectrum
3.1 linear FM component with positive AM 1 spectral 0.1061 0.2490
(Af,, between the two sidebands =020058 Hz 3 pattern with
0.0116 Hz < 0.0609 H several peaks
4.1 linear FM component with 2 sidebands 0.7408
(Af,, between the two sidebands =02043 Hz = resolved by a
0.0868 Hz > 0.0609 Hz) global Fourier
spectrur
5. 1 constant FM component witin 2 sidebands 0.6930
and the carrier and the carrie
(Af,, between the two sidebands =x020428 Hz 3 peak resolved
0.0856 Hz > 0.0609 Hz and the difference betweehy a global
the carrier frequency 0,15 Hz and the AM wave Fourier
frequency 0.0428 Hz = 0.1072 Hz > 0.0609 spectrum

Table 5 — Features and mean square error, normalisethe signal power, of Testset 3 et Testsetehwhnsidering two different
degrees of freedom of the Short-LP. The colourifieslthe results: red, orange and green for basdse and good respectively.

But, in this case, the sign of the amplitude iseatal. We assumed that the model in (1) should
have positive amplitude in order to maintain the&uaness of the solution. This constraint can be a
limitation in some cases. When the amplitude isitpes seeTestset 4.1and4.3 in Table 5 and
Figure 7, the Short-LP provides a good model, nameurate withC = 1 in opposition to the error
values as already specified in the previous sectidhenC=2, given that the frequency distance
between the two sidebands, referred adftp are lower than the frequency resolution, the 8hBr
models the carrier frequency transferring the maiiluh in the amplitude. The other component is
estimated with any frequency modulation and zerpiaude modulation.

When the amplitude is negative asTiestset 4.24.2 and4.5 of Table 5 and as shown in Figure 8,
the Short-LP will produce a better approximatiortivthe highest degree of freedom. However and
as expected, the amplitude modulation cannot lo&édhin the negative parts and so the normalized
mean square error is high whatever the degreeetitm.
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Figure 7 - Results of Short-LP with Testset 4.¢pistant FM component with positive AM, with C=ktfland C=1 (right). Top to
bottom, both theoretical (-) and estimate (--):¢isignal, frequency and amplitude modulations @ lsomponents.

If the modulation index is high as it was the cas¢he last exampleTestset 4.%f Table 5, the
model has to be applied on shorter parts of theasignd the extension of the algorithm proposed in
[4], [8] should be applied.

In conclusion, the simulations tend to show thaaamplitude-modulated component with a positive
amplitude will be better estimated with a right tgof freedom, that §=1. The normalized mean

square error does not reflect this accurate mogladiien that a higher degree-of-freedom model
allows a diminution of the error thanks to a secammanponent. Nevertheless the amplitude

modulation and the frequency modulation of the congmt considered is closer to the theoretical
one withC=1.

Let us try to explain this behaviour. Indeed thsipaty constraint on the amplitude corresponds to
a signal with a time duratiol that has to be shorter than half the period of dhgplitude
modulation for retaining the positive part of thedulation only,

T (M) 1
2 Af

m

(11)

with 4f,, being twice the frequency of the amplitude modatat However, if we admit that the
frequency resolution of the Short-LP is about Zpthat is the conclusion of the simulation stufly o
section V, a model with a frequency resolution kigthan this limit should verify

> o T> S (12)

It is straightforward to conclude that constrai(it4) and (12) do not match. Then setting positive
amplitude necessarily leads to a frequency distaetween the two sidebanddf,, which is lower
than the frequency resolution of the method. A raedth one degree of freedom is then the best



one. We have not simulated the case with a cdragquency, which should need a higher degree of
freedom.

In the case of non-positive amplitude, the freqyeatdistance between the two spectral sidebands can
be either lower or higher than the frequency rdswiy and in both cases, the model is not
appropriate. A higher degree of freedom allows téeb@pproximation. The model obtained can be
quite good but the amplitude modulation will neleercorrect. The frequency modulations are close
to the sidebands of the modulation.
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Figure 8 — Results of Short-LP with Testset 4.@ristant FM component with non-positive AM, witl2Gteft) and C=1 (right).
Top to bottom, both theoretical (-) and estimat (ime signal, frequency and amplitude modulasiof both components.

VII. PRIOR UPON FREQUENCY MODULATION

In the foregoing examples the amplitude modulatimns out to be the most difficult part of the
Short-LP as in all model-based methods. Howeverfrgquency modulation can be known in some
particular applications. For instance, in mechdnsystems such as turbines or gearboxes, time
variations of the instantaneous frequency can bmvkna priori or estimatedrom independent
synchronous measurements provided by tachometessumiing no error in this frequency
estimation, this section aims at investigatingpgheperties of the Short-LP for the estimation & th
amplitude only, a crucial point in most applicagon

Testset 5s made of two components with two quadratic-fezgry modulation components, each
with a quadratic-amplitude modulation. The frequenmodulations are known and are set in the
initialization step of the algorithm. The amplitudeodulations cross each other over the time
duration of the signal. The Short-LP is then inigged according to the signal to noise ratio.

Figure 9 shows the result of the amplitude estiomativeraged over 50 runs of an additive white
noise for a signal to noise ratio equal to 15 dB &rdB. The exact frequency modulation is given
just for information. At 15 dB the estimation okthmplitude estimation is accurate whereas a little
bias appears at 5 dB. Table 6 shows the valudseofnean square errors without and vatpriori



information on the frequency modulation. First asdalready visible in Figure 3, the error comes
essentially from the amplitude estimation. Secomlden the frequency modulation is known, the
error can come only from the amplitude estimatiod & lower than in the previous case: 0.1685
instead of 0.8254 at 15 dB. The difference is yeaditiceable.
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Figure 9 — Results of short-LP with Testset 5, qwadratic frequency and amplitude modulation withreori known frequency
modulation (top). Both theoretical(-) and meanireate (--) amplitude modulation over 50 runs ofalditive white noise with a
signal to noise ratio equal to 15 dB (middle) amiBbottom).

Normalized mean squareerror of 15dB 5dB
the Short-LP
Estimated FM A priori known FNV Estimated FM A priori known FV
Time signal 0.2338 0.1648 0.3870 0.5087
Amplitude modulatic 0.825¢ 0.168¢ 0.807¢ 0.608¢
Frequency modulation 0.0540 0 0.0533 0

Table 6 - Mean square error of the time signal #melamplitude modulation, normalized by the sigr@aker, of Testset 5 at two
signal to noise ratio.

Figure 10 shows the normalized mean square emos $ignal to noise ratio lying in the range 0 to
20 dB. The behavior of the Short-LP is nearly Imaecording to the variation of the signal to noise
ratio.



o

p=1
wn
T

normalized Mean Square Error

normalized Mean Square Error

=]

| |
0o “o® 5w 02 4§ 8 0 2 M B B W
RSB (dB) RSB (dB)

=S
[
s
o
o

Figure 10 - Mean square error of the time signeftl and of the amplitude modulation (right), notired by the signal power, of
Testset 5 versus the signal to noise ratio for 6@eruns.

VIII. CONCLUSIONS

This paper focuses on some important propertighefShort-LP method previously published by
the authors. The Short-LP method estimates alptrameters of a time model, which provides an
accurate description of a measured signal. Theagmder consideration are multicomponents,
nonlinear, nonstationary, and have short duration.

A first set of signal-test allows us to give an @pmation of the frequency resolution, which seems
to be equal to 2 bins, without forgetting that #ignal is nonstationary and nonlinear over a short
time duration. The Short-LP is then over performiing Fourier-based method. Further works are in
progress for validating this results according ldrggth the signal and the signal to noise ratio. We
also attempt to explain the value obtained accgrdiinthe dynamic signal bandwidth, the signal

being nonstationary.

A second set of signal-test explains the numbetegfees of freedom necessary for modelling one
amplitude-modulation signal. Indeed, the constraoht positive amplitude set by the model
definition guides the behaviour of the algorithmhisl constraint induces that the amplitude
modulation frequency is lower than the frequencoheation of the Short-LP and then the optimal
model is a one-component model. If the amplitudeaspositive the model is not optimal and the
signal is better approximated by a higher degrefeeafdom. Increasing the degree of freedom will
improve the time approximation but non necessanyfrequency and amplitude modulation.

A third set of signal-test shows that arpriori knowledge of the frequency modulations, as it is
possible in mechanical systems, allows the Shortrid®hod to reach higher performance for the
amplitude estimation.

Appendix: Expression of the discrete base

In [3] we derived the basep, [n]} g ) USEA in the Short-LP model,

_ 1 _ 23 _ 6/5 _N(N+2)
e R L e e B U s (e e e e

with n=-N/2, N/2 and forMa, andMa being equal to 2.
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