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On the KP I transonic limit of two-dimensional Gross-Pitaevskii

travelling waves

Fabrice Béthuel 1, Philippe Gravejat 2, Jean-Claude Saut 3

6th June 2008

Abstract

We provide a rigorous mathematical derivation of the convergence in the long-wave tran-
sonic limit of the minimizing travelling waves for the two-dimensional Gross-Pitaevskii equa-
tion towards ground states for the Kadomtsev-Petviashvili equation (KP I).

1 Introduction

The Gross-Pitaevskii equation

i∂tΨ = ∆Ψ + Ψ(1 − |Ψ|2) on R
N × R, (GP)

appears as a relevant model in various areas of physics: Bose-Einstein condensation, fluid me-
chanics (see e.g. [13, 27, 19, 8]), nonlinear optics (see e.g. [23])... At least on a formal level, this
equation is hamiltonian, with a conserved Hamiltonian given by the Ginzburg-Landau energy,

E(Ψ) =
1

2

∫

RN

|∇Ψ|2 +
1

4

∫

RN

(1 − |Ψ|2)2 ≡
∫

RN

e(Ψ). (1)

Note that the boundedness of the Ginzburg-Landau energy implies that in some sense,

|Ψ(x, ·)| → 1, as |x| → +∞.

As a matter of fact, this condition provides a richer dynamics than in the case of null condition
at infinity which is essentially governed by dispersion and scattering. In particular, (GP) has
nontrivial coherent localized structures called travelling waves.

The existence of finite energy travelling waves was addressed and established in several papers
(see [20, 22, 21, 6, 5, 7, 3]). Travelling waves are special solutions to (GP) of the form

Ψ(x, t) = u(x1 − ct, x⊥), x⊥ = (x2, . . . , xN ).

They are supposed to play an important role in the full dynamics of (GP). The equation for
the profile u is given by

ic∂1u+ ∆u+ u(1 − |u|2) = 0. (TWc)
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The parameter c ∈ R corresponds to the speed of the travelling waves. We may restrict to the
case c ≥ 0. Indeed, when u is a travelling wave of speed c, the map u obtained by complex
conjugation is a travelling wave of speed −c.

The existence of solutions to (TWc) was obtained in the above quoted papers through vari-
ational arguments, namely minimization under constraints [5, 3], or mountain-pass theorems
[6, 7]. In dimensions two and three, a full branch of solutions is constructed in [3] minimizing
the Ginzburg-Landau energy E under fixed momentum p. In this context, the momentum is
defined by

p(u) =
1

2

∫

RN

〈i∂1u , u− 1〉. (2)

This integral quantity is also formally conserved by (GP). A notable difficulty in the variational
approach is to give a meaning to the momentum in the space of maps of finite Ginzburg-Landau
energy (see e.g. [2, 4]). However, the momentum is well-defined for finite energy travelling wave
solutions. Indeed, it is proved in [16] that they belong to the space W (RN), defined as

W (RN ) = {1} + V (RN ),

where we have set

V (RN ) =
{
v : R

N 7→ C, s.t. (∇v,Re(v)) ∈ L2(RN )2, Im(v) ∈ L4(RN ), and ∇Re(v) ∈ L
4

3 (RN )
}
.

Separating real and imaginary parts, a direct computation shows that the quantity 〈i∂1v, v− 1〉
is integrable for any function v ∈W (RN ), so that the momentum of travelling wave solutions is
well-defined.

The main focus of this paper is a qualitative description of small Ginzburg-Landau energy
solutions in the two-dimensional case. Such solutions are known to exist in view of the following
result.

Theorem 1 ([3]). i) Let p > 0. There exists a non-constant finite energy solution up ∈W (R2)
to (TWc), with 0 < c = c(up) <

√
2, and

p(up) ≡
1

2

∫

R2

〈i∂1up, up − 1〉 = p,

such that up is solution to the minimization problem

E(up) = Emin(p) = inf
{
E(v), v ∈W (R2), p(v) = p

}
.

ii) There exist some positive constants K0, K1 and SKP , not depending on p, such that we have
the asymptotic behaviours

0 <
48
√

2

S2
KP

p
3 −K0p

4 ≤
√

2p − E(up) ≤ K1p
3, (3)

for any p sufficiently small.

A more precise definition of the constant SKP will be provided in the course of our discussion
of the Kadomtsev-Petviashvili equation (KP I). It should be noticed that we have, in view of
(3),

E(up) ∼
√

2p,

for small values of the momentum p, so that Theorem 1 provides a branch of travelling wave
solutions with arbitrary small energy. Our aim is to describe the asymptotic behaviour, as
p → 0, of the solutions up constructed above.
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We recall that, in view of [6, 15, 17], any finite energy travelling waves are subsonic in
dimension two, i.e. any non-constant finite energy solution v to (TWc) satisfies

0 < |c(v)| <
√

2. (4)

The speed
√

2 corresponds to the speed of sound waves at infinity around the constant solution
Ψ = 1 to (GP). Moreover, the quantity

ε(v) =
√

2 − c(v)2

is related to the energy E(v) and the uniform norm of 1 − |v| as follows.

Proposition 1 ([3]). Let v be a non-constant finite energy solution to (TWc) on R2. Then,

∥∥∥1 − |v|
∥∥∥

L∞(R2)
≥ ε(v)2

10
. (5)

Moreover, there exists a universal constant K2 > 0 such that

ε(v) ≤ K2E(v).

In particular, the solutions up given by Theorem 1, satisfy in view of Proposition 1,

εp ≡ ε(up) → 0, as p → 0,

so that we deal with a transonic limit. In [20, 22, 21], it is proposed to study this transonic limit
of solutions v in the new anisotropic space scale,

x̃1 = ε(v)x1, and x̃2 =
ε(v)2√

2
x2.

Considering the real-valued function
η ≡ 1 − |v|2,

and performing the change of variables above, we introduce the rescaled map Nv defined by

Nv(x) =
6

ε(v)2
η
( x1

ε(v)
,

√
2x2

ε(v)2

)
. (6)

Notice that the same long-wave anisotropic scaling is performed to derive the Kadomtsev-
Petviashvili equation, for instance in the water-wave context (see e.g. [1, 25]). It is formally
shown in [20, 22, 21] that the renormalized amplitude Nv of solutions to (TWc) converges, as the
speed c(v) converges to

√
2, i.e. as ε(v) → 0, to solitary wave solutions to the two-dimensional

Kadomtsev-Petviashvili equation (KP I), that is

∂tψ + ψ∂1ψ + ∂3
1ψ − ∂−1

1 (∂2
2ψ) = 0. (KP I)

Our main goal in this paper is to provide a rigorous mathematical proof of that convergence for
the branch of minimizing solutions presented in Theorem 1.

Solitary waves are localized solutions to (KP I) of the form ψ(x, t) = w(x1 −σt, x2), where w
belongs to the energy space for (KP I), i.e. the space Y (R2) defined as the closure of ∂1C∞

c (R2)
for the norm

‖∂1f‖Y (R2) ≡
(
‖∇f‖2

L2(R2) + ‖∂2
1f‖2

L2(R2)

) 1

2

.
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The parameter σ ≥ 0 denotes the speed of the solitary wave. The equation of a solitary wave w
of speed σ = 1 is given by

∂1w − w∂1w − ∂3
1w + ∂−1

1 (∂2
2w) = 0. (SW)

When w ∈ Y (R2), the function ∂−1
1 ∂2w is well-defined (see [10]), so that (SW) makes sense.

In contrast with the Gross-Pitaevskii equation, the range of speeds is the full positive axis. In
particular, there are no solitary waves of negative speed (see [10]). Given any σ ≥ 0, a solitary
wave wσ of speed σ is deduced from a solution w to (SW) by the scaling

wσ(x1, x2) = σw(
√
σx1, σx2). (7)

Solitary waves may be obtained in dimension two minimizing the Hamiltonian keeping the L2-
norm fixed (see [9, 10]). Like (GP), equation (KP I) is indeed hamiltonian, with Hamiltonian
given by

EKP (ψ) =
1

2

∫

R2

(∂1ψ)2 +
1

2

∫

R2

(∂−1
1 (∂2ψ))2 − 1

6

∫

R2

ψ3,

and the L2-norm of ψ is conserved as well. Setting

S(N) = EKP (N) +
σ

2

∫

R2

N2,

we term ground state, a solitary wave N which minimizes the action S among all non-constant
solitary waves of speed σ (see [11] for more details). In dimension two, a solitary wave is a
ground state if and only if it minimizes the Hamiltonian EKP keeping the L2-norm fixed (see
[9]). The constant SKP , which appears in Theorem 1, denotes the action S(N) of the ground
states N of speed σ = 1.

Going back to the solutions up of Theorem 1, we may drop the invariance under translations
of our problem, assuming without loss of generality, since |up(x)| → 1, as |x| → +∞ (see [14]),
that ηp ≡ 1 − |up|2 achieves its maximum at the origin, i.e.

∥∥ηp

∥∥
L∞(R2)

=
∣∣ηp(0)

∣∣.

We next consider the map
Np ≡ Nup

.

Notice that the origin is a maximum point for Np, and that in view of (5), we have

Np(0) ≥
3

5
. (8)

Our main result is

Theorem 2. There exists a subsequence (pn)n∈N, tending to 0 as n tends to +∞, and a ground
state N0 of (KP I) such that

Npn → N0 in W k,q(R2), as n→ +∞,

for any k ∈ N and any 1 < q ≤ +∞.

Remark 1. There is a well-known explicit solitary wave solution to (KP I) of speed 1, namely
the so-called ”lump” solution, which may be written as

wℓ(x1, x2) = 24
3 − x2

1 + x2
2

(3 + x2
1 + x2

2)
2
.

It is conjectured that the ”lump” solution is a ground state. It is also conjectured that the
ground state is unique, up to the invariances of the problem. If this was the case, then the full
family (Np)p>0 would converge to wℓ, as p → 0.
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So far, we have only discussed properties of the modulus of up. However, in our argument,
the phase is central as well. More precisely, if p is sufficiently small, then up has no zero in view
of (5), and we may lift it as up = ̺p exp iϕp. Setting

Θp(x) =
6
√

2

εp
ϕp

(x1

εp
,

√
2x2

ε2p

)
, (9)

we prove

Proposition 2. Let (pn)n∈N and N0 be as in Theorem 2. Passing possibly to a further subse-
quence, we have

∂1Θpn → N0 in W k,q(R2), as n→ +∞,

for any k ∈ N and any 1 < q ≤ +∞.

Remark 2. Equation (KP I) is a higher dimensional extension of the well-known Korteweg-de
Vries equation (KdV), which may be written as

∂tψ + ψ∂1ψ + ∂3
1ψ = 0. (KdV)

In dimension one, travelling wave solutions vc to (TWc) are related to the classical soliton of the
Korteweg-de Vries equation as follows. Setting ε =

√
2 − c2, we consider the rescaled function

Nε(x) =
6

ε2
ηc

(x
ε

)
,

where ηc ≡ 1 − |vc|2. An explicit integration of (TWc) in dimension one leads to

Nε(x) = N(x) ≡ 3

ch2
(

x
2

) ,

where N is the classical soliton to the Korteweg-de-Vries equation. Concerning the phase ϕc of
vc, we consider the scale change

Θε(x) =
6
√

2

ε
ϕc

(x
ε

)
,

so that we obtain similarly

Θε(x)
′ =

√
1 − ε2

2

N(x)

1 − ε2

2 N(x)
→ N(x), as ε→ 0.

Remark 3. Let uc be a solution to (TWc) in dimension three, which may be written as uc =
̺c exp iϕc, and denote

Nc(x) =
6

ε2
ηc

(x1

ε
,

√
2x2

ε2
,

√
2x3

ε2

)
, and Θc(x) =

6
√

2

ε
ϕc

(x1

ε
,

√
2x2

ε2
,

√
2x3

ε2

)
,

where ηc ≡ 1 − ̺2
c and ε =

√
2 − c2. Then, it is also formally shown in [20, 22, 21] that the

functions Nc and ∂1Θc converge, as the parameter ε converges to 0, to a solitary wave solution
w to the three-dimensional Kadomtsev-Petviashvili equation (KP I), which writes

∂tψ + ψ∂1ψ + ∂3
1ψ − ∂−1

1 (∂2
2ψ + ∂2

3ψ) = 0.

In particular, the equation for the solitary wave w is now written as

∂1w − w∂1w − ∂3
1w + ∂−1

1 (∂2
2w + ∂2

3w) = 0.

However, the existence of a transonic branch of solutions is still an open problem, at least on
the mathematical level. This branch of solutions is conjectured in [20, 22] in view of numerical
computations and formal arguments.
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The first element in the proofs of Theorem 2 and Proposition 2 deals with the asymptotic
behaviour of εp as a function of p.

Lemma 1 ([3]). Let εp = ε(up) =
√

2 − c(up)2. There exist some positive constants K3 and
K4, not depending on p, such that

K3p ≤ εp ≤ K4p, (10)

for any p sufficiently small.

The second step is to derive estimates on the renormalized maps Np, which do not depend
on p. More precisely, we prove

Proposition 3. Let k ∈ N and 1 < q ≤ +∞. There exists some constant K(k, q), depending
possibly on k and q, but not on p, such that

‖Np‖W k,q(R2) + ‖∂1Θp‖W k,q(R2) + εp‖∂2Θp‖W k,q(R2) ≤ K(k, q), (11)

for any p sufficiently small.

At this stage, we may invoke standard compactness theorems to assert that there exists some
subsequence (pn)n∈N, tending to 0 as n tends to +∞, and a function N0 such that, for any k ∈ N

and any compact subset K of R2,

Npn → N0 in Ck(K), as n→ +∞.

In view of (8), we have

N0(0) ≥
3

5
,

so that N0 is not identically constant. Moreover, we also have

Lemma 2. The function N0 is a non-constant solution to (SW).

In order to complete the proof of Theorem 2, it remains to establish strong convergence on
the whole plane. For this last step, we essentially rely on a variational argument, proving a kind
of gamma-convergence of the energies, combined with a concentration-compactness result for
constrained minimizers of (KP I) established in [9].

As a matter of fact, considering scalings (6) and (9), the momentum p(up) can be expressed
as

p(up) =
εp

72

∫

R2

Np∂1Θp,

while the energy E(up) has the expansion

E(up) =
√

2
εp

144

(
E0(Np,Θp) + ε2pE2(Np,Θp) + ε4pE4(Np,Θp)

)
.

It turns out that the functions E0, E2 and E4 are uniformly bounded for p approaching 0.
Moreover, E0 and E2 are given by the expressions

E0(Np,Θp) =

∫

R2

(
N2

p + (∂1Θp)
2
)
,

and

E2(Np,Θp) =

∫

R2

(1

2
(∂1Np)

2 +
1

2
(∂2Θp)

2 − 1

6
Np(∂1Θp)

2
)
. (12)
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In the course of our proof, we will show that

Np ∼ ∂1Θp, as p → 0, (13)

and that the difference is actually of order ε2p. This yields, at least heuristically,

p(up) ∼
εp

72

∫

R2

N2
p , and E(up) ∼

√
2
εp

72

∫

R2

N2
p ∼

√
2p(up),

so that the discrepancy term
Σ(up) =

√
2p(up) − E(up),

tends to 0 as p → +∞.

The (KP I) energy appears when we consider the second order term. Inserting at least
formally relation (13) into (12), we are led to

E2(Np,Θp) ∼ EKP (Np), as p → 0. (14)

Using some precise estimates on the solutions, we will actually show that

E2(Np,Θp) ∼ EKP (∂1Θp), as p → 0, (15)

since it turns out that it is easier to work, in view of the nonlocal term in the (KP I) energy,
with ∂1Θp than with Np, these two terms having the same limit in view of (13).

The proof of (15) amounts to a careful analysis of any lower order terms, including terms
provided by E0. In particular, we obtain for the discrepancy functional,

Lemma 3. We have

Σ(up) = −
√

2ε3p
144

EKP (∂1Θp) + o
p→0

(
ε3p
)
. (16)

We then use the lower bound on Σ(up) provided by the left-hand side of (3) to derive a precise
upper bound on EKP (∂1Θp). More precisely, we show

Lemma 4. We have

− 1

54S2
KP

(∫

R2

(
∂1Θp

)2
)3

≤ EKP (∂1Θp) ≤ − 1

54S2
KP

(∫

R2

(
∂1Θp

)2
)3

+ o
p→0

(1). (17)

In particular, the function ∂1Θp, or alternatively Np, has approximatively the energy of a
ground state for (KP I) corresponding to its L2-norm. The proof of Theorem 2 is then completed
using a concentration-compactness argument of [9]. This result yields the strong convergence of
some subsequence (∂1Θpn)n∈N in the space Y (R2).

Proposition 4. There exists a subsequence (pn)n∈N, tending to 0 as n tends to +∞, and a
ground state N0 of (KP I) such that

∂1Θpn → N0 in Y (R2), and Npn → N0 in L2(R2), as n→ +∞.

In order to improve the convergence, we finally invoke the estimates of Proposition 3. This
concludes the proofs of Theorem 2 and Proposition 2 giving the convergence in any space
W k,q(R2) by standard interpolation theory.

To conclude this introduction, let us emphasize that the results in this paper only concern
travelling waves. This raises quite naturally the corresponding issue for the time-dependent
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equations. More precisely, in which sense do the Korteweg-de Vries equation in dimension one
and the Kadomtsev-Petviashvili equation in higher dimensions approximate the Gross-Pitaevskii
equation in the transonic limit ? Notice that this question has already been formally addressed
in the one-dimensional case in [24].

The paper is organized as follows. Sections 2 and 3 are devoted to various properties of
solitary wave solutions to (KP I) and travelling wave solutions to (TWc) which are subsequently
used. In Section 4, we perform the expansion of (TWc) with respect to the small parameter ε
occurring in the definition of the slow space variables. Terms in this expansion are more clearly
analyzed in Fourier variables. Various kernels then appear, which are studied in Section 5. In
Section 6, we provide Sobolev bounds on Np and prove Proposition 3. Finally, we prove our
main theorems in Section 7.

2 Some properties of solitary wave solutions to (KP I)

We first recall some facts about equation (KP I), which will enter in some places in our proofs.

2.1 Rewriting the solitary wave equation

The existence and qualitative properties of the solutions w to (SW) in the energy space Y (R2)
are considered in the series of papers [10, 11, 9]. In [11], a new formulation of (SW) is provided
which turns out be also fruitful in our context. Applying the operator ∂1 to (SW), we obtain

∂4
1w − ∆w +

1

2
∂2

1(w2) = 0. (2.1)

The Fourier transform of (2.1) has the following simple form

ŵ(ξ) =
1

2

ξ21
|ξ|2 + ξ41

ŵ2(ξ), (2.2)

so that we may recast (2.1) as a convolution equation

w =
1

2
K0 ⋆ w

2, (2.3)

where the Fourier transform of the kernel K0 is given by

K̂0(ξ) =
ξ21

|ξ|2 + ξ41
. (2.4)

In view of (2.2), equation (2.3) provides an equivalent formulation to (SW), i.e. any solution w
to (2.3) in the energy space Y (R2) is also solution to (SW).

Several properties of the kernel K0 are studied in [18]. In particular, it is proved there that
K0 belongs to Lp(R2) for any 1 < p < 3 (see also Lemma 5.1).

2.2 Existence of ground state solutions

Given any µ ≥ 0, the minimization problem

EKP
min (µ) = inf

{
EKP (w), w ∈ Y (R2),

∫

R2

|w|2 = µ
}
, (PKP (µ))

8



is considered in [9], where the existence of minimizers is established. The minimizers N for this
problem happen to be ground states for (KP I). They are solutions to

σ∂1N −N∂1N − ∂3
1N + ∂−1

1 (∂2
2N) = 0. (2.5)

The speed σ appears as a Lagrange multiplier associated to (PKP (µ)). In particular, σ is not
necessarily equal to 1. The proof in [9] relies on the following concentration-compactness result,
which gives the compactness of minimizing sequences to (PKP (µ)).

Theorem 2.1 ([9]). Let µ ≥ 0, and let (wn)n∈N be a minimizing sequence to (PKP (µ)) in
Y (R2). Then, there exist some points (an)n∈N and a function N ∈ Y (R2) such that, up to some
subsequence,

wn(· − an) → N in Y (R2), as n→ +∞.

The limit function N is solution to the minimization problem (PKP (µ)). In particular, N is a
ground state for (KP I).

2.3 Scale invariance

As mentioned in the introduction, if w is solution to (SW), then, for any σ > 0, the map wσ

defined by (7) is solution to (2.5), i.e. wσ is a solitary wave solution to (KP I) with speed σ.
Concerning the energy, we notice that

∫

R2

|wσ|2 =
√
σ

∫

R2

|w|2,
∫

R2

|wσ|3 = σ
3

2

∫

R2

|w|3,
∫

R2

|∂1wσ|2 = σ
3

2

∫

R2

|∂1w|2,

and ∫

R2

(
∂−1

1 (∂2wσ)
)2

= σ
3

2

∫

R2

(
∂−1

1 (∂2w)
)2
.

It follows that

EKP (wσ) = σ
3

2EKP (w), and

∫

R2

|wσ|2 =
√
σ

∫

R2

|w|2. (2.6)

It is shown in [9] that ground states N with speed σ = 1 correspond to solutions to (PKP (µ))
for

µ = µ∗ ≡ 3SKP .

As a matter of fact, it is proved in [10, 18] that any solution w to (SW) satisfies the relations

EKP (w) = −1

6

∫

R2

w2, and S(w) =
1

3

∫

R2

w2,

so that the energy and the L2-norm of ground states N with speed σ = 1 are given by

EKP (N) = −1

2
SKP , and

∫

R2

N2 = 3SKP = µ∗.

Relations (2.6) then provide

Lemma 2.1. Let N ∈ Y (R2). Given any σ ≥ 0, the map Nσ defined by (7) is a minimizer for
EKP

min (
√
σµ∗) if and only if N is a minimizer for EKP

min (µ∗). In particular, we have

EKP
min (µ) = − µ3

54S2
KP

, ∀µ ≥ 0. (2.7)

Moreover, Nσ and N are ground states for (KP I), with speed σ, respectively, 1. In particular,
they are solutions to (2.5), respectively, (SW).

9



Proof. Given any µ > 0, we denote Λ2
µ(R2) = {w ∈ L2(R2), s.t.

∫
R2 |w|2 = µ}. In view of (2.6),

the function w 7→ wσ maps Λ2
µ∗(R2) onto Λ2

µ∗
√

σ
(R2), such that

EKP (wσ) = σ
3

2EKP (w).

Hence, Nσ is a minimizer for EKP
min (µ∗

√
σ) if and only if N is a minimizer for EKP

min (µ∗). Moreover,

EKP
min (µ∗

√
σ) = σ

3

2 EKP
min (µ∗) = −σ

3

2SKP

2
.

Identity (2.7) follows letting σ = µ2

(µ∗)2 . The last statements of Lemma 2.1 are proved in [9].

In the course of our proofs, we will encounter sequences (wn)n∈N which are not exactly
minimizing sequences for (PKP (µ)), but which satisfy

EKP (wn) → EKP
min (µ), and

∫

R2

w2
n → µ, as n→ +∞, (2.8)

for some positive number µ. In this case, we will invoke the following variant (and in fact,
consequence) of Theorem 2.1.

Proposition 2.1. Let µ0 > 0, and (wn)n∈N denote a sequence of functions in Y (R2) satisfying
(2.8) for µ = µ0. Then, there exist some points (an)n∈N and a ground state solution Nσ to (2.5),

with σ =
µ2

0

(µ∗)2
, such that, up to some subsequence,

wn(· − an) → Nσ in Y (R2), as n→ +∞.

Proof. We denote

µn =

∫

R2

w2
n, and σn =

µ2
0

µ2
n

,

and consider the functions
zn(x1, x2) = σnwn(

√
σnx1, σnx2).

In view of (2.6) and (2.8),
σn → 1, as n→ +∞, (2.9)

and (zn)n∈N is a minimizing sequence of (PKP (µ)) for µ = µ0. Therefore, by Theorem 2.1, there
exist some points (an)n∈N and a minimizer Nσ to (PKP (µ)) for µ = µ0 such that, up to some
subsequence,

zn(· − an) → Nσ in Y (R2), as n→ +∞. (2.10)

In particular, it follows from Lemma 2.1 that Nσ is solution to (2.5), with σ =
µ2

0

(µ∗)2 . We now

denote

Nn(x1, x2) =
1

σn
Nσ

( x1√
σn
,
x2

σn

)
,

so that, by the change of variables (y1, y2) = (
√
σnx1, σnx2),

‖zn(· − an) −Nσ‖2
Y (R2) =

√
σn‖wn(· − an) −Nn‖2

L2(R2) + σ
3

2

n ‖∂1wn(· − an) − ∂1Nn‖2
L2(R2)

+σ
3

2
n ‖∂−1

1 ∂2wn(· − an) − ∂−1
1 ∂2Nn‖2

L2(R2).

By (2.9) and (2.10), we have

wn(· − an) −Nn → 0 in Y (R2), as n → +∞.
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Proposition 2.1 follows provided we first prove that

Nn → Nσ in Y (R2), as n → +∞.

This last assertion is itself a consequence of the general observation that

λψ
(√
µ·, µ ·

)
→ ψ in L2(R2), as λ→ 1 and µ→ 1,

which may be deduced from the dominated convergence theorem, when ψ is in C∞
c (R2), then,

using the density of C∞
c (R2) into L2(R2), when ψ only belongs to L2(R2).

3 Some properties of solutions to (TWc)

In this section, we gather a number of properties of solutions to (TWc), which enter in our
asymptotic analysis. Most of these results are available in the literature on the subject.

3.1 General solutions

Let v be a finite energy solution to (TWc) on R2. It can be shown using various elliptic estimates
(see [12, 28, 3]) that there exists some positive constant K, not depending on c, such that

∥∥∥1 − |v|
∥∥∥

L∞(R2)
≤ 1, (3.1)

and

‖∇v‖L∞(R2) ≤ K
(
1 +

c2

4

) 3

2

. (3.2)

In view of (4), estimates (3.1) and (3.2) may be recast as

‖η‖L∞(R2) + ‖∇v‖L∞(R2) ≤ K, (3.3)

where we have set η ≡ 1 − |v|2. For higher order derivatives, it similarly follows from the proof
of Lemma 2.1 in [3] that there exists some positive constant K(k), not depending on c, such
that

‖v‖Ck(R2) ≤ K(k), (3.4)

for any k ∈ N.

More generally, we have

‖η‖W k,q(R2) + ‖∇v‖W k,q(R2) ≤ K(c, k, q), (3.5)

for any k ∈ N and any 1 < q < +∞ (see [16]). Notice that the constant K(c, k, q) possibly
depends on the speed c, so that we may have

K(c, k, q) → +∞, as c→
√

2.

Before establishing the convergence of the rescaled functions Np and Θp, we shall need to es-
tablish their boundedness in the spaces W k,q(R2). This requires to get some control upon the
dependence on c of the constant K(c, k, q). The proof of Proposition 3 in Section 6 below
provides such a control.

We will also take advantage of the fact that the maps up have small energy. Indeed, in view
of (4) and elliptic estimate (3.3), we may show that, if a solution v to (TWc) has sufficiently
small energy, it does not vanish. More precisely, we have

11



Lemma 3.1 ([3]). There exists a universal constant E0 such that, if v is a solution to (TWc)
which satisfies E(v) ≤ E0, then

1

2
≤ |v| ≤ 2. (3.6)

If v satisfies (3.6), then we may lift it as

v = ̺ exp iϕ,

where ϕ is a real-valued, smooth function on R2 defined modulo a multiple of 2π. We have in
that case,

∂jv =
(
i̺∂jϕ+ ∂j̺

)
exp iϕ,

so that

〈i∂1v, v〉 = −̺2∂1ϕ, and e(v) =
1

2

(
|∇̺|2 + ̺2|∇ϕ|2

)
+

1

4
η2. (3.7)

Moreover, the momentum p takes the simple form

p(v) =
1

2

∫

R2

η∂1ϕ.

The system of equations for ̺ and ϕ is written as

c

2
∂1̺

2 + div
(
̺2∇ϕ

)
= 0, (3.8)

and
c̺∂1ϕ− ∆̺− ̺

(
1 − ̺2

)
+ ̺|∇ϕ|2 = 0. (3.9)

Combining both the equations, the quantity η satisfies

∆2η − 2∆η + c2∂2
1η = −2∆

(
|∇v|2 + η2 − cη∂1ϕ

)
− 2c∂1div

(
η∇ϕ

)
,

where the left-hand side is linear with respect to η, whereas the right-hand side is (almost)
quadratic with respect to η and ∇ϕ.

Multiplying (3.8) by ϕ and integrating by parts, we obtain a first relation for the momentum

cp(v) =

∫

RN

̺2|∇ϕ|2. (3.10)

In another direction, Pohozaev identities yield

E(v) =

∫

R2

|∂1v|2, and E(v) =

∫

R2

|∂2v|2 + cp(v). (3.11)

Introducing the quantities Σ(v) =
√

2p(v) − E(v), the second identity in (3.11) may be recast
as ∫

R2

|∂2v|2 + Σ(v) =
(√

2 −
√

2 − ε(v)2
)
p(v) =

ε(v)2√
2 +

√
2 − ε(v)2

p(v). (3.12)

In the case Σ(v) > 0, this yields an interesting estimate for the transversal derivative ∂2v.
Adding both the equalities in (3.11), we also derive a second relation for the momentum

1

2

∫

R2

η2 = cp(v).

With similar arguments and combining with (3.10), we are led to

12



Lemma 3.2 ([3]). Let v be a finite energy solution to (TWc) on R2 satisfying (3.6). Then, we
have the identities

Σ(v) +
1

2

∫

R2

|∇̺|2 =
ε(v)2√
2 + c(v)

p(v), (3.13)

∫

R2

|∇̺|2
(
1 +

1

̺2

)
=

∫

R2

η|∇ϕ|2, (3.14)

and the inequality

E(v) ≤ 7c(v)2
∫

R2

η2. (3.15)

In view of definition (1), we have
∫

R2

η2 ≤ 4E(v),

so that inequality (3.15) shows that the energy is comparable to the integral of η2 for any
solutions v satisfying (3.6). When Σ(v) > 0, identity (3.13) shows that

Σ(v) ≤ ε(v)2√
2
p(v) ≤ KE(v)2p(v) ≤ 2Kp(v)3,

where we have invoked Proposition 1 for the second inequality. In particular, we obtain

E(v) ∼
√

2p(v),

as E(v), or p(v), approaches 0.

In several places (in particular, in the proof of Proposition 3), we shall need estimates for
higher order derivatives. For that purpose, we shall use

Lemma 3.3. Let 1 < q < +∞, and let v be a finite energy solution to (TWc) on R2 satisfying
(3.6). Then, there exists some constant K(q), not depending on c, such that

‖∇ϕ‖Lq(R2) ≤ K(q)‖η‖Lq(R2), (3.16)

More generally, given any index α = (α1, α2) ∈ N2, there exist some constants K(q, α), not
depending on c, such that

‖∂α(∇ϕ)‖Lq(R2) ≤ K(q, α)
(∥∥∂αη

∥∥
Lq(R2)

+
∑

0≤β<α

‖∂βη‖L∞(R2)‖∂α−β
(
∇ϕ
)
‖Lq(R2)

)
. (3.17)

Proof. First notice that in view of (3.4) and (3.5), the functions η and ∇ϕ belong to W k,q(R2)
for any k ∈ N and any 1 < q ≤ +∞. In particular, the norms in inequalities (3.16) and (3.17)
are well-defined and finite. Lemma 3.3 is then a consequence of the elliptic nature of equation
(3.8), which may be written as

∆ϕ =
c

2
∂1η + div

(
η∇ϕ

)
,

so that, more generally,

∆(∂αϕ) =
c

2
∂1∂

αη + div
(
∂α(η∇ϕ)

)
, (3.18)

for any α ∈ N2. Using standard elliptic estimates and inequality (4), we derive from (3.18) that

‖∇(∂αϕ)‖Lq(R2) ≤ K(q)
(∥∥∂αη

∥∥
Lq(R2)

+
∥∥∂α

(
η∇ϕ

)∥∥
Lq(R2)

)
. (3.19)
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For α = (0, 0), inequality (3.16) is a direct consequence of (3.19) invoking (3.3). For α 6= (0, 0),
the derivative ∂α(η∇ϕ) may be written as

∂α(η∇ϕ) =
∑

0≤β≤α

(
α

β

)
∂βη∂α−β

(
∇ϕ
)
,

by Leibniz formula, so that

‖∂α(η∇ϕ)‖Lq(R2) ≤ K(q, α)

(
‖∂αη‖Lq(R2)‖∇ϕ‖L∞(R2) +

∑

0≤β<α

‖∂βη‖L∞(R2)‖∂α−β
(
∇ϕ
)
‖Lq(R2)

)
.

Estimate (3.17) follows from (3.19) using again uniform bound (3.3).

3.2 Properties of up

We now restrict ourselves to the solutions up provided by Theorem 1. We begin with the

Proof of Lemma 1. In view of (3), we have

Σp ≡ Σ(up) ≥
48
√

2

S2
KP

p
3 −K0p

4,

for any p sufficiently small, whereas, by (3.13),

Σp ≤ p
ε2p√
2
,

so that, combining both the inequalities, we obtain

εp ≥ 9

SKP
p.

On the other hand, in view of Proposition 1, we have

εp ≤ KEp,

where we have set Ep ≡ E(up). Since Ep ≤
√

2p, we conclude that (10) holds. Moreover, we
also have

K5Ep ≤ εp ≤ K6Ep, (3.20)

for any p sufficiently small, and some positive constants K5 and K6, not depending on p.

Finally, since Σp > 0 by (3), we deduce from Lemma 1 that (3.12), (3.13) and (3.14) may be
recast as ∫

R2

(
|∇̺p|2 + (∂2up)

2
)

+

∣∣∣∣
∫

R2

ηp|∇ϕp|2
∣∣∣∣ ≤ Kp

3, (3.21)

where we denote up = ̺p exp iϕp. Since (∂2up)
2 = ̺2

p(∂2ϕp)
2 +(∂2̺p)

2 and |ηp| ≤ 3̺2
p, we deduce

that ∫

R2

|ηp|(∂2ϕp)
2 ≤ 3

∫

R2

̺2
p(∂2ϕp)

2 ≤ Kp
3,

so that ∣∣∣∣
∫

R2

ηp(∂1ϕp)
2

∣∣∣∣ ≤ Kp
3. (3.22)
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4 (TWc) in the slow space variables

4.1 Expansion of the energy functionals

In this subsection, we consider a finite energy map v on R2, satisfying (3.6), and a small given
parameter ε > 0. In view of assumption (3.6), we may lift v as v = ̺ exp iϕ. Following the
expansion given in the physical literature, we introduce anisotropic slow space variables x̃1 = εx1,
and x̃2 = ε2√

2
x2. We then consider the rescaled functions N = Nv,ε and Θ = Θv,ε defined as

follows

N(x) =
6

ε2
η
(x1

ε
,

√
2x2

ε2

)
, and Θ(x) =

6
√

2

ε
ϕ
(x1

ε
,

√
2x2

ε2

)
. (4.1)

We next express the functionals p and E in terms of the functions N , Θ and ε. In the course
of the analysis, we will also compute several other integral quantities in the rescaled variables.
For instance,

∫

R2

N2 =
18
√

2

ε

∫

R2

η2,

∫

R2

(∂1N)2 =
18
√

2

ε3

∫

R2

(∂1η)
2,

∫

R2

(∂2N)2 =
36
√

2

ε5

∫

R2

(∂2η)
2,

whereas ∫

R2

(∂1Θ)2 =
36
√

2

ε

∫

R2

(∂1ϕ)2, and

∫

R2

(∂2Θ)2 =
72
√

2

ε3

∫

R2

(∂2ϕ)2.

A rather tedious computation along the same lines allows to derive the following expansions.

Lemma 4.1. Let v be a smooth map on R2 satisfying (3.6), and let N and Θ be the corresponding
functions defined by (4.1). The momentum p(v) can be expressed in terms of the new functions
as

p(v) =
ε

72

∫

R2

N∂1Θ, (4.2)

while the energy E(v) has the expansion

E(v) =
√

2
ε

144

(
E0(N,Θ) + ε2E2(N,Θ) + ε4E4(N,Θ)

)
, (4.3)

where the functions E0, E2 and E4 are given by

E0(N,Θ) =

∫

R2

(
N2 + (∂1Θ)2

)
, (4.4)

E2(N,Θ) =

∫

R2

(1

2
(∂1N)2 +

1

2
(∂2Θ)2 − 1

6
N(∂1Θ)2

)
, (4.5)

and

E4(N,Θ) =

∫

R2

(
(∂2N)2

4 − 2ε2

3 N
+

N(∂1N)2

12 − 2ε2N
− 1

12
N(∂2Θ)2

)
. (4.6)

Remark 4.1. Recall that the map up found in Theorem 1 minimizes the Ginzburg-Landau
energy keeping the momentum p fixed, equal to p. If one takes instead only the first term of the
energy in expansion (4.3), i.e. if one minimizes E0 keeping the momentum p equal to p, then ũp

will be a minimizer for the new problem if and only if

Ñp = ∂1Θ̃p, and

∫

R2

Ñ2
p =

72p

ε
.
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Notice in particular that Θ̃p = ∂−1
1 Ñp, so that ∂−1

1 (∂2Ñp) = ∂2Θ̃p. If we insert these relations
into the definition of E2(Ñp, Θ̃p), one obtains

E2(Ñp, Θ̃p) =

∫

R2

(
1

2
(∂1Ñp)

2 +
1

2
(∂−1

1 (∂2Ñp))
2 − 1

6
Ñ3

p

)
= EKP (Ñp).

This identity gives a first heuristic relation between the (GP) functional and the (KP I) func-
tional, as well as between the solutions up and the ground states for (KP I).

Specifying the above change of variables to the case v = up and ε = εp, setting Np = Nup ,εp

and Θp = Θup ,εp
, we obtain bounds for the integral quantities appearing in Lemma 4.1. In view

of (1) and (3.20), we have

∫

R2

(Np)
2 =

18
√

2

εp

∫

R2

η2
p ≤ 72

√
2E(up)

εp
≤ K,

where K is some universal constant, whereas by (3.6) and (3.7),

∫

R2

(∂1Θp)
2 =

36
√

2

εp

∫

R2

(∂1ϕp)
2 ≤ 144

√
2

εp

∫

R2

̺2
p(∂1ϕp)

2 ≤ 288
√

2E(up)

εp
,

so that ∫

R2

(
(Np)

2 + (∂1Θp)
2

)
≤ K. (4.7)

Similarly, it follows from (3.21) and (3.22) that

∫

R2

(
(∂1Np)

2 + (∂2Θp)
2

)
+

∣∣∣∣
∫

R2

Np(∂1Θp)
2

∣∣∣∣ ≤ K. (4.8)

For various other quantities, we only have at this stage rather crude estimates. For instance,
concerning the uniform norm of Np, the bound provided by (3.3) yields

‖Np‖L∞(R2) ≤
K

ε2p
. (4.9)

We also only have for the transverse derivatives

∫

R2

(∂2Np)
2 +

∫

R2

∣∣∣Np(∂2Θp)
2
∣∣∣ ≤ K

ε2p
. (4.10)

It follows from (4.8) that ∣∣E2(Np,Θp)
∣∣ ≤ K,

whereas for E4, we only obtain combining estimates (4.8), (4.9) and (4.10),

∣∣E4(Np,Θp)
∣∣ ≤ K

ε2p
.

Hence, going back to the expansion of the energy, we deduce

∣∣∣E(up) −
√

2
εp

144
E0(Np,Θp)

∣∣∣ ≤ Kε3p. (4.11)

This leads to
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Lemma 4.2. There exists some positive constant K, not depending on p, such that
∫

R2

(
Np − ∂1Θp

)2
≤ Kε2p, (4.12)

for any p sufficiently small.

Proof. Using (4.2), (4.4) and (4.11), we are led to

∫

R2

(
Np − ∂1Θp

)2
= E0(Np,Θp) − 2

∫

R2

Np∂1Θp ≤ 144E(up)√
2εp

− 144p

εp
+Kε2p.

Since E(up) ≤
√

2p, the conclusion follows.

Estimate (4.7) provides a first step to compactness. In particular, there exists some map
N0 ∈ L2(R2) such that, up to a subsequence,

Np ⇀ N0 in L2(R2), as p → 0.

As a consequence of Lemma 4.2, we also have

∂1Θp ⇀ N0 in L2(R2), as p → 0.

To improve this convergence and characterize the limit function N0, we turn to the equations
for Np and Θp.

4.2 Expansion of the equations

We now consider a finite energy solution v to (TWc) satisfying (3.6), so that v may be written
as v = ̺ exp iϕ, and the functions ̺ and ϕ satisfy the system of equations (3.8)-(3.9). At first
order, each of the equations (3.8) and (3.9) express the fact that

N ∼ ∂1Θ, as ε→ 0.

Indeed, we first have

Lemma 4.3. Assume ̺ and ϕ satisfy (3.9), and let N and Θ be the corresponding functions
defined by (4.1). Then, N and Θ satisfy

N − ∂1Θ = ε2
(
Lε,1(N,Θ) + Rε,1(N,Θ)

)
, (4.13)

where the remainder terms Lε,1(N,Θ) and Rε,1(N,Θ) are given by

Lε,1(N,Θ) =
1

ε2

(√
1 − ε2

2
− 1
)
∂1Θ +

1

2
∂2

1N +
ε2

4
∂2

2N,

and

Rε,1(N,Θ) =
1

12

(
2N2 − 2

√
1 − ε2

2
N∂1Θ + (∂1Θ)2

)

+
ε2

72

(
3

(∂1N)2

1 − ε2

6 N
−N(∂1Θ)2 + 3(∂2Θ)2

)

+
ε4

144

(
3

(∂2N)2

1 − ε2

6 N
−N(∂2Θ)2

)
.
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We similarly have

Lemma 4.4. Assume ̺ and ϕ satisfy (3.8), and let N and Θ be the corresponding functions
defined by (4.1). Then, N and Θ satisfy

∂1N − ∂2
1Θ = ε2

(
Lε,2(N,Θ) + Rε,2(N,Θ)

)
, (4.14)

where the remainder terms Lε,2(N,Θ) and Rε,2(N,Θ) are given by

Lε,2(N,Θ) =
1

ε2

(
1 −

√
1 − ε2

2

)
∂1N +

1

2
∂2

2Θ,

and

Rε,2(N,Θ) = −1

6
∂1

[
N∂1Θ

]
− ε2

12
∂2

[
N∂2Θ

]
.

As mentioned above, equations (4.13) and (4.14) twice express the fact that the functions N
and ∂1Θ are equal at the limit ε→ 0. In order to identify their common limit, we expand some
combination of (4.13) and (4.14) to deduce

Proposition 4.1. Let v be a finite energy solution to (TWc) on R2 satisfying (3.6), and let N
and Θ be the corresponding functions defined by (4.1). Then, N and Θ satisfy

L(N) = −∂2
1

[1
3
N2 +

1

6
(∂1Θ)2

]
+ ε2

(
Lε(N) + Rε(N,Θ)

)
, (4.15)

where L is the linear operator given by

L(N) = ∂4
1N − ∆N,

and the remainder terms Lε(N) and Rε(N,Θ) are given by

Lε(N) = −∂2
1∂

2
2N − ε2

4
∂4

2N,

and

Rε(N,Θ) =
1

72

(
2∂2

1

[
N(∂1Θ)2

]
− 6∂2

1

[ (∂1N)2

1 − ε2

6 N

]
− 24∂2

2(N2) − 6

√
1 − ε2

2
∂1∂2

[
N∂2Θ

]

+12

√
1 − ε2

2
∂2

2

[
N∂1Θ

]
− 3∂2

1

[
(∂2Θ)2

]
− 6∂2

2

[
(∂1Θ)2

])

+
ε2

144

(
− 3∂2

1

[ (∂2N)2

1 − ε2

6 N

]
+ ∂2

1

[
N(∂2Θ)2

]
− 6∂2

2

[ (∂1N)2

1 − ε2

6 N

]
+ 2∂2

2

[
N(∂1Θ)2

]

−3∂2
2

[
(∂2Θ)2

])
+

ε4

288

(
− 3∂2

2

[ (∂2N)2

1 − ε2

6 N

]
+ ∂2

2

[
N(∂2Θ)2

])
.

Proof. Equation (4.15) is derived applying the differential operator −∂2
1 − ε2

2 ∂
2
2 to (4.13), the

operator
√

1 − ε2

2 ∂1 to (4.14), and adding the corresponding relations.

Notice that we have at this stage,

∂4
1N − ∆N +

1

2
∂2

1N
2 =

1

6
∂2

1(N2 − Θ2) + ε2
(
Lε(N,Θ) + Rε(N,Θ)

)
,
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where we recognize equation (2.1) for N in the left-hand side. Specifying this relation to the
solutions Np and Θp, it remains to prove that the weak limit N0 of the sequence (Np)p>0 is a
solution to (SW), and to show some strong convergence. This requires to establish that the
nonlinear remainder term Rε is small in some suitable sense. Indeed, the first term on the
right-hand side will tend to 0 in view of Lemma 4.2, whereas the linear term Lε(N) presents no
difficulty.

The remainder term Rε is a sum of several second order derivatives. We order them according
to the type of second order derivatives, writing

Rε(N,Θ) =
∑

i+j=2

∂i
1∂

j
2Ri,j

ε ,

where

R2,0
ε =

1

36
N(∂1Θ)2 − (∂1N)2

12(1 − ε2

6 N)
− 1

24
(∂2Θ)2 − ε2

(∂2N)2

48(1 − ε2

6 N)
+

ε2

144
N(∂2Θ)2, (4.16)

R0,2
ε = −N

2

3
+

1

6

√
1 − ε2

2
N∂1Θ − (∂1Θ)2

12
− ε2

(∂1N)2

24(1 − ε2

6 N)
+
ε2

72
N(∂1Θ)2 − ε2

48
(∂2Θ)2

− ε4
(∂2N)2

96(1 − ε2

6 N)
+

ε4

288
N(∂2Θ)2,

(4.17)

and

R1,1
ε = − 1

12

√
1 − ε2

2
N∂2Θ. (4.18)

In several places, it will be convenient to write

Ri,j
ε = Ri,j

ε + ε2νi,j
ε ,

where ν1,1
ε = 0,

ν2,0
ε = − (∂2N)2

48(1 − ε2

6 N)
+

1

144
N(∂2Θ)2,

and

ν0,2
ε = − (∂1N)2

24(1 − ε2

6 N)
+

1

72
N(∂1Θ)2 − 1

48
(∂2Θ)2 − ε2

(∂2N)2

96(1 − ε2

6 N)
+

ε2

288
N(∂2Θ)2.

Notice in particular that

|R2,0
ε | ≤ K

(
(∂1N)2 + (∂2Θ)2 + |N(∂1Θ)2|

)
, (4.19)

whereas
|R1,1

ε | ≤ K
∣∣N
∣∣∣∣∂2Θ

∣∣, and |R0,2
ε | ≤ K

(
N2 + (∂1Θ)2

)
. (4.20)

Similarly, we also have

|ν2,0
ε | ≤ K

(
(∂2N)2 + |N(∂2Θ)2|

)
,

|ν0,2
ε | ≤ K

(
(∂1N)2 + |N(∂1Θ)2| + (∂2Θ)2 + ε2

(
(∂2N)2 + |N(∂2Θ)2|

))
.

(4.21)

Specifying the previous quantities for Np and Θp, we obtain some initial bounds on the nonlinear
remainder terms, which will prove essential to compute the estimates of Proposition 3.
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Lemma 4.5. There exists some positive constant K, not depending on p, such that

∫

R2

(
|R1,1

εp
| + |R0,2

εp
|
)
≤ K, (4.22)

and ∫

R2

(
|R2,0

εp
| + |ν2,0

εp
| + |ν0,2

εp
|
)
≤ K

ε2p
, (4.23)

for any p sufficiently small.

Proof. Bounds (4.22) and (4.23) are consequences of bounds (4.7), (4.8) and (4.10), and inequal-
ities (4.19), (4.20) and (4.21). Concerning the term

∫
R2 Np(∂1Θp)

2 in (4.23), we have to invoke
the crude bound (4.9), which yields

∫

R2

∣∣∣Np(∂1Θp)
2
∣∣∣ ≤ K

ε2p

∫

R2

(∂1Θp)
2 ≤ K

ε2p
.

4.3 Estimates for the phase Θp

In the previous discussion, we did not consider the function Θ. In particular, we did not compute
any rescaled equation for this function. Applying the partial differential operator L − ε2Lε to
(4.14) and introducing equation (4.15) in the resulting equation in order to eliminate the function
N in the linear part, we compute

L(∂2
1Θ) = −∂3

1

(1

3
N2 +

1

6
(∂1Θ)2

)
+ ε2

(
Lε,3(Θ) + Rε,3(N,Θ)

)
, (4.24)

where the remainder terms Lε,3(Θ) and Rε,3(N,Θ) are given by

Lε,3(Θ) = Lε(∂
2
1Θ) − 1

2
L(∂2

2Θ) +
ε2

2
Lε(∂

2
2Θ),

and

Rε,3(N,Θ) =
1

ε2

(
1 −

√
1 − ε2

2

)
∂3

1

(1

3
N2 +

1

6
(∂1Θ)2

)
+

√
1 − ε2

2
∂1Rε(N,Θ)

−L
(
Rε,2(N,Θ)

)
+ ε2Lε

(
Rε,2(N,Θ)

)
.

At least formally, this may be written as

∂4
1(∂1Θ) − ∆(∂1Θ) +

1

2
∂2

1(∂1Θ)2 =
1

3
∂2

1

(
(∂1Θ)2 −N2

)
+ ε2∂−1

1

(
Lε,3(Θ) + Rε,3(N,Θ)

)
.

We recognize once more equation (2.1) for ∂1Θ in the left-hand side. However, the analysis
of equation (4.24) is substantially more difficult than the study of (4.15), due to the intricacy
of the remainder terms and the necessity to apply the operator ∂−1

1 to (4.24) to recover (2.1).
Hence, our argument to deal with the phase Θ does not rely on (4.24). Instead, we invoke the
estimates of Lemma 3.3, whose rescaled versions give bounds on Θ in function of those on N .

Lemma 4.6. Let 1 < q < +∞. There exists some positive constant K(q), not depending on p,
such that

‖∂1Θp‖Lq(R2) + εp‖∂2Θp‖Lq(R2) ≤ K(q)‖Np‖Lq(R2), (4.25)
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for any p sufficiently small. Similarly, given any α ∈ N2, and denoting

Ξp(q, α) ≡ ‖∂α∂1Θp‖Lq(R2) + εp‖∂α∂2Θp‖Lq(R2),

there exists some positive constant K(q, α), not depending on p, such that

Ξp(q, α) ≤ K(q, α)

(
‖∂αNp‖Lq(R2) + ε2p

∑

0≤β<α

‖∂βNp‖L∞(R2)Ξp(q, α− β)

)
, (4.26)

for any p sufficiently small.

Proof. Inequalities (4.25) and (4.26) are rescaled versions of (3.16) and (3.17). In view of scalings
(4.1), given any 1 < q ≤ +∞, the Lq-norm of the function ∂αN is related to the Lq-norm of
∂αη by

‖∂αN‖Lq(R2) =
K(q, α)

ε
2+α1+2α2− 3

q

‖∂αη‖Lq(R2), (4.27)

where K(q, α) denotes some positive constant, not depending on ε. Similarly, we compute for
the functions ∂α∂1Θ and ∂α∂2Θ,

‖∂α∂1Θ‖Lq(R2) =
K(q, α)

ε
2+α1+2α2− 3

q

‖∂α∂1ϕ‖Lq(R2), and ‖∂α∂2Θ‖Lq(R2) =
K(q, α)

ε
3+α1+2α2− 3

q

‖∂αϕ‖Lq(R2).

(4.28)
Inequalities (4.25) and (4.26) then follow from rescaling (3.16) and (3.17), specifying identities
(4.27) and (4.28) for the functions Np and Θp.

In view of Lemma 4.6, we will not invoke equation (4.24) to bound the function Θp. Instead,
we will take advantage of the regularizing properties of equation (4.15), and rely on the initial
estimates of Lemma 4.5, to bound the Lq-norm of Np (and actually, its first order derivatives)
independently on p. We will then deduce from (4.25) and (4.26), Lq-estimates of some low order
derivatives of Θp. This in turn will provide new bounds on the nonlinear terms Ri,j

εp
, and on their

first order derivatives, improving the estimates of Lemma 4.5. Using in particular, the inductive
nature of (4.26), we will iterate the argument to obtain Lq-bounds on any order derivatives of Np

and Θp, and complete the proof of Proposition 3 (see Section 6 below). Notice that this strategy
will first require to analyse the regularizing nature of (4.15) which becomes more transparent
taking its Fourier transform.

4.4 Kernels of the rescaled equations

We derive a new formulation of (4.15) which brings out its regularizing properties. Taking the
Fourier transform of the previous rescaled equations, we deduce

Corollary 4.1. Let v be a finite energy solution to (TWc) on R2 satisfying (3.6), and let N
and Θ be the corresponding functions defined by (4.1). Then, N̂ and Θ̂ satisfy

(
1 +

ε2

2
ξ21 +

ε4

4
ξ22

)
N̂(ξ) − i

√
1 − ε2

2
ξ1Θ̂(ξ) = ε2R̂ε,1(ξ), (4.29)

(
ξ21 +

ε2

2
ξ22

)
Θ̂(ξ) + i

√
1 − ε2

2
ξ1N̂(ξ) = ε2R̂ε,2(ξ), (4.30)

and
(
ξ41 + |ξ|2 + ε2ξ21ξ

2
2 +

ε4

4
ξ42

)
N̂(ξ) = ξ21

(1

3
N̂2(ξ) +

1

6
(̂∂1Θ)2(ξ)

)
+ ε2R̂ε(ξ). (4.31)
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Proof. Equations (4.29), (4.30) and (4.31) follow from taking the Fourier transform of equations
(4.13), (4.14) and (4.15).

At this stage, it is presumably worthwhile to compare equations (4.31) and (2.2). This leads
us to consider the perturbed kernel Kε, whose Fourier transform is given by

K̂ε(ξ) =
ξ21

|ξ|2 + ξ41 + ε2ξ21ξ
2
2 + ε4

4 ξ
4
2

.

The kernel Kε is a regularization of the kernel K0, since it belongs to H
1

4 (R2) (see Lemma 5.1
below), and tends to K0 in L2(R2), as ε → 0, by the dominated convergence theorem. We will
extensively use this additional regularizing property of Kε to compute estimates of the function
N .

More generally, since

R̂ε(ξ) = −
∑

i+j=2

ξiξjR̂ε

i,j
(ξ),

we also introduce the kernels Ki,j
ε defined by

K̂
i,j
ε (ξ) =

ξi
1ξ

j
2

|ξ|2 + ξ41 + ε2ξ21ξ
2
2 + ε4

4 ξ
4
2

, (4.32)

for any 0 ≤ i, j ≤ 4 such that 2 ≤ i+ j ≤ 4 (so that, in particular, Kε = K
2,0
ε ). We then recast

equation (4.15) as a convolution equation

Np = K2,0
εp

⋆ fp −
∑

i+j=2

ε2pK
i,j
εp
⋆Ri,j

εp
, (4.33)

where

fp =
1

3
N2

p +
1

6
(∂1Θp)

2. (4.34)

In view of the multiplier properties of the kernels Ki,j
εp

(see Lemma 5.2 below), equation (4.33)
provides a control on the Lq-norm of Np in function of the Lq-norms of the nonlinear terms fp

and Ri,j
εp

. This control is the starting point of the proof of Proposition 3, which follows combining

the superlinear nature of the nonlinear terms fp and Ri,j
εp

with the estimates of Θp provided by
Lemma 4.6 (see Section 6 below).

5 Properties of the kernels K i,j
ε

We now turn to the analysis of the kernels Ki,j
ε . In particular, we provide a number of estimates,

which are required by the proof of Proposition 3.

5.1 Hα-estimates of the kernels

For given 0 ≤ α < 1, we establish Hα-estimates for the kernels Ki,j
ε . We first consider their

Ḣα-semi-norms defined in the Fourier space by

‖Ki,j
ε ‖2

Ḣα(R2)
=

∫

R2

|ξ|2α|K̂i,j
ε (ξ)|2dξ.

22



Lemma 5.1. Let 0 < ε ≤ 1 and 0 ≤ α < 1. Then,

‖K2,0
ε ‖Ḣα(R2) ≤ K(α)

(
1 + ε

1

2
−2α
)
, ‖K1,1

ε ‖Ḣα(R2) ≤ K(α)
(
1 + ε−

1

2
−2α
)
, (5.1)

and
‖K0,2

ε ‖Ḣα(R2) ≤ K(α)
(
1 + ε−

3

2
−2α
)
. (5.2)

Proof. The proof is an explicit computation. In view of the definition of the semi-norms, we
compute using polar coordinates, and noticing that i+ j = 2,

‖Ki,j
ε ‖2

Ḣα(R2)
=

∫

R2

|ξ|2αξ2i
1 ξ

2j
2(

|ξ|2 + ξ41 + ε2ξ21ξ
2
2 + ε4

4 ξ
4
2

)2 dξ

=

∫ +∞

0

∫ 2π

0
r2α+1 cos(θ)2i sin(θ)2j

(
1 + r2 cos(θ)4 + ε2r2 cos(θ)2 sin(θ)2 + ε4

4 r
2 sin(θ)4

)2drdθ

= 4

∫ +∞

0

∫ +∞

0
r2α+1 u2j(1 + u2)3−i−j

(
(1 + u2)2 + r2 + ε2r2u2 + ε4

4 r
2u4
)2drdu,

where we have set u = tan(θ) in the last integral. The previous computation leads us to introduce
the quantity

Jβ,ε(r) =

∫ +∞

0

u2β

(
(1 + u2)2 + r2 + ε2r2u2 + ε4

4 r
2u4
)2du,

so that

‖Ki,j
ε ‖2

Ḣα(R2)
≤ K

∫ +∞

0
r2α+1

(
Jβ1,ε(r) + Jβ2,ε(r)

)
dr, (5.3)

where β1 = j and β2 = 3 − i. We now claim that

∫ +∞

0
r2α+1Jβ,ε(r)dr ≤ K(α, β)

(
1 +

1

ε4α+2β−3

)
, (5.4)

for any 0 ≤ β < 7
2 and any 0 ≤ α < 1. We postpone the proof of Claim (5.4), and first complete

the proof of Lemma 5.1. Combining identity (5.3) with (5.4), we obtain

‖Ki,j
ε ‖2

Ḣα(R2)
≤ K

(
1 +

1

ε4α+2j−3
+

1

ε4α+3−2i

)
,

and the conclusion follows applying this inequality for the various choices of i and j.

Proof of Claim (5.4). In order to estimate the integral in the left-hand side of Claim (5.4), we
first compute some bounds for the function Jβ,ε. When 0 ≤ r ≤ 1, we have

|Jβ,ε(r)| ≤
∫ +∞

0

u2β

1 + u8
du ≤ K(β), (5.5)

since 0 ≤ β < 7
2 . On the other hand, when r > 1, we compute

|Jβ,ε(r)| ≤ K

(∫ 1

0

du

1 + r4
+

∫ 1

ε

1

u2β

(u4 + r2)2
du+

∫ +∞

1

ε

u2β−8

(1 + r2ε4)2
du

)
,

so that, since 0 ≤ β < 7
2 ,

|Jβ,ε(r)| ≤ K(β)
( 1

r4
+ rβ− 7

2 + ε7−2β
)
, (5.6)
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when 1 ≤ r ≤ 1
ε2 . Similarly, when r ≥ 1

ε2 ,

|Jβ,ε(r)| ≤ K(β)
( 1

r4
+

1

ε2β+1r4
+

ε7−2β

(1 + r2ε4)2

)
. (5.7)

Estimates (5.5), (5.6) and (5.7) finally provide Claim (5.4), when 0 ≤ α < 1.

Since inequalities (5.1) and (5.2) are also valid for α = 0, i.e. for the L2-norm, we may remove
the dots in inequalities (5.1) and (5.2). Notice in particular that we have the bounds

‖K1,1
ε ‖Hα(R2) + ε‖K1,2

ε ‖Hα(R2) + ε2‖K2,2
ε ‖Hα(R2) ≤ K(α), (5.8)

for any 0 ≤ α ≤ 1
4 .

5.2 Multiplier properties of the kernels

We now provide some multiplier properties of the kernels Ki,j
ε . Our analysis relies on a theorem

by Lizorkin [26] 1 , which we first recall for sake of completeness.

Theorem 5.1 ([26]). Let K̂ be a bounded function in C2(R2 \ {0}), and assume that

ξk1

1 ξ
k2

2 ∂
k1

1 ∂k2

2 K̂(ξ) ∈ L∞(R2),

for any 0 ≤ k1, k2 ≤ 1 such that k1 + k2 ≤ 2. Then, K̂ is a multiplier from Lq(R2) to Lq(R2)
for any 1 < q < +∞. More precisely, given any 1 < q < +∞, there exists a constant K(q),
depending only on q, such that

‖K ⋆ f‖Lq(R2) ≤ K(q)M(K̂)‖f‖Lq(R2), ∀f ∈ Lq(R2), (5.9)

where we denote

M(K̂) ≡ sup
{
|ξ1|k1 |ξ2|k2

∣∣∣∂k1

1 ∂k2

2 K̂(ξ)
∣∣∣, ξ ∈ R

2, 0 ≤ k1 ≤ 1, 0 ≤ k2 ≤ 1, k1 + k2 ≤ 2
}
.

Applying Theorem 5.1 to the kernels Ki,j
ε , we obtain

Lemma 5.2. Let 1 < q < +∞. Given any integers 0 ≤ i, j ≤ 4 such that 2 ≤ i + j ≤ 4, we
denote

κi,j = max{i+ 2j − 4, 0},
Then, there exists some positive constant K(q), not depending on ε, such that

‖Ki,j
ε ⋆ f‖Lq(R2) ≤

K(q)

εκi,j
‖f‖Lq(R2), (5.10)

for any function f ∈ Lq(R2) and any ε > 0.

Proof. Inequality (5.10) is a consequence of (5.9) once we have checked that the functions K̂i,j
ε

satisfy the assumptions of Theorem 5.1, and established the dependence with respect to ε of the

quantity M(K̂i,j
ε ).

1Estimate (5.9) in Theorem 5.1 is more precisely a consequence of Lemma 6 and of the proof of Theorem 8 in
[26].
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First notice that the functions K̂i,j
ε , which are bounded on R2, and belong to C2(R2 \ {0}),

may be written as

K̂
i,j
ε (ξ) =

ξi
1ξ

j
2

Q(ξ)
,

where Q(ξ) ≡ |ξ|2 + ξ41 + ε2ξ21ξ
2
2 + ε4

4 ξ
4
2 . We therefore compute

ξ1∂1K̂
i,j
ε (ξ) = i

ξi
1ξ

j
2

Q(ξ)
− ξi

1ξ
j
2

Q(ξ)

ξ1∂1Q(ξ)

Q(ξ)
, ξ2∂2K̂

i,j
ε (ξ) = j

ξi
1ξ

j
2

Q(ξ)
− ξi

1ξ
j
2

Q(ξ)

ξ2∂2Q(ξ)

Q(ξ)
, (5.11)

and

ξ1ξ2∂1∂2K̂
i,j
ε (ξ) =

ξi
1ξ

j
2

Q(ξ)

(
ij−(i+j)

ξ1∂1Q(ξ) + ξ2∂2Q(ξ)

Q(ξ)
−ξ1ξ2∂1∂2Q(ξ)

Q(ξ)
+2

ξ1∂1Q(ξ)

Q(ξ)

ξ2∂2Q(ξ)

Q(ξ)

)
.

(5.12)
On the other hand, we check that

εκi,j |ξ1|i|ξ2|j ≤ 4Q(ξ), |ξk||∂kQ(ξ)| ≤ 4Q(ξ), and |ξ1||ξ2||∂1∂2Q(ξ)| ≤ 4Q(ξ),

so that, by (5.11) and (5.12), there exists some universal constant K such that

εκi,jM
(
K̂

i,j
ε

)
≤ K.

Inequality (5.10) then follows from (5.9) applying Theorem 5.1.

6 Sobolev bounds for Np and Θp

This section is devoted to the proof of the Sobolev estimates of Np, ∂1Θp and ∂2Θp stated in
Proposition 3. As previously mentioned in Section 4, we focus on Sobolev bounds on Np.

Proposition 6.1. Let α ∈ N2 and 1 < q < +∞. There exists some constant K(q, α), depending
possibly on α and q, but not on p, such that

‖∂αNp‖Lq(R2) + ‖∂1∂
αNp‖Lq(R2) + ‖∂2∂

αNp‖Lq(R2)

+‖∂2
1∂

αNp‖Lq(R2) + εp‖∂1∂2∂
αNp‖Lq(R2) + ε2p‖∂2

2∂
αNp‖Lq(R2) ≤ K(q, α),

(6.1)

for any p sufficiently small.

Remark 6.1. The proof of Proposition 6.1 is by induction on the derivation order α. The
inductive assumption is given by (6.1). This explains the redundant form of this inequality.

Proposition 3 is a direct consequence of Proposition 6.1 invoking rescaled inequalities (4.25)
and (4.26) to bound the functions ∂1Θp and ∂2Θp.

Proof of Proposition 3 (assuming Proposition 6.1). In view of (6.1), given any k ∈ N and any
1 < q < +∞, there exists some positive constant K(k, q), not depending on p, such that

‖Np‖W k,q(R2) ≤ K(k, q), (6.2)

for any p sufficiently small. In particular, by Sobolev embedding theorem,

‖Np‖Ck(R2) ≤ K(k). (6.3)
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Using (6.2) and (6.3), inequality (4.26) becomes

Ξp(q, α) ≤ K(q, α)

(
1 + ε2p

∑

0≤β<α

Ξp(q, α− β)

)
, (6.4)

where we have set as in Lemma 4.6,

Ξp(q, α) ≡ ‖∂α∂1Θp‖Lq(R2) + εp‖∂α∂2Θp‖Lq(R2).

By (4.25) and (6.2), the quantity Ξp(q, (0, 0)) is bounded independently on p, so that it follows by
induction from formula (6.4) that Ξp(q, α) is bounded independently on p for any 1 < q < +∞
and any α ∈ N2. Inequality (11) follows invoking Sobolev embedding theorem for q = +∞. This
completes the proof of Proposition 3.

The remainder of this section is devoted to the proof of Proposition 6.1. As previously
mentionned in Subsection 4.4, the proof relies on decomposition (4.33). Recall that it is proved
in [16] that the functions η and ϕ, and therefore Np and Θp, belong to W k,q(R2) for any k ∈ N

and any 1 < q ≤ +∞. Hence, we can differentiate (4.33) to any order α ∈ N2 to obtain

∂αNp = K2,0
εp

⋆ ∂αfp + ε2p

∑

i+j=2

Ki,j
εp
⋆ ∂αRi,j

εp
. (6.5)

Taking the Lq-norm of this expression and invoking the regularizing properties of the kernels
provided by Lemma 5.2, we are led to

‖∂αNp‖Lq(R2) ≤ K(q)
(
‖∂αfp‖Lq(R2) + ε2p

∑

i+j=2

‖∂αRi,j
εp
‖Lq(R2)

)
. (6.6)

In view of definitions (4.16), (4.17), (4.18) and (4.34), the derivatives ∂αfp and ∂αRi,j
εp

in the
right-hand side of (6.6) are nonlinear functions of the derivatives of Np and Θp, so that we may
estimate their Lq-norms using Sobolev bounds on Np and Θp.

This provides an iterative scheme to estimate the Sobolev norms of Np. Using the available

information on the nonlinear source terms fp and Ri,j
εp

, which is initially reduced to Lemma 4.5,
we improve the regularity and integrability properties of Np using inequality (6.6). This in turn

provides improved bounds of the nonlinear terms fp and Ri,j
εp

.

As a consequence, we prove (6.1) by induction on the derivation order α. We first compute Lq-
estimates of the nonlinear terms fp and Ri,j

εp
, and of convolution equation (4.33). In particular,

this requires to bound some derivatives of the phase Θp, which is made possible invoking Lemma
4.6. Using the initial bounds given by Lemma 4.5, we conclude that inequality (6.1) holds for
α = (0, 0). We then turn to higher order estimates. Assuming that (6.1) holds for any index α
such that |α| ≤ k, we derive Lq-estimates of the derivatives of order k + 1 of the functions fp

and Ri,j
εp

. In view of (6.6), this provides bounds for the derivatives of order k+ 1 of Np, so that
we can prove that (6.1) is also valid for any index α such that |α| = k + 1. This completes the
sketch of the proof of Proposition 6.1, which is detailed below.

6.1 Lq-estimates of nonlinear terms

We first compute Lq-estimates on the nonlinear terms fp, R
i,j
εp

and νi,j
εp

.
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Lemma 6.1. Let 1 ≤ q < +∞. There exists some universal constant K such that

‖fp‖Lq(R2) + ‖R0,2
εp

‖Lq(R2) + εp‖R1,1
εp

‖Lq(R2) ≤ K‖Np‖2
L2q(R2), (6.7)

‖R2,0
εp

‖Lq(R2) ≤ K
(
ε−2
p ‖Np‖2

L2q(R2) + ‖Np‖3
L3q(R2) + ‖∂1Np‖2

L2q(R2)

)
, (6.8)

‖ν2,0
εp

‖Lq(R2) ≤ K
(
ε−2
p ‖Np‖3

L3q(R2) + ‖∂2Np‖2
L2q(R2)

)
, (6.9)

and

‖ν0,2
εp

‖Lq(R2) ≤ K
(
ε−2
p ‖Np‖2

L2q(R2) + ‖Np‖3
L3q(R2) + ‖∂1Np‖2

L2q(R2) + ε2p‖∂2Np‖2
L2q(R2)

)
. (6.10)

Proof. Bounds (6.7), (6.8), (6.9) and (6.10) are consequences of inequalities (4.19), (4.20) and
(4.21) using Hölder inequalities. For the quantities involving the functions ∂1Θp and ∂2Θp, we
also use (4.25) to compute

‖(∂1Θp)
2‖Lq(R2) + εp‖Np∂2Θp‖Lq(R2) + ε2p‖(∂2Θp)

2‖Lq(R2) ≤ K(q)‖Np‖2
L2q(R2),

whereas

‖Np(∂1Θp)
2‖Lq(R2) + ε2p‖Np(∂2Θp)

2‖Lq(R2)

≤ K(q)‖Np‖L3q(R2)

(
‖∂1Θp‖2

L3q(R2) + ε2p‖∂2Θp‖2
L3q(R2)

)
≤ K(q)‖Np‖3

L3q(R2).

6.2 Lq-estimates of the convolution equation

We now compute Lq-estimates of equation (4.33) invoking the multiplier properties of the kernels
K

i,j
ε given by Lemma 5.2, and the previous Lq-estimates on the nonlinear terms fp, R

i,j
εp

and

ν
i,j
εp

. This provides

Lemma 6.2. Let 1 < q < +∞. There exists some constant K(q), depending only on q, such
that

‖Np‖Lq(R2) + ‖∂1Np‖Lq(R2) + ‖∂2Np‖Lq(R2)

+‖∂2
1Np‖Lq(R2) + εp‖∂1∂2Np‖Lq(R2) + ε2p‖∂2

2Np‖Lq(R2)

≤ K(q)
(
‖Np‖2

L2q(R2) + ε2p‖Np‖3
L3q(R2) + ε2p‖∂1Np‖2

L2q(R2) + ε4p‖∂2Np‖2
L2q(R2)

)
,

(6.11)

for any p sufficiently small.

Proof. Given any α = (α1, α2) such that 0 ≤ α1 + α2 ≤ 2, we estimate the Lq-norm of ∂αNp

using equations (4.33), so that

‖∂αNp‖Lq(R2) ≤‖∂αK2,0
εp

⋆ fp‖Lq(R2) + ε2p

∑

i+j=2

‖∂αKi,j
εp
⋆ Ri,j

εp
‖Lq(R2)

+ε4p‖∂αK2,0
εp

⋆ ν2,0
εp

‖Lq(R2) + ε4p‖∂αK0,2
εp

⋆ ν0,2
εp

‖Lq(R2).

Since by (4.32),
∂αKj,k

εp
= iα1+α2Kj+α1,k+α2

εp
,

the multiplier properties of Lemma 5.2 provide

‖Np‖Lq(R2) ≤ K(q)
(
‖fp‖Lq(R2) + ε2p

∑

i+j=2

‖Ri,j
εp
‖Lq(R2) + ε4p‖ν2,0

εp
‖Lq(R2) + ε4p‖ν0,2

εp
‖Lq(R2)

)
,

27



‖∂1Np‖Lq(R2) ≤K(q)
(
‖fp‖Lq(R2) + ε2p‖R2,0

εp
‖Lq(R2) + ε2p‖R1,1

εp
‖Lq(R2) + εp‖R0,2

εp
‖Lq(R2)

+ ε4p‖ν2,0
εp

‖Lq(R2) + ε3p‖ν0,2
εp

‖Lq(R2)

)
,

and

‖∂2Np‖Lq(R2) + ‖∂2
1Np‖Lq(R2) + εp‖∂1∂2Np‖Lq(R2) + ε2p‖∂2

2Np‖Lq(R2) ≤ K(q)

(
‖fp‖Lq(R2)

+ε2p‖R2,0
εp

‖Lq(R2) + εp‖R1,1
εp

‖Lq(R2) + ‖R0,2
εp

‖Lq(R2) + ε4p‖ν2,0
εp

‖Lq(R2) + ε2p‖ν0,2
εp

‖Lq(R2)

)
,

Estimate (6.11) follows invoking nonlinear bounds (6.7), (6.8), (6.9) and (6.10).

6.3 Initial bounds on Np and its first order derivatives

In view of (6.11), some preliminary Lq-bounds on Np, ∂1Np and ∂2Np are required to inductively
estimate the Lq-norms of these functions. These preliminary bounds are consequences of the
uniform estimates given by (3.3), and the L2-bounds provided by (4.7), (4.8) and (4.10).

Lemma 6.3. Let 2 ≤ q ≤ 8
3 . There exists some constant K(q), depending only on q, such that

‖Np‖Lq(R2) ≤ K(q), (6.12)

for any p sufficiently small. Moreover, given any 8
3 < q < 8, we have

ε
2

3

p ‖Np‖Lq(R2) ≤ K(q), (6.13)

whereas, given any 2 ≤ q ≤ +∞,

‖∂1Np‖Lq(R2) + εp‖∂2Np‖Lq(R2) ≤ K(q)ε
6

q
−3

p . (6.14)

Proof. For estimate (6.14), we have in view of (3.3),

‖∂1Np‖L∞(R2) ≤
K

ε3p
, and ‖∂2Np‖L∞(R2) ≤

K

ε4p
,

so that (6.14) is a consequence of (4.8) and (4.10) using standard interpolation between Lq-
spaces.

The proofs of (6.12) and (6.13) are more involved. The first step is to compute Hα-estimates
of Np combining equation (4.33) with Hα-bounds (5.8) on the kernels.

Step 1. Let 0 ≤ α ≤ 1
4 . There exists some constant K(α) such that

‖Np‖Hα(R2) ≤ K(α), (6.15)

for any p sufficiently small. In particular, there exists some constant K(q) such that (6.12)
holds.

Applying Young inequality to decomposition (4.33), we have

‖Np‖Hα(R2) ≤ ‖K2,0
εp

‖Hα(R2)

(
‖fp‖L1(R2) + ε2p‖R2,0

εp
‖L1(R2) + ε4p‖ν2,0

εp
‖L1(R2)

)

+ε2p‖K1,1
εp

‖Hα(R2)‖R1,1
εp

‖L1(R2) + ε2p‖K0,2
εp

‖Hα(R2)

(
‖R0,2

εp
‖L1(R2) + ε2p‖ν0,2

εp
‖L1(R2)

)
.
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Combining (5.8) with (4.7), (4.22) and (4.23), we derive (6.15), whereas (6.12) is a consequence
of Sobolev embedding theorem,

Hα(R2) →֒ Lq(R2),

for any 2 ≤ q ≤ 2
1−α

.

The second step is to compute uniform bounds on Np using Sobolev embedding theorem.

Step 2. Let ν > 0. There exists some constant K(ν) such that

‖Np‖L∞(R2) ≤ K(ν)
(
1 + ε−1−ν

p

)
, (6.16)

for any p sufficiently small.

In view of (6.12) and (6.14), there exists some number q > 2 such that

‖Np‖W 1,q(R2) ≤ K(ν)
(
1 + ε−1−ν

p

)
.

Estimate (6.16) follows by Sobolev embedding theorem.

Combining with (6.12), and invoking standard interpolation between Lq-spaces, estimate
(6.16) yields (6.13).

6.4 Proof of inductive assumption (6.1) for α = (0, 0)

We now rely on Lemma 6.2 to improve the preliminary estimates of Lemma 6.3. This gives

Lemma 6.4. Let 1 < q < +∞. Then, assumption (6.1) holds for α = (0, 0), i.e. there exists
some constant K(q), not depending on p, such that

‖Np‖Lq(R2) + ‖∂1Np‖Lq(R2) + ‖∂2Np‖Lq(R2)

+‖∂2
1Np‖Lq(R2) + εp‖∂1∂2Np‖Lq(R2) + ε2p‖∂2

2Np‖Lq(R2) ≤ K(q),
(6.17)

for any p sufficiently small.

Proof. The proof relies on some bootstrap argument. Given any 1 < q ≤ 4
3 , we deduce from

(6.11), (6.12), (6.13) and (6.14),that

‖Np‖Lq(R2) + ‖∂1Np‖Lq(R2) + ‖∂2Np‖Lq(R2)

+‖∂2
1Np‖Lq(R2) + εp‖∂1∂2Np‖Lq(R2) + ε2p‖∂2

2Np‖Lq(R2) ≤ K(q),

so that by Sobolev embedding theorem,

‖Np‖Lq(R2) + εp‖∂1Np‖Lq(R2) + ε2p‖∂2Np‖Lq(R2) ≤ K(q),

for any 1 < q ≤ 4. Invoking (6.11) and (6.13) once more time, we are led to

‖Np‖Lq(R2) + ‖∂1Np‖Lq(R2) + ‖∂2Np‖Lq(R2)

+‖∂2
1Np‖Lq(R2) + εp‖∂1∂2Np‖Lq(R2) + ε2p‖∂2

2Np‖Lq(R2) ≤ K(q),

for any 1 < q ≤ 2. In particular, we have by Sobolev embedding theorem,

‖Np‖Lq(R2) + εp‖∂1Np‖Lq(R2) + ε2p‖∂2Np‖Lq(R2) ≤ K(q),

for any 1 < q < +∞, so that (6.11) now yields (6.17) for any 1 < q < +∞. This completes the
proof of Lemma 6.4.
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6.5 Higher order estimates of the nonlinear terms fp and Ri,j
εp

We now assume that assumption (6.1) holds for any 1 < q < +∞ and any α ∈ N2 such that
|α| ≤ k, and prove that it remains valid when |α| = k + 1. Invoking again equation (4.33), we
first derive improved Sobolev bounds on the nonlinear terms fp and Ri,j

εp
. In view of definitions

(4.16), (4.17), (4.18) and (4.34), this requires to compute Lq-bounds on the derivatives of Θp.
Hence, we show

Lemma 6.5. Let k ∈ N, and assume that (6.1) holds for any 1 < q < +∞ and any α ∈ N2 such
that |α| ≤ k. Then, there exist some positive constants K(q, α), not depending on p, such that

‖∂α∂1Θp‖Lq(R2) + εp‖∂α∂2Θp‖Lq(R2) ≤ K(q, α), (6.18)

for any 1 < q < +∞, any α ∈ N2 such that |α| ≤ k + 1, and any p sufficiently small.

Proof. Inequality (6.18) is a consequence of (4.26). Applying Sobolev embedding theorem to
assumption (6.1), we have

‖Np‖Ck(R2) ≤ K(k),

where K(k) is some positive constant, not depending on p. Therefore, given any α ∈ N2 such
that |α| ≤ k + 1, (4.26) may be written as

‖∂α∂1Θp‖Lq(R2) + εp‖∂α∂2Θp‖Lq(R2)

≤ K(q, α)

(
‖∂αNp‖Lq(R2) + ε2p

∑

0≤β<α

(
‖∂α−β∂1Θp‖Lq(R2) + εp‖∂α−β∂2Θp‖Lq(R2)

))
.

Denoting

S
q
k =

∑

|α|≤k+1

(
‖∂α∂1Θp‖Lq(R2) + εp‖∂α∂2Θp‖Lq(R2)

)
,

we deduce that
S

q
k ≤ K(q, α)

(
ε2pS

q
k +

∑

|α|≤k+1

‖∂αNp‖Lq(R2)

)
.

Combined with assumption (6.1), this provides (6.18) for any p sufficiently small.

We now turn to Lq-estimates of the functions fp and Ri,j
εp

.

Lemma 6.6. Let k ∈ N, and assume that (6.1) holds for any 1 < q < +∞ and any α ∈ N2 such
that |α| ≤ k. Then, there exist some positive constants K(q, α), not depending on p, such that

‖∂αfp‖Lq(R2) + ‖∂αR0,2
εp

‖Lq(R2) + εp‖∂αR1,1
εp

‖Lq(R2) + ε2p‖∂αR2,0
εp

‖Lq(R2) ≤ K(q, α), (6.19)

for any 1 < q < +∞, any α ∈ N2 such that |α| ≤ k + 1, and any p sufficiently small.

Proof. Lemma 6.6 is a consequence of assumption (6.1), and Lemma 6.5. For instance, applying
Leibniz formula to definition (4.34), we have

∣∣∂αfp

∣∣ ≤ K(α)
∑

0≤β≤α

(∣∣∂βNp

∣∣∣∣∂α−βNp

∣∣+
∣∣∂β∂1Θp

∣∣∣∣∂α−β∂1Θp

∣∣
)
,

so that, by (6.1), (6.18), and Hölder inequality,

‖∂αfp‖Lq(R2) ≤ K(q, α).

30



The proof is identical for the function R1,1
εp

, which verifies, in view of (4.18) and Leibniz formula,

∣∣∂αR1,1
εp

∣∣ ≤ K(α)
∑

0≤β≤α

∣∣∂βNp

∣∣∣∣∂α−β∂2Θp

∣∣.

Similarly, for ∂αR2,0
εp

and ∂αR0,2
εp

, it follows from (6.1), (6.18) and Leibniz formula, that

‖∂αR0,2
εp

‖Lq(R2) + ε2p‖∂αR2,0
εp

‖Lq(R2)

≤ K(q, α)

(
1 + ε2p

∥∥∥∂α
( (∂1Np)

2

1 − ε2
p

6 Np

)∥∥∥
Lq(R2)

+ ε4p

∥∥∥∂α
( (∂2Np)

2

1 − ε2
p

6 Np

)∥∥∥
Lq(R2)

)
,

(6.20)

so that the proof of (6.19) reduces to estimate the Lq-norms in the left-hand side of (6.20). In
view of (6.1), we deduce from Sobolev embedding theorem that

‖∂βNp‖L∞(R2) ≤ K(β), (6.21)

for any β ∈ R2 such that β ≤ k and any p sufficiently small. When |α| ≤ k, the chain rule
theorem combined with (6.1) and (6.21) again provides estimates (6.19). When |α| = k+1, this
argument yields

ε2p

∥∥∥∥∂α
( (∂1Np)

2

1 − ε2
p

6 Np

)∥∥∥∥
Lq(R2)

≤ K(q, α)
(
1 + ε2p

∥∥∂α∂1Np

∥∥
Lq(R2)

)
≤ K(q, α),

and

ε4p

∥∥∥∥∂α
( (∂2Np)

2

1 − ε2
p

6 Np

)∥∥∥∥
Lq(R2)

≤ K(q, α)
(
1 + ε4p

∥∥∂α∂2Np

∥∥
Lq(R2)

)
≤ K(q, α),

where we have used the estimates in the second line of (6.1) for the second inequalities. Combined
with (6.20), this completes the proof of inequality (6.19).

6.6 Proof of Proposition 6.1

We are now in position to conclude the inductive proof of Proposition 6.1.

Proof of Proposition 6.1. Given any k ∈ N, we assume that (6.1) holds for any 1 < q < +∞ and
any α ∈ N2 such that |α| ≤ k, and consider some index γ ∈ N2 such that |γ| = k + 1. Invoking
equation (6.5) and the kernel estimates of Lemma 5.2, we compute

‖∂γ∂1Np‖Lq(R2) ≤ K(q)
(
‖∂γfp‖Lq(R2)+ε

2
p

(
‖∂γR2,0

εp
‖Lq(R2)+‖∂γR1,1

εp
‖Lq(R2)

)
+εp‖∂γR0,2

εp
‖Lq(R2)

)
,

(6.22)
and

‖∂γ∂2Np‖Lq(R2) + ‖∂γ∂2
1Np‖Lq(R2) + εp‖∂γ∂1∂2Np‖Lq(R2) + ε2p‖∂γ∂2

2Np‖Lq(R2)

≤K(q)
(
‖∂γfp‖Lq(R2) + ε2p‖∂γR2,0

εp
‖Lq(R2) + εp‖∂γR1,1

εp
‖Lq(R2)

)
+ ‖∂γR0,2

εp
‖Lq(R2)

)
.

(6.23)

In view of inequalities (6.6), (6.22) and (6.23), and estimates (6.19), assumption (6.1) also holds
for α = γ. This completes the inductive proof of Proposition 6.1.
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7 Convergence towards (KP I)

This section is devoted to the proofs of Theorem 2 and Proposition 2. As mentioned above in
the introduction, our strategy is to prove that the sequence (∂1Θp)p>0 is, for p sufficiently small,
a minimizing sequence for minimization problem (PKP (µ)) We then invoke Proposition 2.1 to
obtain the strong convergence of some subsequence towards a function N0, which is a solution
to minimization problem (PKP (µ)), i.e. a ground state for (KP I). Finally, we improve the
convergence using the previous Sobolev estimates.

7.1 Weak convergence towards (KP I)

We first use the Sobolev bounds provided by Proposition 3 to establish the weak convergence of
some subsequence (Npn)n∈N to some non-constant solution N0 to (SW), as pn → 0.

Proposition 7.1. There exists a subsequence (pn)n∈N, tending to 0 as n → +∞, and a non-
constant solution N0 to (SW) such that, given any 1 < q < +∞,

Npn ⇀ N0 in W 1,q(R2), as n→ +∞. (7.1)

In particular, given any 0 ≤ γ < 1, we have

Npn → N0 in C0,γ(K), as n→ +∞, (7.2)

for any compact subset K of R2.

Proof. In view of bounds (11), there exists a subsequence (pn)n∈N, tending to 0 as n→ +∞, and
a function N0 such that (7.1) holds for any 1 < q < +∞. Convergences (7.2) follow by standard
compactness theorems. The proof of Proposition 7.1 therefore reduces to prove Lemma 2, i.e.
to establish that N0 is a non-constant solution to (SW).

Proof of Lemma 2. Denoting

N0
p =

1

2
K2,0

εp
⋆ fp,

we deduce from (4.33) and Lemma 5.1 that

‖Np−N0
p‖L2(R2) ≤ ε2p

∑

i+j=2

‖Ki,j
εp
⋆Ri,j

εp
‖L2(R2) ≤ ε2p‖R2,0

εp
‖L1(R2)+ε

3

2

p ‖R1,1
εp

‖L1(R2)+ε
1

2

p ‖R0,2
εp

‖L1(R2).

In view of estimates (6.7), (6.8), (6.9) and (6.10), and Lq-bounds (11), we obtain

‖Np −N0
p‖L2(R2) ≤ Kε

1

2

p ,

so that
Np −N0

p → 0 in L2(R2), as p → 0. (7.3)

We now claim that, up to some subsequence (pn)n∈N satisfying (7.2),

N0
pn
⇀

1

2
K0 ⋆ N

2
0 in L2(R2), as n→ +∞. (7.4)

Invoking the weak L2-convergence provided by (7.1), we deduce from (7.3) and (7.4) that the
function N0 satisfies

N0 =
1

2
K0 ⋆ N

2
0 ,
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so that, in view of (2.3), the function N0 is solution to (SW).

Finally, in view of (8) and convergences (7.2), we have

N0(0) ≥
3

5
,

so that N0 cannot be a constant solution to (SW). This ends the proof of Lemma 2.

We now show Claim (7.4).

Proof of Claim (7.4). Claim (7.4) follows from (7.2) after the following simplification.

Step 1. We have

N0
p − 1

2
K0 ⋆ N

2
p → 0 in L2(R2), as p → 0.

In view of (4.34), we have

N0
p − 1

2
K0 ⋆ N

2
p =

(
K2,0

εp
−K0

)
⋆
(1

3
N2

p +
1

6
(∂1Θp)

2
)

+
1

6
K0 ⋆

(
(∂1Θp)

2 −N2
p

)
,

so that, by Young inequality, and estimates (11),

∥∥∥N0
p − 1

2
K0 ⋆ N

2
p

∥∥∥
L2(R2)

≤ K
(
‖K2,0

εp
−K0‖L2(R2) + ‖K0‖L2(R2)‖∂1Θp −Np‖L2(R2)

)
. (7.5)

In view of definitions (2.4) and (4.32), we have

K̂
2,0
εp

(ξ) → K̂0(ξ), as p → 0,

and

0 ≤ K̂
2,0
εp

(ξ) ≤ K̂0(ξ),

for any εp ≥ 0 and any ξ 6= 0. Since K0 belongs to L2(R2) by Lemma 5.1, it follows from the
dominated convergence theorem that

∫

R2

∣∣∣K̂2,0
εp

(ξ) − K̂0(ξ)
∣∣∣
2
dξ → 0, as εp → 0.

Hence, by Plancherel formula, the first term in the right-hand side of (7.5) tends to 0, as p → 0,
whereas the second term also tends to 0 by (4.12). This completes the proof of Step 1.

Invoking Step 1, the proof of Claim (7.4) reduces to

Step 2. Given some subsequence (pn)n∈N such that (7.2) holds, we have

K0 ⋆ N
2
pn
⇀K0 ⋆ N

2
0 in L2(R2), as n→ +∞.

First notice that, in view of (11), there exists some constant K, not depending on n, such
that

‖K0 ⋆
(
N2

pn
−N2

0

)
‖L2(R2) ≤ ‖K0‖L2(R2)‖N2

pn
−N2

0 ‖L1(R2) ≤ K,

so that by density of C∞
c (R2) into L2(R2), the proof of Step 2 reduces to prove that

∫

R2

(
K0 ⋆

(
N2

pn
−N2

0

))
ψ → 0, as n→ +∞, (7.6)
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for any function ψ ∈ C∞
c (R2). Moreover, given any δ > 0, the density of C∞

c (R2) into L2(R2)
also implies the existence of a function κδ ∈ C∞

c (R2) such that

‖K0 − κδ‖L2(R2) ≤ δ.

Given any function ψ ∈ C∞
c (R2), this gives by Young inequality,

∣∣∣∣
∫

R2

(
K0 ⋆

(
N2

pn
−N2

0

))
ψ

∣∣∣∣ ≤
∣∣∣∣
∫

R2

(
κδ ⋆

(
N2

pn
−N2

0

))
ψ

∣∣∣∣+ δ‖N2
pn

−N2
0 ‖L1(R2)‖ψ‖L2(R2),

which may be written as
∣∣∣∣
∫

R2

(
K0 ⋆

(
N2

pn
−N2

0

))
ψ

∣∣∣∣ ≤
∣∣∣∣
∫

R2

(
κ̌δ ⋆ ψ

)(
N2

pn
−N2

0

)∣∣∣∣+Kδ,

denoting κ̌δ(x) = κδ(−x), and invoking (11) and Fubini theorem. Since the function κ̌δ ⋆ ψ

belongs to C∞
c (R2), we deduce from (7.2) that

∫

R2

(
κ̌δ ⋆ ψ

)(
N2

pn
−N2

0

)
→ 0, as n→ +∞,

so that (7.6) holds. This completes the proof of Step 2 and of Claim (7.4).

7.2 Convergence of the energies

In order to apply Proposition 2.1 to the family (∂1Θp)p>0 to deduce its strong convergence in
the space Y (R2), we first prove

Proposition 7.2. Let (pn)n≥0 denote some subsequence, tending to 0 as n tends to +∞, such
that (7.1) and (7.2) hold. Then, up to some further subsequence, there exists a positive number
µ0 such that

EKP (∂1Θpn) → EKP
min (µ0), and

∫

R2

|∂1Θpn |2 → µ0, as n→ +∞. (7.7)

Proposition 7.2 is a consequence of Lemmas 3 and 4, so that we first address the proof of
Lemma 3.

Proof of Lemma 3. In view of formulae (4.2) and (4.3), the discrepancy quantity Σ(up) =√
2p(up) − E(up) may be recast in the slow space variables as

Σ(up) = −
√

2
εp

144

(∫

R2

(
Np − ∂1Θp

)2
+ ε2p

∫

R2

(1

2
(∂1Np)

2 +
1

2
(∂2Θp)

2 − 1

6
Np(∂1Θp)

2
)

+ε4p

∫

R2

(
(∂2Np)

2

4 − 4ε2
p

6 Np

+
Np(∂1Np)

2

12 − 2ε2pNp

− 1

12
Np(∂2Θp)

2

))
.

Hence, we deduce from Proposition 3 and estimate (4.8) for the function ∂2Θp that

Σ(up) = −
√

2
εp

144

(∫

R2

(
Np−∂1Θp

)2
+ε2p

∫

R2

(1

2
(∂1Np)

2+
1

2
(∂2Θp)

2− 1

6
Np(∂1Θp)

2
)

+ o
p→0

(
ε2p
))
.

(7.8)
Let us now recall that the value of EKP (∂1Θp) is given by

EKP (∂1Θp) =

∫

R2

(1

2
(∂2

1Θp)
2 +

1

2
(∂2Θp)

2 − 1

6
(∂1Θp)

3
)
.
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In particular, provided we may prove that

∂1Np → ∂2
1Θp, as p → 0, (7.9)

we have, in view of (11) and (4.12),
∫

R2

(1

2
(∂1Np)

2 +
1

2
(∂2Θp)

2 − 1

6
Np(∂1Θp)

2
)
− EKP (∂1Θp) → 0, as p → 0. (7.10)

Hence, by (7.8),

Σ(up) = −
√

2
εp

144

(∫

R2

(
Np − ∂1Θp

)2
+ ε2pEKP (∂1Θp) + o

p→0

(
ε2p
))
. (7.11)

We then claim that
1

ε2p

∫

R2

(
Np − ∂1Θp

)2 → 0, as p → 0, (7.12)

which gives (16) using (7.11).

In order to complete the proof of Lemma 3, it only remains to prove Claims (7.9) and (7.12).
For Claim (7.9), we invoke equation (4.14) and the Sobolev estimates of Proposition 3. Taking
the L2-norm of (4.14), we deduce from (11) that

‖∂1Np − ∂2
1Θp‖L2(R2) ≤ Kεp,

where K is some universal constant. Claim (7.9) follows taking the limit p → 0. Similarly, for
Claim 7.12, we take the L2-norm of equation (4.13), and obtain by (11),

‖Np − ∂1Θp‖L2(R2) ≤ Kε2p,

so that
1

ε2p

∫

R2

(
Np − ∂1Θp

)2 ≤ Kε2p → 0, as p → 0.

This concludes the proof of Lemma 3.

Remark 7.1. Equivalence (15) is a consequence of inequality (7.10), since it will be proved in
the sequel that the quantity EKP (∂1Θp) has a nonzero limit as p → 0.

We now turn to the proof of Lemma 4.

Proof of Lemma 4. Lemma 4 is a consequence of estimate (3) of Theorem 1. Combining (3)
with (10) and (16), we obtain

EKP (∂1Θp) ≤ −6912p3

S2
KP ε

3
p

+ o
p→0

(
1
)
,

so that by formula (4.2),

EKP (∂1Θp) ≤ − 1

54S2
KP

(∫

R2

Np∂1Θp

)3

+ o
p→0

(
1
)
.

In view of (4.12), we have

EKP (∂1Θp) ≤ − 1

54S2
KP

(∫

R2

(∂1Θp)
2

)3

+ o
p→0

(
1
)
.

On the other hand, it follows from Lemma 2.1 that

EKP (∂1Θp) ≥ EKP
min

(∫

R2

(∂1Θp)
2

)
= − 1

54S2
KP

(∫

R2

(∂1Θp)
2

)3

,

which completes the proof of Lemma 4.
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We finally deduce Proposition 7.2 from Lemma 4.

Proof of Proposition 7.2. In view of (4.12) and (7.1), we have

lim inf
n→+∞

∫

R2

(
∂1Θpn

)2 ≥
∫

R2

N2
0 ,

so that we may assume up to some further subsequence, that

∫

R2

(
∂1Θpn

)2 → µ0, as n→ +∞, (7.13)

where

µ0 ≥
∫

R2

N2
0 > 0.

Assertion (7.7) is then a consequence of (17), (7.13), and formula (2.7) of EKP
min .

7.3 Strong convergence towards (KP I)

We now show Proposition 4. i.e. the strong convergence of the family (Np)p>0 in L2(R2) (up to
some subsequence).

Proof of Proposition 4. In view of Proposition 7.2, we may construct a subsequence (pn)n∈N,
tending to 0 as n→ +∞, and some positive number µ0 such that

EKP (∂1Θpn) → EKP
min (µ0), and

∫

R2

|∂1Θpn |2 → µ0, as n→ +∞.

By Proposition 2.1, up to some further subsequence, there exists some points (an)n∈N and a

ground state solution N0 to (2.5), with σ =
µ2

0

(µ∗)2
, such that

∂1Θpn(· − an) → N0 in Y (R2), as n→ +∞.

By (4.12), we are led to

Npn(· − an) → N0 in L2(R2), as n→ +∞. (7.14)

Invoking Proposition 7.1 for the subsequence (Npn(· − an))n∈N, there exists a non-constant
solution Ñ0 to (SW) such that weak convergences (7.1) hold, up to some further subsequence.
In particular, by (7.14), N0 = Ñ0, so that N0 is a ground state of speed 1 of (KP I).

In order to complete the proof of Proposition 4, it is now necessary to drop the invariance by
translation, i.e. to prove that convergences in Y (R2) and in L2(R2), also hold for the sequences
(∂1Θpn)n∈N, respectively (Npn)n∈N. Assuming first that, up to some further subsequence, there
exists some number a such that

an → a, as n→ +∞,

we obtain that

∂1Θpn → N0(· + a) in Y (R2), and Npn → N0(· + a) in L2(R2), as n→ +∞,

using the continuity of the map a 7→ ψ(· − a) from R to any space Lq(R2) (with 1 < q < +∞).
Since the function x 7→ N0(x+ a) is still a ground state of speed 1 of (KP I), this completes the
proof of Proposition 4.
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Hence, it remains to prove that the sequence (an)n∈N contains some bounded subsequence.
Assuming by contradiction that this is false, we may construct some subsequence, still denoted
(an)n∈N, such that

an → +∞, as n→ +∞. (7.15)

In view of (8) and (11), there exists some positive number δ, not depending on n, such that

∫

B(0,1)
N2

pn
≥ 2δ,

for any n sufficiently large. By (7.14), we also have

∫

B(0,1)
|N0(x+ an) −Npn(x)|2dx→ 0, as n→ +∞,

so that ∫

B(0,1)
|N0(x+ an)|2dx ≥ δ,

for any n sufficiently large. However, it is proved in [18] that there exists some positive constant
K such that

N0(x) ≤
K

1 + |x|2 , ∀x ∈ R
2,

so that
10K

1 + |an|2
≥ δ,

for any n sufficiently large. This provides a contradiction to (7.15) and completes the proof of
Proposition 4.

7.4 Proofs of Theorem 2 and Proposition 2

We finally conclude the proofs of our main theorems.

Proof of Theorem 2. In view of Propositions 3 and 4, given any k ∈ N and any 1 < q < +∞, the
family (Np)p>0 is bounded, uniformly with respect to p small, in W k,q(R2), and converges, up
to some subsequence, to some ground state N0 of (KP I) in the space L2(R2), as p → 0. Hence,
by standard interpolation theorem, it actually converges to N0 in W k,q(R2). This concludes the
proof of Theorem 2.

Proof of Proposition 2. The proof is identical to the proof of Theorem 2, considering the function
∂1Θp instead of Np, and noticing that Y (R2) continuously embeds into L2(R2).
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[4] F. Béthuel, P. Gravejat, J.-C. Saut, and D. Smets. Orbital stability of the black soliton for
the gross-pitaevskii equation. Indiana Univ. Math. J, in press, 2008.
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