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On the KP I transonic limit of two-dimensional Gross-Pitaevskii
travelling waves

Fabrice Béthuel ! Philippe Gravejat 2 Jean-Claude Saut 3

6th June 2008

Abstract

We provide a rigorous mathematical derivation of the convergence in the long-wave tran-
sonic limit of the minimizing travelling waves for the two-dimensional Gross-Pitaevskii equa-
tion towards ground states for the Kadomtsev-Petviashvili equation (KP 1).

1 Introduction

The Gross-Pitaevskii equation
100 = AU + U(1 — [¥?) on RY x R, (GP)

appears as a relevant model in various areas of physics: Bose-Einstein condensation, fluid me-
chanics (see e.g. [[[3, 7, [, §]), nonlinear optics (see e.g. [2J])... At least on a formal level, this
equation is hamiltonian, with a conserved Hamiltonian given by the Ginzburg-Landau energy,

B =5 [ 1veP+g [ a-prs [ . )

Note that the boundedness of the Ginzburg-Landau energy implies that in some sense,
| (x, )| — 1, as |z| — +oo.

As a matter of fact, this condition provides a richer dynamics than in the case of null condition
at infinity which is essentially governed by dispersion and scattering. In particular, (GP) has
nontrivial coherent localized structures called travelling waves.

The existence of finite energy travelling waves was addressed and established in several papers

(see B0, P2, BT, B, B i, A])- Travelling waves are special solutions to ([GH) of the form
\I/(I',t) = u(.%'l - Ct,l’l), T = (.%'27 e ,IEN)-

They are supposed to play an important role in the full dynamics of (@) The equation for
the profile u is given by
icoyu + Au+u(l — |ul?) = 0. (TWc)
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The parameter ¢ € R corresponds to the speed of the travelling waves. We may restrict to the
case ¢ > (0. Indeed, when u is a travelling wave of speed ¢, the map @ obtained by complex
conjugation is a travelling wave of speed —c.

The existence of solutions to (TWd) was obtained in the above quoted papers through vari-
ational arguments, namely minimization under constraints [E, H], or mountain-pass theorems
[, [ In dimensions two and three, a full branch of solutions is constructed in minimizing
the Ginzburg-Landau energy E under fixed momentum p. In this context, the momentum is

defined by

1

p(u) = 3 /RN<Z'81u yu—1). (2)

This integral quantity is also formally conserved by ([GH). A notable difficulty in the variational
approach is to give a meaning to the momentum in the space of maps of finite Ginzburg-Landau
energy (see e.g. [}, f]). However, the momentum is well-defined for finite energy travelling wave
solutions. Indeed, it is proved in [L] that they belong to the space W (RY), defined as

W(RY) = {1} + V(RY),
where we have set
VRY) = {v:RY — C, s.t. (Vv,Re(v)) € L*(RY)?, Im(v) € L*(R"Y), and VRe(v) € L%(RN)}.

Separating real and imaginary parts, a direct computation shows that the quantity (i0yv,v —1)
is integrable for any function v € W (R¥Y), so that the momentum of travelling wave solutions is
well-defined.

The main focus of this paper is a qualitative description of small Ginzburg-Landau energy
solutions in the two-dimensional case. Such solutions are known to exist in view of the following
result.

Theorem 1 ([B]). i) Let p > 0. There exists a non-constant finite energy solution u, € W (R?)
to (W), with 0 < ¢ = c(up) < V2, and

1

plup) = 2 /R2<mlupaup -1)=p,

such that uy 1s solution to the minimization problem
E(up) = Emin(p) = inf {E(U)7U € W(RQ),p(U) = p}

1) There exist some positive constants Ko, K1 and Sk p, not depending on p, such that we have
the asymptotic behaviours

48+/2

0<
Skp

P — Kop" < v2p — E(up) < K1p®, (3)
for any p sufficiently small.

A more precise definition of the constant Sk p will be provided in the course of our discussion
of the Kadomtsev-Petviashvili equation (KP ]). It should be noticed that we have, in view of
B,
for small values of the momentum p, so that Theorem [I| provides a branch of travelling wave

solutions with arbitrary small energy. Our aim is to describe the asymptotic behaviour, as
p — 0, of the solutions uy, constructed above.



We recall that, in view of [, [[§, [[7], any finite energy travelling waves are subsonic in
dimension two, i.e. any non-constant finite energy solution v to ([LWd) satisfies

0 < |e(v)| < V2. (4)

The speed /2 corresponds to the speed of sound waves at infinity around the constant solution
U =1 to (GH). Moreover, the quantity

e(v) = /2 — c(v)?

is related to the energy E(v) and the uniform norm of 1 — |v| as follows.
Proposition 1 ([B]). Let v be a non-constant finite energy solution to (TWd) on R?. Then,

e(v)?

Hl_ ’v’HLoo(u@) ST )

Moreover, there exists a universal constant Ko > 0 such that

e(v) < KoE(v).

In particular, the solutions uy given by Theorem fl, satisfy in view of Proposition [,
ep=¢e(up) — 0, asp — 0,
so that we deal with a transonic limit. In [R0, 3, 1]}, it is proposed to study this transonic limit
of solutions v in the new anisotropic space scale,
2

e(v)

V2

Z1 =e(v)zy, and T =

xZ9.

Considering the real-valued function
n= 1- |”U|2,

and performing the change of variables above, we introduce the rescaled map N, defined by

T \/_x
; (e(;)’ s(i)s)'

Notice that the same long-wave anisotropic scaling is performed to derive the Kadomtsev-
Petviashvili equation, for instance in the water-wave context (see e.g. [il, B§]). It is formally
shown in [B0, 3, PI] that the renormalized amplitude N, of solutions to (TW() converges, as the
speed c(v) converges to v/2, i.e. as e(v) — 0, to solitary wave solutions to the two-dimensional
Kadomtsev-Petviashvili equation (KP 1), that is

(6)

O + Yo + Ofrp — 971 (934) = 0. (KPI)

Our main goal in this paper is to provide a rigorous mathematical proof of that convergence for
the branch of minimizing solutions presented in Theorem [l.

Solitary waves are localized solutions to (KP 1) of the form v (x,t) = w(x1 — ot, x3), where w
belongs to the energy space for (KP J), i.e. the space Y (R?) defined as the closure of 9;C2°(R?)
for the norm

NI

101wy = (I 13(ze) + 103 FI3aae )



The parameter o > 0 denotes the speed of the solitary wave. The equation of a solitary wave w
of speed o =1 is given by

O w — wdw — Fw + o7 H(93w) = 0. (SW)
When w € Y (R?), the function 9; 'dyw is well-defined (see [[[T]), so that (EW]) makes sense.

In contrast with the Gross-Pitaevskii equation, the range of speeds is the full positive axis. In
particular, there are no solitary waves of negative speed (see [I(]]). Given any o > 0, a solitary
wave w, of speed o is deduced from a solution w to (@) by the scaling

We (71, 22) = ow(v/ox1,029). (7)

Solitary waves may be obtained in dimension two minimizing the Hamiltonian keeping the L2-
norm fixed (see [{, [Ld]). Like (GP)), equation (KP 1) is indeed hamiltonian, with Hamiltonian
given by

1 1 1
Brr(w) = [ @+ [ ot @wy -5 [ v

and the L?-norm of ¢ is conserved as well. Setting

S(N) = Exp(N)+ 2 [ N2,
2 Jr2
we term ground state, a solitary wave N which minimizes the action S among all non-constant
solitary waves of speed o (see [LT]] for more details). In dimension two, a solitary wave is a
ground state if and only if it minimizes the Hamiltonian Efp keeping the L2-norm fixed (see
[B]). The constant Sk p, which appears in Theorem [, denotes the action S(N) of the ground
states N of speed o = 1.

Going back to the solutions u, of Theorem [, we may drop the invariance under translations
of our problem, assuming without loss of generality, since |uy(z)| — 1, as |z| — +oo (see [L4]),
that m, = 1 — |uy|? achieves its maximum at the origin, i.e.

[79]] oo 2y = [mp(0)]-

We next consider the map
Np = Ny,.
Notice that the origin is a maximum point for Ny, and that in view of ([), we have
3
No(0) 2 7. (8)
Our main result is

Theorem 2. There ezists a subsequence (pp)nen, tending to 0 as n tends to 400, and a ground

state Ny of (KP_) such that
N, — Ny in Wk’q(R2)7 as n — +00,
for any k € N and any 1 < ¢ < 400.

Remark 1. There is a well-known explicit solitary wave solution to (KP_I) of speed 1, namely

the so-called ”lump” solution, which may be written as

3— a2+ a2

we(zy, ) = 24— L2
o 22) = M e

It is conjectured that the "lump” solution is a ground state. It is also conjectured that the
ground state is unique, up to the invariances of the problem. If this was the case, then the full
family (Ny)p>0 would converge to wy, as p — 0.

4



So far, we have only discussed properties of the modulus of u,. However, in our argument,
the phase is central as well. More precisely, if p is sufficiently small, then u, has no zero in view
of (), and we may lift it as up, = gy expipy. Setting

OV (Y2,

) 2
Ep €p  &p

Op(z) (9)

we prove

Proposition 2. Let (pn)nen and Ny be as in Theorem [3. Passing possibly to a further subse-
quence, we have
Oy, — Ny in WHIR?), as n — +o0,

for any k € N and any 1 < g < 4o00.

Remark 2. Equation (KP]) is a higher dimensional extension of the well-known Korteweg-de
Vries equation (KdV]), which may be written as

Oy + Yy + Y = 0. (KdV)

In dimension one, travelling wave solutions v, to () are related to the classical soliton of the
Korteweg-de Vries equation as follows. Setting € = v/2 — ¢2, we consider the rescaled function

Ne(z) = gnc(g),
where 17, =1 — |v.|?. An explicit integration of (TWJ) in dimension one leads to
3
ch®(3)’

where N is the classical soliton to the Korteweg-de-Vries equation. Concerning the phase . of
Ve, we consider the scale change

N.(x) = N(z) =

Oc(z) = ?@c(f)

so that we obtain similarly

i1 N@) Ny e
O.(z) =1/1 T ENG) N(z), as € — 0.

Remark 3. Let u, be a solution to (CW{) in dimension three, which may be written as u, =
0c €Xp i@, and denote
6 <£l71 \/§$2 \/5563)
2
€

Nc(x) - E_an c 9 82 )

6v/2 r1 V29 V223
o Oc(o) = (25 ),

where 7. = 1 — 2 and ¢ = v/2 — 2. Then, it is also formally shown in [Rd, B2, R1] that the
functions N, and 0,0, converge, as the parameter € converges to 0, to a solitary wave solution
w to the three-dimensional Kadomtsev-Petviashvili equation (), which writes

O + Ydryp + 07y — Oy (959 + 93) = 0.
In particular, the equation for the solitary wave w is now written as
Ow — wdw — dw + 0y (3w + d5w) = 0.

However, the existence of a transonic branch of solutions is still an open problem, at least on
the mathematical level. This branch of solutions is conjectured in [0, 7 in view of numerical
computations and formal arguments.



The first element in the proofs of Theorem [ and Proposition [] deals with the asymptotic
behaviour of ¢, as a function of p.

Lemma 1 ([B]). Let ey = e(up) = /2 — c(up)?. There exist some positive constants Kz and
Ky, not depending on p, such that

Ksp < ey < Kup, (10)
for any p sufficiently small.

The second step is to derive estimates on the renormalized maps IV, which do not depend
on p. More precisely, we prove

Proposition 3. Let k € N and 1 < q¢ < +o0. There exists some constant K(k,q), depending
possibly on k and q, but not on p, such that

INpllwkagrz) + [019pllwn.arz) + epl|020pllwharezy < K (K, ), (11)

for any p sufficiently small.

At this stage, we may invoke standard compactness theorems to assert that there exists some
subsequence (P, )nen, tending to 0 as n tends to 400, and a function Ny such that, for any k € N
and any compact subset K of R?,

N, — Ny in C*(K), as n — +oo.

In view of (§), we have

No(0) >

ot w

)

so that Ny is not identically constant. Moreover, we also have

Lemma 2. The function Ny is a non-constant solution to (SW)).

In order to complete the proof of Theorem [, it remains to establish strong convergence on
the whole plane. For this last step, we essentially rely on a variational argument, proving a kind
of gamma-convergence of the energies, combined with a concentration-compactness result for

constrained minimizers of (KP J) established in [f].

=

As a matter of fact, considering scalings ({f) and (), the momentum p(u,) can be expressed
as

9
P(up) = 7—; /R2 Ny019y,

while the energy F(uy) has the expansion

&
E(uyp) = \/iﬁ (Eo(Npa Oyp) + epF2(Np, Op) + £y B (N, @p))-

It turns out that the functions Ey, Fo and E4 are uniformly bounded for p approaching 0.
Moreover, Fy and Ey are given by the expressions

Eo(N,, ©p) = /R2 (N,,2 + (81@p)2>,

and
Bo(Vn©) = [ | (501307 + 5020, = 5,010, (12)



In the course of our proof, we will show that
Np ~ 81@p7 as p — O, (13)

and that the difference is actually of order e%. This yields, at least heuristically,
€ €
p(up) ~ == [ N2, and E(uy) ~ V22 NpQ ~ V2p(uy),
72 R2 72 R2
so that the discrepancy term
E(up) = \/ip(up) — E(up),
tends to 0 as p — +o0.
The (KP 1) energy appears when we consider the second order term. Inserting at least
formally relation ([[3) into ([J), we are led to
Using some precise estimates on the solutions, we will actually show that
Ey(Np, ©p) ~ Exp(016;), as p — 0, (15)
since it turns out that it is easier to work, in view of the nonlocal term in the (KP_I) energy,

with 010, than with Ny, these two terms having the same limit in view of ([L3).

The proof of ([[F) amounts to a careful analysis of any lower order terms, including terms
provided by Ey. In particular, we obtain for the discrepancy functional,

Lemma 3. We have o
2e
S (up) = P FErp(010y) + pgo(ef’;). (16)

144

We then use the lower bound on X(uy) provided by the left-hand side of ([}) to derive a precise
upper bound on Ex p(010,). More precisely, we show

Lemma 4. We have

_54‘;%(13 </R? (81@p)2>3 < Ecr(0:6p) < _54;;2(P </R? (81@p)2>3 " pgo(l)' (17)

In particular, the function 910y, or alternatively N, has approximatively the energy of a
ground state for (KP_]) corresponding to its L2-norm. The proof of Theorem [ is then completed
using a concentration-compactness argument of [[f]. This result yields the strong convergence of
some subsequence (010y, )nen in the space Y (R?).

Proposition 4. There exists a subsequence (pp)nen, tending to 0 as n tends to +oo, and a

ground state Ny of (KP 1) such that

MOy, — No in Y(R?), and Ny, — Np in L*(R?), as n — +oc.

In order to improve the convergence, we finally invoke the estimates of Proposition fj. This
concludes the proofs of Theorem [ and Proposition J| giving the convergence in any space
WF4(R?) by standard interpolation theory.

To conclude this introduction, let us emphasize that the results in this paper only concern
travelling waves. This raises quite naturally the corresponding issue for the time-dependent



equations. More precisely, in which sense do the Korteweg-de Vries equation in dimension one
and the Kadomtsev-Petviashvili equation in higher dimensions approximate the Gross-Pitaevskii
equation in the transonic limit ? Notice that this question has already been formally addressed
in the one-dimensional case in [24].

The paper is organized as follows. Sections B and [ are devoted to various properties of
solitary wave solutions to (KP_I) and travelling wave solutions to (TWd) which are subsequently
used. In Section [, we perform the expansion of (TWdJ) with respect to the small parameter &
occurring in the definition of the slow space variables. Terms in this expansion are more clearly
analyzed in Fourier variables. Various kernels then appear, which are studied in Section fJ. In
Section fi, we provide Sobolev bounds on Ny and prove Proposition B. Finally, we prove our
main theorems in Section [.

2 Some properties of solitary wave solutions to (KP1)

We first recall some facts about equation (KP 1)), which will enter in some places in our proofs.

2.1 Rewriting the solitary wave equation

The existence and qualitative properties of the solutions w to ([SW)) in the energy space Y (R?)
are considered in the series of papers [I(, [T}, f]. In [[I], a new formulation of (SW]) is provided
which turns out be also fruitful in our context. Applying the operator d; to (BW]), we obtain

Ohw — Aw + %af(uﬂ) 0. (2.1)

The Fourier transform of (R.1]) has the following simple form

1&g =

w(¢) = §mw2(§)a (2.2)

so that we may recast (@) as a convolution equation
1 2
w = §K0 * w?, (2.3)

where the Fourier transform of the kernel Ky is given by

Role) = —5 (2.4
O TR et '

In view of (R.9), equation (R-) provides an equivalent formulation to (EW]), i.e. any solution w
to (2.9) in the energy space Y (R?) is also solution to (EW).

Several properties of the kernel Ky are studied in [[§]. In particular, it is proved there that
K, belongs to LP(R?) for any 1 < p < 3 (see also Lemma [.1]).

2.2 Existence of ground state solutions

Given any g > 0, the minimization problem

EKP (1) = inf {EKp(w),w € Y(RQ),/

] = i}, (Prcp(i)
R2



is considered in [[J], where the existence of minimizers is established. The minimizers N for this
problem happen to be ground states for (KP_1). They are solutions to

00N — NN — 93N + 071 (03N) = 0. (2.5)

The speed o appears as a Lagrange multiplier associated to (Pxp(i)). In particular, o is not
necessarily equal to 1. The proof in [J] relies on the following concentration-compactness result,
which gives the compactness of minimizing sequences to (Pxp(i)).

Theorem 2.1 ([d]). Let p > 0, and let (wp)nen be a minimizing sequence to (Pxp(w)) in
Y (R?). Then, there exist some points (an)nen and a function N € Y (R?) such that, up to some
subsequence,

wy (- — ay) — N in Y(R?), as n — +oo.

The limit function N is solution to the minimization problem ([Pxp(w)). In particular, N is a
ground state for (KP_I)).

2.3 Scale invariance

As mentioned in the introduction, if w is solution to (EW]), then, for any o > 0, the map w,
defined by ([) is solution to (B.J), i.e. w, is a solitary wave solution to (KP J) with speed o.
Concerning the energy, we notice that

/|wa|2=ﬁ/ |w|2,/ |wa|3=03/ |w|3,/ |alwo|2=ai/ Oruwl?,
R2 R2 R2 R2 R2 R2
2 5 2
/ (o (D)) = o / (o7 (o)
RQ RQ

Exp(wy) :O'%EKP(U}), and / lwe|? = \/E/ lw|?. (2.6)
R2 R2

It is shown in [fJ] that ground states N with speed o = 1 correspond to solutions to (Pxp(p))
for

and

It follows that

p=p" =3Skp.
As a matter of fact, it is proved in [[L0], [[§] that any solution w to (EW]) satisfies the relations

1 1
Exp(w) = —E/RQ w?, and S(w) = 3/]1@2 w?,

so that the energy and the L?-norm of ground states N with speed o = 1 are given by

1 *

Relations (2.6) then provide

Lemma 2.1. Let N € Y(R?). Given any o > 0, the map N, defined by ([i) is a minimizer for
ERL(\Jou*) if and only if N is a minimizer for EEP(u*). In particular, we have
3

EXD (1) = — Lo, Yu>0. (2.7)
5452

Moreover, N, and N are ground states for (KP 1), with speed o, respectively, 1. In particular,
they are solutions to (R.3), respectively, (EW]).



Proof. Given any pu > 0, we denote A%(R?) = {w € L*(R?), s.t. [po [w]* = p}. In view of (2.6),
the function w — w, maps Ai* (R2) onto AZ* \/E(]Rz), such that

3
EKP(ZUU) = UﬁEKP(w).

Hence, N, is a minimizer for E£F(1* /o) if and only if N is a minimizer for E£P(u*). Moreover,
:S
. 3 . 028kp
Ein (WVo) = 02 €5 (1) = ===~

Identity (R.7) follows letting o = 0 }j‘f)g. The last statements of Lemma R.1] are proved in [§]. O

In the course of our proofs, we will encounter sequences (wy,)nen which are not exactly
minimizing sequences for ([Pxp(n)), but which satisfy

Exp(w,) — EEP(1), and / w2 — p, as n — 400, (2.8)
R2

for some positive number p. In this case, we will invoke the following variant (and in fact,
consequence) of Theorem P.1.

Proposition 2.1. Let pg > 0, and (w,)nen denote a sequence of functions in Y (R?) satisfying
(B.8) for i = po. Then, there exist some points (ap)nen and a ground state solution N, to (R.5),
I

M*)2 Y

with o = 0 such that, up to some subsequence,

wy(- — a,) — Ny in Y(R?), as n — 4o0.

Proof. We denote
2
L :/ wi, and o, = M—g,
1

and consider the functions
Zn(xla 562) = ann(\/ Onli, O-nx2)-

In view of (R.6) and (2.9),

on — 1, as n — 400, (2.9)

and (2, )nen is a minimizing sequence of (Pxp(u)) for i = pg. Therefore, by Theorem P.1], there
exist some points (ap)nen and a minimizer Ny to (Pxp(p)) for g = po such that, up to some
subsequence,
. 2
zn(- — an) — Ny in Y(R®), as n — +o0. (2.10)

2

In particular, it follows from Lemma P.J] that N, is solution to (£.§), with o = 0 5?)2. We now

denote

1 T x
Nn(xlax2):O__N0'(\/Ol_—aO__2>a
n n On

so that, by the change of variables (y1,y2) = (\/onx1,0nT2),
3
[2n(- = an) — NOH%/(]W) =V0n|[wn(- = an) — Nn”%%R?) + i [|O1wn (- — an) — 81Nn”%2(]R2)
3
+oi 07 awn (- — az) — 81_182NnH%2(R2)-
By (2.9) and (R.10), we have

Wy (- — an) — N, — 0in Y(R?), as n — +oc.

10



Proposition P.] follows provided we first prove that
N, — N, in Y(R?), asn — +oo.
This last assertion is itself a consequence of the general observation that
)\w(\/ﬁ-,,u ) — ¢ in L*(R?), as A — 1 and p — 1,

which may be deduced from the dominated convergence theorem, when 1 is in C°(R?), then,
using the density of C2°(R?) into L?(IR?), when v only belongs to L?(R?). O

3 Some properties of solutions to (TW4Q)

In this section, we gather a number of properties of solutions to (TWd), which enter in our
asymptotic analysis. Most of these results are available in the literature on the subject.

3.1 General solutions

Let v be a finite energy solution to (TWd) on R2. It can be shown using various elliptic estimates
(see [[2, B8, f]) that there exists some positive constant K, not depending on ¢, such that

H1 - \U\H <L (3.1)

Lo(R2) —

and

2.3
2

c
oo < — . .
190l < K (14 5) (3.2)
In view of (ff), estimates (B.1)) and (B.9) may be recast as

70l oo (m2) + [V V| oo (r2) < K, (3.3)
where we have set = 1 — |v|?. For higher order derivatives, it similarly follows from the proof
of Lemma 2.1 in [J] that there exists some positive constant K (k), not depending on ¢, such
that

[vller 2y < K (k), (3.4)
for any k € N.

More generally, we have

1llwea ey + IVOllweage) < K(e,k, q), (3:5)

for any £ € N and any 1 < g < +00 (see [[f]). Notice that the constant K(c, k,q) possibly
depends on the speed ¢, so that we may have

K(c,k,q) — +o0, as c— V2.

Before establishing the convergence of the rescaled functions N, and Oy, we shall need to es-
tablish their boundedness in the spaces W*4(R?). This requires to get some control upon the
dependence on ¢ of the constant K(c,k,q). The proof of Proposition f] in Section [ below
provides such a control.

We will also take advantage of the fact that the maps u, have small energy. Indeed, in view
of (1) and elliptic estimate (B.J), we may show that, if a solution v to (TWd) has sufficiently
small energy, it does not vanish. More precisely, we have

11



Lemma 3.1 ([B]). There exists a universal constant Ey such that, if v is a solution to ([TWd)
which satisfies E(v) < Ey, then

< |v| <2 (3.6)

DO | —

If v satisfies (B.6), then we may lift it as

v = 0exp iy,

where ¢ is a real-valued, smooth function on R? defined modulo a multiple of 2. We have in
that case,

ojv = (igajgo + ng) exp iy,
so that ) 1
(i010,v) = —*0rp, amd e(v) = 5 (IV o + & Vel?) + 7. (3.7)

Moreover, the momentum p takes the simple form

1
szi/n&%
R2
The system of equations for ¢ and ¢ is written as
gal 0 + div (92ch) —0, (3.8)

and

codip— Ao —o(1 - ¢%) + ol Vil = 0. (3.9)

Combining both the equations, the quantity 7 satisfies
A% —2An + 203y = —2A(]Vv]2 +n? — ndip) — 2¢01div(nVe),

where the left-hand side is linear with respect to 7, whereas the right-hand side is (almost)
quadratic with respect to n and V.

Multiplying (B.§) by ¢ and integrating by parts, we obtain a first relation for the momentum

ep(v) = /R PVl (3.10)

In another direction, Pohozaev identities yield

/ |01v]?, and E(v / |92v]? + ep(v). (3.11)
Introducing the quantities ¥(v) = v/2p(v) — E(v), the second identity in (B.11]) may be recast

) / 10202 + S(v) < 2 e( ) 20 (3.12)
’ =it '

In the case X (v) > 0, this yields an interesting estimate for the transversal derivative Oyv.
Adding both the equalities in (B.11), we also derive a second relation for the momentum

1
5/*2@@-
RQ

With similar arguments and combining with (B.10), we are led to

12



Lemma 3.2 ([B]). Let v be a finite energy solution to (TWd) on R? satisfying (B-6). Then, we

have the identities ( )2
1 e(v
Y(v) + = \V4 2=\ v), 3.13
() 2 Rg‘ ¢ \/§+c(v)p() (15

1
2 2
\% 1+—=5) = Vo 14

E(v) < 70(1))2/ 7. (3.15)

R2

and the inequality

In view of definition ([ll), we have

/ i’ < 4E(v),
R2
so that inequality (B.15) shows that the energy is comparable to the integral of % for any

solutions v satisfying (B.§). When X (v) > 0, identity (B.13) shows that

e(v)?

V2

where we have invoked Proposition [[| for the second inequality. In particular, we obtain

E(v) ~ V2p(v),

%(v) < p(v) < KE(v)*p(v) < 2Kp(v)?,

as E(v), or p(v), approaches 0.

In several places (in particular, in the proof of Proposition f]), we shall need estimates for
higher order derivatives. For that purpose, we shall use

Lemma 3.3. Let 1 < ¢ < +00, and let v be a finite energy solution to (TWd) on R? satisfying
(B-8). Then, there exists some constant K(q), not depending on c, such that

IVl Loz < K(@Inllare), (3.16)

More generally, given any indexr o = (a1, a3) € N2, there exist some constants K(q,a), not
depending on ¢, such that

107 (Vo) < K (@) (100 gy + D 1070l 10977 (Vo) oy ). (3.17)
<<«

Proof. First notice that in view of (B.4) and (B.5), the functions n and V¢ belong to W#4(R?)
for any k € N and any 1 < ¢ < 400. In particular, the norms in inequalities (B-16) and (B.17)
are well-defined and finite. Lemma .3 is then a consequence of the elliptic nature of equation
(B.§), which may be written as

Ap = gam + div(nVe),

so that, more generally,
c
A(0%) = 581(90‘77 + div(@a(ano)), (3.18)

for any o € N2, Using standard elliptic estimates and inequality (f]), we derive from (B:I§) that
Hv(aa@)”Lq(RQ) S K(q) <HaanHLq(R2) + Haa (UV@) HL‘Z(R2)> . (319)

13



For o = (0, 0), inequality (B.16) is a direct consequence of (B.19) invoking (B.3). For a # (0,0),
the derivative 0%(nVy) may be written as

0*(nVe) = Y (g)aﬁnaa‘ﬁ (Vo),

0<p<a

by Leibniz formula, so that

10Vl pamey < K(q,a)<||3a77||Lq(R2)||V80||LOO(R2) + Z HaﬁnHLw(R?)HaaB(VSD)HL‘I(]RQ))-
0<f<a

Estimate (B.17) follows from (B.19) using again uniform bound (B.J). O

3.2 Properties of u,

We now restrict ourselves to the solutions uy, provided by Theorem [[. We begin with the

Proof of Lemma []. In view of (f), we have

Np = E(up) > Sz P~ Kop?,
KP
for any p sufficiently small, whereas, by (B.13),
2
Yy < p—2,
p __pxﬂz
so that, combining both the inequalities, we obtain
9
Ep = ——P.

Skp

On the other hand, in view of Proposition [, we have
ep < KEy,

where we have set Ej, = E(uy). Since E, < v/2p, we conclude that ([[0) holds. Moreover, we
also have

for any p sufficiently small, and some positive constants K5 and Kg, not depending on p. U

Finally, since ¥, > 0 by (f), we deduce from Lemma [[ that (B.19), (B.13) and (B-14) may be

recast as
<|V9p|2 + (82Up)2) + 77p|V80p|2
R2 R2

where we denote up = gp exp iy Since (Qaup)® = 0p(D2p)? + (D20p)* and |ny| < 307, we deduce
that

< Kp?, (3.21)

[l <3 [ ouen)? < Ky
so that
‘/RQ np(ﬁlsop)z‘ < Kp®. (3.22)
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4 (CWQ) in the slow space variables

4.1 Expansion of the energy functionals

In this subsection, we consider a finite energy map v on R2, satisfying (B-§), and a small given
parameter £ > 0. In view of assumption (B.6), we may lift v as v = gexpip. Following the
expansion given in the physical literature, we introduce anisotropic slow space variables T; = ex,
and T9 = %xg. We then consider the rescaled functions N = N, . and © = O, . defined as

>, and ©(z) = 6—\/§g0<£, \/5@)

€ e’ g2

follows

N(x):€_277 e’ ¢

O (2, Y2 (4.1)

We next express the functionals p and F in terms of the functions N, © and €. In the course
of the analysis, we will also compute several other integral quantities in the rescaled variables.
For instance,

182 18v/2 36v/2
R2 N2 — T /]1@2 7727 /Rz (81N)2 - 3 /Rz (8177)27 /R2(82N)2 - 5 /R?(6277)2’

9 9

whereas

/R (@0 = V2 [ (902, and / (20) = 72v2 / ()"

e Jge g3

A rather tedious computation along the same lines allows to derive the following expansions.

Lemma 4.1. Letv be a smooth map on R? satisfying (B:4), and let N and © be the corresponding
functions defined by (f1). The momentum p(v) can be expressed in terms of the new functions

as
£

p(v) = — s No©, (4.2)
while the energy E(v) has the expansion
E(v) = \/512—4 <E0(N, ©) + £2B5(N, 0) + e By (N, @)), (4.3)

where the functions Ey, Ey and E4 are given by

Eo(N,©) = /RQ <N2 + (819)2), (4.4)
B(V.0) = [ (5@V7 + 5@0) - gV @0)). (45)
and
2 2
Eu(N,0) = /]R 2 (4(?2%3N + g (_‘912]:2)N _ 11—2N(329)2>. (4.6)

Remark 4.1. Recall that the map u, found in Theorem [| minimizes the Ginzburg-Landau
energy keeping the momentum p fixed, equal to p. If one takes instead only the first term of the
energy in expansion ({.J), i.e. if one minimizes Ey keeping the momentum p equal to p, then @,
will be a minimizer for the new problem if and only if

o L, T2
Ny =010, and [ N2=T2
R2 e

15



Notice in particular that g:)p =0y !Ny, so that 9; 1 (0 N,) = %20, If we insert these relations
into the definition of Es(Ny, ©y), one obtains

E5(Ny, ©p) = /R? <%(51Np)2 + %(81_1(32]\7;:))2 - %N{?) = Exp(Np).

This identity gives a first heuristic relation between the ([GP]) functional and the (KP 1) func-
tional, as well as between the solutions uy, and the ground states for (KP ).

Specifying the above change of variables to the case v = uy and € = ¢y, setting Ny = N, ¢,
and ©, = O,, ¢,, we obtain bounds for the integral quantities appearing in Lemma B3] In view

of () and (B.2d), we have
/ (V) = 18v/2 2 7272 (uy) <K
RQ

n S
€p R2 p €p

where K is some universal constant, whereas by (B.6) and (B.7),

3612 144[ 288v/2F(u
/RQ@l@p)z = P /]R2(31<Pp)2 < Qp (O1p)? < 288v2E(up)

€p

/R2 <(N,g)2 + (ale)p)2> <K. (4.7)

Similarly, it follows from (B.21)) and (B.29) that

/RQ ((ale) + (020p) > ‘/ Ny(610,)

For various other quantities, we only have at this stage rather crude estimates. For instance,
concerning the uniform norm of Ny, the bound provided by (B.3) yields

so that

(4.8)

K
[ Npll oo m2y < 5_,23' (4.9)

We also only have for the transverse derivatives

K
/ (DN)? + / ‘Np(aﬁp)?( <= (4.10)
R2 R2 €p
It follows from ({.§) that
|E2(Np, ©p)| < K,
whereas for Ey4, we only obtain combining estimates ([£.§), (.9) and ({10),
K
p
Hence, going back to the expansion of the energy, we deduce
‘E(up) - \/il%Eo(Np, @p)‘ < Keb, (4.11)

This leads to

16



Lemma 4.2. There exists some positive constant K, not depending on p, such that

2 2
/R2 (N - 210y) " < K<, (4.12)

for any p sufficiently small.

Proof. Using (f.9), (f.4) and ([{.I1)), we are led to

2 144B(u,)  144p
N, — = FE (N, -2 N, < — Ket.
/R2 ( P 8191:) 0(Nyp, Op) /R2 p10y < Vs, e + gy

Since E(up) < v/2p, the conclusion follows. O

Estimate (JL.7) provides a first step to compactness. In particular, there exists some map
No € L?(R?) such that, up to a subsequence,

N, — Ng in L*(R?), as p — 0.
As a consequence of Lemma, [£.2, we also have
Oy — Ny in L*(R?), as p — 0.
To improve this convergence and characterize the limit function Ny, we turn to the equations

for Ny and ©,,.

4.2 Expansion of the equations

We now consider a finite energy solution v to (CTWd) satisfying (B.6), so that v may be written
as v = pexp iy, and the functions ¢ and ¢ satisfy the system of equations (B.§)-(B.9). At first
order, each of the equations (B.§) and (B.9) express the fact that

N ~ 010, ase — 0.
Indeed, we first have

Lemma 4.3. Assume ¢ and ¢ satisfy (B.9), and let N and © be the corresponding functions
defined by (B1). Then, N and © satisfy

N - 8,0 =& (ce,l(z\r, 0) + Ro1(N, e)), (4.13)

where the remainder terms L. 1(N,©) and R.1(N,O) are given by

1 2 1 2
L.1(N,0) = —2< 1- % ~ 1)01@ + 50N+ %agjv,

€
and
1 9 g2 9
R571(N, @) :E 2N“ —24/1 — EN(%@ + (81@)

e (81N)2 2 2

+5 (3—7%2]\7 — N(010)” + 3(3:0) >
gt (02N)? 2

—i—m (31 — %N — N(0:09) >

17



We similarly have

Lemma 4.4. Assume ¢ and ¢ satisfy (B.§), and let N and © be the corresponding functions
defined by ([£1)). Then, N and © satisfy

N — %0 = &2 (LE,Q(N, ) + Rea(N, @)), (4.14)

where the remainder terms L. 2(N,©) and R.2(N,O) are given by

1 2 1
L.5(N,0) = €—2<1 —/1- %)81N + 5050,

1 2
R.(N,0) = =01 [NO16] — 505 [ND6).

and

As mentioned above, equations (f.13) and ([.14) twice express the fact that the functions N
and 010 are equal at the limit € — 0. In order to identify their common limit, we expand some

combination of ({.13) and (f.14) to deduce

Proposition 4.1. Let v be a finite energy solution to (TWd) on R? satisfying (B-6), and let N
and © be the corresponding functions defined by ([{.1]). Then, N and © satisfy

1 1
L(N) = —8? [gz\ﬂ v E(ale)z] + e (ﬁg(N) +R.(N, @)), (4.15)
where L is the linear operator given by
L(N)=0{N — AN,
and the remainder terms L.(N) and R.(N,©) are given by
2
L. (N)=—0292N — Zagw,

and

+
—_
%}
—_
[\'>|[\D
N
=
S
D,
|
o
QD
2,
P
)
|
o
P
S
o
v

BN )? )
+6—<— 302 [LN)N] +02[N(0,0)?] — 602 [1(_1]?]\[} +202[N(0,0)2]

—32 [(826)2]> L ( 392 [faQN)N} + B[N @@)ﬂ).

6

Proof. Equation ([.17) is derived applying the differential operator —07 — %8% to ({.13), the
operator 4/1 — %81 to ([.14), and adding the corresponding relations. O

Notice that we have at this stage,
1 1
OIN — AN + SOIN? = ZO}(N? - ©%) + &7 (Eg(N, 0) + R.(N, @)),

18



where we recognize equation (2.]) for N in the left-hand side. Specifying this relation to the
solutions N, and Oy, it remains to prove that the weak limit Ny of the sequence (Np)p>o is a
solution to (BW]), and to show some strong convergence. This requires to establish that the
nonlinear remainder term R. is small in some suitable sense. Indeed, the first term on the
right-hand side will tend to 0 in view of Lemma [l.9, whereas the linear term £.(N) presents no
difficulty.

The remainder term R. is a sum of several second order derivatives. We order them according
to the type of second order derivatives, writing

Re(N.©)= ) Bio4RY,

i+j=2
where
1 (O1N)? 1 (02 N)? g2
R2V = —N(010)? - ———5— — —(3,0)? — > ——L — 4+ ——_N(0,0)? 4.16
0= N OO - P — @0~ N e (416)
N2 1 2 2 N 2 2 2
RS’Q:———i—— 1—6—N81@— (61@) —82 (81 )2 +€_N(31®)2_€_(32®)2
3 6 2 12 24(1 — %N) 72 48 (417)
PN 1) SR P |
96(1— =N) | 2887 17
and
R =L - iNa S) (4.18)
=12 2 TP '
In several places, it will be convenient to write
RIS — R 4 2,
where 1/51’1 =0,
2,0 (32NN)? 1 2
e = 7 _N
ve 181 _2N) 144 (026)°,
6
and
0,2 (ON)? 1 o 1 2 o (0:N)? g2 2
= e————"— 4+ —N(010)" — —(10)" —c"———F— + —=N(0:0)".
Ve 24(_%]\,)4'72 (010)" = 5(8:0) 696(—%N)+288 (020)
Notice in particular that
B2 < K ((01N)? + (220) + [N(816)]). (4.19)
whereas
[RI| < K|N|[0,0)], and |R2?| < K (N? + (910)?). (4.20)
Similarly, we also have
V2% < K((0N)? + [N (2:0)?]),
(4.21)

122 < K ((O1N)? + IN(010)?] + (020) + £2((0aN)? + [N (9:0)?]) ).

Specifying the previous quantities for N, and ©,, we obtain some initial bounds on the nonlinear
remainder terms, which will prove essential to compute the estimates of Proposition fJ.
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Lemma 4.5. There exists some positive constant K, not depending on p, such that

L, (R 1+ 1782 < K, (122)
and

K
L (e pi) < 5 (123)

for any p sufficiently small.

Proof. Bounds ([£.23) and (.23) are consequences of bounds ([£.7), (@) and ({.1(), and inequal-

ities (19), (£.20) and (£21)). Concerning the term [po Np(0:0 p)? in (E:23), we have to invoke
the crude bound ({.9), which yields

J.

K K
No@ 0| < 5 | (@) < .
p p

4.3 Estimates for the phase 6,

In the previous discussion, we did not consider the function ©. In particular, we did not compute
any rescaled equation for this function. Applying the partial differential operator £ — 2L, to
(E19) and introducing equation (.15)) in the resulting equation in order to eliminate the function
N in the linear part, we compute
1 1
L(9%26) = —8 (§N2 + 6((91@)2) + 2 (5&3(@) +Res(N, @)), (4.24)
where the remainder terms L. 3(0) and R, 3(N,©) are given by

1 g2
£:3(0) = L:(970) — 5L(830) + 5 L:(056),

Ros(N,©) = 6%(1 Ji- 5)61 (3 %(61@)2> +y/1- %aﬂzg(zv,@)
— L(R.

2(N,0)) + 2L (Re2(N,0)).

and

At least formally, this may be written as
4 1o 2 _ 1o 2 2 29-1
81 (61@) — A(@l@) + 281 (81@) = 381 (81@) —N7) +¢ 81 £5,3(@) + R€73(N, @) .

We recognize once more equation (R.1) for 9,0 in the left-hand side. However, the analysis
of equation ([f.24) is substantially more difficult than the study of (f.1§), due to the intricacy
of the remainder terms and the necessity to apply the operator 9 ' to (:24) to recover (R1).
Hence, our argument to deal with the phase © does not rely on ([.24). Instead, we invoke the
estimates of Lemma .3, whose rescaled versions give bounds on © in function of those on N.

Lemma 4.6. Let 1 < g < +00. There exists some positive constant K(q), not depending on p,
such that

Hal(%HLq(R?) + EpH829pHLq(R2) < K(Q)”NpHLq(R2)7 (4.25)
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for any p sufficiently small. Similarly, given any o € N2, and denoting
Eplg, ) = ||3a51@p\|Lq(R2) + 5p\|3a329p||Lq(R2),
there exists some positive constant K(q,«), not depending on p, such that
Ep(%a) < K(q,) <H8aNpHLq(R2) + 5;23 Z HaﬁNpHLw(W)Ep(q’a - ﬁ)>, (4.26)
<8<
for any p sufficiently small.
Proof. Inequalities (.25) and ({£.24) are rescaled versions of (B.16) and (B.17). In view of scalings

(1), given any 1 < ¢ < 400, the Li-norm of the function d*N is related to the LI-norm of
9%n by

K(q, @)
0N || a(r2) = WH(?%?HLQ(R% (4.27)
where K(q,a) denotes some positive constant, not depending on e. Similarly, we compute for

the functions 0010 and 0“0, 0,

100l = 51, a1 Or ey, o 10°0: ey = g 1% ey,

(4.28)
Inequalities ([.25) and ([£2G) then follow from rescaling (B.16) and (B.17), specifying identities
(£27) and ([.2§) for the functions N, and ©,,. O

In view of Lemma .G, we will not invoke equation (f.24)) to bound the function ©,. Instead,
we will take advantage of the regularizing properties of equation (4.17), and rely on the initial
estimates of Lemma [L.5, to bound the L%norm of N, (and actually, its first order derivatives)
independently on p. We will then deduce from ([.25) and ({.26), L%-estimates of some low order
derivatives of ©,. This in turn will provide new bounds on the nonlinear terms Ré’g , and on their
first order derivatives, improving the estimates of Lemma [i.J. Using in particular, the inductive
nature of ([L.26]), we will iterate the argument to obtain LI-bounds on any order derivatives of Ny
and Oy, and complete the proof of Proposition Bl (see Section f| below). Notice that this strategy
will first require to analyse the regularizing nature of ({.15) which becomes more transparent
taking its Fourier transform.

4.4 Kernels of the rescaled equations
We derive a new formulation of (|.15) which brings out its regularizing properties. Taking the
Fourier transform of the previous rescaled equations, we deduce

Corollary 4.1. Let v be a finite energy solution to ([LWd) on R? satisfying (B.9), and let N
and © be the corresponding functions defined by ([{1). Then, N and © satisfy

e? 2 et 2\ . €2 A 25
(1+ 56+ 58)N©) —iy/1 - Sa6(©) = Raa(©). (4:29)
P g2~ —
(8 +58)0(©) +i\/1 - SaN(©) = *Rea(e), (4.30)
and
4 ~ — — —
(6 +16 + 223 + TN =& (3F2(0) + L @ORE) +Rele).  (431)
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Proof. Equations (f£29), (£.30) and ([£31)) follow from taking the Fourier transform of equations
(1.13), (1.14) and (B.15). O

At this stage, it is presumably worthwhile to compare equations ([.31)) and (R.2). This leads
us to consider the perturbed kernel K., whose Fourier transform is given by

_ &
K. (&) = —.
O = p e eag s o

The kernel K. is a regularization of the kernel Ky, since it belongs to H4 (R2) (see Lemma b1
below), and tends to K in L?(R?), as € — 0, by the dominated convergence theorem. We will
extensively use this additional regularizing property of K. to compute estimates of the function
N.

More generally, since N
= —=1%)]
Re(§) == D &G&GR(9),
it+j=2
we also introduce the kernels K2’ defined by
-y 3tz

KX (¢) = —, 4.32
O g 2ag o -

for any 0 < 1,7 < 4 such that 2 <1i+ j <4 (so that, in particular, K, = KE’O). We then recast
equation (f.15) as a convolution equation

Ny =K2'x fo— > egKLJ «RY, (4.33)
i+j=2
where 1 1
fp = gNg + 6(31@,3)2. (434)

In view of the multiplier properties of the kernels Kéf (see Lemma below), equation ([.33)
provides a control on the Li-norm of Ny in function of the L9-norms of the nonlinear terms f,
and Ré’pj This control is the starting point of the proof of Proposition ], which follows combining

the superlinear nature of the nonlinear terms f, and Ré’pj with the estimates of ©, provided by

Lemma [£.§ (see Section i below).

5 Properties of the kernels K

We now turn to the analysis of the kernels K% In particular, we provide a number of estimates,
which are required by the proof of Proposition J.

5.1 H%-estimates of the kernels

For given 0 < o < 1, we establish H%-estimates for the kernels Kéj . We first consider their
H%-semi-norms defined in the Fourier space by

1Koy = [l (P,
R2
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Lemma 5.1. Let 0 <e <1 and 0 < a < 1. Then,
1_ 1
HKS’OHHa(R% < K(a)(1+e27%), HK€1,1|’H‘1(R2) < K(a)(1+e727%), (5.1)

and ,
102 o gy < (@) (14 572). (5.2)

Proof. The proof is an explicit computation. In view of the definition of the semi-norms, we
compute using polar coordinates, and noticing that ¢ + j = 2,

e ¢2etiey’
H e”'a(R2)— 9 A 2¢2¢9 et 4\ 2
R2 ([€]2 + & + 2665 + 7 €3)

- / - / T cos{f)” em(B)” drd
0 0 (1 + 72 cos(0)* + 212 cos(0)2 sin(6)? + %TQ sin(9)4)2

+oo  +oo 2j(1 4 o2)3—i—J
= 4/ / r2etl wI{+u) : sdrdu,
0 0 (14 u?)? + 72 + e2r2u? + Sr2ut)

where we have set u = tan(f) in the last integral. The previous computation leads us to introduce

the quantity

+o00 uzﬁ
Toetr) = | .
0 ((1 +u2)2 +T2+€2T2u2 + %7"2’&4)
so that .
[ ) < K /0 P20 (5 () + Jgye(r)) dr, (5.3)
where 31 = j and B2 = 3 — i. We now claim that
T et 1
/0 r “ Jﬁ,&(r)dr S K(Oé, ﬁ) <1 + €4a+2[33>5 (54)

forany 0 < g8 < % and any 0 < a < 1. We postpone the proof of Claim (f.4), and first complete
the proof of Lemma p.1. Combining identity (5.3) with (5.4), we obtain

. 1 1
.7 (|2
]| T (R2) = K<1 + cla+2j—3 + €4a+32i>’
and the conclusion follows applying this inequality for the various choices of ¢ and j. U

Proof of Claim (5.4). In order to estimate the integral in the left-hand side of Claim (f.4), we
first compute some bounds for the function Jg.. When 0 <r < 1, we have

+o0 203
T < [ fidu < K(3), (55)

since 0 < 8 < % On the other hand, when r > 1, we compute

1 L 283 +oo 28-8
du B U u
J <K —_— ———d ——d
()] < (/0 1+7°4+/1 (ut +172)? u+/_ (14 r2et)? u)

so that, since 0 < 8 < %,

-

()] < K(B) (5 +r77% 4 729, (56)
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when 1 < r < L. Similarly, when r > &,
&€ £

1 1 g7=28

Estimates (5.3), (5.6) and (5.7) finally provide Claim (.4), when 0 < a < 1. O

Since inequalities (f-1) and (f.9) are also valid for a = 0, i.e. for the L2-norm, we may remove
the dots in inequalities (p.1) and (b.9). Notice in particular that we have the bounds

1B e g2y + el K22 a2y + 21 K22 | o2y < K (), (5.8)

ENT,

for any 0 < o <

5.2 Multiplier properties of the kernels

We now provide some multiplier properties of the kernels K. Our analysis relies on a theorem

by Lizorkin [R] ! , which we first recall for sake of completeness.

Theorem 5.1 ([B6]). Let K be a bounded function in C2(R2\ {0}), and assume that
&1 0 K (€) € L™(R?),

for any 0 < ki, ke < 1 such that ky + ko < 2. Then, K isa multiplier from LI(R?) to LI(R?)
for any 1 < q < 4+00. More precisely, given any 1 < q < +oo, there exists a constant K(q),
depending only on q, such that

1K % fllpa@ey < K(@)ME)||fll o), Vf € LI(R?), (5.9)

where we denote

~

M(K) = sup { |16

a{ﬂa?fc(g)(,g ER?0<k <1,0<ky<1,ki+ky< 2}.

Applying Theorem p.]] to the kernels Kb , we obtain

Lemma 5.2. Let 1 < ¢ < +00. Given any integers 0 < 4,5 < 4 such that 2 < i+ j < 4, we
denote
Ki,j = max{i + 2j — 4,0},

Then, there exists some positive constant K(q), not depending on €, such that

K(q)

elvig

K2 % fllpame) < 1 £1 Lo (R2)5 (5.10)

for any function f € LY(R?) and any € > 0.

—

Proof. Inequality (5.10) is a consequence of (5.9) once we have checked that the functions K2’
satisfy the assumptions of Theorem p.T|, and established the dependence with respect to & of the

quantity M (K27).

!Estimate (@) in Theorem @ is more precisely a consequence of Lemma 6 and of the proof of Theorem 8 in
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First notice that the functions K27, which are bounded on R2, and belong to C2(R2 \ {0}),
may be written as

e e

K (¢) o)

where Q(&) = €)% + ¢ +262¢2 + %53. We therefore compute

— gig) e 60Q(€) ”y gl gl £0,Q(6)
K (&) = - , L0, K7 () = - ’ :
QRSO =106 "o a0 2RO =106 T o o (5:11)
and
e 68 (_ L £01Q(8) + £02Q(6)  £1£010,Q(6) 516162(5)5262@(5))
§182010K7(8) = gy (=) Q© e F Qe @)

On the other hand, we check that

e |G )" [&l < 4Q(E), |&I0kQ(E)] < 4Q(€), and [&1]162]|019:Q()] < 4Q(€),

so that, by (b.11]) and (p.19), there exists some universal constant K such that

enia M (KM) < K.

Inequality (F.10) then follows from (p.9) applying Theorem p.1]. O

6 Sobolev bounds for N, and 6,

This section is devoted to the proof of the Sobolev estimates of Ny, 010, and 0,0, stated in
Proposition [J. As previously mentioned in Section [, we focus on Sobolev bounds on Nj.

Proposition 6.1. Let o € N? and 1 < ¢ < 4o00. There exists some constant K (q, ), depending
possibly on o and q, but not on p, such that

0% Npll a2y + [[010% Np|| La(rz) + |020% Ny || La(me2)

o N N (6.1)
+[|070 NpllLar2) + €pl01020% Ny|| Lo (m2y + 5?;”8%8 Nyllzaw2) < K(q, a),

for any p sufficiently small.

Remark 6.1. The proof of Proposition p.]] is by induction on the derivation order a. The
inductive assumption is given by (B.I]). This explains the redundant form of this inequality.

Proposition [ is a direct consequence of Proposition p.1 invoking rescaled inequalities ([.25)

and (f£.24) to bound the functions 9,0, and 9,0,.

Proof of Proposition [3 (assuming Proposition [5.1). In view of (6.1)), given any k& € N and any
1 < g < 400, there exists some positive constant K (k, ¢q), not depending on p, such that

[Nollwramey < K(k,q), (6.2)
for any p sufficiently small. In particular, by Sobolev embedding theorem,

[Npllck (r2) < K (k). (6.3)
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Using (p.2) and (f.3), inequality (f24) becomes

Zp(g, ) < K(g,a) (1 +&; Z Zp(g, a0 — ﬁ)), (6.4)

<8<«

where we have set as in Lemma [L.6,
Ep(g ) = Haa519pHLq(R2) + Ep\\aa%@p”m(ﬂza?)-

By ({.25) and (6.2), the quantity Zp(q, (0,0)) is bounded independently on p, so that it follows by
induction from formula (f.4) that Zp(¢, o) is bounded independently on p for any 1 < ¢ < +o0
and any a € N2, Inequality (1) follows invoking Sobolev embedding theorem for ¢ = +o0o. This
completes the proof of Proposition f. O

The remainder of this section is devoted to the proof of Proposition p.]. As previously
mentionned in Subsection |4, the proof relies on decomposition ([.33). Recall that it is proved
in [[Ld] that the functions 7 and ¢, and therefore Ny and ©y, belong to Wk4(R?) for any k € N
and any 1 < ¢ < +o0o. Hence, we can differentiate (f.33) to any order o € N? to obtain

0" Ny = K20 %0 fy+e5 Y K&« 0"RY. (6.5)
i+j=2

Taking the L9-norm of this expression and invoking the regularizing properties of the kernels
provided by Lemma .9, we are led to

107 Nollagezy < K@) (110° foll ey + € 3 10°RE lpaqes))- (6.6)
it+j=2

In view of definitions ([£16), (.17), (1) and ({.34), the derivatives 0* f, and BaRé’pj in the
right-hand side of (B.6) are nonlinear functions of the derivatives of N, and ©y, so that we may
estimate their L9-norms using Sobolev bounds on N, and ©.

This provides an iterative scheme to estimate the Sobolev norms of N,. Using the available
information on the nonlinear source terms f, and Ré’g , which is initially reduced to Lemma [.5,
we improve the regularity and integrability properties of Ny, using inequality (B.6). This in turn
provides improved bounds of the nonlinear terms f, and Ré’pj .

As a consequence, we prove (B.1) by induction on the derivation order a. We first compute L?-
estimates of the nonlinear terms f, and RZ/, and of convolution equation #33). In particular,
this requires to bound some derivatives of the phase ©,, which is made possible invoking Lemma
[l.d. Using the initial bounds given by Lemma [L.5, we conclude that inequality (f.1)) holds for
a = (0,0). We then turn to higher order estimates. Assuming that (f.I) holds for any index «
such that |a| < k, we derive Li-estimates of the derivatives of order k + 1 of the functions f,
and Répj In view of (6.6), this provides bounds for the derivatives of order k + 1 of Ny, so that
we can prove that (B.]]) is also valid for any index « such that |a| = k 4+ 1. This completes the
sketch of the proof of Proposition f.I], which is detailed below.

6.1 L[Y-estimates of nonlinear terms

We first compute Li-estimates on the nonlinear terms f,, Re) and vz}
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Lemma 6.1. Let 1 < q < +o00. There exists some universal constant K such that

| foll La(m2) + ”RO2HLq (®2) + &pl| Rz, 1”LQ(R2 < KHNPHL2Q(R2) (6.7)
IR oy < K (552 NplFaagae) + 11N ls0 ey + 191N 220 ey ). (6.8)
1220 Lare) < K<6;2||NPH%3II(R2) + H62NPH%20(R2))’ (6.9)

and

1227 Larey < K<6;2HNPH%2¢I(R2) + | N3l F a2y + 101 Npl|7 20 g2y + 63H62Np”%2‘1(R2)>' (6.10)

Proof. Bounds (6.7), (5-§), (6.9) and (6.10) are consequences of inequalities (f.19), (20) and
({:21) using Hélder inequalities. For the quantities involving the functions 9,0, and 9,0y, we

also use ([£25) to compute
H(al@p)Q”Lq(R?) + &p[| NpO2Op|| a(r2) + Eg”(82@p)2”Lq(R2) < K(Q)HNpH%M(R?)a
whereas
”Np(alep)2HLq(R2) + 5?7“Np(32613)2”L‘1(R2)
K@) [Nl 0 s (19101350 g2 + 21020050 g2) ) < K (@I 30 g2

6.2 Li-estimates of the convolution equation

We now compute L?-estimates of equation ([£.33) invoking the multiplier properties of the kernels
KE’] given by Lemma p.2, and the previous L?-estimates on the nonlinear terms f, RE and

v2?. This provides

P

Lemma 6.2. Let 1 < ¢ < +00. There exists some constant K(q), depending only on q, such
that

[ Nollza®ey + (101 N[l La(rz) + [|02Np || La(r2)
+H8%NP”L‘1(R2) + epl 0102 Np|| a2y + 83\‘8§Np‘\Lq(R2) (6.11)
< K(q) (||Np\|%2q(u§2) + €3l Noll 200 ma) + €3l101 Npl 720 2y + 5§H32Np||%2q(R2)>,
for any p sufficiently small.

Proof. Given any o = (o, ) such that 0 < oy + as < 2, we estimate the L?-norm of 9%V,
using equations ([.33), so that
10 Nyl oqmzy SIOEZ * follpagey + €5 Y 10“KET * R || aqre)
i+j=2
+epl 0% K20 % 20| a2y + €pll 0 K22 % 122 | ar2)-

Since by (f.33),

o 14,k coa1taz pojtar,ktaz
0Kl =i K2 ,

the multiplier properties of Lemma .3 provide

| Noll Lo (r2) SK@)(”prLq R?) + €5 Z IRE | are) + €pllv | Lacre) + pll? 2”L‘I(R2))
i+j=2

27



101 Npll ey <K (@) (11 ollzagee) + 31 B2 o) + 3 BE o) + epl B2 page2)
+ g2 o) + pIvS2oes) )

and

102Nl Lo (r2) + 107 Npll Larzy + €pl|0102Np|l Larey + 3l105 Nyl pa(rey < K(Q)(prHLq(R2)

+epl REC aqee) + epll Rey laqee) + 1R | parzy + egllv2) llLaqee) + epllvey ”L‘I(R2)>
Estimate (6.11]) follows invoking nonlinear bounds (6.7), (6.8), (6.9) and (5.10). O

6.3 Initial bounds on N, and its first order derivatives

In view of (B.11)), some preliminary L9-bounds on Ny, ; Ny and 92N,y are required to inductively
estimate the L?-norms of these functions. These preliminary bounds are consequences of the

uniform estimates given by (B.3), and the L?-bounds provided by (f£7), (£§) and (EI0).

Lemma 6.3. Let 2 < g < %. There exists some constant K(q), depending only on q, such that
[ NpllLarey < K(q), (6.12)
for any p sufficiently small. Moreover, given any % < q < 8, we have
2
ep I1Vpll La(rey < K(q), (6.13)

whereas, given any 2 < q < 400,

6

§_3
101 Npll ey + 2pll02 Nl Lae) < K (@)=t (6.14)

Proof. For estimate (p.14), we have in view of (B.3),

K K
01 Npll oo r2y < =5, and [|02 Ny || poo (m2) < =5
€p p

so that (B.14) is a consequence of ([.§) and (f.10) using standard interpolation between L9-
spaces.

The proofs of (6.19) and (6.13) are more involved. The first step is to compute H*-estimates
of Ny, combining equation ({.33) with H%bounds (f.§) on the kernels.

Step 1. Let 0 < o < L. There exists some constant K () such that

[ Npll e mey < K(a), (6.15)

for any p sufficiently small. In particular, there exists some constant K(q) such that (B.13)
holds.

Applying Young inequality to decomposition (f£33), we have

[ Npll e r2y < HKQOHHa R2)(pr”L1(]R2 +€p”R ”Ll(]R2 +€p” Ol R2)>

+epll K o) IRE L r2) + €5l K& M o r2) (HROQHLl r?) + pllv2; ||L1(R2)>
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Combining (.§) with (f£7), (29) and (f23), we derive (6.17), whereas (f.12) is a consequence

of Sobolev embedding theorem,

H(R?) — LI(R?),
foranyZﬁqﬁ%.
The second step is to compute uniform bounds on N, using Sobolev embedding theorem.

Step 2. Let v > 0. There exists some constant K(v) such that
INpl e a2y < K@) (14+5°7), (6.16)
for any p sufficiently small.
In view of (6.1F) and (f.14), there exists some number ¢ > 2 such that
INpllwraqee) < K () (1+25177).

Estimate (6.16]) follows by Sobolev embedding theorem.

Combining with (p.12), and invoking standard interpolation between Li-spaces, estimate

(6.18) yields (B.13). O

6.4 Proof of inductive assumption (f.1]) for o = (0,0)

We now rely on Lemma .9 to improve the preliminary estimates of Lemma [p.3. This gives

Lemma 6.4. Let 1 < q < +oco. Then, assumption (6.1]) holds for a = (0,0), i.e. there ewists
some constant K(q), not depending on p, such that

[ Npllzar2)y + 101 Nyl a2y + 102 Npl| pa(r2) (6.17)
+H8%NP”L‘1(R2) + epl 0102 Np|| pa(r2y + 83\‘8§Np‘\Lq(R2) < K(q),

for any v sufficiently small.

Proof. The proof relies on some bootstrap argument. Given any 1 < ¢ < %, we deduce from

B10), (F12), (1) and (F14),that

[ NpllLa(rz) + 101 Npll are)y + |02 Nyl La(r2)
+[|07 Nyl Larz) + €pll0102 Nyl a2y + €pll03 Npll are) < K(q),

so that by Sobolev embedding theorem,

INpll La(2) + epllOt Npll Lagee) + 5102 Npll o r2) < K (a),

for any 1 < ¢ < 4. Invoking (6.11)) and (f.13) once more time, we are led to

[ NpllLa2) + 1|01 Npll a(m2) + |02 Npl| La(w2)
+[|07 Nyl are) + pl|0102Np|l ar2) + €3l 05 Npll w2y < K(q),
for any 1 < ¢ < 2. In particular, we have by Sobolev embedding theorem,
INpll ey + pll 01 Npll are) + epllO2Npll Larz) < K(q),
for any 1 < ¢ < 400, so that (b.11]) now yields (b.17) for any 1 < ¢ < +o0o. This completes the

proof of Lemma [.4. O
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6.5 Higher order estimates of the nonlinear terms f, and R’epj

We now assume that assumption (B.I]) holds for any 1 < ¢ < +oco and any o € N2 such that
la| < k, and prove that it remains valid when |a| = k + 1. Invoking again equation ({.33)), we
first derive improved Sobolev bounds on the nonlinear terms f, and Rg/. In view of definitions
(£14), (E17), (£18) and ([.34), this requires to compute Li-bounds on the derivatives of ©,.

Hence, we show

Lemma 6.5. Let k € N, and assume that (B.1) holds for any 1 < q < +o00 and any o € N? such
that || < k. Then, there exist some positive constants K(q, ), not depending on p, such that

for any 1 < q < +00, any o € N? such that || < k + 1, and any p sufficiently small.

Proof. Inequality (p.1§) is a consequence of ({.26). Applying Sobolev embedding theorem to
assumption (f.1]), we have
[ Noll o mey < K(k),

where K (k) is some positive constant, not depending on p. Therefore, given any a € N? such
that |a < k+ 1, (1.26) may be written as

109010yl La(m2) + €pl|0° 02Oy || Lo(r2)

< K(q,) (HaaNPHL‘I(R?) + 53 Z <Haa7ﬁ81@l@”Lq(R2) + 5p\|5aﬁ32@p\|Lq(R2)>>-

0<B<a

Denoting

St=2 (10" lluaz) + =l 020pl1ace) ).
lo| <k+1

we deduce that

i< K@) (380 + > 10" Nyllaee) ).
|a| <k+1

Combined with assumption (6.1)), this provides ([.1§) for any p sufficiently small. O

We now turn to Li-estimates of the functions f, and Répj

Lemma 6.6. Let k € N, and assume that (B.1]) holds for any 1 < q < +o00 and any o € N? such
that || < k. Then, there exist some positive constants K(q, ), not depending on p, such that

10° foll Lar2y + [0°RE? | o) + epll0“RE | Loy + llO*RE | Lamz) < K(g.a),  (6.19)
for any 1 < q < +00, any a € N? such that || < k+ 1, and any p sufficiently small.

Proof. Lemma f.q is a consequence of assumption (f.1]), and Lemma B.§. For instance, applying
Leibniz formula to definition (£.34), we have

0% fo < K(a) (‘aﬁNpHm_ﬁNp‘ + |86319p“3a_531@p|)7
0<f<a

so that, by (6.1), (6.18), and Holder inequality,
10% foll La(m2y < K (g, @).
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The proof is identical for the function R;';l, which verifies, in view of (.1§) and Leibniz formula,

|0°REN < K(a) Y [0°N,]|0°P020,.
0<f<a

Similarly, for 80‘72?';0 and 3“722;32, it follows from (B.1)), (6.1§) and Leibniz formula, that

(6.20)
La(r2) )’

so that the proof of (.19) reduces to estimate the L7-norms in the left-hand side of (6.20). In
view of (p.1), we deduce from Sobolev embedding theorem that

10°RE?|| a2y + pllO“RE (| 1 ()

9 2
<o (13l (LD, i (220

4
+6p‘

La(R2)

10° Nyl < (m2) < K(B), (6.21)

for any 3 € R? such that 3 < k and any p sufficiently small. When |a| < &, the chain rule
theorem combined with (B.1]) and ([.21]) again provides estimates (5.19). When |a| = k+ 1, this

argument yields

o (O e Al )
€pl|0 (1_%]%) Lq(R2)S (q,a)( +ep)|0%0 pHLq(RQ)> < K(q, ),
and
DN,
el aa(@> < K(g,0)(1+ 21|00 0Ny | e ) < K (a0,

£ 2
1-— ?Np L1(R?)

where we have used the estimates in the second line of (6.1]) for the second inequalities. Combined

with (.2(), this completes the proof of inequality (p.19). O

6.6 Proof of Proposition B.]]

We are now in position to conclude the inductive proof of Proposition [.1]

Proof of Proposition [6.]. Given any k € N, we assume that (p.1]) holds for any 1 < ¢ < +o0c and
any o € N? such that |a| < k, and consider some index v € N? such that |y| = k + 1. Invoking
equation (p.§) and the kernel estimates of Lemma .3, we compute

10001 Nyl oce) < K (0) (1107 Follzageey +<2 (107 RE | cagee) +I0"RE | agay) +ep |0 R | age ).
(6.22)
and

10702 Nyl La(r2) + 1107 0F Nyl La(r2) + €pl| 070102 Nyl Larey + €51|07 05 Nyl La(2)

(6.23)
<K(q) (Hmfp”Lq(R?) + 5§|]6“/R§;0|]Lq(R2) + €p”mR;;1HLq(R2)) + Hng;QHLq(H@))-

In view of inequalities (f.6), (f-29) and (p-23), and estimates (f.19), assumption (.])) also holds
for a = «. This completes the inductive proof of Proposition [6.1. O
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7 Convergence towards (KD)

This section is devoted to the proofs of Theorem [ and Proposition . As mentioned above in
the introduction, our strategy is to prove that the sequence (010y)p>0 is, for p sufficiently small,
a minimizing sequence for minimization problem (Pxp(p)) We then invoke Proposition P.J to
obtain the strong convergence of some subsequence towards a function Ny, which is a solution
to minimization problem (Pxp(u)), i.e. a ground state for (KP1). Finally, we improve the
convergence using the previous Sobolev estimates.

7.1 Weak convergence towards (KP 1)

We first use the Sobolev bounds provided by Proposition [] to establish the weak convergence of
some subsequence (N, Jnen to some non-constant solution Ny to (SW)), as p,, — 0.

Proposition 7.1. There exists a subsequence (pn)nen, tending to 0 as n — +oo, and a non-
constant solution Ny to (@) such that, given any 1 < g < 400,

Np, — Ny in WH(R?), as n — +oo. (7.1)
In particular, given any 0 < v < 1, we have

N, — No in C™7(K), as n — 400, (7.2)

n

for any compact subset K of R?.

Proof. In view of bounds ([[1), there exists a subsequence (p,,)nen, tending to 0 as n — +o0, and
a function Ny such that (7-]) holds for any 1 < ¢ < 4+o00. Convergences ([7.3) follow by standard
compactness theorems. The proof of Proposition [.1] therefore reduces to prove Lemma [, i.e.
to establish that Ny is a non-constant solution to (SW). O

Proof of Lemma B. Denoting
1
0 2,0
Ny = §K€p * fp,

we deduce from (:33) and Lemma f.]] that

o 3 1
INe= NP lr2@ey < & Y IKEARE 22y < RlIRED |1 @2y +e2 IR 11 2y +28 IR | 11 -
1+j=2

In view of estimates (6.7), (6.8), (6.9) and (p.1(), and L9-bounds ([LT), we obtain

1
[Ny = Nl 2y < Kef,

so that
Np— NJ — 0 in L*(R?), as p — 0. (7.3)
We now claim that, up to some subsequence (p,,)nen satisfying ([73),
1
Ny — 5 Ko* Ng in L*(R?), as n — +oo0. (7.4)

Invoking the weak L?-convergence provided by ([-1]), we deduce from (7-J) and ([-4) that the
function N, satisfies

1
Ny = 51{0 * N2,
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so that, in view of (£.3), the function Ny is solution to (EW]).

Finally, in view of (f) and convergences ([.3), we have

3
NO(O) Z g,

so that Ny cannot be a constant solution to (EW]). This ends the proof of Lemma [ O

We now show Claim ([.4).

Proof of Claim (7.4). Claim ([.4) follows from (7.9) after the following simplification.

Step 1. We have
NJ — %KO*N,? — 0 in L*(R?), as p — 0.
In view of ({.34)), we have
N - Lk, « N2 = <K€2’0 . K0> * <1N§ n 1(81@,0)2) Ty o ((alep)2 - N§>,
2 b 3 6 6

so that, by Young inequality, and estimates (1)),

1
0 2
HNp _ §KO*NP‘

2R < K(HKE,;O — Kollr2m2) + [ Kol 2 (r2) |1010p — NpHL?(R?))- (7.5)

In view of definitions (2.4) and ({.32), we have

—

K2°(€) — Ko(€), asp — 0,
and o
0 < K20(€) < Ko(€),

for any €, > 0 and any £ # 0. Since Ky belongs to L?(R?) by Lemma f.1, it follows from the
dominated convergence theorem that

/.

Hence, by Plancherel formula, the first term in the right-hand side of (7.§) tends to 0, as p — 0,
whereas the second term also tends to 0 by (f.13). This completes the proof of Step .

Invoking Step [[, the proof of Claim ([.4) reduces to

oY — 2
K20() = Ko(€)| dg — 0, as 2, — 0.

Step 2. Given some subsequence (pp)nen such that (F.3) holds, we have

Ko Ng — Ko+ N§ in L*(R?), as n — +oc.

First notice that, in view of ([[]), there exists some constant K, not depending on n, such
that
1Ko * (N, = N§)llz2@2) < 1Kol 2@y | Ny, — N§llo@e) < K,

so that by density of C2°(R?) into L?(R?), the proof of Step [ reduces to prove that

/R2 (Ko * (N2, = N§) Jvo = 0, as n — +oc, (7.6)
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for any function ¢ € C>°(R?). Moreover, given any ¢ > 0, the density of C2°(R?) into L?(R?)
also implies the existence of a function x5 € C°(R?) such that

HKO — "%HLQ(RQ) <.

Given any function ¢ € C3°(R?), this gives by Young inequality,
Ko* (N2 — N2 ) <
[, (Ko (2, = 53)) | <
which may be written as
[ (Ko (02 = 30| < | [ Gaew) (43, - 59
R R

denoting %s(z) = ks(—2), and invoking (1) and Fubini theorem. Since the function ks x 1
belongs to C°(R?), we deduce from (7.2) that

L s (052, = 080 )| + 012, = Nls o e

+ K,

/ (R5*¢) (Ngn — Ng) — 0, as n — 400,
RQ

so that (f.6) holds. This completes the proof of Step B and of Claim (F.4). O

7.2 Convergence of the energies

In order to apply Proposition P.1 to the family (010p)p>0 to deduce its strong convergence in
the space Y (R?), we first prove

Proposition 7.2. Let (p,),>0 denote some subsequence, tending to 0 as n tends to +oo, such
that (1)) and ([.2) hold. Then, up to some further subsequence, there exists a positive number
o such that

Exp(010y,) — EEF (1), and / 01Oy, |* — 1o, as n — +oo. (7.7)
R2

min

Proposition 7.3 is a consequence of Lemmas [| and f], so that we first address the proof of
Lemma .

Proof of Lemma [}. In view of formulae () and ({.3), the discrepancy quantity Y(up) =

V2p(uy) — E(uy) may be recast in the slow space variables as

144

— — N,(0,0 .
e /m <4_ LN, HETy. 22N, 12 p(026)

5 (up) = — \/56—’“</R (Vo= 018y)* +5 [ (G007 + 5(0:00° — 585(010,)?)

Hence, we deduce from Proposition [ and estimate (§.§) for the function 9,0, that
_ Ep 2, 2 1 g, 1 o 1 2 2
S(up) = —ﬂm</R2 (Np—010,)%+¢2 /R (500824520, 2 N(@1092) + o (D) ).
8
Let us now recall that the value of Exp(010y) is given by

Exr(0:0,) = [ (5020, + 5(0:00)° - 1(218,)%).

R2
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In particular, provided we may prove that
N, — 010,, asp — 0, (7.9)
we have, in view of ([I]) and ([£19),

1 1 1
/2 (5(31]\7;7)2 + 5(32910)2 - ENp(al@p)2) — Exp(610p) — 0, as p — 0. (7.10)
R
Hence, by (.9,
R2 p—0

We then claim that 1
— (Np — 81@p)2 — 0, asp — 0, (7.12)
gp RQ

which gives ([[§) using (F-1)).

In order to complete the proof of Lemma [, it only remains to prove Claims (F.9) and (F.12).
For Claim ([7.9), we invoke equation ([.14) and the Sobolev estimates of Proposition f|. Taking
the L%norm of (f.14), we deduce from ([L]) that

|01 Ny — 97Oyl r2(r2) < Kep,

where K is some universal constant. Claim ([.9) follows taking the limit p — 0. Similarly, for

Claim [7.13, we take the L?-norm of equation ([.13), and obtain by ([L1),

so that )
7/(MF@@@%QQ?aQ%pHO
613 R2
This concludes the proof of Lemma J. O

Remark 7.1. Equivalence ([[§) is a consequence of inequality ([-1(), since it will be proved in
the sequel that the quantity Fx p(010,) has a nonzero limit as p — 0.

We now turn to the proof of Lemma {.

Proof of Lemma []. Lemma [] is a consequence of estimate (fJ) of Theorem [|. Combining (J)
with ([L0) and ([Ld), we obtain

6912p3
w3+ o (1),

Exp(0:10y) < —

so that by formula (£.2),
1 3
Exp(010p) < ——=—( | Nyd1© 1.
KkP(010;) < 54312(]3(/]1%2 pvl P) +p30()
In view of (f.13), we have

D + .
Exp(916y) < 545% (/ﬂ@ml@p) ) pﬂoo(l)

On the other hand, it follows from Lemma P.1] that

1 3
w09 = 51 [ @00) =~ ([ @e07)

which completes the proof of Lemma [i ]
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We finally deduce Proposition [/.9 from Lemma fi.

Proof of Proposition [7.3. In view of ([.19) and ([(.])), we have

. 2 2
1 f 010 > N,
n oo /R2 ( ! p") N /R2 o

so that we may assume up to some further subsequence, that

[ (0105,)7 = o, as = +cx, (7.13)
R2
where
Lo > / N > 0.
R2
Assertion ([727) is then a consequence of ([[7), (7-13)), and formula (R.7) of EEL. O

7.3 Strong convergence towards (KP])

We now show Proposition . i.e. the strong convergence of the family (N,)pso in L2(R?) (up to
some subsequence).

Proof of Proposition [J. In view of Proposition [/.J, we may construct a subsequence (p,)nen,
tending to 0 as n — 400, and some positive number pg such that

Excp(010y,) — EXP(10), and / 010, — po, as n — +oo.
R2

By Proposition P.1, up to some further subsequence, there exists some points (a,)nen and a

2
ground state solution Ny to (R.§), with o = (;TO)Q, such that

Oy, (- — an) — Ny in Y(R?), as n — +oo.

By ({.13), we are led to
Np, (- — ap) — Np in L*(R?), as n — +oo0. (7.14)

Invoking Proposition [.J for the subsequence (N, (- — an))nen, there exists a non-constant
solution Ny to (EW]) such that weak convergences ([-1)) hold, up to some further subsequence.
In particular, by (7.14), Ng = Ny, so that N is a ground state of speed 1 of (KP_I)).

In order to complete the proof of Proposition [, it is now necessary to drop the invariance by
translation, i.e. to prove that convergences in Y (R?) and in L?(R?), also hold for the sequences
(01095, Jnen, respectively (N, )nen. Assuming first that, up to some further subsequence, there
exists some number a such that

ay, — a, as N — +090,

we obtain that
0Oy, — No(- +a) in Y(R?), and N,, — No(- + a) in L*(R?), as n — +oo,

using the continuity of the map a — (- — a) from R to any space L4(R?) (with 1 < ¢ < +00).
Since the function z — Ny(z + a) is still a ground state of speed 1 of (KP ])), this completes the
proof of Proposition [].
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Hence, it remains to prove that the sequence (a,)nen contains some bounded subsequence.
Assuming by contradiction that this is false, we may construct some subsequence, still denoted
(an)nen, such that

an — 400, as n — +oo. (7.15)

In view of (§) and ([L1]), there exists some positive number d, not depending on n, such that
/ N7 > 25,
B(0,1)
for any n sufficiently large. By (7.14)), we also have
/ |No(z + an) — Ny, (z)[*dz — 0, as n — +o0,
B(0,1)

so that
/ |No(x + a,)|*dx > 6,
B(0,1)

for any n sufficiently large. However, it is proved in [[L§] that there exists some positive constant
K such that

Ny(z) < ———, Vz € R?
0($)_ 1+|£C|2’ HAIS 3
so that
10K
— >0,
1+ |an|2

for any n sufficiently large. This provides a contradiction to ([(.1§) and completes the proof of
Proposition . O

7.4 Proofs of Theorem [J and Proposition

We finally conclude the proofs of our main theorems.

Proof of Theorem [3. In view of Propositions fl and i, given any k& € N and any 1 < ¢ < 400, the
family (INVp)p>o is bounded, uniformly with respect to p small, in WF4(R?), and converges, up
to some subsequence, to some ground state Ny of () in the space L?(R?), as p — 0. Hence,
by standard interpolation theorem, it actually converges to Ny in W#4(R?). This concludes the
proof of Theorem . O

Proof of Proposition [4. The proof is identical to the proof of Theorem [, considering the function
010, instead of Ny, and noticing that Y (R?) continuously embeds into L*(R?). O
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