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For a recurrent linear diffusion on R + we study the asymptotics of the distribution of its local time at 0 as the time parameter tends to infinity. Under the assumption that the Lévy measure of the inverse local time is subexponential this distribution behaves asymtotically as a multiple of the Lévy measure. Using spectral representations we find the exact value of the multiple. For this we also need a result on the asymptotic behavior of the convolution of a subexponential distribution and an arbitrary distribution on R + . The exact knowledge of the asymptotic behavior of the distribution of the local time allows us to analyze the process derived via a penalization procedure with the local time. This result generalizes the penalizations obtained in Roynette, Vallois and Yor [22] for Bessel processes.

Introduction

1. Let X be a linear regular recurrent diffusion taking values in R + with 0 an instantaneously reflecting boundary and +∞ a natural boundary. Let P x and E x denote, respectively, the probability measure and the expectation associated with X when started from x ≥ 0. We assume that X is defined in the canonical space C of continuous functions ω : R + → R + . Let C t := σ{ω(s) : s ≤ t} denote the smallest σ-algebra making the co-ordinate mappings up to time t measurable and take C to be the smallest σ-algebra including all σ-algebras C t , t ≥ 0.

We let m and S denote the speed measure and the scale function of X, respectively. We normalize S by S(0) = 0 and remark that S(+∞) = +∞ since we assume X to be recurrent. It is also assumed that m does not have atoms. Recall that X has a jointly continuous transition density p(t; x, y) with respect to m, i.e.,

P x (X t ∈ A) = A p(t; x, y) m(dy),
where A is a Borel subset of R + . Moreover, p is symmetric in x and y, that is, p(t; x, y) = p(t; y, x). The Green or the resolvent kernel of X is defined for λ > 0 via R λ (x, y) := ∞ 0 e -λt p(t; x, y) dt,

Let {L (1.2)

For y = 0 we write simply L t , and define for ℓ ≥ 0

τ ℓ := inf{s : L s > ℓ}, (1.3) 
i.e., τ := {τ ℓ : ℓ ≥ 0} is the right continuous inverse of {L t }. As is well known τ is an increasing Lévy process, in other words, a subordinator and its Lévy exponent is given by

E 0 (exp(-λτ ℓ )) = exp (-ℓ/R λ (0, 0)) = exp(-ℓ ∞ 0 ν(dv)(1 -e -λv )), (1.4) 
where ν is the Lévy measure of τ. The assumption that the speed measure does not have an atom at 0 implies that τ does not have a drift.

2. We are interested in the asymptotic behavior of the distribution of L t as t tends to infinity. The basic assumption under which this study is done is the subexponentiality of the Lévy measure of τ (see Section 4). The subexponentiality assumption is equivalent with the relation (cf. Proposition 4.1) P(τ ℓ ≥ t) ∼ t→+∞ ℓ ν((t, +∞)) ∀ ℓ > 0.

Here and throughout the paper the notation

f (x) ∼ x→a g(x),
where f and g are real valued functions and a is allowed to take also "values" +∞ or -∞, means that

lim x→a f (x) g(x) = 1.
Since τ is the inverse of L, it also holds (see Proposition 4.1)

P 0 (L t ≤ ℓ) ∼ t→+∞ ℓ ν((t, +∞)).
To extend this for an arbitrary starting state x > 0, we first show that (see Proposition 4.2) P x (H 0 > t) ∼ t→+∞ S(x) ν((t, +∞)),

where H 0 := inf{t : X t = y}, and then (see Proposition 4.3)

P x (L t ≤ ℓ) ∼ t→+∞ (S(x) + ℓ) ν((t, +∞)). (1.5) 
Our motivation for relation (1.5) arose from the desire to generalize the penalization result obtained for Bessel processes in Roynette, Vallois and Yor [START_REF] Roynette | Penalizing a BES(d) process (0 < d < 2) with a function of its local time[END_REF] (see also [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by normalized exponential weights[END_REF] and [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by normalized exponential weights[END_REF]). From our point of view, since many of the penalization results are derived for Brownian motion and Bessel processes, it is important to increase understanding of the assumptions needed to guarantee the validity of such results for more general diffusions. In particular, we prove that (see Theorem 5.2 and Example 5.3)

lim t→∞ E 0 (h(L t ) | C u ) E 0 (h(L t )) = S(X u )h(L u ) + 1 -H(L u ) =: M h u a.s., (1.6) 
where h is a probability density function on R + (with some nice properties) and H is the corresponding distribution function.

3.

The paper is organised as follows. In the next section basic properties on subexponentiality are presented and a new result (Lemma 2.4) on the limiting behavior of the convolution of an subexponential and a more general distribution is derived. In Section 3 we study the spectral representations of the hitting time distributions and the Lévy measure. In Section 4 results on subexponentiality and the spectral representations are combined to yield relation (1.5). Hereby we also need a weak form of a Tauberian theorem given as Lemma 6.1 in Appendix. The application in penalizations is discussed in Section 5. To make the paper more readable we state and prove first the general theorem on penalizations. After this the penalization with local time is treated and (1.6) is proved. The paper is concluded by characterizing the law of the canonical process under the penalized measure induced by the martingale M h . Using absolute continuity and the compensation formula for excursions we are able to shorten the proof when compared with the one in [START_REF] Roynette | Penalizing a BES(d) process (0 < d < 2) with a function of its local time[END_REF].

Subexponentiality

In this section we present some basic results on subexponential probability distributions. Later, in Section 4, it is assumed that the probability distribution induced by the tail of the Lévy measure of τ is subexponential.

This assumption allows us to deduce the crucial limiting behavior of the first hitting time distribution (see Proposition 4.2).

Definition 2.1. The probability distribution function F on (0, +∞) such that

F (0+) = 0, F (x) < 1 ∀x > 0, lim x→∞ F (x) = 1 (2.1) is called subexponential if lim x→+∞ F * F (x) / F (x) = 2 (2.2)
where * denotes the convolution and F (x) := 1 -F (x) the complementary distribution function.

For the following two lemmas and their proofs we refer Chistyakov [START_REF] Chistyakov | A theorem on sums of independent, positive random variables and its applications to branching processes[END_REF] and Embrechts et al. [START_REF] Embrechts | Subexponentiality and infinite divisibility[END_REF].

Lemma 2.2. If F is a probability distribution function satisfying (2.1) and

F (x) ∼ x→∞ x -α H(x)
with α ≥ 0 and H a slowly varying function then F is subexponential.

Lemma 2.3. If F is subexponential then (i) uniformly on compact y-sets lim x→∞ F (x + y)/F (x) = 1, (2.3) 
(ii) for all ε > 0, lim

x→+∞ e ε x F (x) = +∞ (2.4)
The proof of the next lemma uses some ideas from Teugels [START_REF] Teugels | The class of subexponential distributions[END_REF] p. 1006.

Lemma 2.4. Let F and G be two probability distributions on R + . Assume that

(1) F is subexponential, (2) lim x→∞ G(x)/F (x) = c > 0.
Then

lim x→∞ F * G(x)/ G(x) + F (x) = 1. (2.5) 
Proof. Let ε ∈ (0, 1). By assumption (2) there exists δ = δ(ε) such that for

x > δ c (1 -ε)F (x) ≤ G(x) ≤ c (1 + ε)F (x). (2.6) 
Observe that

F * G(x) = 1 -F * G(x) = 1 -F (x) + F (x) - x 0 G(x -y) dF (y) = F (x) + x 0 G(x -y) dF (y).
We assume now, throughout the proof, that x > δ and write

F * G(x) G(x) + F (x) = G(x) G(x) + F (x) (I 1 (x) + I 2 (x)) + F (x) G(x) + F (x) , (2.7) 
where

I 1 (x) := x-δ 0 G(x -y) G(x) dF (y)
and

I 2 (x) := x x-δ G(x -y) G(x) dF (y).
Obviously, by assumption (2), the claim (2.5) follows if we show that

lim x→∞ I 1 (x) = 1 (2.8)
and

lim x→∞ I 2 (x) = 0. (2.9) 
Proof of (2.9). Since G(xy) ≤ 1 we have

I 2 (x) ≤ x x-δ dF (y) G(x) = F (x) -F (x -δ) G(x) = F (x -δ) -F (x) G(x) = F (x) G(x) F (x -δ) F (x) -1 .
Using now (2.3) and assumption (2) yields (2.9). Proof of (2.8). Since G(xy) ≥ G(x)

we have

I 1 (x) = x-δ 0 G(x -y) G(x) dF (y) ≥ F (x -δ).

Consequently, lim inf

x→+∞

I 1 (x) ≥ 1.
(2.10)

To derive an upper estimate, notice first that

I 1 (x) ≤ 1 + ε 1 -ε x-δ 0 F (x -y) F (x) dF (y), (2.11) 
because, from (2.6),

x > δ ⇒ G(x) ≥ c(1 -ε)F (x)
and

y ≤ x -δ ⇒ x -y ≥ δ ⇒ G(x -y) ≤ c(1 + ε)F (x -y).
Next we develop the integral term in (2.11) as follows

x-δ 0 F (x -y) dF (y) = x-δ 0 (1 -F (x -y)) dF (y) = F (x -δ) - x-δ 0 F (x -y) dF (y) = F (x) - x-δ 0 F (x -y) dF (y) + F (x -δ) -F (x) = F (x) - x-δ 0 F (x -y) dF (y) - x x-δ dF (y) = F (x) - x-δ 0 F (x -y) dF (y) - x x-δ F (x -y) dF (y) - x x-δ F (x -y) dF (y) ≤ F (x) - x 0 F (x -y) dF (y).
Hence,

x-δ 0 F (x -y) dF (y) ≤ F (x) -F * F (x) = F * F (x) -F (x).
Consequently, from (2.11),

I 1 (x) ≤ 1 + ε 1 -ε F * F (x) -F (x) F (x) ,
and using (2.2) and letting ε → 0 we obtain

lim sup x→+∞ I 1 (x) ≤ 1
which together with (2.10) proves (2.8) completing the proof of Lemma 2.4

Spectral representations

Spectral representations play a crucial role in our study of asympotic properties of the hitting time distributions. In this section we recall basic properties of these representations and derive some useful estimates. For references on spectral theory of strings, we list [START_REF] Kac | On the spectral functions of the string[END_REF], [START_REF] Kasahara | Spectral theory of generalized second order differential operartos and its applications to Markov processes[END_REF], [START_REF] Dym | Gaussian processes, function theory, and the inverse spectral problem[END_REF], [START_REF] Kent | Eigenvalue expansions for diffusion hitting times[END_REF], [START_REF] Küchler | Some asymptotic properties of the transition densities of one-dimensional quasidiffusions[END_REF], [START_REF] Knight | Characterization of the Lévy measures of inverse local times of gap diffusion[END_REF] , [START_REF] Kotani | Krein's spectral theory of strings and generalized diffusion processes[END_REF], [START_REF] Kent | The spectral decomposition of a diffusion hitting time[END_REF], and [START_REF] Küchler | On spectral measures of strings and excursions of quasi diffusions[END_REF]. Besides the diffusion X itself, it is important to study X when killed at the first hitting time of 0, denoted X = { X t : t ≥ 0}, i.e., the diffusion with the sample paths

X t := X t , t < H 0 , ∂, t ≥ H 0 , (3.1) 
where H 0 := inf{t : X t = y}, and ∂ is a point isolated from R + (a "cemetary" point). Then { X t : t ≥ 0} is a diffusion with the same scale and speed as X.

Let p denote the transition density of X with respect to m :

P x ( X t ∈ dy) = P x (X t ∈ dy; t < H 0 ) = p(t; x, y) m(dy). (3.2)
Recall that the density of the P x -distribution of H 0 exists and is given by

f x0 (t) := P x (H 0 ∈ dt)/dt = lim y↓0 p(t; x, y) S(y) . (3.3) 
Moreover, the Lévy measure ν of the inverse local time τ, see (1.2) and (1.3), is absolutely continuous with respect to the Lebesgue measure, and the density of ν satisfies

ν(v) := ν(dv)/dv = lim x↓0 f x0 (v) S(x) (3.4) 
We define now the basic eigenfunctions A(x; γ) and C(x; γ) associated with X and X, respectively, via the integral equations (recall that S is continuous and m has no atoms)

A(x; γ) = 1 -γ x 0 dS(y) y 0 m(dz) A(z; γ), C(x; γ) = S(x) -γ x 0 dS(y) y 0 m(dz) C(z; γ), (3.5) 
and the initial values

A(0; γ) = 1, A ′ (0; γ) := lim x↓0 A(x; γ) -1 S(x) = 0, (3.6) 
C(0; γ) = 0, C ′ (0; γ) := lim x↓0 C(x; γ) S(x) = 1. (3.7)
Let {A n }and {C n } be two families of functions defined by

A 0 (x) = 1, A n+1 (x) = x 0 dS(y) y 0 m(dz) A n (z) (3.8) 
and

C 0 (x) = S(x), C n+1 (x) = x 0 dS(y) y 0 m(dz) C n (z), (3.9) 
respectively. Then the functions A(x; γ) and C(x; γ) are explicitly given by

A(x; γ) = ∞ n=0 (-γ) n A n (x). (3.10) 
and

C(x; γ) = ∞ n=0 (-γ) n C n (x), (3.11) 
respectively (see Kac and Krein [START_REF] Kac | On the spectral functions of the string[END_REF] p. 29). In the next lemma we give an estimate which shows that the series for C converges rapidly for all values on γ and x ≥ 0. A similar estimate for A can be found in Dym and McKean [START_REF] Dym | Gaussian processes, function theory, and the inverse spectral problem[END_REF] p. 162.

Lemma 3.1. The functions x → C n (x), x ≥ 0, n = 0, 1, 2, . . . , are positive, increasing and satisfy

C n (x) ≤ 1 n! S(x) x 0 M (y) dS(y) n (3.12)
where M (z) = m(0, z).

Proof. The fact that C n are positive and increasing is immediate from (3.9). Clearly (3.12) holds for n = 0. Hence, consider

C n+1 (x) = x 0 dS(y) y 0 m(du) C n (u) ≤ x 0 dS(y) y 0 m(du) 1 n! S(u) u 0 M (z) dS(z) n ≤ 1 n! S(x) x 0 dS(y) y 0 m(du) u 0 M (z) dS(z) n ≤ 1 n! S(x) x 0 dS(y) y 0 M (z) dS(z) n M (y) = 1 (n + 1)! S(x) x 0 M (y)dS(y) n+1 ,
where we have used the facts that x → S(x) is increasing and x → M (x) is positive.

Lemma 3.2. The function x → C(x; γ) satisfies the inequality

|C(x; γ)| ≤ S(x) exp |γ| x 0 M (z)dS(z) . (3.13) 
Proof. This follows readily from (3.11) and (3.12). >From Krein's theory of strings it is known (see [START_REF] Dym | Gaussian processes, function theory, and the inverse spectral problem[END_REF] p.176, and [START_REF] Kac | On the spectral functions of the string[END_REF][START_REF] Küchler | Some asymptotic properties of the transition densities of one-dimensional quasidiffusions[END_REF][START_REF] Kotani | Krein's spectral theory of strings and generalized diffusion processes[END_REF]) that there exists a σ-finite measure denoted ∆, called the principal spectral measure of X, with the property

∞ 0 ∆(dz) z + 1 < ∞ (3.14)
such that the transition density of X can be represented as

p(t; x, y) = ∞ 0 e -γt A(x; γ) A(y; γ) ∆(dγ). (3.15) 
We remark that from the assumption that m does not have an atom at 0 it follows (see [START_REF] Dym | Gaussian processes, function theory, and the inverse spectral problem[END_REF] 

p.192) that ∆([0, ∞)) = ∞.
Analogously, for the killed process X there exists (see [START_REF] Knight | Characterization of the Lévy measures of inverse local times of gap diffusion[END_REF], [START_REF] Küchler | On spectral measures of strings and excursions of quasi diffusions[END_REF]) a σ-finite measure, denoted ∆ and called the principal spectral measure of X, such that

∞ 0 ∆(dz) z(z + 1) < ∞, (3.16) 
and

∞ 0 ∆(dz) z = ∞. (3.17)
The transition density of X can be represented as

p(t; x, y) = ∞ 0 e -γt C(x; γ) C(y; γ) ∆(dγ). (3.18) 
The result of the next proposition can be found also in [START_REF] Küchler | On spectral measures of strings and excursions of quasi diffusions[END_REF]. Since the proof in [START_REF] Küchler | On spectral measures of strings and excursions of quasi diffusions[END_REF] is not complete in all details we found it worthwhile to give here a new proof. We show that the limit can be taken inside the integral by the Lebesgue dominated convergence theorem. Let t > 0 be fixed an choose ε such that

t - ε 0 M (z)dS(z) ≥ t/2.
Then, from Lemma 3.2, for γ > 0 and 0 < y < ε we have

e -γt |C(y; γ)| S(y) ≤ exp -γ t - y 0 M (z)dS(z) ≤ e -γt/2
Consequently, it remains to show that

∞ 0 e -γt/2 |C(x; γ)| ∆(dγ) < ∞. (3.21)
By the Cauchy-Schwartz inequality

∞ 0 e -γt/2 |C(x; γ)| ∆(dγ) 2 ≤ ∞ 0 e -γt/2 (C(x; γ)) 2 ∆(dγ) ∞ 0 e -γt/2 ∆(dγ) = p(t/2; x, x) ∞ 0 e -γt/2 ∆(dγ).
Clearly, p(t/2; x, x) < ∞ and, by (3.16),

∞ 0 e -γt/2 ∆(dγ) < ∞. These estimates allow us to use the Lebesgue dominated convergence theorem and since (cf. (3.7))

lim y→0 C(y; γ)/S(y) = C ′ (0; γ) = 1
the proof of (i) is complete. Representation (3.20) can be proved similarly using formula (3.4), (3.19), (3.7) and the estimates derived above. We leave the details to the reader.

Remark 3.4. Consider ∞ 0 (1 ∧ t) ν(t) dt = ∞ 0 dt (1 ∧ t) ∞ 0 ∆(dγ) e -γt = ∞ 0 ∆(dγ) ∞ 0 dt (1 ∧ t) e -γt .
A straightforward integration yields

∞ 0 (1 ∧ t) e -γt dt = 1 γ 2 1 -e -γ ,
and, consequently, (3.16) is equivalent with (cf. [START_REF] Knight | Characterization of the Lévy measures of inverse local times of gap diffusion[END_REF])

∞ 0 (1 ∧ t) ν(t) dt < ∞,
which is the crucial property of the Lévy measure of a subordinator. For (3.17), see [START_REF] Kac | On the spectral functions of the string[END_REF] p. 82. and [START_REF] Küchler | On spectral measures of strings and excursions of quasi diffusions[END_REF].

Example 3.5. Let R = {R t : t ≥ 0} and R = { R t : t ≥ 0} be Bessel processes of dimension 0 < δ < 2 reflected at 0 and killed at 0, respectively. We compute explicit spectral representations associated with R and R.

From, e.g., [START_REF] Borodin | Handbook of Brownian Motion -Facts and Formulae[END_REF] p. 133 the following information concerning R and R can be found: To find the Krein measure ∆ associated with R we exploit formulas (3.15) and (3.24) with x = y = 0 and use

Speed measure m(dx) = 2 x 1-2α dx α := (2 -δ)/2. ( 3 
I ν (z) ∼ 1 Γ(ν + 1) z 2 ν , z → 0 to obtain p(t; 0, 0) = lim x,y→0 p(t; x, y) = t -(1-α) 2 1-α Γ(1 -α) = ∞ 0 e -γt ∆(dγ).
Inverting the Laplace transform yields

∆(dγ) = γ -α dγ 2 1-α (Γ(1 -α)) 2 .
(3.26)

We apply formula (3.10), (3.22), and (3.23) to find the function A(x; γ), and, hence, compute first directly via (3.8)

A n (x) = Γ(1 -α) x 2n 2 n Γ(n + 1) Γ(n + 1 -α)
, n = 0, 1, 2, . . . .

Consequently, after some manipulations, we have

A(x; γ) = Γ(1 -α) 2 -α x 2γ α J -α x 2γ ,
where J denotes the usual Bessel function of the first kind, i.e., 

J ν (z) = ∞ n=0 ( - 
ν(t) = lim x,y→0 p(t; x, y) S(x)S(y) = 2 1-α α t -(1+α) Γ(α) = ∞ 0 e -γt ∆(dγ), (3.28) 
and, consequently, inverting the Laplace transform gives

∆(dγ) = 2 1-α γ α (Γ(α)) 2 dγ (3.29)
Similarly as above, we apply formula (3.11) to find the function C(x; γ), and, hence, compute first directly via (3.9)

C n (x) = Γ(α) x 2α+2n 2 n+1 Γ(n + 1) Γ(n + 1 + α)
, n = 0, 1, 2, . . . .

Consequently, after some manipulations,

C(x; γ) = Γ(α) 2 (α-2)/2 γ -α/2 x α J α x 2γ . and p(t; x, y) = 1 2 ∞ 0 e -γt (xy) α J α x 2γ J α y 2γ dγ. (3.30)
See also Karlin and Taylor [8] p. 338.

Example 3.6. Taking above α = 1/2 yields formulas for Brownian motion. Recall

J 1/2 (z) = 2 πz sin z, and J -1/2 (z) = 2 πz cos z.
Consequently, from (3.27)

p(t; x, y) = 1 π ∞ 0 e -γ t cos(x 2γ) cos(y 2γ) dγ √ 2γ (3.31) = 1 2 √ 2πt e -(x-y) 2 /(2t) + e -(x+y) 2 /(2t) ,
and from (3.30)

p(t; x, y) = 1 π ∞ 0 e -γt sin(x √ 2γ) √ 2γ sin(y √ 2γ) √ 2γ 2γ dγ = 1 2 √ 2πt e -(x-y) 2 /(2t) -e -(x+y) 2 /(2t) .
Moreover, 

f x0 (t) = 1 π ∞ 0 e -γt sin(x 2γ) dγ = x t 3/2 √ 2π e -x 2 /(2t) , and 
ν(t) = 1 π ∞ 0 e -γt 2γ dγ = 1 t 3/2 √ 2π . ( 3 
P x (H 0 > t) = ∞ 0 1 γ e -γt C(x; γ) ∆(dγ). (3.33) (ii)
The Lévy measure has the spectral representation 

ν((t, ∞)) = ∞ t ν(s) ds = ∞ 0 1 γ e -γt ∆(dγ). ( 3 
P x (H 0 > t) = ∞ t f x0 (s) ds = ∞ t ds ∞ 0 ∆(dγ) e -γs C(x; γ) = ∞ 0 ∆(dγ) ∞ t ds e -γs C(x; γ)
leading to (3.33). To make this rigorous, we verify that for all x > 0

∞ 0 1 γ e -γt |C(x; γ)| ∆(dγ) < ∞.
Consider first for ε > 0

K 1 := ε 0 1 γ e -γt |C(x; γ)| ∆(dγ).
By the basic estimate (3.13) for 0 < γ < ε

|C(x; γ)| ≤ S(x) exp ε x 0 M (z)dS(z) .
and, consequently,

K 1 ≤ S(x) exp ε x 0 M (z)dS(z) ∞ 0 1 γ e -γt ∆(dγ) < ∞ by (3.16). Next, let K 2 := ∞ ε 1 γ e -γt |C(x; γ)| ∆(dγ).
By the Cauchy-Schwartz inequality

K 2 2 ≤ ∞ ε γ -2 e -γt ∆(dγ) ∞ ε e -γt (C(x; γ)) 2 ∆(dγ).
The first term on the right hand side is finite by (3.16). For the second term we have

∞ ε e -γt (C(x; γ)) 2 ∆(dγ) ≤ ∞ 0 e -γt (C(x; γ)) 2 ∆(dγ). ≤ p(t; x, x) < ∞.
The proof of (3.33) is now complete.

4 Asymtotic behavior of the distribution of L t as t → +∞

We make the following assumption concerning the Lévy measure of the inverse local time process {τ ℓ : ℓ ≥ 0} valid throughout the rest of the paper (if nothing else is stated) (A) The probability distribution function

x → ν(1, x] ν(1, +∞) , x > 1,
is assumed to be subexponential.

It is known, see Sato [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF] p. 164, that Assumption (A) is equivalent with

P(τ ℓ ≥ t) ∼ t→+∞ ℓ ν((t, +∞)) ∀ ℓ > 0, (4.1) 
and also with

The law of τ ℓ is subexponential for every ℓ > 0. (4.2)

Proposition 4.1. For any fixed ℓ > 0, it holds

P 0 (L t ≤ ℓ) ∼ t→+∞ ℓ ν((t, +∞)). (4.3) 
Proof. The claim follows immediately from (4.1) since

P 0 (L t ≤ ℓ) = P(τ ℓ ≥ t).
Our goal is to study the asymptotic behavior of L t under P x . For this, we analyze first the distribution of the hitting time H 0 . The proof of the next proposition is based on Lemma 6.1 stated and proved in Section 6 below. Proposition 4.2. For any x > 0, it holds

P x (H 0 > t) ∼ t→+∞ S(x) ν((t, +∞)). (4.4) 
Proof. Recall from (3.33) and (3.34) in Proposition 3.7 the spectral representations

P x (H 0 > t) = ∞ 0 1 γ e -γt C(x; γ) ∆(dγ) (4.5) and ν((t, +∞)) = ∞ 0 1 γ e -γt ∆(dγ). (4.6) 
We apply Lemma 6.1 with µ(dγ) = ∆(dγ)/γ, g 1 (γ) = C(x; γ) and g 2 (γ) = S(x). Then, the mapping t → P x (H 0 > t) has the rôle of f 1 and t → S(x) ν((t, +∞)) the rôle of f 2 . Condition (6.1) takes the form lim t→∞ S(x) ν((t, +∞)) e bt = 0 and this holds by Assumption (A) and (2.4). Moreover, condition (6.2) means now lim γ→0 C(x; γ)/S(x) = 1 and this is true since using estimate (3.12) in (3.11) we obtain

C(x; γ) S(x) -1 ≤ α |γ|e β |γ|
with some α and β depending only on x. Consequently, (6.3) in Lemma 6.1 holds and, hence, the proof of the proposition is complete.

The main result of this section is as follows.

Proposition 4.3. For any x > 0 and ℓ > 0, it holds

P x (L t ≤ ℓ) ∼ t→+∞ (S(x) + ℓ) ν((t, +∞)). (4.7)
Proof. Since L t increases only when X is at 0 we may write

P x (L t ≤ ℓ) = P x (H 0 > t) + P x (H 0 < t , L t ≤ ℓ) = P x (H 0 > t) + P x (H 0 < t , L t-H 0 • θ H 0 ≤ ℓ) = P x (H 0 > t) + P x (H 0 < t , t -H 0 ≤ τℓ ),
where θ • denotes the usual shift operator and τℓ is a subordinator starting from 0, independent of H 0 and identical in law with τ ℓ (under P 0 ), by the strong Markov property. Consequently,

P x (L t ≤ ℓ) = P x (H 0 > t) + P x (τ ℓ + H 0 ≥ t) -P x (τ ℓ + H 0 ≥ t , H 0 > t) = P x (τ ℓ + H 0 ≥ t).
We use Lemma 2.4 and take therein F to be the P x -distribution τℓ (which is the same as the P 0 -distribution τ ℓ ) and G the P x -distribution of H 0 . Then, by (4.2), F is subexponential and from (4.3) and (4.4) we have

lim t→∞ P x (H 0 > t) P x (τ ℓ > t) = S(x) ℓ > 0.
Consequently, by Lemma 2.4,

lim t→∞ P x (τ ℓ + H 0 > t) P x (τ ℓ > t) + P x (H 0 > t) = 1,
in other words,

P x (L t ≤ ℓ) ∼ t→∞ P x (H 0 > t) + P x (τ ℓ > t) ∼ t→∞ S(x) ν((t, ∞)) + ℓ ν((t, ∞)),
as claimed.

Example 4.4. For a Bessel process of dimension d ∈ (0, 2) reflected at 0 we have from (3.28) in Example 3.5

ν((t, +∞)) = 2 1-α Γ(α) t -α ,
and Assumption (A) holds by Lemma 2.2. Consequently,

P x (L t < ℓ) ∼ t→∞ (S(x) + ℓ) ν((t, +∞)).
where the scale function is as in Example 3.5. Taking here α = 1/2 gives formulae for reflecting Brownian motion. We remark that our normalization of the local time (see (1.2)) is different from the one used in Roynette et al. [START_REF] Roynette | Penalizing a BES(d) process (0 < d < 2) with a function of its local time[END_REF] Section 2. In our case, from (1.4) and (3.28) it follows (cf. also [START_REF] Borodin | Handbook of Brownian Motion -Facts and Formulae[END_REF] p. 133 where the resolvent kernel is explicitly given) that

E 0 (exp(-λτ ℓ )) = exp -ℓ Γ(1 -α) Γ(α) 2 1-α λ α . (4.8)
Comparing now formula (2.11) in [START_REF] Roynette | Penalizing a BES(d) process (0 < d < 2) with a function of its local time[END_REF] with (4.8) it is seen that

L t = 2α L t
where L denotes the local time used in [START_REF] Roynette | Penalizing a BES(d) process (0 < d < 2) with a function of its local time[END_REF].

5 Penalization of the diffusion with its local time

General theorem of penalization

Recall that (C, C, {C t }) denotes the canonical space of continuous functions, and let P be a probability measure defined therein. In the next theorem we present the general penalization result which we then specialize to the penalization with local time.

Theorem 5.1. Let {F t : t ≥ 0} be a stochastic process (so called weight process) satisfying

0 < E(F t ) < ∞ ∀ t > 0.
Suppose that for any u ≥ 0

lim t→∞ E(F t | C u ) E(F t ) =: M u (5.1)
exists a.s. and E(M u ) = 1.

(5.2)

Then 1) M = {M u : u ≥ 0} is a non-negative martingale with M 0 = 1,
2) for any u ≥ 0 and

Λ ∈ C u lim t→∞ E(1 Λ F t ) E(F t ) = E(1 Λ M u ) =: Q (u) (Λ), (5.3) 
3) there exits a probability measure Q on (C, C) such that for any u > 0

Q(Λ) = Q (u) (Λ) ∀Λ ∈ C u .
Proof. We have (cf. Roynette et al. [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time[END_REF])

E(1 Λu F t ) E(F t ) = E 1 Λu E(F t | C u ) E(F t ) ,
and by (5.1) and (5.2) the family of random variables

E(F t | C u ) E(F t ) : t ≥ 0
is uniformly integrable by Sheffe's lemma (see, e.g., Meyer [START_REF] Meyer | Probabilités et potential[END_REF]), and, hence, (5.3) holds in L 1 (Ω). To verify the martingale property of M notice that if u < v then Λ u ∈ C v and by (5.3) we have also

lim t→∞ E(1 Λu F t ) E(F t ) = E(1 Λu M v ).
Consequently,

E(1 Λu M v ) = E(1 Λu M u ),
i.e., M is a martingale. Since the family {Q (u) : u ≥ 0} of probability measures is consistent, claim 3) follows from Kolmogorov's existence theorem (see, e.g., Billingsley [START_REF] Billingsley | Convergence of Probability Measures[END_REF] p. 228-230).

Penalization with local time

We are interested in analyzing the penalizations of diffusion X with the weight process given by

F t := h(L t ), t ≥ 0 (5.4)
with a suitable function h. In particular, if h = 1 [0,ℓ) for some fixed ℓ > 0 then F t = 1 {Lt<ℓ} . In the next theorem we prove under some assumtions on h the validity of the basic penalization hypotheses (5.1) and (5.2) for the weight process {F t : t ≥ 0}. The explicit form of the corresponding martingale M h is given. In Section 6.3 it is seen that M h remains to be a martingale for more general functions h, and properties of X under the probability measure induced by M h are discussed. In Roynette et al. [START_REF] Roynette | Penalizing a BES(d) process (0 < d < 2) with a function of its local time[END_REF] this kind of penalizations via local times of Bessel processes with dimension parameter d ∈ (0, 2) are studied. Our work generalizes Theorem 1.5 in [START_REF] Roynette | Penalizing a BES(d) process (0 < d < 2) with a function of its local time[END_REF] for diffusions with subexponential Lévy measure. Then for any u ≥ 0

lim t→∞ E 0 (h(L t ) | C u ) E 0 (h(L t )) = S(X u )h(L u ) + 1 -H(L u ) =: M h u a.s. (5.5 
)

and E 0 M h u = 1. (5.6) 
Consequently, statements 1), 2) and 3) in Theorem 5.1 hold.

Proof. I) We prove first (5.5). a) To begin with, the following result on the behavior of the denominator in (5.5) is needed: for any a ≥ 0

E a (h(L t )) ∼ t→+∞ (S(a)h(0) + 1) ν((t, ∞)). (5.7) 
To show this, let µ denote the measure induced by h, i.e., µ(dy) = -dh(y).

Then h(x) = (x,K] µ(dy) = (0,K] 1 {y>x} µ(dy), (5.8) 
and, consequently,

E a (h(L t )) = E a (0,K] 1 {ℓ>Lt} µ(dℓ) = (0,K] P a (L t < ℓ)µ(dℓ).
By Proposition 4.3

lim t→∞ P a (L t < ℓ) ν((t, ∞)) = S(a) + ℓ.
Moreover, for ℓ ≤ K

P a (L t < ℓ) ν((t, ∞)) ≤ P a (L t < K) ν((t, ∞)) → S(a) + K as t → ∞,
and, by the dominated convergence theorem,

lim t→∞ (0,K] P a (L t < ℓ) ν((t, ∞)) µ(dℓ) = (0,K] (S(a) + ℓ) µ(dℓ).
Hence,

E a (h(L t )) ∼ t→+∞ (0,K] (S(a) + ℓ) µ(dℓ) ν((t, ∞)), (5.9) 
and the integral in (5.9) can be evaluated as follows:

(0,K]
(S(a) + ℓ) µ(dℓ) = S(a)

(0,K] µ(dℓ) + (0,K] ℓ µ(dℓ) = S(a)h(0) + (0,K] µ(dℓ) ℓ 0 du = S(a)h(0) + K 0 du (u,K) µ(dℓ) = S(a)h(0) + K 0 h(u)du = S(a)h(0) + 1.
This concludes the proof of (5.7). b) To proceed with the proof of (5.5), recall that {L s : s ≥ 0} is an additive functional, that is, L t = L u + L t-u • θ u for t > u where θ u is the usual shift operator. Hence, by the Markov property, for t > u Bringing together (5.10) and (5.7) with a = 0 yields

E 0 (h(L t ) | C u ) = E 0 (h(L u + L t-u • θ u ) | C u ) = H(X u , L u , t -u) (5.
lim t→∞ E 0 (h(L t ) | C u ) E 0 (h(L t )) = S(X u )h(L u ) + ∞ Lu h(x)dx ∞ 0 h(x)
dx completing the proof of (5.5). II) To verify (5.6), we show that {M h t : t ≥ 0} defined in (5.5) is a nonnegative martingale with M h 0 = 1 (cf. Theorem 5.1 statement 1)). a) First, consider the process S(X) = {S(X t ) : t ≥ 0}. Since the scale function is increasing S(X) is a non-negative linear diffusion. Moreover, e.g., from Meleard [START_REF] Meleard | Application du calcul stochastique à l'etude de processus de Markov réguliers sur [0, 1[END_REF], it is, in fact, a sub-martingale with the Doob-Meyer decomposition S(X t ) = Ỹt + Lt , (

where Ỹ is a martingale and L is a non-decreasing adapted process. Because L increases only when S(X) is at 0 or, equivalently, X is at 0 L is a local time of X at 0. Consequently, L is a multiple of L a.s. (for the normalization of L, see (1.2)), i.e., there is a non-random constant c such that for all t ≥ 0 Lt = c L t .

(5.12)

We claim that L coincides with L, that is c = 1. To show this, recall that 

E x (L ( 
R λ (0, 0) = ∞ 0 λ e -λt E 0 (L t ) dt.
>From (5.11) and (5.12) we have E 0 (L t ) = 1 c E 0 (S(X t )), and, hence,

R λ (0, 0) = 1 c ∞ 0 λ e -λt E 0 (S(X t )) dt = 1 c ∞ 0 S(y) λ R λ (0, y) m(dy).
(5.13)

Next recall that the resolvent kernel can be expressed as

R λ (x, y) = w -1 λ ψ λ (x) ϕ λ (y), 0 ≤ x ≤ y, (5.14) 
where w λ is a constant (Wronskian) and ϕ λ and ψ λ are the fundamental decreasing and increasing, respectively, solutions of the generalized differential equation d dm

d dS u = λu (5.15)
characterized (probabilistically) by

E x e -λHy = R λ (x, y) R λ (y, y) .
(5.16)

Consequently, (5.13) is equivalent with To prove this, recall that the Wronskian (a constant) is given for all z ≥ 0 by

ϕ λ (0) = 1 c ∞ 0 S(y) λ ϕ λ (y) m(dy) = 1 c ∞ 0 S ( 
w λ = ϕ λ (z) d dS ψ λ (z) + ψ λ (z) - d dS ϕ λ (z) . (5.19) 
Notice that both terms on the right hand side are non-negative. Since the boundary point +∞ is assumed to be natural it holds that lim z→∞ H z = +∞ a.s. and, therefore, (cf. (5.16))

lim z→∞ ψ λ (z) = +∞.
Consequently, letting z → +∞ in (5.19) we obtain (5.18). Now (5.17) takes the form

ϕ λ (0) = - 1 c (ϕ λ (+∞) -ϕ λ (0)) .
This implies that c = 1 since ϕ λ (+∞) = 0 by the assumption that +∞ is natural (cf. (5.16)). b) To proceed with the proof that M h is a martingale, consider first the case with continuously differentiable h. Then, applying (5.11),

dM h t = h(L t )(d Ỹt + dL t ) + S(X t )h ′ (L t )dL t -h(L t )dL t = h(L t )dY t , (5.20) 
where we have used that

S(X t )h ′ (L t )dL t = S(0)h ′ (L t )dL t = 0.
Consequently, M h is a continuous local martingale, and it is a continuous martingale if for any T > 0 the process {M h t : 0 ≤ t ≤ T } is uniformly integrable (u.i.). To prove this, we use again (5.11) and write

M h t = h(L t ) Ỹt + h(L t )L t + 1 -H(L t ). (5.21) 
Since h is non-increasing and and has a compact support in [0, K] we have

|h(L t )L t + 1 -H(L t )| ≤ K sup x∈[0,K] h(x) + ∞ 0 h(u)du showing that {h(L t )L t +1-H(L t ) : t ≥ 0} is u.i. Moreover, since {h(L t ) : t ≥ 0} is bounded and { Ỹt : 0 ≤ t ≤ T } is u.i. it follows that {h(L t ) Ỹt : 0 ≤ t ≤ T } is u.i.. Consequently, {M h t : 0 ≤ t ≤ T } is u.i.
, as claimed, and, hence, {M h t : t ≥ 0} is a true martingale implying (5.6). By the monotone class theorem (see, e.g., Meyer [START_REF] Meyer | Probabilités et potential[END_REF] T20 p. 28) we can deduce that {M h t : t ≥ 0} remains a martingale if the assumtion "h is continuously differentiable" is relaxed to be "h is bounded and Borel-measurable". The proof of Theorem 5.2 is now complete.

Example 5.3. Let h(x) := 1 [0,ℓ) (x) with ℓ > 0. Then h(0) = 1, ∞ x h(y)dy = (ℓ -x) + , ∞ 0 h(y)dy = ℓ,
Proposition 5.5. Let λ denote the last exit time from 0, i.e., λ := sup{t :

X t = 0} with λ = 0 if {•} = ∅. Then 1) Q h (0 < λ < ∞) = 1, 2) under Q h a) {X t : t ≤ λ} and {X λ+t : t ≥ 0} are independent, b) conditionally on L ∞ = ℓ, the process {X t : t ≤ λ} is distributed as {X t : t ≤ τ ℓ } under P 0 , in other words, E h (F (X t : t ≤ λ) f (L ∞ )) = ∞ 0 f (ℓ)h(ℓ)E 0 (F (X t : t ≤ τ ℓ ) dℓ. (5.29)
where F is a bounded and measurable functional defined in the canonical space (C, C, (C t )) and f : [0, ∞) → [0, ∞) is a bounded and measurable function.

c) the process {X λ+t : t ≥ 0} is distributed as {X ↑ t : t ≥ 0} started from 0.

Proof. Consider for a given T > 0

∆ := E h F 1 (X u : u ≤ λ) F 2 (X λ+v : v ≤ T ) f (L λ ) 1 {0<λ<∞} ,
where F 1 and F 2 are bounded and measurable functionals defined in the canonical space (C, C, (C t )) and f : [0, ∞) → [0, ∞) is a bounded and measurable function. For N > 0 define

λ N := sup{u ≤ N : X u = 0} and ∆ (1) N := E h F 1 (X u : u ≤ λ N ) F 2 (X λ N +v : v ≤ T ) f (L λ N ) 1 {λ N +T <N } . Then ∆ = lim N →∞ ∆ (1) 
N .

By absolute continuity, cf. (5.24), ∆

N = E 0 F 1 (X u : u ≤ λ N ) F 2 (X λ N +v : v ≤ T ) f (L λ N ) 1 {λ N +T <N } M h N = E 0 F 1 (X u : u ≤ λ N ) F 2 (X λ N +v : v ≤ T ) f (L λ N ) 1 {λ N +T <N } × (S(X N )h(L N ) + 1 -H(L N )) . (1) 
Since F 1 , F 2 , and f are bounded and lim N →∞

(1 -H(L N )) = 0 P 0 -a.s.

we have

∆ = lim N →∞ E 0 F 1 (X u : u ≤ λ N ) F 2 (X λ N +v : v ≤ T ) f (L λ N ) ×1 {λ N +T <N } S(X N )h(L N ) . Let ∆ (2) 
N denote the expression after the limit sign. Then we write ∆ where E denotes the excursion space, e is a generic excursion, ζ(e) is the life time of the excursion e, and n is the Itô measure in the excursion space (see, e.g., [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] p. 480 and [START_REF] Salminen | On the excursion theory for linear diffusions[END_REF]). We claim that 

N = E 0 ℓ F 1 (X u : u ≤ τ ℓ-) F 2 (X τ ℓ-+v : v ≤ T ) ×f (2) 

:

  t ≥ 0} denote the local time of X at y normalized viaL y, y + δ)) t 0 1 [y,y+δ) (X s ) ds.

Proposition 3 . 3 .

 33 (i) The density of the P x -distribution of the first hitting time H 0 has the spectral representationf x0 (t) = ∞ 0 e -γt C(x; γ) ∆(dγ).(3.19)(ii) The density of the Lévy measure of the inverse local time at 0 has the spectral representationν(t) = ∞ 0 e -γt ∆(dγ). (3.20) Proof. (i) Combining (3.3) and (3.18) yields f x0 (t) = lim y↓0 p(t; x, y) S(y) .

2 ∞ 0 e

 20 1) n (z/2) ν+2n Γ(n + 1) Γ(ν + n + 1) , and, finally, putting pieces together into (3.15) yields p(t; x, y) = 1 -γt (xy) α J -α x 2γ J -α y 2γ dγ. (3.27) Next we compute the Krein measure ∆ associated with R. For this, we deduce from (3.3), (3.4), (3.23), and (3.25)

  .32) >From (3.31) we obtain ∆(dγ) = dγ/(π √ 2γ), and from (3.32) ∆(dγ) = √ 2γ dγ/π. See also Karlin and Taylor [8] p. 337 and 393, and [2] p. 120. Proposition 3.7. (i) The complementary P x -distribution function of H 0 has the spectral representation

Theorem 5 . 2 .H

 52 Let h : [0, ∞) → [0, ∞) be a Borel measurable, right-continuous and non-increasing function with compact support in [0, K] for some given K > 0. Assume also that K 0 h(y) dy = 1, and define for x ≥ 0

  [START_REF] Kent | Eigenvalue expansions for diffusion hitting times[END_REF] with H(a, ℓ, r) := E a (h(ℓ + L r )).By (5.7), since x → h(ℓ + x) is non-increasing with compact support, H(a, ℓ, r) ∼ t→+∞ S(a)h(ℓ) + ∞ 0 h(ℓ + u)du ν((t, ∞)).

  ; x, y) ds, which yields (cf. (1.1))

  y) m(dy).

  third equality we have used Fubini's theorem. Next we claim that d dS ϕ λ (+∞) := lim x→∞ d dS ϕ λ (x) = 0. (5.18)

ℓ) 1

 1 {τ ℓ-+T <N <τ ℓ } S(X N )h(ℓ) ,where {τ ℓ } is the right continuous inverse of {L t } (see(1.3)). By the Master formula (see Revuz and Yor[START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] p. 475 and 483) ℓ)f (ℓ)E 0 F 1 (X u : u ≤ τ ℓ ) × E n(de) F 2 (e v : v ≤ T ) 1 {T ≤N -τ ℓ ≤ζ(e)} S(e N -τ ℓ ) ,

F 2 3 ) 5 ) 0 ee 1 ≥ 1 ,

 235011 (e v : v ≤ T ) 1 {T ≤T ′ ≤ζ(e)} S(e T ′ ) n(de)= E ↑ 0 (F 2 (X v : v ≤ T )) .(5.30)Assume also that g 2 (γ) > 0 for all γ. Introduce for λ ≥ λ 0f i (λ) := [0,+∞) e -λγ g i (γ) µ(dγ), i = 1, 2.and suppose lim λ→+∞ f 2 (λ) e bλ = +∞ for all b > 0.Proof. By property (6.2) there exist two functions θ * and θ * such that for some ε > 0 and for all γ ∈ (0, ε)θ * (ε) g 2 (γ) ≤ g 1 (γ) ≤ θ * (ε) g 2 (γ).We assume also that θ * (ε) > 0 and θ * (ε) > 0. Letting λ ≥ 2λ 0 we have forγ ≥ ε λγ ≥ λ 0 γ + λγ 2 ≥ λ 0 γ + λε 2 and ∞ ε e -λγ |g i (γ)| µ(dγ) ≤ e -λε/2 ∞ ε e -λ 0 γ |g i (γ)| µ(dγ) ≤ e -λε/2 C i . (6.6)Furthermore, from (6.4)ε 0 e -λγ g 1 (γ) µ(dγ) ≤ θ * (ε) ε 0 e -λγ g 2 (γ) µ(dγ) ≤ θ * (ε) ∞ 0 e -λγ g 2 (γ) µ(dγ) ≤ θ * (ε) f 2 (λ) (6.7)since g 2 is assumed to be positive. Writingf 1 (λ) = ε -λγ g 1 (γ) µ(dγ) + ∞ ε e -λγ g 1 (γ) µ(dγ)the estimates in (6.6) and (6.7) yieldf 1 (λ) ≤ θ * (ε) f 2 (λ) + e -λε/2 C 1 ,which after dividing with f 2 (λ) > 0 implies using (6.1) and (6.5) -λγ g 1 (γ) µ(dγ)≥ [0,ε) e -λγ g 1 (γ) µ(dγ) -∞ ε e -λγ |g 1 (γ)| µ(dγ) ≥ θ * (ε) [0,ε) e -λγ g 2 (γ) µ(dγ)e -λε/2 C θ * (ε) f 2 (θ) -∞ ε e -λγ g 2 (γ) µ(dγ)e -λε/2 C 1 . ≥ θ * (ε) f 2 (θ)θ * (ε) e -λε/2 C 2e -λε/2 C 1 . Hence, f 1 (λ) f 2 (λ) ≥ θ * (ε) -(θ * (ε)C 2 -C 1 ) 1 e λε/2 f 2 (λ) showing that lim inf λ→+∞ f 1 (λ) f 2 (λ) ≥and completing the proof.

  .22) 

	Scale function			S(x) =	1 2α	x 2α	(3.23)
	Transition density of R (w.r.t. m)				
	p(t; x, y) =	1 2t	(xy) α exp -	x 2 + y 2 2t	I -α	xy t	, x, y > 0. (3.24)
	Transition density of R (w.r.t. m)				
	p(t; x, y) =	1 2t	(xy) α exp -	x 2 + y 2 2t	I α	xy t	, x, y > 0.	(3.25)

and the martingale M h takes the form

The law of X under the penalized measure

In this section we study the process X under the penalized measure Q introduced in Theorem 5.2. In fact, we consider a more general situation, and assume that h is "only" a Borel measurable and non-negative function defined on R + such that

For such a function h we define

where

H(x) :=

x 0 h(y)dy.

It can be proved (see Roynette et al. [20] Section 3.2 and [START_REF] Roynette | Penalizing a BES(d) process (0 < d < 2) with a function of its local time[END_REF] Section 3) that {M h t : t ≥ 0} is also in this more general case a martingale such that E 0 (M h t ) = 1 and lim t→∞ M h t = 0. Therefore, we may define, for each u ≥ 0, a probability measure Q h on (C, C u ) by setting

(5.24)

The notation E h is used for the expectation with respect to Q h . Next two propositions constitute a generalization of Theorem 1.5 in [START_REF] Roynette | Penalizing a BES(d) process (0 < d < 2) with a function of its local time[END_REF].

Proof. For u ≥ 0 and ℓ ≥ 0 it holds {L u ≥ ℓ} ∈ C u , and, consequently,

As a result,

Letting here u → ∞ and using the fact that τ ℓ is finite P 0 -a.s. shows that

Moreover, from assumption (5.22) it now follows that L ∞ is Q h -a.s. finite, and the proof is complete.

In the proof of the next proposition we use the process X ↑ = {X ↑ t : t ≥ 0} which is obtained from X (cf. (3.1)) by conditioning X not to hit 0. The process X ↑ can be described as Doob's h-transform of X, see, e.g., Salminen, Vallois and Yor [START_REF] Salminen | On the excursion theory for linear diffusions[END_REF] p.105. The probability measure and the expectation operator associated with X ↑ are denoted by P ↑ and E ↑ , respectively. The transition density and the speed measure associated with X ↑ are given by p ↑ (t; x, y) := p(t; x, y) S(y)S(x) , m ↑ (dy) := S(y) 2 m(dy).

(5.26)

(5.27)

Consequently, we have the formula

Notice that the right hand side of (5.30) does not depend on T ′ . We prove (5.30) for F 2 of the form

where G is a bounded and measurable function. For simplicity, take k = 2 and use Theorem 2 in [START_REF] Salminen | On the excursion theory for linear diffusions[END_REF] to obtain (for notation and results needed, see

, (5.26) and (5.27))

proving (5.30). Consequently, we have (for all N ) ∆

and choosing here F 1 , F 2 , and f appropriately implies all the claims of Proposition. In particular,

6 Appendix: a technical lemma

The following lemma could be viewed as a "weak" form of the Tauberian theorem (cf. Feller [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF] Theorem 1 p. 443) stating, roughly speaking, that if two functions behave similarly at zero then their Laplace transforms behave similarly at infinity. Lemma 6.1. Let µ be a σ-finite measure on [0, +∞) and g 1 and g 2 two real valued functions such that for some λ 0 > 0

e -λ 0 γ |g i (γ)| µ(dγ) < ∞, i = 1, 2.