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SPECTRAL ANALYSIS OF TRANSPORT EQUATIONS WITH BOUNCE-BACK
BOUNDARY CONDITIONS.
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Laboratoire de Mathématiques, CNRS UMR 6620

63117 Aubière, France.†

ABSTRACT. We investigate the spectral properties of the time-dependent linear transport equation
with bounce-back boundary conditions. A fine analysis of thespectrum of the streaming operator is
given and the explicit expression of the strongly continuous streaming semigroup is derived. Next,
making use of a recent result from [1], we prove, via a compactness argument, that the essential
spectrum of the transport semigroup and that of the streaming semigroup coincide on allLp-spaces
with 1 < p <∞.
KEYWORDS: Transport operator, bounce-back boudary conditions, transport semigroup, essential
spectrum, compactness.
AMS SUBJECT CLASSIFICATIONS(2000): 47D06, 47D05, 47N55, 35F05, 82C40

1. INTRODUCTION

The spectral theory of transport equations withno-reentry boundary conditions(i.e. with zero
incoming flux in the spatial domain) received a lot attentionin the last decades (see, for example,
the works [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and the references therein). The picture is fairly complete
by now and almost optimal results have been obtained in [12] for bounded spatial domains and in
[13] for unbounded domains.

When dealing with reentry boundary conditions (including periodic boundary conditions, spec-
ular reflections, diffuse reflections, generalized or mixedtype boundary conditions), many progress
have been made in the recent years in the understanding of thespectral features of one-dimensional
models [14, 15, 16, 17, 18, 19, 20]. However, to our knowledge, for higher dimensions, only few
partial results are available in the literature [21, 22, 23, 24], dealing in particular with very pecu-
liar shapes of the spatial domain. Our paper deals with the following two problems concerning
multidimensional transport equations withbounce-back (reverse) boundary conditionsin convex
bounded domains:

(1) The spectral analysis of the streaming operator subjected to bounce-back boundary condi-
tions and the explicit expression of the streaming semigroup.

(2) The compactness of the difference of the (perturbed) transport semigroup and the stream-
ing semigroup.
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To be more precise, we are concerned with the following initial-boundary-value problem in
Lp–spaces(1 6 p <∞)

∂ψ

∂t
(x, v, t) = −v · ∇xψ(x, v, t) − Σ(x, v)ψ(x, v, t) +

∫

RN

κ(x, v, v′)ψ(x, v′, t)dv′

= Tψ(x, v, t) +Kψ(x, v, t), (x, v) ∈ D × R
N , t > 0;

(1.1a)

with bounce-back boundary conditions:

ψ|Γ−
(x, v, t) = γψ|Γ+

(x,−v, t), (x, v) ∈ Γ−, t > 0; (1.1b)

and the initial condition

ψ(x, v, 0) = ψ0(x, v) ∈ Lp(D × R
N ). (1.1c)

HereD is a smoothconvexopen subset ofRN (N > 1), γ is a real constant belonging to(0, 1) and
Γ∓ represent the incoming and outgoing parts of the boundary ofthe phase space (see Section 2 for
details). The collision frequencyΣ(·, ·) ∈ L∞(D×R

N ) is a non-negative function. The scattering
kernelκ(·, ·, ·) is nonnegative and defines the linear operatorK called the collision operator which
is assumed to be bounded onLp(D × R

N ) (1 6 p < +∞). The operatorT appearing in (1.1a) is
called thestreaming operatorwhile T +K denotes the (full) transport operator. It is well-known
[25] that, sinceγ < 1, T generates a C0-semigroup of contractions(U(t))t>0 in Lp(D × R

N )
(streaming semigroup) and, sinceK is bounded,T +K is also the generator of a C0-semigroup
(V (t))t>0 in Lp(D × R

N ) (transport semigroup).

Our work is displayed into two parts, referring to the above points(1) and(2). First, we present
a fine description of the spectrumσ(T ) of the streaming operator inLp(D × R

N ), 1 6 p < ∞.
Moreover, we derive the explicit expression of the streaming semigroup(U(t))t>0 for the par-
ticular case of a space-homogenous collision frequency. Second, we prove that the difference
R1(t) = V (t) − U(t) is compact inLp(D × R

N ) (1 < p < ∞) for any t > 0 under natural
assumptions on the scattering operatorK. The interest of such a compactness result lies in the
fact that it implies that the streaming semigroup and the transport semigroup possess the same
essential spectrum (see [26] for a precise definition). In particular, their essential types coincide.
This shows that the part of the spectrum of the transport semigroup outside the spectral disc of the
streaming semigroup consists of, at most, eigenvalues withfinite algebraic mutiplicities. Assum-
ing the existence of such eigenvalues, the transport semigroup can be decomposed into two parts:
the first containing the time development of finitely many eigenmodes, the second being of faster
decay.

Although the well-posedness of the problem (1.1) is a known fact [27, 25, 22, 28], the de-
scription of the spectrum of the streaming operator and the analytic expression of its semigroup
seem to be new. Let us also notice that besides the interesting consequences of the compactness
of R1(t) on the behavior for large times of the solution of the problem(1.1), it is an interesting
result in itself.Actually, it is the first time that the compactness of the firstorder remainder term
of the Dyson-Phillips expansion of the transport operator with reentry boundary conditions is dis-
cussed in higher dimensions. For the one-dimensional case we refer to the work [19] while the
compactness ofR1(t) in the case of non-reentry boundary condition was established in [12].



SPECTRAL ANALYSIS OF TRANSPORT EQUATIONS WITH BOUNCE-BACKBOUNDARY CONDITIONS 3

As in [19], the mathematical analysis is based upon a recent result owing to M. Sbihi [1]
(see also Section 4) valid for Hilbert spaces. Actually, under some natural assumptions on the
collision operator, we prove, via approximation arguments, the compactness ofR1(t) onL2(D ×
R

N , dx ⊗ dv). The result is then extended toLp(D × R
N , dx⊗ dv) with p ∈ (1, 2) ∪ (2,∞) by

an interpolation argument. Unfortunately, the limiting casep = 1 is not covered by our analysis
and requires certainly another approach. Notice that the compactness ofR1(t) for p = 1 is also
an open problem in the one-dimensional case [19] and for no-reentry boundary condition [12].

The outline of this work is as follows. In Section 2 we introduce the functional setting of the
problem and fix the different notations and facts needed in the sequel. Section 3 is devoted to
the spectral analysis of the streaming operator with bounce-back boundary conditions and to the
analytic expression of the streaming semigroup. The compactness of the first order remainder term
of the Dyson-Phillips expansion is the topic of Section 4.

2. PRELIMINARY RESULTS

For the definitions of the different spectral notions used throughout this paper we refer, for
example, to the book [26]. If X is a Banach space,B(X) will denote the set of all bounded linear
operators onX.

LetD be a smooth bounded open subset ofR
N . We define the partial Sobolev space

Wp = {ψ ∈ Xp ; v · ∇xψ ∈ Xp}

whereXp = Lp(D × R
N ,dx ⊗ dv) (1 6 p < ∞). Let us denote byΓ− (respectivelyΓ+) the

incoming (resp. outgoing) part of the boundary of the phase spaceD × R
N

Γ± =
{
(x, v) ∈ ∂D × R

N ; ±v · n(x) > 0
}

wheren(x) stands for the outward normal unit atx ∈ ∂D. SuitableLp-spaces for the traces on
Γ± are defined as

Lp
± = Lp

(
Γ±; |v · n(x)|dγ(x) ⊗ dv

)
,

dγ(·) being the Lebesgue measure on∂D. For anyψ ∈ Wp, one can define the tracesψ|Γ±
on

Γ±, however these traces do not belong toLp
± but to a certain weighted space (see [25, 29, 30]).

For this reason, one defines

W̃p =

{
ψ ∈Wp ; ψ|Γ±

∈ Lp
±

}
.

In all the sequel, we shall assume thatΣ(·, ·) is a measurablenon-negativefunction onD × R
N

that fulfills the following.

Assumption 2.1. The collision frequencyΣ(·, ·) is an even function of the velocity, i.e. for any
(x, v) ∈ D × R

N , Σ(x, v) = Σ(x,−v).

Let us define the absorption operator withbounce-back boundary conditions:
{
T : D(T ) ⊂ Xp −→ Xp

ϕ 7−→ Tϕ(x, v) := −v · ∇xϕ(x, v) − Σ(x, v)ϕ(x, v),
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with domain

D(T ) :=

{
ψ ∈ W̃p such thatψ|Γ−

(x, v) = γ ψ|Γ+
(x,−v)

}

where0 < γ < 1. We recall (see e.g. [25, 22]) that T is a generator of a non-negative C0-
semigroup of contractions(U(t))t>0 in Xp (1 6 p <∞)

Remark 2.2. Notice that our analysis also applies to the more general case γ > 1 provided the
associated transport operatorT generates a C0-semigroup inXp. Practical conditions on the
geometry ofD ensuring the latter to hold are given in[28].

Definition 2.3. For any(x, v) ∈ D × R
N , define

t±(x, v) = sup{ t > 0 ;x± sv ∈ D, ∀ 0 < s < t } = inf{ s > 0 ; x± sv /∈ D}.

For the sake of convenience, we will set

τ(x, v) := t−(x, v) + t+(x, v) for any(x, v) ∈ D × R
N .

Let us define

ϑ(x, v) =

∫ t−(x,v)

−t+(x,v)
Σ(x− sv, v)ds, (x, v) ∈ D × R

N .

One proves easily the following thanks to Assumption2.1.

Lemma 2.4. For any(x, v) ∈ D × R
N ,

ϑ(x, v) = ϑ(x,−v) =

∫ τ(x,v)

0
Σ(x+ t−(x, v)v − sv, v)ds.

In particular, for any(x, v) ∈ Γ−

ϑ(x, v) =

∫ t+(x,v)

0
Σ(x+ sv, v)ds.

Now let us investigate the resolvent ofT . For anyλ ∈ C such thatReλ > 0, let us define
Mλ ∈ B(Lp

−, L
p
+) by

Mλu(x, v) = u(x− τ(x, v)v, v) exp

{
−

∫ τ(x,v)

0
λ+ Σ(x− sv, v)ds

}
, (x, v) ∈ Γ+,

and letBλ ∈ B(Lp
−,Xp) be given by

Bλu(x, v) = u(x− t−(x, v)v, v) exp

{
−

∫ t−(x,v)

0
λ+ Σ(x− sv, v)ds

}
, (x, v) ∈ D .

In the same way, letGλ ∈ B(Xp, L
p
+) be given as

Gλϕ(x, v) =

∫ τ(x,v)

0
ϕ(x− sv, v) exp

{
−

∫ s

0
λ+ Σ(x− tv, v)dt

}
ds, (x, v) ∈ Γ+ ;
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andCλ ∈ B(Xp) be defined as

Cλϕ(x, v) =

∫ t(x,v)

0
ϕ(x− tv, v) exp

{∫ t

0
λ+ Σ(x− sv, v)ds

}
dt, (x, v) ∈ D .

It is not difficult to show the following in the spirit of [31].

Proposition 2.5. Let0 < γ < 1 be fixed and letH ∈ B(Lp
+, L

p
−) be defined by:

H(φ+)(x, v) = γφ+(x,−v) for any (x, v) ∈ Γ−. (2.1)

If λ ∈ C is such that1 ∈ ̺(MλH), thenλ ∈ ̺(T ) with

(λ− T )−1 = BλH(I −MλH)−1Gλ +Cλ. (2.2)

In particular, if there isλ0 ∈ R such that

rσ(MλH) < 1 ∀Reλ > λ0,

then{λ ∈ C ; Reλ > λ0} ⊂ ̺(T ) and the resolvent ofT is given by(2.2).

3. STUDY OF THE STREAMING OPERATOR AND SEMIGROUP

We shall focus in this section on the streaming operator associated with bounce-back boundary
conditions and the associated semigroup.

3.1. Description of the spectrum ofT . To discuss the spectrum ofT , we provide a more precise
description of the inverse operator of(I−MλH) ∈ B(Lp

+). Precisely, let us define the measurable
function

mλ(x, v) = γ exp

{
−

∫ τ(x,v)

0
λ+ Σ(x− sv, v)ds

}
, (x, v) ∈ Γ+.

Before stating our first result we recall that the essential range of the measurable functionmλ(·, ·),
Ress(mλ), is the set

{
u ∈ C :

∣∣ {(x, v) ∈ Γ+; |mλ(x, v) − u| < ε}
∣∣ 6= 0 ∀ε > 0

}

where|A| denotes the Lebesgue measure of the setA. Then, one has the following:

Proposition 3.1. Letλ ∈ C be such that1 /∈ Ress(mλ). Then,(I−MλH) ∈ B(Lp
+) is invertible

with inverse given by
[
(I −MλH)−1ψ

]
(x, v) = (1−m2

λ(x, v))−1 [(I +MλH)ψ] (x, v), ∀ ψ ∈ Lp
+, (x, v) ∈ Γ+.

Proof. Let us fixλ ∈ C and consider the equation:

ψ − (MλH)ψ = g, (3.1)

whereg ∈ Lp(Γ+) as well as the unknown functionψ. From (3.1), one sees that

ψ(x, v) −mλ(x, v)ψ(x − τ(x, v)v,−v) = g(x, v), (x, v) ∈ Γ+.
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For anyfixed(x, v) ∈ Γ+, one has

g(x− τ(x, v)v,−v) = ψ(x− τ(x, v)v,−v) −mλ(x− τ(x, v)v,−v)×

× ψ(x− τ(x, v)v + τ(x− τ(x, v)v,−v)v,+v).

Now, one sees easily thatmλ(x− τ(x, v)v,−v) = mλ(x, v) while

ψ(x− τ(x, v)v + τ(x− τ(x, v)v,−v)v,+v) = ψ(x, v).

Therefore, one has

g(x− τ(x, v)v,−v) = ψ(x− τ(x, v)v,−v) −mλ(x, v)ψ(x, v)

so that
[MλHg] (x, v) = mλ(x, v)g(x − τ(x, v)v,−v)

= mλ(x, v)ψ(x − τ(x, v)v,−v) −m2
λ(x, v)ψ(x, v).

Sincemλ(x, v)ψ(x − τ(x, v)v,−v) = [MλHψ] (x, v), one obtains from (3.1) that

g(x, v) + [MλHg] (x, v) =
(
1 −m2

λ(x, v)
)
ψ(x, v), (x, v) ∈ Γ+.

This leads to an explicit expression of the solution to (3.1):

ψ(x, v) = (1 −m2
λ(x, v))−1 [(I +MλH) g] (x, v).

Defining
Rλg(x, v) = (1 −m2

λ(x, v))−1 [(I +MλH) g] (x, v)

it is not difficult to see that

1 /∈ Ress(mλ) =⇒ Rλ ∈ B(Lp
+),

and the above calculations show thatRλ = (I −MλH)−1. �

The precise picture of the spectrum ofT is given by the following, which is in the spirit of [20]

Theorem 3.2. For anyk ∈ Z, let us define

Fk(x, v) =
log γ − ϑ(x, v)

τ(x, v)
− i

2kπ

τ(x, v)
, ∀(x, v) ∈ D × R

N .

Then,

σ(T ) =
⋃

k∈Z

Ress(Fk)

whereRess(Fk) stands for the essential range ofFk.

Proof. Let us begin with the inclusion⊃. Givenλ ∈ Ress(Fk) (k ∈ Z). Let ε > 0 and define

Λε := {(x, v) ∈ D × R
N ; |λ− Fk(x, v)| 6 ε}.

By the definition ofRess(Fk), |Λε| 6= 0 for any ε > 0. For any integern ∈ N, defineBn =
{(x, v) ∈ D × R

N , τ(x, v) > 1/n}. Sinceτ(x, v) > 0 for a. e.(x, v) ∈ D × R
N , one has

Λε =
⋃

n

(
Bn ∩ Λε

)
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so that, for anyε > 0, there existsn(ε) ∈ N such that|Bn(ε) ∩ Λε| 6= 0. Define

Aε := Bn(ε) ∩ Λε, ε > 0

so that|Aε| 6= 0 for anyε > 0, while

ess -inf
{
τ(x, v) ; (x, v) ∈ Aε

}
> 1/n(ε) > 0, for anyε > 0. (3.2)

Then, letχε stand for the characteristic function of the measurable setAε (ε > 0). One sees that

χε(x, v) = χε(x,−v), and χε(x+ tv, v) = χε(x, v)

for t > 0 small enough. Now, for anyε > 0, one can define

ϕε(x, v) = χε(x, v) exp

{
−

∫ t−(x,v)

0

(
Fk(x, v) + Σ(x− sv, v)

)
ds

}
, (x, v) ∈ D × R

N .

One sees thatϕε ∈ L∞(D × R
N) for anyε > 0, since

ess -sup
(x,v)∈Aε

∣∣∣∣∣ exp

{
−

∫ t−(x,v)

0

(
Fk(x, v) + Σ(x− sv, v)

)
ds

}∣∣∣∣∣ <∞

by virtue of (3.2). Moreover, sincet−(x, v) = 0 for any(x, v) ∈ Γ−, one sees that

ϕε|Γ−
= χε.

Given(x, v) ∈ Γ− andε > 0, one has

ϕε(x,−v) = χε(x,−v) exp

{
−

∫ t−(x,−v)

0

(
Fk(x,−v) + Σ(x+ sv,−v)

)
ds

}
.

Sincet−(x,−v) = t+(x, v) = τ(x, v) andFk(x,−v) = Fk(x, v) (see Lemma2.4), one has

ϕε(x,−v) = χε(x, v) exp

{
−τ(x, v)Fk(x, v) −

∫ t+(x,v)

0
Σ(x+ sv,−v) ds

}
.

Now, one checks that

−τ(x, v)Fk(x, v) = − log γ + ϑ(x, v) + 2ikπ

= − log γ + 2ikπ +

∫ t+(x,v)

0
Σ(x+ sv, v)ds ∀(x, v) ∈ Γ−,

where we used again Lemma2.4. Thus, one sees that, for any(x, v) ∈ Γ−,

ϕε(x,−v) =
1

γ
ϕε(x, v)

which exactly means thatϕε fulfils the boundary conditions (2.1). Finally, it is easy to see that
ϕε ∈ D(T ). Define now the net(ψε)ε by

ψε = ϕε/‖ϕε‖, ε > 0 (3.3)

and letgε = (λ− T )ψε, i. e.

gε(x, v) = (λ+ Σ(x, v))ψε(x, v) + v · ∇xψε(x, v).
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Using the fact, for any(x, v) ∈ D × R
N , and for anyt > 0 small enough,ϑ(x+ tv, v) = ϑ(x, v)

(note that the same occurs forFk) one can prove that

gε(x, v) =
(
λ− Fk(x, v)

)
ψε(x, v), (x, v) ∈ D × R

N , ε > 0

and so
‖gε‖ 6 ess -sup

(x,v)∈Aε

|λ− Fk(x, v)| ‖ψε‖ 6 ε.

This, together with (3.3) achieves to show that(ψε)ε>0 is asingular netof T so thatλ ∈ σ(T ).
The closedness of the spectrum ensures that

⋃

k∈Z

Ress(Fk) ⊂ σ(T ).

Let us prove now the converse inclusion. Assume thatλ /∈ Ress(Fk) for anyk ∈ Z. Then, for any
k ∈ Z, there existsβk > 0 such that

|λ− Fk(x, v)| > βk a.e.(x, v) ∈ D × R
N ,

i.e. ∣∣∣∣
log γ − ϑ(x, v) − 2ikπ

τ(x, v)
− λ

∣∣∣∣ > βk a.e.(x, v) ∈ D × R
N .

Then,

| log γ − ϑ(x, v) − 2ikπ − λ τ(x, v)| > τ(x, v)βk a. e.(x, v) ∈ D × R
N .

This means that, for any integern > 0, there existscn > 0 such that
∣∣∣∣
log γ − ϑ(x, v) − λ τ(x, v)

2π n
± i

∣∣∣∣ > cnτ(x, v) a. e.(x, v) ∈ D × R
N , n > 1,

and
| log γ − ϑ(x, v) − λ τ(x, v)| > c0 τ(x, v) a. e.(x, v) ∈ D × R

N .

Arguing as in [20], one can chooseM > 0 such that

|log γ − ϑ(x, v) − λτ(x, v)| 6 M a. e.(x, v) ∈ D × R
N ,

and

|exp {log γ − ϑ(x, v) − λτ(x, v)} − 1| >
C

2

N∏

n=1

c2nτ(x, v)
2 a. e.(x, v) ∈ D × R

N ,

where

C = ess -inf
(x,v)∈D×RN

∣∣∣∣ exp

{
1

2
(log γ − ϑ(x, v) − λτ(x, v))

}∣∣∣∣ .

Moreover, one can easily see that

lim inf
τ(x,v)→0

| exp{log γ − ϑ(x, v) − λτ(x, v)} − 1| > |1 − γ| > 0.

In particular,
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ess -inf
(x,v)∈D×RN

| exp{log γ − ϑ(x, v) − λτ(x, v)} − 1| > 0.

This proves that1 /∈ Ress(mλ). From Proposition3.1, one gets that(I −MλH) is invertible and
λ ∈ ̺(T ). �

3.2. Explicit expression of the semigroup(U(t))t>0. We derive in this section the explicit ex-
pression of the semigroup(U(t))t>0 generated by the streaming operatorT associated to the
bounce-back boundary conditionsH given by (2.1). For simplicity, we shall restrict ourselves to
the case of ahomogeneous collision frequency:

Σ(x, v) = Σ(v), ∀(x, v) ∈ D × R
N .

Theorem 3.3. The C0-semigroup(U(t))t>0 in Xp generated byT is given by

U(t) =

∞∑

n=0

Un(t), ∀t > 0,

where, for any fixedt > 0,

[U0(t)ϕ] (x, v) = ϕ(x− tv, v) exp(−Σ(v)t)χ{t<t−(x,v)}, ϕ ∈ Xp, (x, v) ∈ D × R
N

while, for anyn > 0

[U2n+2(t)ϕ] (x, v) = γ2n+2 exp(−Σ(v)t)χI2n+1(x,v)(t)ϕ
(
x− tv + (2n + 2)τ(x, v)v; v

)
,

and

[U2n+1(t)ϕ] (x, v) = γ2n+1 exp(−Σ(v)t)χI2n(x,v)(t)ϕ
(
x+tv−2t−(x, v)v−2nτ(x, v)v,−v

)

for anyϕ ∈ Xp, and any(x, v) ∈ D × R
N , with

Ik(x, v) = [kτ(x, v) + t−(x, v); (k + 1)τ(x, v) + t−(x, v)], for anyk ∈ N.

Proof. The proof is based upon the representation of the resolvent (2.2) and the use of the unique-
ness of the Laplace transform. Precisely, letλ > 0 be fixed. According to Proposition3.1,

[
(I −MλH)−1ψ

]
(x, v) = (1 −m2

λ(x, v))−1 [(I +MλH)ψ] (x, v)

=
∞∑

n=0

γ2n exp(−2n(λ+ Σ(v))τ(x, v)) [(I +MλH)ψ] (x, v),

for any nonnegativeψ ∈ Lp
+, i.e.

[
(I −MλH)−1ψ

]
(x, v) =

∞∑

n=0

γ2n exp(−2n(λ+ Σ(v))τ(x, v))ψ(x, v)+

∞∑

n=0

γ2n+1 exp(−(2n + 1)(λ+ Σ(v))τ(x, v))ψ(x − τ(x, v)v,−v), (x, v) ∈ Γ+.
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It is then easy to see that, for any fixedϕ ∈ Xp:

BλH(I −MλH)−1Gλϕ =

∞∑

n=0

Jn(λ)ϕ (3.4)

where, for anyn > 0,

[J2n+1(λ)ϕ] (x, v) = γ2n+1 exp {−2n(λ+ Σ(v))τ(x, v)} exp {−(λ+ Σ(v))t−(x, v)}×

×

∫ τ(x,v)

0
ϕ(x− t−(x, v)v + sv,−v) exp {−(λ+ Σ(v))s} ds,

and

J2n(λ)ϕ(x, v) = γ2n+2 exp {−(2n+ 1)(λ + Σ(v))τ(x, v)} exp {−(λ+ Σ(v))t−(x, v)}×

×

∫ τ(x,v)

0
ϕ(x− t−(x, v)v + τ(x, v)v − sv, v) exp {−(λ+ Σ(v))s} ds.

For fixed(x, v) ∈ D × R
N , performing the change of variable

t = 2nτ(x, v) + t−(x, v) + s, dt = ds, t ∈ I2n+1(x, v)

in the above expression ofJ2n+1(λ) leads easily to

[J2n+1(λ)ϕ] (x, v) =

∫ ∞

0
exp(−λt) [U2n+1(t)ϕ] (x, v)dt.

In the same way, the change of variable

t = (2n + 1)τ(x, v) + t−(x, v) + s, dt = ds, t ∈ I2n+2(x, v)

in the above expression ofJ2n+2(λ) allows to prove that

[J2n+2(λ)ϕ] (x, v) =

∫ ∞

0
exp(−λt) [U2n+2(t)ϕ ] (x, v) dt, ∀n > 0.

Finally, it is easily seen that

[Cλϕ] (x, v) =

∫ ∞

0
exp(−λt) [U0(t)ϕ ] (x, v) dt.

Therefore,

(λ− T )−1ϕ =

∞∑

n=0

∫ ∞

0
exp(−λt)Un(t)ϕdt

for anyϕ ∈ Xp for which the series converges. Moreover, sinceT generates a C0-semigroup
(U(t))t>0 in Xp, one also has

(λ− T )−1ϕ =

∫ ∞

0
exp(−λt)U(t)ϕdt.
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From the uniqueness of the Laplace transform, this yields

U(t)ϕ =

∞∑

n=0

Un(t)ϕ

for any nonnegativeϕ ∈ Xp and, since all the operators involved are clearly nonnegative and the
positive cone ofXp is generating, the result holds for arbitraryϕ ∈ Xp. �

4. SPECTRAL ANALYSIS OF THE PERTURBED SEMIGROUP

We investigate now the spectral properties of the full semigroup governing the problem (1.1).
Let us define the collision operatorK by

Kϕ(x, v) =

∫

RN

κ(x, v,w)ϕ(x,w) dw

where the kernelκ(·, ·, ·) is nonnegative overD × R
N × R

N . We shall assume here thatK is
a bounded operator,K ∈ B(Xp), 1 6 p < ∞, so that by the standard bounded perturbation
theory, the operator(T +K,D(T )) generates a C0-semigroup(V (t))t>0 given by the following
Dyson-Phillips expansion series:

V (t) =

∞∑

j=0

Vj(t)

whereV0(t) = U(t),

Vj(t) =

∫ t

0
U(t− s)KVj−1(s)ds, (j > 1).

As indicated in the Introduction, our analysis does not cover the case of transport equation in
L1-spaces, so we shall assume in all this section that

1 < p <∞.

Throughout the sequel, we shall assume thatK is a regular operator in the following sense:

Definition 4.1. An operatorK ∈ B(Xp) (1 < p < ∞) is said to be regular ifK can be
approximated in the operator norm by operators of the form:

ϕ ∈ Xp 7−→
∑

i∈I

αi(x)βi(v)

∫

RN

θi(w)ϕ(x,w)dw ∈ Xp (4.1)

whereI is finite,αi ∈ L∞(D), βi ∈ Lp(RN ,dv) andθi ∈ Lq(RN ,dv), 1/p + 1/q = 1.

Remark 4.2. Since1 < p < ∞, one notes that the setCc(R
N ) of continuous functions with

compact support inRN is dense inLq(RN ,dv) as well as inLp(RN ,dv) (1/p + 1/q = 1).
Consequently, one may assume in the above definition thatβi(·) andθi(·) are continuous functions
with compact supports inRN .

We prove in this section the following compactness result, generalizing known ones for1D-
transport problems [19]



12 K. LATRACH & B. LODS

Theorem 4.3. Assume1 < p < ∞. If K ∈ B(Xp) is a regular operator, then the difference
V (t) −U(t) is compact for anyt > 0. As a consequence,σess(V (t)) = σess(U(t)) for anyt > 0.

Remark 4.4. Notice that the compactness of the differenceV (t)−U(t) for anyt > 0 implies that
of (λ− T −K)−1 − (λ− T )−1 for sufficiently largeλ. In particular,

σess(T +K) = σess(T ).

This result was already obtained in[32] and is valid for more general reentry boundary conditions.

The rest of the paper is devoted to the proof of the above Theorem. We shall adopt the so-called
resolvent approach which allows to infer the compactness of

R1(t) = V (t) − U(t), t > 0

from properties of the resolvent(λ−T )−1 andK only. The basis of our approach is a fundamental
result owing to M. Sbihi [1, Theorem 2.2, Corollary 2.1] which, applied to our case, asserts that,
for p = 2, if T is dissipative and there existsα > w(U) (w(U) denoting the type of the semigroup
(U(t))t>0) such that

α+ iβ − T )−1K(α+ iβ − T )−1 is compact for allβ ∈ R (4.2)

and
lim

β→∞
(‖K∗(α+ iβ − T )−1K‖ + ‖K(α + iβ − T )−1K∗‖) = 0, (4.3)

thenR1(t) = V (t) − U(t) is compact onX2 for all t > 0.
Notice that here, the streaming operatorT is dissipative onXp, p ∈ (1,∞), in particular for

p = 2. Moreover, the compactness assumption (4.2) follows from Theorem 3.1 in [32] and holds
true for more general boundary conditions. Therefore, we have only to check that (4.3) holds true
providedK is a regular collision operator.

Though M. Sbihi’s result is a purely Hilbertian one, it has already been noticed in [19] that it
can be applied successfully to neutron transport problems in Lp-spaces for any1 < p < ∞.
Actually, sinceK is regular andR1(t) depends continuously onK ∈ B(Xp), one may assume
thatK is of the form (4.1) where, according to Remark4.2, the functionsβi andθi are continuous
with compact supports inRN . In this case,K is bounded in anyB(Xr) and, by an interpolation
argument already used in [19], we may restrict ourselves to prove the compactness ofR1(t) in
X2. Moreover, using a domination argument as in [19], there is no loss of generality in proving
the compactness ofR1(t) in the special case

Σ(v) = σ > 0, γ = 1

Now, sinceK is given by (4.1), by linearity, Eq. (4.3), and consequently Theorem4.3, follow
from the following

Lemma 4.5. Let βj , θj be continuous functions with compact support inR
N andαj ∈ L∞(D),

j = 1, 2. Then, there is someα > −σ such that

lim
|β|→∞

‖K1(α+ iβ − T )−1K2‖ = 0
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where

Kjϕ(x, v) = αj(x)βj(v)

∫

RN

θj(w)ϕ(x,w)dw, j = 1, 2; ϕ ∈ X2.

Proof. Let α > −σ be fixed. According to Eq. (2.2)

(λ− T )−1 = BλH(I −MλH)−1Gλ +Cλ.

Moreover, it is well-known from [4] that

lim
|β|→∞

‖K1Cα+iβK2‖ = 0, ∀α > −σ. (4.4)

sinceCλ is the resolvent of the transport operator with no-reentry boundary conditions. There-
fore, one has to prove thatlim|Imλ|→∞ ‖K1BλH(I −MλH)−1GλK2‖ = 0 whereReλ > −σ.
According to Eq. (3.4), it suffices to establish that

lim
|β|→∞

‖K1Jn(α+ iβ)K2‖ = 0, ∀n ∈ N, α > −σ.

Let us prove the result forJ2n+1(α + iβ), n ∈ N. Let λ = α + iβ, α > −σ and letn ∈ N be
fixed. Technical calculations show that

K1J2n+1(λ)K2ϕ = A3A2(λ)A1ϕ

where

A1 : ϕ ∈ L2(D × R
N ) 7→ A1ϕ(x) = α2(x)

∫

RN

ϕ(x,w)θ2(w)dw ∈ L2(D),

A3 : ψ ∈ L2(D) 7→ A3ψ(x, v) = α1(x)β1(v)ψ(x) ∈ L2(D × R
N)

andA2(λ) : L2(D) → L2(D) is given by

A2(λ)ϕ(x) =

∫

RN

exp

{
− 2n(λ+ σ)τ(x, v′) − (λ+ σ)t−(x, v′)

}
β2(−v

′)θ1(v
′)dv′

∫ τ(x,v′)

0
exp(−(λ+ σ)s)ϕ(x− t−(x, v′)v′ + sv′)ds.

Therefore, it is sufficient to prove that

lim
|β|→∞

‖A2(α+ iβ)‖B(L2(D)) = 0, α > −σ. (4.5)

To do so, we adopt the approach of [4] and [1]. Precisely, settingµ = λ + σ and h(v) =
θ1(v)β(−v), v ∈ R

N , the change of variables 7→ t = s− τ(x, v′) leads to

A2(λ)ϕ(x) =

∫

RN

h(v′) exp{−2nµτ(x, v′)}dv′
∫ t+(x,v′)

−t−(x,v′)
ϕ(x+ tv′) exp(−µt)dt.

SinceD is convex, given(x, v′) ∈ D × R
N ,

t ∈ (−t−(x, v′), t+(x, v′)) ⇐⇒ y = x+ tv′ ∈ D
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The change of variabley = x+ tv′ shows thatA2(λ) is an integral operator :

A2(λ)ϕ(x) =

∫

D
κ(λ, x, y)ϕ(y)dy

where

κ(λ, x, y) =

∫

R

h

(
y − x

t

)
exp

{
−µt− 2nµτ

(
x,
y − x

t

)}
dt

tN

=

∫

R

h

(
y − x

t

)
exp

{
− µt− 2nµ

|t|

|x|
τ

(
x+ z,−

x

|x|

)}
dt

tN
,

where we used the know propertyτ(x, v
s ) = |s|τ(x, v) for any(x, v) ∈ D × R

N and anys ∈ R.
Notice that the very rough estimate

‖A2(λ)‖B(L2(D)) 6

(∫

D×D
|κ(λ, x, y)|2dxdy

)1/2

apparently does not lead to (4.5). We have to estimate the norm ofA2(λ) more carefully. With
respect to [4], one of the difficulty in estimating‖A2(λ)‖ is thatA2(λ) is not a convolution
operator because of the dependence inx of τ(x, ·). To overcome this difficulty, we follow the
approach of [1]. Precisely, set

Nλ(x, z) =

∫

R

h
(
−
x

t

)
exp

{
−µt− 2nµ

|t|

|x|
τ

(
x+ z,−

x

|x|

)}
dt

tN
,

where(x, z) ∈ D ×D with x+ z ∈ D. Let us point out that, from assumption, there is no loss of
generality assuming that there exist two constantsa, b > 0 such that

Supp (h) ⊂
{
v ∈ R

N ; a 6 |v| 6 b
}
.

In this case, in the above integral, one sees thatt ∈ R is such that

a 6

∣∣∣x
t

∣∣∣ 6 b

which implies that|t| 6 |x|/a. This means that the above integral overR reduces actually to an
integral over

[
− d

a ,
d
a

]
whered is the diameter ofD. Then,

κ(λ, x, y) = Nλ(x− y, y), for any(x, y) ∈ D ×D

and, setting
Gλ(x) = sup

z∈D−x
|Nλ(x, z)| , x ∈ D

one has

|A2(λ)ϕ(x)| 6

∫

D
Gλ(x− y)|ϕ(y)|dy, ∀x ∈ D, ϕ ∈ L2(D).

Consequently,

‖A2(λ)‖B(L2(D)) 6

∫

D
Gλ(x)dx.
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To prove (4.5), one has then to show that

lim
|β|→∞

∫

D
Gα+iβ(x)dx = 0, ∀α > −σ.

First, one sees that for any(x, z) ∈ D ×D with x+ z ∈ D and anyλ = α+ iβ, one has

|Nλ(x, z)| 6

∫

R

∣∣∣h
(
−
x

t

)∣∣∣ exp
{
− (α+ σ)t

} dt
tN

where we used the fact thatτ(·, ·) > 0. Then,
∫

D
sup

λ=α+iβ
|Gλ(x)|dx 6

∫

R

exp
{
− (α+ σ)t

} dt

tN

∫

D

∣∣∣h
(
−
x

t

)∣∣∣dx

6

∫ d
a

− d
a

exp
{
− (α + σ)t

}
dt

∫

RN

|h(v)|dv <∞,

where we performed the change of variablesv = x
t in thex integral. Therefore, from the domi-

nated convergence theorem, it suffices to prove that

lim
|β|→∞

Gα+iβ(x) = 0, a. e.x ∈ D.

Using the fact that, for any fixedx ∈ D, the mappingz 7→ τ

(
x+ z,−

x

|x|

)
is bounded, this can

be done as in [1] thanks to the Riemann-Lebesgue’s Lemma. This achieves to prove that

lim
|β|→∞

‖K1J2n+1(α+ iβ)K2‖ = 0, ∀n ∈ N, α > −σ, ∀n ∈ N.

One proves in the same way that

lim
|β|→∞

‖K1J2n(α+ iβ)K2‖ = 0, ∀n ∈ N, α > −σ, ∀n ∈ N

and, combined with (4.4) and (3.4), yield the result. �

Remark 4.6. Let us observe that Lemma4.5 allows to describe the asymptotic spectrum of the
transport operatorT +K. Indeed, combining Lemma4.5with the compactness of(λ − T )−1K
[32] and [4, Lemma 1.1]we infer that

i) σ(T + K) ∩ {λ ∈ C : Reλ > −λ∗} consists of, at most, isolated eigenvalues with finite
algebraic multiplicity;

ii) for any η > 0, the setσ(T +K) ∩ {λ ∈ C : Reλ > −λ∗ + η} is finite or empty.

Clearly, this result may be also derived from Theorem4.3using the fact that the spectral mapping
theorem holds true for the point spectrum.
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1985;300 : 89-92.

[31] K. Latrach, M. Mokhtar Kharroubi, Spectral analysis and generation results for streaming operators with multi-
plying boundary conditions,Positivity1999;3 : 273-296.

[32] K. Latrach, Compactness results for transport equations and applications,Math. Models Methods Appl. Sci. 2001;
11 : 1181-1202.


	1. Introduction
	2. Preliminary results
	3. Study of the streaming operator and semigroup
	3.1. Description of the spectrum of T
	3.2. Explicit expression of the semigroup (U(t))t 0

	4. Spectral analysis of the perturbed semigroup
	References

