N

N

Spectral analysis of transport equations with
bounce-back boundary conditions
Khalid Null Latrach, Bertrand Lods

» To cite this version:

Khalid Null Latrach, Bertrand Lods. Spectral analysis of transport equations with bounce-back
boundary conditions. Mathematical Methods in the Applied Sciences, 2009, 32 (11), pp.1325 - 1344.
10.1002/mma.1088 . hal-00285598

HAL Id: hal-00285598
https://hal.science/hal-00285598
Submitted on 5 Jun 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00285598
https://hal.archives-ouvertes.fr

hal-00285598, version 1 - 5 Jun 2008
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BOUNDARY CONDITIONS.
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63117 Aubiere, France.

ABSTRACT. We investigate the spectral properties of the time-depeiithear transport equation
with bounce-back boundary conditions. A fine analysis ofsfhectrum of the streaming operator is
given and the explicit expression of the strongly contiraistieaming semigroup is derived. Next,
making use of a recent result frorf][ we prove, via a compactness argument, that the essential
spectrum of the transport semigroup and that of the stregas@migroup coincide on all’-spaces
with 1 < p < oo.
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1. INTRODUCTION

The spectral theory of transport equations withireentry boundary condition@e. with zero
incoming flux in the spatial domain) received a lot attenfiothe last decades (see, for example,
the works B, 3,4, 5, 6, 7, 8, 9, 10, 11] and the references therein). The picture is fairly congplet
by now and almost optimal results have been obtained2hfpr bounded spatial domains and in
[13] for unbounded domains.

When dealing with reentry boundary conditions (includirgipdic boundary conditions, spec-
ular reflections, diffuse reflections, generalized or mityge boundary conditions), many progress
have been made in the recent years in the understanding sg¢lotral features of one-dimensional
models [L4, 15, 16, 17, 18, 19, 20]. However, to our knowledge, for higher dimensions, onky fe
partial results are available in the literatud,[22, 23, 24], dealing in particular with very pecu-
liar shapes of the spatial domain. Our paper deals with thewimg two problems concerning
multidimensional transport equations whbunce-back (reverse) boundary conditionsonvex
bounded domains:

(1) The spectral analysis of the streaming operator sudajetictbounce-back boundary condi-
tions and the explicit expression of the streaming semjgrou

(2) The compactness of the difference of the (perturbedpspart semigroup and the stream-
ing semigroup.

fKhal i d. Latrach, Bertrand. Lods@rat h. uni v- bpcl ernont . fr
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2 K. LATRACH & B. LODS

To be more precise, we are concerned with the followingahtioundary-value problem in
LP—spacegl < p < )

o (08) = v V(o 0.8) = Do, 000 + [kl o )
ot RN (1.1a)
=TY(z,v,t) + Kp(z,v,t), (z,v) € D xRNt > 0;
with bounce-back boundary conditions:
¢|F7 (.Z', v, t) = fY¢|F+ (‘Ta -, t)a (.Z', 'U) el'_,t>0; (11b)

and the initial condition
Y(x,v,0) = ho(x,v) € LP(D x RY). (1.1c)

HereD is a smootltonvexopen subset &Y (N > 1), v is a real constant belonging (0, 1) and

I+ represent the incoming and outgoing parts of the boundatyegfhase space (see Section 2 for
details). The collision frequencdy(-,-) € L>=(D xR") is a non-negative function. The scattering
kernelx(, -, -) is nonnegative and defines the linear operafaralled the collision operator which
is assumed to be bounded BA(D x RY) (1 < p < +o0). The operatofl” appearing in1.19 is
called thestreaming operatowhile T' 4+ K denotes the (full) transport operator. It is well-known
[25] that, sincey < 1, T generates a &semigroup of contractionl/ (t));>o in LP(D x RY)
(streaming semigroypand, sincek is bounded;I’ 4+ K is also the generator of aj&emigroup
(V(#))e=0 in LP(D x RY) (transport semigroup

Our work is displayed into two parts, referring to the abowmfs (1) and(2). First, we present
a fine description of the spectrus{T’) of the streaming operator ib?(D x RY), 1 < p < oo.
Moreover, we derive the explicit expression of the stregngamigroup(U (t)):>o for the par-
ticular case of a space-homogenous collision frequencgore we prove that the difference
Ri(t) = V(t) — U(t) is compact inL?(D x RY) (1 < p < oo) for anyt > 0 under natural
assumptions on the scattering operakor The interest of such a compactness result lies in the
fact that it implies that the streaming semigroup and thaesgart semigroup possess the same
essential spectrum (se2q] for a precise definition). In particular, their essentiglés coincide.
This shows that the part of the spectrum of the transportg®mmd outside the spectral disc of the
streaming semigroup consists of, at most, eigenvaluesfimite algebraic mutiplicities. Assum-
ing the existence of such eigenvalues, the transport seapgran be decomposed into two parts:
the first containing the time development of finitely manyesignodes, the second being of faster
decay.

Although the well-posedness of the problem (1.1) is a knoagat 27, 25, 22, 28], the de-
scription of the spectrum of the streaming operator and tiadytic expression of its semigroup
seem to be new. Let us also notice that besides the integestimsequences of the compactness
of Ry(t) on the behavior for large times of the solution of the probl@ni), it is an interesting
result in itself. Actually, it is the first time that the compactness of the Girder remainder term
of the Dyson-Phillips expansion of the transport operatghweentry boundary conditions is dis-
cussed in higher dimensian&or the one-dimensional case we refer to the wa®{ fvhile the
compactness aR; (¢) in the case of non-reentry boundary condition was estaddis [12].
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As in [19], the mathematical analysis is based upon a recent resittgoie M. Shihi [1]
(see also Section 4) valid for Hilbert spaces. Actually, emsbme natural assumptions on the
collision operator, we prove, via approximation argumetiits compactness @t (¢) on L?(D x
RN, dx @ dv). The result is then extended f#(D x RY, dx @ dv) with p € (1,2) U (2, 00) by
an interpolation argument. Unfortunately, the limitingsea = 1 is not covered by our analysis
and requires certainly another approach. Notice that thepestness oR?;(¢) for p = 1 is also
an open problem in the one-dimensional cd$# nd for no-reentry boundary conditiotd].

The outline of this work is as follows. In Section 2 we intreduthe functional setting of the
problem and fix the different notations and facts needed énsétqquel. Section 3 is devoted to
the spectral analysis of the streaming operator with botnaci boundary conditions and to the
analytic expression of the streaming semigroup. The compas of the first order remainder term
of the Dyson-Phillips expansion is the topic of Section 4.

2. PRELIMINARY RESULTS

For the definitions of the different spectral notions usadubhout this paper we refer, for
example, to the bookf]. If X is a Banach spac&(.X) will denote the set of all bounded linear
operators onX.

Let D be a smooth bounded open subseRdf. We define the partial Sobolev space

W,={¢YeX,;v-Vyp € X,}
whereX, = LP(D x RY dz ® dv) (1 < p < o). Let us denote by'_ (respectivelyl') the
incoming (resp. outgoing) part of the boundary of the phaseeD x RY
Iy ={(z,v) €D xRY; +v-n(z) >0}

wheren(x) stands for the outward normal unitate 9D. SuitableLP-spaces for the traces on
I’y are defined as

L =1rr (I‘i; lv-n(z)|dy(z) ® dv),
dv(-) being the Lebesgue measure @R. For anyy € W), one can define the traces-, on
I';, however these traces do not belong/tp but to a certain weighted space (s§,[29, 30]).
For this reason, one defines

W, = {1/1 € Wy Yr, € Lft}.
In all the sequel, we shall assume th#t, -) is a measurablaon-negativefunction onD x RY
that fulfills the following.

Assumption 2.1. The collision frequency:(-, ) is an even function of the velocity, i.e. for any
(z,v) € Dx RN, S(z,v) = X(z, —v).

Let us define the absorption operator withunce-back boundary conditions:

{T . 9(T) C X, — X,
¥ Tgp(x,v) =—Ue chp(wau) - 2(1‘,1))()0(1',1)),
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with domain
2(T) = {1/1 € Wp such that)r_(z,v) = v¢r, (z, —1))}

where0 < v < 1. We recall (see e.g.2p, 22]) that T is a generator of a non-negative-C
semigroup of contractiond/ (t)):>o in X, (1 < p < 00)

Remark 2.2. Notice that our analysis also applies to the more generakeas: 1 provided the
associated transport operatdl’ generates a g-semigroup inX,. Practical conditions on the
geometry ofD ensuring the latter to hold are given [28].

Definition 2.3. For any (z,v) € D x RY, define
te(z,v) =sup{t >0;2+tsveD, VO<s<t}=inf{s>0;z+sv¢ D}
For the sake of convenience, we will set
7(x,v) == t_(z,v) + ty (z,v) forany(z,v) € D x RV,

Let us define

t_(z,v) .
Hx,v) = / Y(x — sv,v)ds, (z,v) € D x RV,

—t+ (SE,’U)
One proves easily the following thanks to Assumptioh

Lemma 2.4. For any (z,v) € D x RY,
7(z,0)
Wz, v) =¥z, —v) = / Y(z+t_(x,v)v — sv,v)ds.
0
In particular, for any(z,v) € I'_
t+(x7v)
Ix,v) = / ¥(x + sv,v)ds.
0

Now let us investigate the resolvent @f For any\ € C such thatReA > 0, let us define
My € %(LIL,L&) by

(z,0)
Myu(z,v) = u(x — 7(x,v)v,v) exp {—/ A+ X(z — sv, v)ds} , (x,v) € Ty,
0
and letB, € #(L”, X,) be given by
t_(z,v)
Byu(z,v) = u(x —t_(x,v)v,v) exp —/ A+ —sv,v)dsp, (z,v)eD.
0
In the same way, let') € A(X,, L") be given as

7(z,v) s
Grp(z,v) = / o(z — sv,v)exp {—/ A+ X(z — to, v)dt} ds, (z,v)eli;
0 0
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andC) € #(X,) be defined as

t(z,v) t
Crp(z,v) = / o(x — tv,v) exp {/ A+ X(z— sv,v)ds} dt, (z,v)€D.
0 0
It is not difficult to show the following in the spirit of31].

Proposition 2.5. Let0 < v < 1 be fixed and leHf € #(L*_, L") be defined by:

H(pq)(z,v) = vop4(z, —v) forany (z,v) eT'_. (2.2)
If X € Cissuch thatl € o(MyH), then\ € o(T) with
A=T)"' = ByH(I — M\H)"'G, + C,. (2.2)
In particular, if there is)\y € R such that
re(M H) < 1 VRel > A,

then{\ € C; ReX > Ao} C o(T") and the resolvent df is given by(2.2).

3. STUDY OF THE STREAMING OPERATOR AND SEMIGROUP

We shall focus in this section on the streaming operatorcéasnl with bounce-back boundary
conditions and the associated semigroup.

3.1. Description of the spectrum ofT". To discuss the spectrum ®f, we provide a more precise
description of the inverse operator(df-M\H) € #(L" ). Precisely, let us define the measurable
function

7(z,0)
my(x,v) :’yexp{—/ )\—i—E(x—sv,v)ds}, (x,v) e I';.
0

Before stating our first result we recall that the essergiagie of the measurable functiomn, (-, -),
Ress(my), is the set

{ue C: |{(z,v) € Ty; Imr(z,v) —ul <e} | #0 VE>O}

where|A| denotes the Lebesgue measure of thedséthen, one has the following:

Proposition 3.1. LetA € Cbe such thal ¢ Ress(my). Then,(I — MyH) € %(L") is invertible
with inverse given by

(1 = MyH) '] (2,0) = (1—m3 (2, 0)) " [(I + MAH)Y] (z,0), VipelLh, (z,v)ely.
Proof. Let us fixA € C and consider the equation:

Y — (MyH)Y =g, (3.1)
whereg € LP(T";) as well as the unknown functian. From @3.1), one sees that

P(z,v) —ma(z,v)Y(x — 7(x,v)v, —V) = g(2,0), (x,v) e 4.
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For anyfixed(z,v) € I';, one has

g(x — 7(z,v)v,—v) = Y(x — T(T, V)V, —V) — M) (T — T(T, V)V, —V) X

X Y(x —1(x,v)v+ 7(x — T(T,0)V, V)V, V).

Now, one sees easily thaty(z — 7(z, v)v, —v) = my(z,v) while
Y(x —1(x,v)v+7(x — T(2,0)V, —V)V, +V) = Y(T, V).
Therefore, one has
g(x — 7(z,v)v,—v) = Y(x — T(2, V)V, —V) — M) (2, 0)Y(x, V)
so that
[MyxHg| (z,v) = mx(z,v)g(x — 7(z,v)v, —v)
= my(z,v)(x — 7(x,v)v, —v) —m3(z,v)Y(z,v).

Sincemy (z,v)(z — 7(z,v)v, —v) = [M\Hv| (z,v), one obtains from3.1) that

g(x,v) + [MyHg) (z,0) = (1 = m¥(2,v)) ¥(z,0),  (z,0) € 4.
This leads to an explicit expression of the solution3d)

d(w,v) = (L—m3(z,0) " (I + MyH) g] (z,0).
Defining
Zrg(x,0) = (1 —m3(x,0)) " [(I + MaH) g] (z,0)
it is not difficult to see that
1 ¢ Ress(my) = % € B(LY),

and the above calculations show thét = (I — MyH)~!.

0

The precise picture of the spectrummfs given by the following, which is in the spirit o2]]

Theorem 3.2. For anyk € Z, let us define

:logv—ﬁ(l",v)_i 2km V(x v)er]R{N
7(z,v) 7(z,v)’ 7 |

Fy(x,v)

Then,
o(T) = | Ress(Fr)

keZ
whereR .ss(F}) stands for the essential range Bjf.

Proof. Let us begin with the inclusiom. Given\ € Ress(F)) (k € Z). Lete > 0 and define

Ao = {(,v) € DX BY 5 [ = Fiy(a,v)] < ¢},

By the definition of Ress(F)), |Ac| # 0 for anye > 0. For any integem € N, defineB,, =

{(z,v) € D xRN 7(z,v) > 1/n}. Sincer(z,v) > 0 for a. e.(x,v) € D x RV, one has

Ac={J <Bn mAE>

n
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so that, for any > 0, there exists:(e) € N such thatB,,.y N A.| # 0. Define
Ae = By N A, e>0
so that|A.| # 0 for anye > 0, while
ess-inf {7(z,v) ; (z,v) € A.} = 1/n(e) > 0, for anye > 0. (3.2)
Then, lety. stand for the characteristic function of the measurablels€t > 0). One sees that
Xe(2,v) = Xe(z, —v), and  xe(z + tv,v) = xe(2,v)
for ¢ > 0 small enough. Now, for any > 0, one can define

e (,v) = xe(z,v) exp {— /Ot(w,v) <Fk(x,v) + X(x — sv,v)) ds} . (z,v) e D xRN,

One sees thap. € L>=(D x RY) for anye > 0, since
ess -sup

t_(z,v)
exp —/ <Fk(x, v) 4+ 3(x — sv, v)) ds
(z,v)EA: 0

by virtue of 3.2). Moreover, sinceé_(z,v) = 0 for any (x,v) € I'_, one sees that

< 00

Pelr_ = Xe-
Given(z,v) € I'_ ande > 0, one has

e (z, —v) = xe(, —V) exp {— /Ot(%_v) (Fk(:n, —v) + X(x + sv, —v)>ds} .

Sincet_(z, —v) =ty (z,v) = 7(x,v) and F(z, —v) = F(z,v) (See Lemma.4), one has

t+(:(:,v)
ve(r, —v) = xe(x,v) exp {—T(:L’,’U)Fk(l’,v) — / Y(x + sv,—v) ds} .
0

Now, one checks that
—7(z,v)Fi(z,v) = —logy + J(x,v) + 2ikm

t+(m,v)
= —log~y + 2ikm + / Y(x + sv,v)ds V(z,v) e,
0

where we used again Lemr3ad. Thus, one sees that, for afw,v) € T'_,

1
gOa(.Z'7 _U) = ; gpg(x, 'U)

which exactly means that, fulfils the boundary conditions2(1). Finally, it is easy to see that
ve € 2(T). Define now the nety. ). by

Ve = we/lleell, e>0 (3.3)
and letg. = (A — 1), i. €.

ge(x,v) = (A4 35(2,0)) e (2, 0) + v - Vaihe (2, ).
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Using the fact, for anyz, v) € D x RV, and for anyt > 0 small enoughy)(z + tv,v) = ¥(x,v)
(note that the same occurs fB]) one can prove that
ge(x,v) = (A= Fi(a,0))¢e(z,0),  (2,0) eDxRY, >0

and so

9|l < ess-sup [A = Fi(z,v)| [[¢e]l <e.
(z,v)EA:

This, together with&.3) achieves to show that). )., is asingular netof 7" so that\ € o(T).
The closedness of the spectrum ensures that

U Ress(Fr) € o(T).
kEZ

Let us prove now the converse inclusion. Assume MdtR . (F}) for anyk € Z. Then, for any
k € 7Z, there exists3, > 0 such that

A — Fi(z,v)| = Bk a.e.(z,v) € D x RY,

log~y — ¥(z,v) — 2ikm
(z,0)

—A'}ﬁk a.e.(r,v) € D x RY.
Then,
|logy — ¥(z,v) — 2ikm — A7(x,v)| = 7(z,v) B a. e.(x,v) € D x R,

This means that, for any integer> 0, there exists:, > 0 such that

logy = ¥{w,v) = Ar(z,0) +i| > cpr(z,0) @ e.(z,v) €D XxRY, n>1,
2 n
and
|logy — d(z,v) — A7(z,v)| = co7(x,v) a. e.(x,v) € Dx RY,

Arguing as in R0], one can choos&/ > 0 such that
llogy — ¥(z,v) — At(z,v)| < M a. e.(x,v) € D x RY,
and

N
lexp {logy — ¥z, v) — At(x,v)} — 1| > % H Ar(x,v)? a.e.(z,v) € D x RY,
n=1

where

C = ess-inf
(z,v)EDXRN

Moreover, one can easily see that

exp {%(log’y 9w, v) — Mz, v))}‘ .

liminf |exp{logy — J(z,v) — Ar(z,v)} —1] > |1 —~| > 0.

7(z,0)—0

In particular,
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“inf logy — ¥(z,v) — Ar(z,v)} — 1] > 0.
(xgs)zplrxlwlexp{ogv (z,v) = A(z,0)} — 1

This proves thal ¢ R.ss(my). From Propositior8.1, one gets that/ — M) H) is invertible and
A€ o(T). O

3.2. Explicit expression of the semigroup(U (t)):>0. We derive in this section the explicit ex-
pression of the semigrouf/(t)):>o generated by the streaming operaidrassociated to the
bounce-back boundary conditiofis given by @.1). For simplicity, we shall restrict ourselves to
the case of #iomogeneous collision frequency

Y(z,v) = X(v), Y(z,v) € D x RY.
Theorem 3.3. The G-semigroup(U (t)):>0 in X,, generated byl" is given by

Ut) =Y Unt), Vt=0,
n=0

where, for any fixed > 0,

[UO(t)QD] (l’,U) = (10(33 - t’U>U) eXp(_E(U)t)X{t<t,(x,v)}> Y e Xp> (l’,U) €D x RN
while, for anyn > 0

(Uznt2(t)e] (,0) = 7" 2 exp(— S (0)E)X 311 00) ()0 (2 — tv + (20 + 2)7(2, v)05),
and

ntl exp (=3 (0)t) Xy, (2,0) (1) 0 (2 4+t0—2t_ (2, v)0—2n7 (2, V)V, —V)

[Uzn+1 ()] (z,v) =
for anyp € X,,, and any(z,v) € D x R¥, with
T (z,v) = [k1(z,v) + t_(x,0); (k + )7 (2,0) + t_(2,0)], foranyk € N.

Proof. The proof is based upon the representation of the resol2e®)tand the use of the unique-
ness of the Laplace transform. Precisely et 0 be fixed. According to Propositiodi.1,

(I = MyH) ] (2,0) = (1= m3(2,0)) " (I + MaH)Y] (2,0)

= Z 72” exp(—2n(A + X(v))7(z,v)) [(I + M\H)Y] (z,v),

n=0

for any nonnegative) € L i.e.

(1 = MyH) '] (@,0) = 37" exp(—2n(A + S(0)r (@, 0)Jb(z,v)+

n=0

272n+1 exp(—(2n + 1) (A + Z(v))7(z, ) (x — 7(z,v)v, —0), (x,v) e T'y.
n=0
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It is then easy to see that, for any fixed= X,

By\H(I - MyH)'Grp =D _Zu(Ng (3.4)

n=0

where, for anyn > 0,
[Fonr1(N)e] (2, 0) = 72" exp {=2n(A + Z(0))7(2,0) } exp {—(A + Z(v))i— (2, v)} x
X /OT(LU) o(x —t_(z,v)v + sv,—v) exp {—(A + X(v))s} ds,
and
SoanNp(z,v) = 7" 2 exp {—(2n + DA + Z(v))7(z,v)} exp {~(A + B(v))t—(z,v)}
X /OT(LU) ol —t_(z,v)v+ 7(x,v)v — sv,v) exp {—(A + X(v))s} ds.
For fixed(z,v) € D x RY, performing the change of variable
t=2n7(z,v)+t_(x,v)+s, dt=ds, € Iopii(x,v)
in the above expression g¥5,, .1 () leads easily to
2] (00) = [ exp(-At) Ui ()] o, ).
In the same way, the change of variable
t=02n+ 1)7(z,v) +t_(z,v) +s, dt=ds, € Topia(z,v)
in the above expression g¥»,,2(A) allows to prove that
a2l @0) = [ exp(oA) Wansalt)o] (e0) e, o >0,
Finally, it is easily seen that
(Cagl (w0) = [ exp(=30) W(t)e ] (.o
Therefore,
A=T)p= i /000 exp(—At) Uy, (t)p dt
n=0

for any ¢ € X, for which the series converges. Moreover, sificgenerates a g&semigroup
(U(t))e=0 in X, one also has

(A= T)Lp = / " exp(C AU () dt.
0
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From the uniqueness of the Laplace transform, this yields

Uhe =3 Un(t)y
n=0

for any nonnegativep € X, and, since all the operators involved are clearly nonnegaitnd the
positive cone ofX,, is generating, the result holds for arbitrasy= X,. O

4. SPECTRAL ANALYSIS OF THE PERTURBED SEMIGROUP

We investigate now the spectral properties of the full semig governing the probleni (1).
Let us define the collision operatéf by

Ko(z,v) = /RN k(z,v,w)e(x,w) dw

where the kernek(-, -, ) is nonnegative oveP x RY x RY. We shall assume here that is

a bounded operatoil’ € #(X,), 1 < p < oo, so that by the standard bounded perturbation
theory, the operatofI’ + K, 2(T')) generates a g&semigroup(V (t)):>o given by the following
Dyson-Phillips expansion series:

Vit =3 Vi)

7=0
whereVy(t) = U(t),

t
Vi) = [ U= 9KVia(ds, (21,
0
As indicated in the Introduction, our analysis does not colre case of transport equation in
L'-spaces, so we shall assume in all this section that
1<p<oo.
Throughout the sequel, we shall assume #ias a regular operator in the following sense:

Definition 4.1. An operatorK € #(X,) (1 < p < oo) is said to be regular ifKX can be
approximated in the operator norm by operators of the form:

pe X, — Zai(ac)ﬁi(v)/ Oi(w)p(z, w)dw € X, 4.1)
icl RY
wherel is finite,o; € L>®(D), 3; € LP(RY,dv) and§; € LI(RY,dv), 1/p+1/q = 1.

Remark 4.2. Sincel < p < oo, one notes that the s€tL(RY) of continuous functions with
compact support irRY is dense inLY(R",dv) as well as inLP(RY dv) (1/p + 1/q = 1).
Consequently, one may assume in the above definitiothatandd;(-) are continuous functions
with compact supports iR”.

We prove in this section the following compactness reswegalizing known ones for D-
transport problemslp]
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Theorem 4.3. Assumel < p < oo. If K € #(X,) is a regular operator, then the difference
V(t) — U(t) is compact for any > 0. As a consequence.ss(V (t)) = oess(U (1)) for anyt > 0.

Remark 4.4. Notice that the compactness of the differeide) — U (¢) for anyt > 0 implies that
of (A =T — K)~! — (A —T)~! for sufficiently large\. In particular,
Oess (T + K) = Uess(T)-
This result was already obtained|[i82] and is valid for more general reentry boundary conditions.

The rest of the paper is devoted to the proof of the above EneokVe shall adopt the so-called
resolvent approach which allows to infer the compactness of

Ri(t)=V(t)—U®), t=0

from properties of the resolvefk —7")~! and K only. The basis of our approach is a fundamental
result owing to M. Sbihi I, Theorem 2.2, Corollary 2.1] which, applied to our casegdsghat,
for p = 2, if T is dissipative and there exists> w(U) (w(U) denoting the type of the semigroup
(U(t))+=0) such that

a+if—T) 'K(a+if —T)* is compact for all3 € R (4.2)
and
Blim (|IK*(a+iB —T) ‘K| + |K(a +i8 — T) "1 K*||) = 0, (4.3)

thenR;(t) = V(t) — U(t) is compact onXs for all ¢ > 0.

Notice that here, the streaming operalors dissipative onX,, p € (1,00), in particular for
p = 2. Moreover, the compactness assumptidr)(follows from Theorem 3.1 in32] and holds
true for more general boundary conditions. Therefore, we loaly to check that4.3) holds true
provided K is a regular collision operator.

Though M. Shihi’s result is a purely Hilbertian one, it haseadly been noticed inlp] that it
can be applied successfully to neutron transport problems’ispaces for any < p < oc.
Actually, sinceK is regular andr; (t) depends continuously oif € #(X,), one may assume
that K is of the form @.1) where, according to Rema#k?2, the functionss; and6; are continuous
with compact supports iRY. In this caseX is bounded in anyZ(X,) and, by an interpolation
argument already used iig], we may restrict ourselves to prove the compactnesB;@f) in
X5. Moreover, using a domination argument asi8][ there is no loss of generality in proving
the compactness dt; (¢) in the special case

Y(v) =0 >0, vy=1

Now, sinceK is given by @.1), by linearity, Eq. 4.3), and consequently Theore#n3, follow
from the following

Lemma 4.5. Let 3;, 0; be continuous functions with compact supporRiff anda; € L>(D),
j =1,2. Then, there is some > —o such that

lim [|[Ky(a+i8 —T) 'Ky =0

Bl—o0
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where
Kiple,0) = ay(@)B,0) [ giw)ple i, j=1% peXe

Proof. Leta > —o be fixed. According to Eq.2(2)
AN=T)"t=B\H(I — M\H) G + Cy.
Moreover, it is well-known from4] that

Iﬁl\im | K1CatigKa|l =0, Va > —o. (4.4)
—00

sinceC), is the resolvent of the transport operator with no-reentryridlary conditions. There-
fore, one has to prove théiin oo || K1 BAxH (I — MyH) 'G\K>|| = 0 whereReX > —o.
According to Eqg. 8.4), it suffices to establish that

|ﬁl‘im | K1 _Zn(o+if)Ks|| =0, Vn € N, a> —o.

Let us prove the result fors, 1 (a + i), n € N. Let A = a +if5, « > —o and letn € N be
fixed. Technical calculations show that

K1 font1(N)Kap = Az Aa(N) AL
where

A - pe LA(D xRY) = Ajp(z) = an(z) /]RN oz, w)0(w)dw € L*(D),

Az i 1p € L*(D) — Asih(x,v) = ay(x)B1(v)(z) € L*(D x RY)
andAy(\) : L?(D) — L*(D) is given by

As(N)p(z) = /RN exp { —2n(\ +o)1(x,v") — (N +o)t_(z, v')}ﬂg(—v')Hl (v)do’

T(z')
/ exp(—(A + 0)s)p(z —t_ (2,0 )0 + sv')ds.
0

Therefore, it is sufficient to prove that

| lim || Az(a+ Zﬂ)Hpg(Lz(D)) =0, o> —o. (4.5)

Bl—o0

To do so, we adopt the approach @i gnd [1]. Precisely, settings = A + o and h(v) =
01(v)B(—v), v € RY, the change of variable— t = s — 7(z,v’) leads to

ty(z,0")

Aos(N)p(z) = h(v') exp{—2nur(z, U')}dv// o(z + tv') exp(—put)dt.
RN —t_(z,0")

SinceD is convex, giver(z,v') € D x RY,

te (~t_(a,0),ti(2,0) = y=a+t/ €D



14 K. LATRACH & B. LODS

The change of variablg = x + tv' shows that4,(\) is an integral operator :

As(Np(ar) = /D k(A 2, y)e(y)dy

Ii()\,:n,y) = / h <g> eXp{—,Ut_ 27’L,U’7' <5L'7 g) } td—]\t}
R
y—= It| ( )}dt
= [ n(&F ot —2 T dr
/R < m >exp{ e n,u|| x || N

where we used the know propertyz, ) = |s|7(z, v) for any (z,v) € D x RY and anys € R.
Notice that the very rough estimate

where

1/2
1A (Ml zeoy < ( / |ﬁ(A,m,y)|2dxdy>
DxD

apparently does not lead t4.5). We have to estimate the norm df(\) more carefully. With
respect to 4], one of the difficulty in estimating|.42()\)]|| is that.A2()) is not a convolution
operator because of the dependence iof 7(x,-). To overcome this difficulty, we follow the
approach of]. Precisely, set

= [ el ()

where(zx, z) € D x D with z + z € D. Let us point out that, from assumption, there is no loss of
generality assuming that there exist two constants> 0 such that

Supp (h) C {v eRY:a < |y <b}.
In this case, in the above integral, one seestaR is such that
a< || <
t
which implies thatt| < |z|/a. This means that the above integral olfereduces actually to an
integral over[—<, ¢] whered is the diameter oD. Then,
k(A z,y) = Na(z —y,y),  forany(z,y) € DxD

and, setting

Gx(z) = sup |Ny(z,z)l, z €D
zE€D—x

one has
As(Np()] < /D Ga@ — loW)ldy,  YreD, pe LX(D).
Consequently,

HA2 HBL2 /G/\
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To prove @.5), one has then to show that

lim Gotip(z)dz =0, Va > —o.
|Bl—c0 Jp

First, one sees that for anfy, z) € D x D with x + z € D and any\ = a + i3, one has

\NA(x,z)\S/ﬂ@‘h(—%)‘exp{—(a—ka)t}f—;

where we used the fact thaf-,-) > 0. Then,

AASEEiﬁ]GA(w)]dxé/Rexp{—(a—i-a)t}f—;/p‘h (—%)‘dx

d
< /a exp{ — (a+ a)t}dt/ |h(v)|dv < o0,
_a RN

where we performed the change of variables: § in the z integral. Therefore, from the domi-
nated convergence theorem, it suffices to prove that

lim Gatip(z) =0, a.e.x eD.

|8]—00

Using the fact that, for any fixed € D, the mapping: — 7 (ac + 2, —% is bounded, this can

be done as in] thanks to the Riemann-Lebesgue’s Lemma. This achievesot@ pghat

lim ||Ky _font1(a+i8)Ks| =0, Vn € N, a> —o, Vn € N.

|8]—00
One proves in the same way that

lim ||Ky_fon(a+i08) K2 =0, Vn € N, a>—0o, VneN

8|00

and, combined with4.4) and @.4), yield the result. O

Remark 4.6. Let us observe that Lemndia5 allows to describe the asymptotic spectrum of the
transport operatorl’ + K. Indeed, combining Lemn#a5with the compactness 6A — 7))~ 'K
[32] and[4, Lemma 1.1)we infer that

) o(T+K)n{X e C : ReX > —X\*} consists of, at most, isolated eigenvalues with finite
algebraic multiplicity;
iy foranyn > 0,thesetr(T'+ K)N{X e C : ReX > —\* + n} is finite or empty.
Clearly, this result may be also derived from Theode®wsing the fact that the spectral mapping
theorem holds true for the point spectrum.
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