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Abstract

Melody is an important property for the perceptual description of Western musical pieces.
In the monophonic context, retrieval systems based on melodic similarity generally con-
sider sequences of pitches and durations. Algorithms that have been proposed for measuring
melodic similarity rely on geometric representations, string matching techniques, etc. Adap-
tations of editing algorithms, mainly applied in bioinformatic applications, to the musical
domain have already been proposed. However, we present in this paper several experiments
in order to optimize these methods. The different possible representations for pitches and
durations are discussed and evaluated. Optimizations specific to musical applications are
proposed and imply significant improvements of the editing algorithm studied. Evaluation
of this algorithm led to the best results during the MIREX 2006 symbolic melodic similarity
contest.

1 Introduction

Research works in the domain of the musical information retrieval generally concern Western
music. Melody is one of the most important property for the perceptual description of such
music [Selfridge-Field, 1998]. In this paper we thus focus on the melodic characteristics of
musical pieces.

The problem of melodic similarity evaluation has been raised with the development of musi-
cal applications such as query-by-humming. However, the notion of similarity between melodies
is very difficult to precisely define. From a computational point of view, it consists of determining
algorithms calculating a measure which indicates the degree of similarity between two melodic
segments. For particular applications like query-by-humming, some properties of the retrieval
system are expected. For instance, since a query can be transposed, played faster or slower,



without degrading the melody, retrieval systems have to be transposition invariant and tempo
invariant.

Several techniques for evaluating melodic similarities have been introduced during the last
few years. Geometric algorithms consider geometric representations of melodies and compute
the distance between objects. Some systems [Ukkonen et al.,2003, Lubiw and Tanur, 2004] are
closely linked to the well-known piano-roll representation, where notes are represented by hori-
zontal line segments whose length corresponds to the lengthof the note, and whose coordinates
correspond to the onset time and the pitch of the note. Other geometric systems represent notes
by weighted points [Typke et al., 2004]. The weight is related to the duration of the note. Dis-
tances between such geometric representations are calculated according to the Earth Mover’s
Distance.

Another algorithm adapted from string matching domain is proposed in [Doraisamy and Rüger, 2003,
Uitdenbogerd, 2002]. N-grams techniques involve countingthe distinct terms that the query and
a potential answer have in common. This approach is very simple but appears to be very effi-
cient (see Sec. 3). Nevertheless, this similarity measure (counting the matching subsequences)
does not take into account the perceptual properties of the music: only two cases are assumed,
the subsequence does match or not. However, this assumptionis not as simple concerning the
complex perceptual process of the music. This limitation has significant consequences on the
accuracy of retrieval systems based on N-gram techniques.

In this paper, we propose a detailed study of editing algorithms mainly developed in the
context of DNA sequence recognition [Gusfield, 1997] and their adaptation to the measurement
of melodic similarity in the monophonic context [Cambouropoulos et al., 2005]. In monophonic
music, no more than one note is sounded at any given time. Editing algorithms have already
been presented for application in the monophonic musical context [Mongeau and Sankoff, 1990,
Lemström, 2000, Crawford et al., 1998]. Retrieval systems based on melodic similarity relies
on such algorithms. In this paper, we deal with algorithms that compare monophonic musical
sequences. One of the main applications is the comparison ofmelodies.

Editing algorithms determine the score of operations that are necessary to transform one
sequence into another one. We present in the following several experiments to adapt and optimize
these editing algorithms to the musical context. The general editing algorithm is presented in
Sec. 2. Experiments about the parameters of the algorithms are detailed in Sec. 3 and lead to
conclusions that are proposed in Sec. 4.

2 Problem Formalization

Algorithms for retrieval systems based on melodic similarity consist of two main steps. The first
one transforms a symbolic monophonic musical piece into a symbolic sequence. The second one
computes a similarity score between two representations. These two steps are presented in this
section.



2.1 Representation of Monophonic Musical Pieces as Sequences

Monophonic musical pieces can be represented by trees of pitches [Rizo and Iñesta-Quereda, 2002].
This representation implies a hierarchy relying on bars induced by the time signature of the score
notation. However different trees can represent the same melody (same sequence of pitches and
durations). For example, two melodies with two different time signatures are represented by two
different musical scores. In this case, these two melodies sound similar but are represented in a
different way.

Following Mongeau and Sankoff’s model [Mongeau and Sankoff, 1990], any monophonic
score can be represented as a sequence of ordered pairs with the pitch of the note as the first
component and its length as the second. Thus, the sequence

(B4 B4 r4 C4 G4 E2 A2 G8)

represents the example illustrated in Fig. 1.

Figure 1: Example of monophonic melody.
Several alphabets of characters and set of number have been proposed to represent pitches

and durations [Uitdenbogerd, 2002, Lemström, 2000]. We present only a few ones that we think
are the most pertinent in this context.

The melodic contour indicates the variation between successive notes. Only three values are
possible: Up, Down, Same. Therefore, the sequence corresponding to Fig. 1 is:

SUDUDD.

The absolute pitch simply indicates the exact pitch (MIDI notation). For example, the melody of
Fig. 1 is represented by:

71,71,72,67,76,69,67.

In order to reduce the vocabulary, this exact pitch can be represented by their modulo-12 values.
The melodic contour can also be taken into account by using positive values when the melody
moves up and negative values when it moves down. Thedirected modulo-12 absolute pitch
sequence corresponding to the melody represented by Fig. 1 is:

11,11,+0,−7,+4,−9,−7.

In the context of query by humming applications, this representation present the huge disadvan-
tage to be not transposition invariant.

At the contrary of theabsolute pitch representations, theinterval andkey relative represen-
tations are transposition invariant. Theexact interval representation is simply the number of
semitones between two successive notes. Theexact interval sequence corresponding to Fig. 1 is:

0,1,5,9,7,2.



This representation can also be limited with modulo-12. Information about melodic direction
can also be indicated:

0,+1,−5,+9,−7,−2.

Thekey relative representations indicate the difference in semitones between notes and the key
of the melody. In the case of Fig. 1, the key signature corresponds toC major. Therefore the
associated sequence is:

11,11,0,7,4,9,7.

This representation can also be limited according to modulo-12 and the information about melodic
contour can be indicated:

11,11,+0,−7,+4,−9,−7.

The limitations of thekey relative representation is closely linked to the choice of the key. The
correct key has to be known in order to compute the correct representation.

Concerning the note durations, the same representations are possible. The duration contour
(Shorter, same, Longer) indicates the general variation ofduration between successive notes.
Therefore the duration representation of the melody of Fig.1 is:

ssssSsL.

Theabsolute representation simply indicates the length of the note in sixteenth notes:

4,4,4,4,4,2,2,8.

It is important to note that this representation is not tempoinvariant, while therelative represen-
tation is tempo invariant. The difference of durations between successive notes can be expressed
as duration subtraction:

0,0,0,0,2,0,6

or duration ratio:

1,1,1,1,
1
2
,1,4.

According to these representations, each element of a sequence can thus be formally repre-
sented by a symbol belonging to an infinite setΣ of labels. We consider an edit score functions
on this set of labels. It assigns a real numbers(x,y) to each pairs of labels(x,y) in Σ∪{λ} where
λ represents the empty symbol1 such that:

s(x,x) > 0 ∀x ∈ Σ,

s(x,y) < 0 ∀x 6= y,(x,y) ∈ {Σ∪{λ}}2
.

This means that the score between two symbolsx andy becomes higher with their similarity.

1s(x,λ ) is the score of the deletion of symbolx in Σ ands(λ ,y) is the score of the insertion ofy.



2.2 Local Similarity Problem

Measuring similarity between sequences is a well-known problem in computer science which
has applications in many fields [Gusfield, 1997, Sankoff and Kruskal, 1983] such as computa-
tional biology, text processing, optical character recognition, image and signal processing, error
correction, pattern recognition, etc.

In the early seventies, [Needleman and Wunsch, 1970] and then [Wagner and Fisher, 1974]
proposed algorithms which compute a similarity measure between two strings of symbols as
the maximum score sequence of elementary operations neededto transform one of the strings
into the other. Given two strings of symbolsS1 andS2 of respective lengths|S1| and |S2| , a
set of elementary operators on strings, called edit operations, and a score associated to each
edit operation, a score between these two strings is defined as the score of the sequence of edit
operations that transformsS1 into S2 with maximum score. This similarity measure makes use
of the dynamic programming principle to achieve an algorithm with quadratic complexity,i.e. in
O(|S1|× |S2|).

Let us consider only the three edit operations that are usually used to compare musical se-
quences: substitution, deletion and insertion. Lete be an edit operation, a scores is assigned to
each edit operation as follows:

• if e substitutesxi (the ith character ofS1) into y j (the jth character ofS2) then s(e) =
s(xi,y j)

• if e deletesxi thens(e) = s(xi,λ )

• if e insertsy j thens(e) = s(λ ,y j).

The scores is extended to a sequence of edit operationE = (e1,e2, . . . ,en) by letting s(E) =

∑n
k=1 s(ek). This makes it possible to define a scoreσ(S1,S2) between sequencesS1 andS2 as

the maximum score of edit operation sequences transformingS1 into S2, namely:

σ(S1,S2) = max
E∈E

{s(E)}

whereE represents the set of sequences of edit operations transformingS1 into S2.
In many applications, two strings may not be highly similar in their entirety but may con-

tain regions that are highly similar. This is particularly true when long stretches of anony-
mous sequences are compared, since only some internal sections of those strings may be related.
In this case, the task is to find and extract a pair of regions, one from each of the two given
strings, that exhibits high similarity. This is calledlocal alignment or local similarity problem
[Smith and Waterman, 1981] and is defined as : given two strings S1 andS2, find substringsρ1

andρ2 of S1 andS2, respectively, whose similarity is maximum over all pairs of substrings from
S1 andS2.

The computation of a local similarity allows us to detect local conserved areas between both
sequences. The solution of such a problem is based on the notion of suffix mapping between
sequences. The local suffix mapping problem for a given pairxi,y j of symbols is to find a
(possibly empty) suffixρ1 of the subsequenceS1[xi] (defined from the first symbol of stringS1



to xi) and a (possibly empty) suffixρ2 of the subsequenceS2[y j] of S2 such that the score of the
optimal sequence of edit operations transformingρ1 into ρ2 is the maximum over all scores of
sequences of edit operations between suffixes ofS1[xi] andS2[y j].

The score of the sequence solving the optimal local suffix mapping problem (called local
score) for a given pairxi,y j of symbols is denoted by LS(xi,y j):

LS(xi,y j) = max{σ(ρ1,ρ2),(ρ1,ρ2) suffixes ofS1 andS2}.

Local similarity between two sequences is then defined as thescore of the best pair of local
suffixes in treesS1 andS2:

LS(S1,S2) = max{LS(xi,y j),(xi,y j) ∈ S1×S2}.

So, in order to evaluate local similarity, the algorithm needs to find maximum similarity
between suffixes ofS1[xi] andS2[y j], for any pair(xi,y j) of S1× S2, and then to determine the
best pairxmax

1 , ymax
2 of S1 andS2.

Since we can always choose an empty suffix, LS(xi,θ) = 0 and LS(θ ,y j) = 0, whereθ is an
empty sequence. And finally, for any(xi,y j), the proper recurrence for LS(xi,y j) is:

LS(xi,y j) = max















0
LS(xi−1,y j)+ s(xi,λ )
LS(xi,y j−1)+ s(λ ,y j)
LS(xi−1,y j−1)+ s(xi,y j)

wherexi−1 andy j−1 respectively represent symbols beforexi andy j in sequencesS1 andS2. Note
that if the query sequenceS1 has only one symbolx, then the local score betweenS1 andS2 is
obtained from an empty sequence (ie. there is no matching) or from a unique matching between
x and the most similar symbol ofS2.

3 Experiments and Results

In this section, we detail the editing algorithm by proposing a detailed study of the different
choices of possible settings. All these possibilities havebeen experimented.

3.1 Evaluation

One of the main problem in the music information retrieval domain is the problem of the eval-
uation of the system proposed. The first Music Information Retrieval Evaluation eXchange
(MIREX 2005) [Downie et al., 2005] is a contest whose goal is to compare state-of-the-art algo-
rithms and systems relevant for Music Information Retrieval. During this first contest, an eval-
uation topic about symbolic melodic similarity has been performed. Participants have discussed
the process of evaluation and proposed an evaluation procedure. The experiments presented in
this paper are based on these procedures.



The RISM A/II (International inventory of musical sources)collection is composed of one
half-million notated real world compositions. The incipits are symbolically encoded music. They
are monophonic and contain between 10 and 40 notes. 11 incipits have been randomly chosen
from this collection. A ground truth has been established [Typke et al., 2005] by combining
ranked lists that were created by 35 music experts. The resulting ground truth has the form of
ranked groups of incipits. The groups contain incipits whose differences in rankings were not
statistically significant, but the ranking of the groups is statistically significant.

A tested system returns a ranked list of incipits estimated melodically similar to the query
proposed. A few measures are then used to compute a score according to the corresponding
ground truth. A specific measure has been proposed: the Average Dynamic Recall (ADR)
[Typke et al., 2006a]. It takes into account the ranked groups of the ground truth by indicat-
ing how many of the documents that should have appeared before or at a given position in the
result list actually have appeared. ADR takes values in the range[0,1]. The higher the ADR
measure is, the more accurate the tested system is.

In the following sections, the local editing algorithm proposed has been tested with the
MIREX 2005 data training, according to the ADR measure. These data are composed of 11
queries and 580 incipits for the database collection.

3.2 Melody Standardisation

The first part of the experiments proposed concern the melodystandardisation. Several ap-
proaches can be chosen to represent a symbolic melody. We restrain these possibilities by con-
sidering only the pitch and the note and rest durations that compose melodies.

3.2.1 Pitch Representation

Several different representations of pitches have been described in Sec. 2. We only consider
during our experiments 4 different representations:contour, absolute, interval andkey relative.
We also study the influence of the contour information by taking into account the information
related to the variations between successive notes. Thus wealso propose results with two other
representations:directed interval anddirected key relative. The results of these experiments are
presented in Tab. 1. The editing algorithm tested is in its simplest form: it does not consider any
information about duration, substitution scores are constant, etc. . . .

The results clearly underlines that thecontour representation leads to the worst results. The
difference of accuracy is very significant: 0.38 whereas the other results are greater than 0.50.
It is mainly justified by the lack of information contained inthis representation. It is obvious
that several melodies can be represented by the same melodiccontour. Thus, the vocabulary
proposed appears to be too limited for musical applications[Uitdenbogerd and Zobel, 1999].

Theabsolute andkey relative representations approximately lead to the same average ADR
measures. However, thekey relative representation presents the great advantage to propose a
similarity score that is transposition invariant. The condition of transposition invariance is the
before-hand knowledge of the key of the musical pieces studied. Nevertheless a false estimation
of the key leads to high errors in the similarity measurement. In the MIREX 2005 training data,



Pitch representation average ADR min ADR max ADR
contour 0.39 0.03 0.68
absolute 0.55 0.37 0.88

key relative 0.56 0.00 0.90
directed key relative 0.59 0.00 0.91

interval 0.60 0.32 0.93
directed interval 0.62 0.30 0.93

Table 1: ADR measures (average, minimum and maximum values)obtained by the retrieval
system considering different pitch representations.


               





   
              

Figure 2: Example of limitations of thekey relative representation: the query (top) is very similar
to the incipit tested (bottom), but the difference of keys C major for the query, G major for the
incipit) leads to a very low similarity score.

one query permits to show the limitations of this representation. Fig. 2 shows this query and the
incipit that has been judged as the most similar by the musical experts. With thekey relative
representation, editing algorithm considers these two incipits as very different, whereas they are
the same at the exception of one note. Another choice for the key signature (C major instead of
G major) leads to an estimation of high similarity by the samealgorithm. The small difference
between the average ADR with the two representationsabsolute andkey relative is mainly due to
the bad results obtained with this query (minimum ADR 0.0 with thekey relative representation),
resulting from a bad choice for the musical key of the query.

Tab. 1 also underlines the average ADR obtained with theinterval representation. By con-
sidering only the pitch difference between successive notes, this representation is transposition
invariant. The lowest similarity score computed is thus higher than the one obtained with thekey
relative representation (0.32 instead of 0.0). Nevertheless, this representation also presents some
drawbacks. Fig. 3 exhibits an example of the limitation of this representation. The query is repre-
sented by the sequence(0,1,5,9,7,2), whereas the incipit tested is represented by the sequence
(0,1,3,7,7,2). Thus, one difference between two musical pieces results intwo differences in the
musical sequences [Lemström and Ukkonen, 2000]. The score measuring the similarity between
pieces may slightly be affected by this error.

Moreover, taking into account the melodic contour slightlyimproves the results obtained
with the MIREX 2005 training data. The average ADR 0.56 obtained withkey relative represen-
tation increases to reach 0.59, whereas it is 0.62 instead of 0.59 for theinterval representation.
Therefore we choose in the next experiments to apply adirected representation.



Figure 3: Illustration of the limitations of theinterval representation: only one note (A instead of
G) differs between the query (top) and the musical piece (bottom), but it leads to two differences
between the corresponding musical sequences.

Furthermore, because of the limitations of these representations, we propose to experiment
a new algorithm that takes into account both representations directed interval anddirected key
relative. The simple editing algorithm consists of computing two scores obtained with the two
different representations. The maximum score is then considered to compare the melodic simi-
larity between musical pieces. This algorithm presents theadvantage to take into account both
key relative representation, which seems to be the pitch representationthat gives the best results
if the key signature is correct, andinterval representation, which permits to correct possible er-
rors due to the false choice of key signature. This algorithmhas been tested with the parameters
corresponding to the results of Tab. 1: it appears that the results are not better in this case. But
experiments with the parameters that gives the best results(see next sections) indicate that this
hybrid technique slightly improves the results obtained with a single representation. In tab. 2,
the method described is denoteddirected maximum (maximum if the contour is not taken into
account). The average ADR obtained by applying this method reaches 0.79 whereas it is only
0.76 or 0.74 with a single representation. Nevertheless, in this case, the time computation of the
similarity algorithm is multiplied by two.

Pitch representation average ADR min ADR max ADR
key relative 0.65 0.00 0.95

directed key relative 0.67 0.00 0.96
interval 0.74 0.62 0.88

directed interval 0.76 0.64 0.98
maximum 0.76 0.61 0.92

directed maximum 0.79 0.63 0.96

Table 2: ADR measures (average, minimum and maximum values)obtained by the retrieval sys-
tem considering different pitch representations and themaximum anddirected maximum tech-
niques. The parameters of our editing algorithm chosen are the ones that give the best similarity
results.

Following the different results described in this section,if the musical pieces are tonal music
and if the key signature is precisely defined, thedirected key relative representation is certainly
the most appropriate. However, in the general case, in orderto prevent rare but high errors, the



directed interval representation has to be chosen. Themaximum algorithm taking into account
the two different representations has to be chosen only whenconsidering applications which
require high precision but which do not have any constraint concerning time computation.

3.2.2 Note Duration

Musical pieces are assumed to be represented by sequences ofpitches and duration. We propose
experiments concerning the duration information and its relevance for similarity comparisons.
Experiments performed in [Suyoto and Uitdenbogerd, 2005b]conclude that the combination of
pitch and duration does not improve retrieval effectiveness over the use of pitch on its own. The
goal of the experiments presented in this section is to checkthese results.

The duration information can be taken into account when calculating the substitution score
between two notes. When substituting a half note by a quarternote, the substitution score should
be more important than the score corresponding to a substitution between two notes with the
same duration. Therefore, we propose that the scores depends on the pitch range and on the
duration difference between two notesxi andy j. This score is computed according to existing
works [Mongeau and Sankoff, 1990]:

s(xi,y j) = spitch(xi,y j)+ ksduration(xi,y j)

wherespitch is the score due to the pitch difference, andsduration is the score due to the duration dif-
ference. The parameterk determines the relative weight of the pitch difference withthe duration
difference (k ∈ R

+). If k is null, no information concerning duration is used in the computation
of the substitution score. Ifk is very high, only the information concerning duration is used.

Tab. 3 presents the results (ADR) obtained by taking into account the duration information
or not. Thedirected maximum technique has been applied for the pitch representation, and the
parameterk is set to 0.20.

Note representation average ADR min ADR max ADR
with duration 0.69 0.33 0.92

without duration 0.61 0.38 0.91

Table 3: ADR measures (average, minimum and maximum values)obtained by the retrieval
system considering the duration information or not.

The results clearly show that the average ADR increases whenduration information is taken
into account. The difference is significant: 0.69 instead of 0.60. The results are thus opposed
to the conclusions proposed by [Suyoto and Uitdenbogerd, 2005b], and lead us to suggest that
the representation of notes integrating duration improvesthe quality of melody retrieval systems.
Another problem is now raised: computing the substitution score by considering note duration.
It relies on the problem of the duration representation. This representation is discussed in the
next section whereas the problem of the substitution score is discussed in Sec. 3.3.1.



3.2.3 Duration Representation

Different representations of duration have been describedin Sec. 2. The problem of duration
representation is similar to the problem of pitch representation choice. We consider bothabso-
lute andinterval representations, and the possibility of taking into account the global variation
(contour) of the duration by indicating+ or− before the duration value (directed duration). The
results obtained with four representations are presented in Tab. 4.

Duration representation average ADR min ADR max ADR
absolute 0.69 0.35 0.92
interval 0.65 0.36 0.92

directed absolute 0.69 0.33 0.92
directed interval 0.68 0.35 0.92

Table 4: ADR measures (average, minimum and maximum values)obtained by the retrieval
system considering different duration representations.

Results presented confirm the improvement due to the consideration of the variation of the
duration:directed representation slightly increases the average ADR. But some other results are
more surprising. The best average ADR is obtained with theabsolute representation. However,
it is important to remember that this duration representation does not permit the retrieval algo-
rithm to be tempo invariant. This drawback should have an impact on the quality of the results.
With this representation, each duration difference for a substitution is penalized. For example,
a melody represented with half notes is measured as very different from the same melody rep-
resented with quarter notes. We therefore expect theinterval representation to lead to the best
results, but this limitation is justified by the MIREX data set.

These results are partly explained when observing the most similar musical pieces extracted
from the database. Fig. 4 shows an example of a query and a piece from the database that are
estimated very similar by our algorithm. This piece is not present in the ground truth established
by music experts, whereas it is obvious that it is very similar with the query. In this case, our
algorithm has a low ADR measure whereas the retrieved piece is correct. Fig. 4 also shows an
incipit present in the third group of the ground truth [Typkeet al., 2005], whereas the similarity
is very high if the absolute duration of notes is not taken into account. Our algorithm considers
this piece very similar to the query, which is also correct.

The conclusion of these experiments is that the duration representation mainly depends on
the application considered. If the application is query-by-humming, similarity measures should
be tempo invariant. That’s why, thedirected interval representation appears to be the best choice
in this case. Otherwise, thedirected absolute has to be chosen for applications that do not require
tempo invariance. For example, music experts who established the ground truth for the MIREX
2005 training data consider the difference of tempo as an important difference to discriminate
melodies. In order to be compared to these experts, we consider in the following thedirected
absolute representation.




 


        

     

             





         

Figure 4: Example of differences between our algorithm and the MIREX 2005 ground truth: the
query (top) is very similar to the two incipits, but only the bottom one appears in the ground
truth.

3.2.4 Weights for Each Component

In Sec. 3.2.2, we introduce the parameterk which determines the relative weight of the pitch
difference with the duration difference. Experiments havebeen performed concerning the influ-
ence of this parameter. The average ADR obtained with different values for the parameterk is
presented in Tab. 5.

k average ADR min ADR max ADR
0.0 0.61 0.38 0.91
0.1 0.69 0.39 0.92
0.2 0.69 0.33 0.92
0.25 0.68 0.32 0.92
0.3 0.69 0.29 0.92
0.5 0.67 0.21 0.92
5.0 0.58 0.19 0.92

Table 5: ADR measures (average, minimum and maximum values)obtained by the retrieval
system considering different values for the parameterk.

Results show that the influence of the parameterk is very small: the average ADR varies
between 0.68 and 0.69. If k is null, no information about duration is taken into account(see
Sec. 3.2.2). Thus, the average ADR highly decreases. At the opposite, ifk takes high values,
the duration information is considered as highly more important than the pitch information. This
consideration results in lower average ADR because the pitch information is experimented as the
main information for any melody. In the following, we setk to 0.25.

3.3 Retrieval Algorithm

In this section, we present experiments about the parametrization of editing algorithms.



3.3.1 Substitution Scores

In Sec. 2.2, edit operations have been presented. Substitution is the main operation and mainly
determines the accuracy of the retrieval algorithm. For some applications, the substitution score
is assumed to be constant. However, in the musical context, this assumption must be discussed
[Uitdenbogerd, 2002]. Obviously, substituting one pitch with another one has more or less in-
fluence on the general melody. For instance, substituting aC note with aG note (fifth) may
slightly modify a melody in comparison with substituting with a D note. As introduced by
[Mongeau and Sankoff, 1990] the substitution score may be correlated to the consonance inter-
val. We propose here to confirm the influence of this choice on the accuracy of the retrieval sys-
tem. Note that determining the substitution score according to the consonance interval is totally
different than determining substitution score according to the difference (in semi-tones for ex-
ample). However, some models only consider such differences, for example [Typke et al., 2004].

The score due to the pitch difference is determined according to consonance: the fifth (7
semitones) and the third major or minor (3 or 4 semitones) arethe most consonant intervals
in Western music [Horwood, 1944]. Tab. 6 shows score values chosen during our experiments.
These values slightly differ from the ones indicated by [Mongeau and Sankoff, 1990] because
we choose to preserve the symmetry properties of the score: the score for a substitution between
two identical notes is equal to 2.850. The score between a note and a rest has been fixed to−0.5.

Pitch difference Associated score
in semitones

0 +2.850
1 −2.850
2 −2.475
3 −0.825
4 −0.825
5 +0.000
6 −1.800

rest −0.500

Table 6: Scores associated to the substitution of two notes as a function of the interval between
notes (in semitones), according principally to consonance.

Tab. 7 shows the ADR measures obtained by considering substitution scores according to
consonance intervals. Experiments have been done by considering the parameters that give the
best results (higher average ADR in both cases). These results clearly show that considering
different values for the substitution scores according to the consonance interval significantly im-
proves the retrieval system. The average ADR is 0.79, whereas it is only 0.71 when the substitu-
tion score is constant. This improvement is important because taking into account the consonance
interval between notes is only possible with a few retrievalsystems ([Lubiw and Tanur, 2004] for
example), especially the edit-based systems.



Substitution scores average ADR min ADR max ADR
constant 0.71 0.55 0.89

consonance 0.79 0.63 0.96

Table 7: ADR measures (average, minimum and maximum values)obtained by the retrieval
system considering fixed substitution score or substitution scores related to consonance interval.

Substitution score can also depend on the note duration. We propose to experiment two differ-
ent approaches. The first one assumes the substitution scoreto be dependent on the duration sub-
traction, estimated in sixteenth note values. This choice has been proposed by [Mongeau and Sankoff, 1990].
The second possibility considers the ratio between two consecutive note durations. Moreover,
the variation between durations may also be taken into account: a score is defined according to
the duration contour.

Tab. 8 shows the results obtained by the retrieval system when considering the substitution
score depending on the duration subtraction or the durationratio. Here, the substitution scores
only depend on the duration information.

Duration average ADR min ADR max ADR
subtraction 0.62 0.19 0.92

directed subtraction 0.63 0.19 0.92
ratio 0.68 0.35 0.92

directed ratio 0.69 0.33 0.92

Table 8: ADR measures (average, minimum and maximum values)obtained by the retrieval
system considering duration subtraction or ratio, directed or not, for the calculation of the sub-
stitution scores.

These results clearly show that the duration ratio is more significant than the duration sub-
traction. The average ADR is 0.68 when considering duration ratio, whereas it is only 0.62 when
considering duration subtraction. This observation can beeasily justified with a few examples.
Let us consider a melodyM1 composed of half notes, and the same melodyM′

1 at the exception
of one note which is substituted by a quarter note (same pitch). Thus, the duration subtraction
is 16−8 = 8 sixteenth notes. Now, consider the same melodyM2 with two times faster tempo,
so that each note are represented by quarter notes. If this melody is compared to a melodyM′

2
composed of the same notes at the exception of one note which is substituted by a eighth note,
the duration subtraction is 8−4 = 4 sixteenth notes. The differences betweenM1 andM′

1 and
the one betweenM2 andM′

2 are not similar whereas, in each case, the mismatching note in M′
i

is two times shorter than inMi (i ∈ {1,2}). We would expect the difference of substitution score
to be the same in both cases. When considering the duration ratio, the substitution scores are the
same.

These experiments indicate that the choice of considering duration ratio for the calcula-
tion of the substitution scores greatly improves the retrieval system. Existing systems like



[Mongeau and Sankoff, 1990] consider the duration subtraction, or cannot be parametrized for
considering the difference ratio. Here again, the flexibility of the edit-based systems induces
great improvements for musical applications, since it is possible to take into account the rhyth-
mic information and to preserve the tempo invariance property.

Some other experiments concerning the insertion and deletion scores have been performed.
One could think that considering the note duration for the calculation of the insertion/deletion
scores may improve the quality of the retrieval system. Indeed, the insertion of a half note may
disturb more significantly a melody than the insertion of a sixteenth note. Tab. 9 exhibits the
average ADR computed by the retrieval system when the insertion/deletion score depends on the
note duration. These results show that the improvement exists but is not significant. Nevertheless,
in the following, the insertion/deletion scores depend on the note duration.

Duration average ADR min ADR max ADR
dependent 0.72 0.43 0.94

independent 0.71 0.39 0.93

Table 9: ADR measures (average, minimum and maximum values)obtained by the retrieval
system when considering the insertion/deletion operationscore related to the note duration.

3.3.2 Global or Local Alignment

In Sec. 2, we discuss the different existing algorithms based on edit operations. Mainly two
different techniques are proposed. The first one assumes that the pieces compared have very dif-
ferent lengths: similarity between local portions of pieces is estimated. The second one considers
the two pieces compared in their entirety. It is obvious thatconsidering two pieces with approxi-
mately the same length considerably retains the applications of global alignment algorithms. We
performed experiments to measure the improvement due to thelocal alignment algorithm.

Tab. 10 presents the ADR measures computed by our retrieval system with the local and
global alignment algorithms. Results show that the improvement due to the local alignment
algorithm is very important, even if the MIREX training database is composed of musical incipits
whose lengths are similar. In query-by-humming applications, the improvement may certainly
be far more important. These results prove that the local alignment algorithm is better than the
global alignment algorithm in this context.

Alignment average ADR min ADR max ADR
local 0.79 0.63 0.96

global 0.55 0.34 0.91

Table 10: ADR measures (average, minimum and maximum values) obtained by the retrieval
system when considering global or local alignment.



3.3.3 Query Length Weighting

In query-by-humming applications, the length of the query is assumed to be small compared to
the length of the musical pieces of the database, thus the local alignment technique is generally
more accurate. Nevertheless, the case of a short musical piece in the database may be investi-
gated. Fig. 5 shows incipits from the MIREX 2005 training database. Two musical pieces (b)
and (c) are estimated as very similar to the query (a). But (c)is shorter than the query and (b)
is longer. Editing algorithm based on local alignment computes a small similarity score if the
query is longer than the piece tested, compared to the score obtained with a long piece. Indeed,
fewer notes are compared, and as the score is limited by the number of matching scores, it is
thus limited by the number of notes. For example, in Fig. 5, the similarity score is higher when
comparing the query (a) with the second piece (b), because the length of the piece tested is higher
than the length of the query. The score is thus limited by the length of the query. At the opposite,
the similarity score obtained when comparing the query withthe third piece (c) is smaller.





               

(a)





                

(b)





        


(c)

Figure 5: Examples of query (a) and related musical pieces (b) and (c) with different lengths.

Therefore we propose to improve the editing algorithm presented by taking into account
the length of the pieces. We assume that the length of the matching sequence is the minimum
between the query length and the tested piece length. The score computed is then weighted by
the inverse of this minimum length. Nevertheless, if a pieceis composed of only a very few notes
(less than five for example), we propose to ignore the piece tested.

Tab. 11 shows the results obtained by applying our editing algorithm. These results clearly
underline that taking into account the length of the incipits tested improves the system. The
average ADR computed is 0.79 instead of 0.72. Nevertheless, this improvement clearly depends
on the application. The length of the query is generally small compared to the length of the
musical pieces of the database. Therefore, in this case, weighting all the computed scores by the
length of the query would not improve the retrieval system.

3.3.4 Complexity, Implementation and Time Computation

The editing algorithms we detailed in this paper have been implemented in C++ language. As
explained in Sec. 2, the algorithm complexity is quadratic,in O(|S1|× |S2|), where|S1| and|S2|



Query length weighting average ADR min ADR max ADR
with 0.79 0.63 0.96

without 0.72 0.55 0.94

Table 11: ADR measures (average, minimum and maximum values) obtained by the retrieval
system when considering or not the lengths of the query and the incipits.

are the lengths of the musical sequences compared. However,considering musical applications
such as query-by-humming retrieval systems implies that the length of the queryS1 is very small
compared to the lengthS2 of the musical pieces of the database.

Tab. 12 presents computation times spent by the retrieval systems evaluated during MIREX
2005. It also indicates the computation time spent by our system. The lower computation times
are generally obtained by the simplest system (N-grams, edit-distance or geometric), whereas
they may be evaluated as very accurate (see next section), like the simple N-grams system pro-
posed by [Suyoto and Uitdenbogerd, 2005a]. Furthermore, the slowest system in MIREX 2005
has been highly improved and is now very fast [Typke et al., 2006b]. These results underline
that the computation time spent by our algorithm is very highcompared to the other ones. It is
mainly due to the score of themaximum algorithm presented for taking into account two pitch
representations (see Sec. 3.2.1). Furthermore, the implementation can be optimised and we soon
expect time computation reaches the same values as the fastest other systems.

Algorithm Author(s) Computation time (s)
Improved editing 110
Edit distance I/R Grachten 80

N-grams Orio 24
Simple N-grams Uitdenbogerd 48

Geometric Typke 50000
Geometric Lemström 10

Edit distance Lemström 10
Hybrid Frieler 54

Table 12: Comparison of the computation times for the retrieval system proposed (top) and
retrieval systems evaluated during MIREX 2005.

Improvements in editing algorithm may induce a significant increase of the time computation,
whereas the accuracy due to the improvement may be limited. For example, [Mongeau and Sankoff, 1990]
proposes two new operationsconsolidation andfragmentation. In this case, the complexity be-
comes cubic.



3.4 Comparisons with Existing Systems

In this section, we present the results obtained by our improved system and the results of the
evaluations obtained during MIREX 2005. It is important to note that our system has not been
evaluated during MIREX 2005. In order to evaluate our systemwithout training, we then par-
ticipated to MIREX 2006 symbolic melodic similarity contest: these results are presented in
Sec. 3.5.

Results obtained with the MIREX 2005 training database are quite good : the average ADR
obtained with our improved algorithm is 0.79 (the minimum ADR is 0.63 and the maximum
ADR is 0.96). Tab. 13 shows the results obtained by the algorithms participating to the MIREX
2005. The best average ADR obtained during MIREX 2005 was 0.66.

Algorithm Author Rank average ADR min ADR max ADR
Edit distance I/R Grachten 1 0.66 0.29 0.88

N-grams Orio 2 0.65 0.31 0.91
Simple N-grams Uitdenbogerd 3 0.64 0.31 0.91

Geometric Typke 4 0.57 0.29 0.86
Geometric Lemström 5 0.56 0.34 0.72

Edit distance Lemström 6 0.54 0.29 0.84
Hybrid Frieler 7 0.52 0.34 0.81

Table 13: Results of the evaluation of retrieval systems during MIREX 2005.

3.5 Robustness to Pitch and Tempo Variations

During the 2nd Music Information Retrieval Evaluation eXchange (MIREX 2006), a new sym-
bolic melodic similarity contest has been proposed. It was composed of two tasks. The first task
consisted of retrieving the most similar incipits from the UK subset of the RISM A/II collection
(about 15,000 incipits), given one of the incipits as a query. Both the query and the collection
were monophonic. Half the queries were hummed or whistled queries that have been converted
to MIDI, thus with slight rhythmic and pitch imperfections,and half the queries were quantized
in pitch and rhythm.

At the opposite of the MIREX 2005 contest, no ground truth wasestablished in advance.
Algorithms proposed by participants computed the similarity measures and indicated the most
similar musical pieces in the RISM database. These relevances of the matches were judged by
experts, according to a general evaluation – not similar, somewhat similar or very similar – and
one fine score from 0 to 10. Each system was then evaluated withseveral measures (Average
Dynamic Recall for example).

Results are presented in Fig. 6. Our algorithm denoted FH obtains the best results, similar
to the ones obtained by the improved geometric algorithm submitted by [Typke et al., 2006b].
The difference with the results obtained by [Uitdenbogerd,2006], based on edit-distance, are
significant and can be partly explained by the optimization of editing algorithms.



Figure 6: Results of the MIREX 2006 Symbolic Melodic Similarity task2: FH denotes the results
obtained by the algorithm presented here.

Although our algorithm has been optimized according to MIREX 2005 training data, the
results with the MIREX 2006 database are very good. It clearly underlines that our algorithm
performs similarly whatever the database. These results also show that editing algorithms are
robust to pitch and time variations. Results with hummed or whistled queries are comparable
to results obtained with quantized queries. Finally, the differences with other editing algorithms
show that the experiments detailed in this paper significantly improve such algorithms.

4 Conclusion and future works

Editing algorithms have already been presented for applications in the musical context. Never-
theless, to our knowledge, no complete evaluation of such algorithms has been proposed. We
present in this paper several experiments in order to optimise and to adapt these editing algo-
rithms for computing similarity measures between monophonic melodies. The representation of
melodies and the editing algorithms are discussed and experimented. All the optimisations pro-
posed lead to an algorithm which obtains the best results with MIREX 2005 training database.
It also participated to the MIREX 2006 contest2 and obtained the best results in the monophonic
context. Differences with other editing algorithms show that the experiments detailed in this
paper permit to significantly improve such algorithms. Thus, the editing algorithm that has been
improved according to MIREX 2005 training data is robust to pitch and time variation and per-
forms similarly whatever the database. Furthermore, results with hummed or whistled queries

2http://www.music-ir.org/mirex2006/index.php/MIREX2006_Results



are comparable to results obtained with quantized queries.
We can now raise the questions of improvements of such algorithms dedicated to monophonic

musical pieces. Indeed, the evaluations indicate high accuracy for our retrieval system. The
comparison between the results obtained with MIREX 2005 training database and the results of
the similarity evaluation established by musical experts underlines that our algorithm generally
computes better results than one single expert. Since the attribute of the similarity measure is
subjective, it is difficult to propose a retrieval system satisfying every musical expert.

And it is certainly impossible to propose a retrieval systemwhich satisfies every musical
expert, because of the subjective attribute of the similarity measure.

The main goal of all these experiments performed is to show the flexibility of the editing
algorithms. Edit operations can perfectly be adapted to themusical context. Musical elements
such as tonality or rhythm are particularly important in theperception of music. Edit operations
allow us to take into account musical properties of the Western music by including weights
according to the musical importance of each note [Robine et al., 2007]. This flexibility also
encourages us to adapt such algorithms to the polyphonic context [Hanna and Ferraro, 2007].
Indeed, new operations related to the nature of chords may beconsidered in the future in order
to take into account all the notes that sound at the same time.This extension is necessary to
propose a system which computes a measure from any kind of queries with any kind of musical
pieces (monophonic or polyphonic). In particular, the system should be improved in the case of
a polyphonic query with a polyphonic database. Other chord-specific edit operations are thus
necessary and can be included in the system.

From an algorithmic point of view, we propose in this paper a direct application of the algo-
rithm of [Smith and Waterman, 1981]. However, heuristics toapproximate local alignment can
be applied to the musical context and may lead to the reduction of time computation of local
score. For instance, theBasic Local Alignment Tool (BLAST) [Altschul et al., 1990] is a well
known searching engine for biological sequence databases.We aim to extend BLAST heuristic
to musical sequences.
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