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Abstract

Melody is an important property for the perceptual des@ipbf Western musical pieces.
In the monophonic context, retrieval systems based on rieeknhilarity generally con-
sider sequences of pitches and durations. Algorithms that heen proposed for measuring
melodic similarity rely on geometric representationsingtimatching techniques, etc. Adap-
tations of editing algorithms, mainly applied in bioinfaatic applications, to the musical
domain have already been proposed. However, we presensipaper several experiments
in order to optimize these methods. The different possiefgasentations for pitches and
durations are discussed and evaluated. Optimizationsfigpr musical applications are
proposed and imply significant improvements of the editilgp@thm studied. Evaluation
of this algorithm led to the best results during the MIREX @89ymbolic melodic similarity

contest.

1 Introduction

Research works in the domain of the musical informationeeal generally concern Western
music. Melody is one of the most important property for thecpptual description of such
music [Selfridge-Field, 1998]. In this paper we thus focustbe melodic characteristics of
musical pieces.

The problem of melodic similarity evaluation has been mis&h the development of musi-
cal applications such as query-by-humming. However, thi®nof similarity between melodies
is very difficult to precisely define. From a computationalpof view, it consists of determining
algorithms calculating a measure which indicates the agegfeimilarity between two melodic
segments. For particular applications like query-by-hungnsome properties of the retrieval
system are expected. For instance, since a query can b@aset; played faster or slower,



without degrading the melody, retrieval systems have toréesposition invariant and tempo
invariant.

Several techniques for evaluating melodic similaritiegehbeen introduced during the last
few years. Geometric algorithms consider geometric reprdions of melodies and compute
the distance between objects. Some systems [Ukkonen 20@B, Lubiw and Tanur, 2004] are
closely linked to the well-known piano-roll representatiovhere notes are represented by hori-
zontal line segments whose length corresponds to the lerigkie note, and whose coordinates
correspond to the onset time and the pitch of the note. Oth@megtric systems represent notes
by weighted points [Typke et al., 2004]. The weight is redate the duration of the note. Dis-
tances between such geometric representations are deltwacording to the Earth Mover’s
Distance.

Another algorithm adapted from string matching domain @gpmsed in [Doraisamy and Ruger, 2003,

Uitdenbogerd, 2002]. N-grams techniques involve countiregdistinct terms that the query and

a potential answer have in common. This approach is verylsitmt appears to be very effi-

cient (see Sec. 3). Nevertheless, this similarity meastoenting the matching subsequences)

does not take into account the perceptual properties of t&@mnonly two cases are assumed,

the subsequence does match or not. However, this assuniptian as simple concerning the
complex perceptual process of the music. This limitatios significant consequences on the
accuracy of retrieval systems based on N-gram techniques.

In this paper, we propose a detailed study of editing algor# mainly developed in the
context of DNA sequence recognition [Gusfield, 1997] andr theéaptation to the measurement
of melodic similarity in the monophonic context [Cambousojps et al., 2005]. In monophonic
music, no more than one note is sounded at any given timeingditgorithms have already
been presented for application in the monophonic musiaakst [Mongeau and Sankoff, 1990,
Lemstrom, 2000, Crawford et al., 1998]. Retrieval systeraseld on melodic similarity relies
on such algorithms. In this paper, we deal with algorithneg tompare monophonic musical
sequences. One of the main applications is the comparisorlafdies.

Editing algorithms determine the score of operations tmatreecessary to transform one
sequence into another one. We present in the following akgrperiments to adapt and optimize
these editing algorithms to the musical context. The geresliting algorithm is presented in
Sec. 2. Experiments about the parameters of the algoritmendetailed in Sec. 3 and lead to
conclusions that are proposed in Sec. 4.

2 Problem Formalization

Algorithms for retrieval systems based on melodic simijaconsist of two main steps. The first
one transforms a symbolic monophonic musical piece intov@®)jic sequence. The second one
computes a similarity score between two representatiohesd two steps are presented in this
section.



2.1 Representation of Monophonic Musical Pieces as Sequences

Monophonic musical pieces can be represented by treesbigsi{Rizo and Ifiesta-Quereda, 2002].
This representation implies a hierarchy relying on barsigdl by the time signature of the score
notation. However different trees can represent the saniedyésame sequence of pitches and
durations). For example, two melodies with two differenteisignatures are represented by two
different musical scores. In this case, these two melodiaad similar but are represented in a
different way.

Following Mongeau and Sankoff's model [Mongeau and Sanl®&®0], any monophonic
score can be represented as a sequence of ordered pairdwipiteh of the note as the first
component and its length as the second. Thus, the sequence

(B4 B4 r4 C4 G4 E2 A2 G8)

represents the example illustrated in Fig. 1.
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Figure 1. Example of monophonic melody.

Several alphabets of characters and set of number have begospd to represent pitches
and durations [Uitdenbogerd, 2002, Lemstrom, 2000]. Wegmeonly a few ones that we think
are the most pertinent in this context.

The melodic contour indicates the variation between sisteesiotes. Only three values are
possible: Up, Down, Same. Therefore, the sequence comdsppto Fig. 1 is:

SUDUDD.

The absolute pitch simply indicates the exact pitch (MIDiation). For example, the melody of
Fig. 1 is represented by:
71,71,72,67,76,69,67.

In order to reduce the vocabulary, this exact pitch can beesgmted by their modulo-12 values.
The melodic contour can also be taken into account by usisgipe values when the melody
moves up and negative values when it moves down. dihested modulo-12 absolute pitch
sequence corresponding to the melody represented by F&g. 1 i

11,11, 40, — 7,44, -9, 7.

In the context of query by humming applications, this reprgation present the huge disadvan-
tage to be not transposition invariant.

At the contrary of theabsolute pitch representations, thaterval andkey relative represen-
tations are transposition invariant. Tleeact interval representation is simply the number of
semitones between two successive notes.ekbe interval sequence corresponding to Fig. 1 is:

0,1,5,9,7,2.



This representation can also be limited with modulo-12.oimfation about melodic direction
can also be indicated:

0,+1,-5,+9,~7,—2.

The key relative representations indicate the difference in semitonesdmtwotes and the key
of the melody. In the case of Fig. 1, the key signature cooedp toC major. Therefore the
associated sequence is:

11,11,0,7,4,9,7.

This representation can also be limited according to med@land the information about melodic
contour can be indicated:

11,11,40,—7,4+4, -9, 7.

The limitations of thekey relative representation is closely linked to the choice of the keye Th
correct key has to be known in order to compute the correcesgmtation.

Concerning the note durations, the same representatiernsoasible. The duration contour
(Shorter, same, Longer) indicates the general variatiodusétion between successive notes.
Therefore the duration representation of the melody of Fig:

SSSSSsL.
The absol ute representation simply indicates the length of the note in sixteenth notes:
444442 2,8.

It is important to note that this representation is not tenmpariant, while therelative represen-
tation is tempo invariant. The difference of durations be#w successive notes can be expressed
as duration subtraction:

0,0,0,0,2,0,6

or duration ratio:

1
1,1,1,1,-,1,4
7?77277

According to these representations, each element of a seguan thus be formally repre-
sented by a symbol belonging to an infinite Seif labels. We consider an edit score functeon
on this set of labels. It assigns a real numdiary) to each pairs of labelscy) in ZU{A } where
A represents the empty symbaiuch that:

S(x,x) >0 VxezZ,
S(xy) <0 Vx#£y(xy) € {ZU{A}}Z

This means that the score between two symRaisdy becomes higher with their similarity.

15(x,A) is the score of the deletion of symboin X ands(A,y) is the score of the insertion gf



2.2 Local Similarity Problem

Measuring similarity between sequences is a well-knowrblgi in computer science which
has applications in many fields [Gusfield, 1997, Sankoff angsKal, 1983] such as computa-
tional biology, text processing, optical character regtign, image and signal processing, error
correction, pattern recognition, etc.

In the early seventies, [Needleman and Wunsch, 1970] and[WWagner and Fisher, 1974]
proposed algorithms which compute a similarity measurgvéeh two strings of symbols as
the maximum score sequence of elementary operations neéedsthsform one of the strings
into the other. Given two strings of symbdl and S, of respective lengthsS;| and || , a
set of elementary operators on strings, called edit opmratiand a score associated to each
edit operation, a score between these two strings is defisdgeascore of the sequence of edit
operations that transfornty into S, with maximum score. This similarity measure makes use
of the dynamic programming principle to achieve an algonithith quadratic complexity,e. in
(S| ¥ |S)-

Let us consider only the three edit operations that are lysuaéd to compare musical se-
guences: substitution, deletion and insertion. é.be an edit operation, a scosés assigned to
each edit operation as follows:

e if e substitutes (the ith character ofS;) into y; (the jth character of;) thens(e) =
s(Xi,Yj)

o if edeletesq thens(e) = s(x,A)

e if einsertsy; thens(e) = s(A,y;).

The scores is extended to a sequence of edit operatios: (e, e, ...,e,) by letting s(E) =
Y w_1S(&). This makes it possible to define a scares;, S;) between sequenc& andS; as
the maximum score of edit operation sequences transfor®ingo S, namely:

(S, %) = max{s(E)}

whereé represents the set of sequences of edit operations tramsips; into S,.

In many applications, two strings may not be highly similatheir entirety but may con-
tain regions that are highly similar. This is particularly true when long stretches of anony-
mous sequences are compared, since only some internarseofithose strings may be related.
In this case, the task is to find and extract a pair of regionsg, foom each of the two given
strings, that exhibits high similarity. This is calléotcal alignment or local similarity problem
[Smith and Waterman, 1981] and is defined as : given two si$@ndS,, find substringg:
andp, of §; andS,, respectively, whose similarity is maximum over all paifsobstrings from
S andS,.

The computation of a local similarity allows us to detectdboonserved areas between both
sequences. The solution of such a problem is based on thenmaftisuffix mapping between
sequences. The local suffix mapping problem for a given gay; of symbols is to find a
(possibly empty) suffiyp; of the subsequenc® [x] (defined from the first symbol of string



to x;) and a (possibly empty) suffig of the subsequenc®[y;] of S, such that the score of the
optimal sequence of edit operations transformmgnto p is the maximum over all scores of
sequences of edit operations between suffixe of| andSy|y;].

The score of the sequence solving the optimal local suffixpimapproblem (called local
score) for a given paix;,y; of symbols is denoted by L(&;,y;):

LS(x,yj) = max{a(p1,P2), (o1, p2) suffixes ofS, andS,}.

Local similarity between two sequences is then defined asdbee of the best pair of local
suffixes in tree§; and$S;:

LS(S1, S2) = max{LS(x,yj), (%,Yj) € St x S}

So, in order to evaluate local similarity, the algorithm dedo find maximum similarity
between suffixes 0% x| and S[y;], for any pair(x,y;j) of S x S, and then to determine the
best paix]'®, y3® of S and$,.

Since we can always choose an empty suffix¥-%) = 0 and LS8,y;) = 0, wheref is an
empty sequence. And finally, for any;, yj), the proper recurrence for I(8,y;) is:

0

LS(%i—1,Yj) +S(%,A)
LS(%i,Yj-1) +S(A.Yj)
LS(Xi—l,Yj—l) + S(X| 5 y])

LS(xi,yj) = max

wherex;_1 andy;_1 respectively represent symbols beferandy; in sequenceS; andS,. Note
that if the query sequenc® has only one symbot, then the local score betwe& andS, is
obtained from an empty sequende there is no matching) or from a unique matching between
x and the most similar symbol &.

3 Experimentsand Results

In this section, we detail the editing algorithm by propgsan detailed study of the different
choices of possible settings. All these possibilities Hasen experimented.

3.1 Evaluation

One of the main problem in the music information retrievairdn is the problem of the eval-
uation of the system proposed. The first Music InformatiortriBeal Evaluation eXchange
(MIREX 2005) [Downie et al., 2005] is a contest whose goabisampare state-of-the-art algo-
rithms and systems relevant for Music Information Retrie@uring this first contest, an eval-
uation topic about symbolic melodic similarity has beerf@rened. Participants have discussed
the process of evaluation and proposed an evaluation puoeedhe experiments presented in
this paper are based on these procedures.



The RISM A/ll (International inventory of musical sourcegllection is composed of one
half-million notated real world compositions. The incgp#tre symbolically encoded music. They
are monophonic and contain between 10 and 40 notes. 11tsb@ve been randomly chosen
from this collection. A ground truth has been establishegpKE et al., 2005] by combining
ranked lists that were created by 35 music experts. Thetieguround truth has the form of
ranked groups of incipits. The groups contain incipits whdgferences in rankings were not
statistically significant, but the ranking of the groupstetistically significant.

A tested system returns a ranked list of incipits estimatetbdically similar to the query
proposed. A few measures are then used to compute a sconaliagcto the corresponding
ground truth. A specific measure has been proposed: the gediynamic Recall (ADR)
[Typke et al., 2006a]. It takes into account the ranked gsoofthe ground truth by indicat-
ing how many of the documents that should have appearedebefat a given position in the
result list actually have appeared. ADR takes values in énge[0,1]. The higher the ADR
measure is, the more accurate the tested system is.

In the following sections, the local editing algorithm poged has been tested with the
MIREX 2005 data training, according to the ADR measure. €h#ata are composed of 11
gueries and 580 incipits for the database collection.

3.2 Melody Standardisation

The first part of the experiments proposed concern the mestalydardisation. Several ap-
proaches can be chosen to represent a symbolic melody. Wainghese possibilities by con-
sidering only the pitch and the note and rest durations thispose melodies.

3.2.1 Pitch Representation

Several different representations of pitches have beearidesl in Sec. 2. We only consider
during our experiments 4 different representatioctmitour, absolute, interval andkey relative.
We also study the influence of the contour information byrigkinto account the information
related to the variations between successive notes. Thadsagropose results with two other
representationdirected interval anddirected key relative. The results of these experiments are
presented in Tab. 1. The editing algorithm tested is in itgpdest form: it does not consider any
information about duration, substitution scores are amsetc. ...

The results clearly underlines that tbentour representation leads to the worst results. The
difference of accuracy is very significant:38 whereas the other results are greater th&0.0
It is mainly justified by the lack of information contained tinis representation. It is obvious
that several melodies can be represented by the same melmdtiour. Thus, the vocabulary
proposed appears to be too limited for musical applicatjblitslenbogerd and Zobel, 1999].

The absolute andkey relative representations approximately lead to the same average ADR
measures. However, tHey relative representation presents the great advantage to propose a
similarity score that is transposition invariant. The cibieth of transposition invariance is the
before-hand knowledge of the key of the musical pieces studilevertheless a false estimation
of the key leads to high errors in the similarity measureménthe MIREX 2005 training data,



Pitch representation | average ADR | min ADR | max ADR
contour 0.39 0.03 0.68
absolute 0.55 0.37 0.88

key relative 0.56 0.00 0.90

directed key relative 0.59 0.00 0.91

interval 0.60 0.32 0.93
directed interval 0.62 0.30 0.93

Table 1: ADR measures (average, minimum and maximum vahigsined by the retrieval
system considering different pitch representations.

Figure 2: Example of limitations of thiey relative representation: the query (top) is very similar
to the incipit tested (bottom), but the difference of keys @jan for the query, G major for the
incipit) leads to a very low similarity score.

one query permits to show the limitations of this represtona Fig. 2 shows this query and the
incipit that has been judged as the most similar by the musiqaerts. With thekey relative
representation, editing algorithm considers these twipitscas very different, whereas they are
the same at the exception of one note. Another choice foreglgesignature (C major instead of
G major) leads to an estimation of high similarity by the satgorithm. The small difference
between the average ADR with the two representatamss| ute andkey relative is mainly due to
the bad results obtained with this query (minimum ADR @ith thekey relative representation),
resulting from a bad choice for the musical key of the query.

Tab. 1 also underlines the average ADR obtained withnkeval representation. By con-
sidering only the pitch difference between successives)akes representation is transposition
invariant. The lowest similarity score computed is thusieigthan the one obtained with tkey
relative representation (32 instead of M). Nevertheless, this representation also presents some
drawbacks. Fig. 3 exhibits an example of the limitation @ tepresentation. The query is repre-
sented by the sequen@@ 1,5,9,7,2), whereas the incipit tested is represented by the sequence
(0,1,3,7,7,2). Thus, one difference between two musical pieces resuttgdrdifferences in the
musical sequences [Lemstrém and Ukkonen, 2000]. The sceasuming the similarity between
pieces may slightly be affected by this error.

Moreover, taking into account the melodic contour slightthyproves the results obtained
with the MIREX 2005 training data. The average ADB® obtained wittkey relative represen-
tation increases to reach3®, whereas it is ®2 instead of (b9 for theinterval representation.
Therefore we choose in the next experiments to apliyected representation.
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Figure 3: lllustration of the limitations of th@terval representation: only one nota {nstead of
G) differs between the query (top) and the musical piece @oo}t but it leads to two differences
between the corresponding musical sequences.

Furthermore, because of the limitations of these reprasent, we propose to experiment
a new algorithm that takes into account both representtioected interval anddirected key
relative. The simple editing algorithm consists of computing tworssmbtained with the two
different representations. The maximum score is then densd to compare the melodic simi-
larity between musical pieces. This algorithm presentsatheantage to take into account both
key relative representation, which seems to be the pitch representi@mgives the best results
if the key signature is correct, andterval representation, which permits to correct possible er-
rors due to the false choice of key signature. This algorittas been tested with the parameters
corresponding to the results of Tab. 1: it appears that theltseare not better in this case. But
experiments with the parameters that gives the best re@aésnext sections) indicate that this
hybrid technique slightly improves the results obtainethva single representation. In tab. 2,
the method described is denotdidected maximum (maximum if the contour is not taken into
account). The average ADR obtained by applying this metleadhes Y9 whereas it is only
0.76 or Q74 with a single representation. Nevertheless, in this,dasgime computation of the
similarity algorithm is multiplied by two.

Pitch representation | average ADR | min ADR | max ADR
key relative 0.65 0.00 0.95
directed key relative 0.67 0.00 0.96
interval 0.74 0.62 0.88
directed interval 0.76 0.64 0.98
maximum 0.76 0.61 0.92
directed maximum 0.79 0.63 0.96

Table 2: ADR measures (average, minimum and maximum vahi#a)ned by the retrieval sys-
tem considering different pitch representations andntiagi mum and directed maximum tech-
niques. The parameters of our editing algorithm chosenrerenes that give the best similarity
results.

Following the different results described in this sectibthe musical pieces are tonal music
and if the key signature is precisely defined, tiheected key relative representation is certainly
the most appropriate. However, in the general case, in aoderevent rare but high errors, the



directed interval representation has to be chosen. Tteimum algorithm taking into account
the two different representations has to be chosen only vdoasidering applications which
require high precision but which do not have any constranicerning time computation.

3.2.2 Note Duration

Musical pieces are assumed to be represented by sequemuitshes and duration. We propose
experiments concerning the duration information and itksvance for similarity comparisons.

Experiments performed in [Suyoto and Uitdenbogerd, 20@®ibjclude that the combination of
pitch and duration does not improve retrieval effectiven@ger the use of pitch on its own. The
goal of the experiments presented in this section is to ctieede results.

The duration information can be taken into account whenutaling the substitution score
between two notes. When substituting a half note by a quaatey, the substitution score should
be more important than the score corresponding to a sutistitbetween two notes with the
same duration. Therefore, we propose that the ssalepends on the pitch range and on the
duration difference between two notesandy;. This score is computed according to existing
works [Mongeau and Sankoff, 1990]:

S(XI 7yj ) - Spitch<xi 9 y] ) + ijuralion(Xi 7y] )

wheres,, is the score due to the pitch difference, ang..is the score due to the duration dif-
ference. The parametkidetermines the relative weight of the pitch difference wiitea duration
difference k € R™). If kis null, no information concerning duration is used in thenpaitation
of the substitution score. Kis very high, only the information concerning duration i®ds

Tab. 3 presents the results (ADR) obtained by taking int@actthe duration information
or not. Thedirected maximum technique has been applied for the pitch representatiahitan
parametek is set to 020.

Noterepresentation | average ADR | min ADR | max ADR
with duration 0.69 0.33 0.92
without duration 0.61 0.38 0.91

Table 3: ADR measures (average, minimum and maximum vahigsined by the retrieval
system considering the duration information or not.

The results clearly show that the average ADR increases whetion information is taken
into account. The difference is significant:69 instead of 0. The results are thus opposed
to the conclusions proposed by [Suyoto and Uitdenbogel@512]) and lead us to suggest that
the representation of notes integrating duration imprelkeguality of melody retrieval systems.
Another problem is now raised: computing the substitutioors by considering note duration.
It relies on the problem of the duration representation.sTepresentation is discussed in the
next section whereas the problem of the substitution ssodéscussed in Sec. 3.3.1.



3.2.3 Duration Representation

Different representations of duration have been descrbegec. 2. The problem of duration
representation is similar to the problem of pitch repreagoin choice. We consider bo#inso-
lute andinterval representations, and the possibility of taking into ac¢dbe global variation
(contour) of the duration by indicating or — before the duration valuelifected duration). The
results obtained with four representations are present@db. 4.

Duration representation | average ADR | min ADR | max ADR
absolute 0.69 0.35 0.92
interval 0.65 0.36 0.92
directed absolute 0.69 0.33 0.92
directed interval 0.68 0.35 0.92

Table 4: ADR measures (average, minimum and maximum vahigslined by the retrieval
system considering different duration representations.

Results presented confirm the improvement due to the camasiole of the variation of the
duration:directed representation slightly increases the average ADR. Buesatimer results are
more surprising. The best average ADR is obtained withattsel ute representation. However,
it is important to remember that this duration represeatatioes not permit the retrieval algo-
rithm to be tempo invariant. This drawback should have araichpn the quality of the results.
With this representation, each duration difference for lassitution is penalized. For example,
a melody represented with half notes is measured as vemrelift from the same melody rep-
resented with quarter notes. We therefore expeciriteeval representation to lead to the best
results, but this limitation is justified by the MIREX data.se

These results are partly explained when observing the nrogas musical pieces extracted
from the database. Fig. 4 shows an example of a query and a e the database that are
estimated very similar by our algorithm. This piece is nagant in the ground truth established
by music experts, whereas it is obvious that it is very simigh the query. In this case, our
algorithm has a low ADR measure whereas the retrieved pg&cerrect. Fig. 4 also shows an
incipit present in the third group of the ground truth [Typieal., 2005], whereas the similarity
is very high if the absolute duration of notes is not takeo extcount. Our algorithm considers
this piece very similar to the query, which is also correct.

The conclusion of these experiments is that the duratioresgmtation mainly depends on
the application considered. If the application is queryHoynming, similarity measures should
be tempo invariant. That's why, tliérected interval representation appears to be the best choice
in this case. Otherwise, thiérected absolute has to be chosen for applications that do not require
tempo invariance. For example, music experts who estaaliine ground truth for the MIREX
2005 training data consider the difference of tempo as amitapt difference to discriminate
melodies. In order to be compared to these experts, we aamisidhe following thedirected
absolute representation.
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Figure 4. Example of differences between our algorithm dnedMIREX 2005 ground truth: the
query (top) is very similar to the two incipits, but only thettbom one appears in the ground
truth.

3.24 Weightsfor Each Component

In Sec. 3.2.2, we introduce the paramedterhich determines the relative weight of the pitch
difference with the duration difference. Experiments hbgen performed concerning the influ-
ence of this parameter. The average ADR obtained with diffevalues for the parametkris
presented in Tab. 5.

k | average ADR | min ADR | max ADR
0.0 0.61 0.38 0.91
0.1 0.69 0.39 0.92
0.2 0.69 0.33 0.92
0.25 0.68 0.32 0.92
0.3 0.69 0.29 0.92
0.5 0.67 0.21 0.92
5.0 0.58 0.19 0.92

Table 5: ADR measures (average, minimum and maximum vahigslined by the retrieval
system considering different values for the paramleter

Results show that the influence of the paramé&ter very small: the average ADR varies
between 68 and 069. If k is null, no information about duration is taken into acco(sge
Sec. 3.2.2). Thus, the average ADR highly decreases. Atppesite, ifk takes high values,
the duration information is considered as highly more int@oirthan the pitch information. This
consideration results in lower average ADR because tha piformation is experimented as the
main information for any melody. In the following, we deto 0.25.

3.3 Retrieval Algorithm

In this section, we present experiments about the pararagtn of editing algorithms.



3.3.1 Substitution Scores

In Sec. 2.2, edit operations have been presented. Sulzstitatthe main operation and mainly
determines the accuracy of the retrieval algorithm. Foresamplications, the substitution score
is assumed to be constant. However, in the musical contegtassumption must be discussed
[Uitdenbogerd, 2002]. Obviously, substituting one pitcithnanother one has more or less in-
fluence on the general melody. For instance, substituti@gnate with aG note (fifth) may
slightly modify a melody in comparison with substitutingtivia D note. As introduced by
[Mongeau and Sankoff, 1990] the substitution score may beleded to the consonance inter-
val. We propose here to confirm the influence of this choiceheraccuracy of the retrieval sys-
tem. Note that determining the substitution score accgrtbrthe consonance interval is totally
different than determining substitution score accordimghie difference (in semi-tones for ex-
ample). However, some models only consider such diffeigrfoeexample [Typke et al., 2004].
The score due to the pitch difference is determined accgrtbnconsonance: the fifth (7
semitones) and the third major or minor (3 or 4 semitones)tlagemost consonant intervals
in Western music [Horwood, 1944]. Tab. 6 shows score valbhesen during our experiments.
These values slightly differ from the ones indicated by [[deau and Sankoff, 1990] because
we choose to preserve the symmetry properties of the sdogescore for a substitution between
two identical notes is equal to850. The score between a note and a rest has been fixe@ %0

Pitch difference | Associated score
in semitones
0 +2.850
1 —2.850
2 —2.475
3 —0.825
4 —0.825
5 +0.000
6 —1.800
rest —0.500

Table 6: Scores associated to the substitution of two natesfanction of the interval between
notes (in semitones), according principally to consonance

Tab. 7 shows the ADR measures obtained by considering sutimti scores according to
consonance intervals. Experiments have been done by evimgjdhe parameters that give the
best results (higher average ADR in both cases). Thesetsedahrly show that considering
different values for the substitution scores accordindiodonsonance interval significantly im-
proves the retrieval system. The average ADR. ¥0Qwhereas it is only.@1 when the substitu-
tion score is constant. This improvement is important beedaking into account the consonance
interval between notes is only possible with a few retrieyastems ([Lubiw and Tanur, 2004] for
example), especially the edit-based systems.



Substitution scores | average ADR | min ADR | max ADR
constant 0.71 0.55 0.89
consonance 0.79 0.63 0.96

Table 7: ADR measures (average, minimum and maximum vahigslined by the retrieval
system considering fixed substitution score or substitugimores related to consonance interval.

Substitution score can also depend on the note duration.ryg®pe to experiment two differ-
ent approaches. The first one assumes the substitutiontsdoeaelependent on the duration sub-
traction, estimated in sixteenth note values. This chaésdeen proposed by [Mongeau and Sankoff, 19¢
The second possibility considers the ratio between two exuts/e note durations. Moreover,
the variation between durations may also be taken into axtc@uscore is defined according to
the duration contour.
Tab. 8 shows the results obtained by the retrieval systemrmwbasidering the substitution
score depending on the duration subtraction or the duraéito. Here, the substitution scores
only depend on the duration information.

Duration average ADR | min ADR | max ADR
subtraction 0.62 0.19 0.92
directed subtraction 0.63 0.19 0.92
ratio 0.68 0.35 0.92
directed ratio 0.69 0.33 0.92

Table 8: ADR measures (average, minimum and maximum vahigsined by the retrieval
system considering duration subtraction or ratio, diréaenot, for the calculation of the sub-
stitution scores.

These results clearly show that the duration ratio is magaicant than the duration sub-
traction. The average ADR is@ when considering duration ratio, whereas it is on§20when
considering duration subtraction. This observation caedmly justified with a few examples.
Let us consider a melodyl; composed of half notes, and the same melbdyat the exception
of one note which is substituted by a quarter note (same )pifthus, the duration subtraction
is 16— 8 = 8 sixteenth notes. Now, consider the same melddyvith two times faster tempo,
so that each note are represented by quarter notes. If thelynis compared to a melodyl,
composed of the same notes at the exception of one note whabstituted by a eighth note,
the duration subtraction is-84 = 4 sixteenth notes. The differences betwdnandM; and
the one betweeM, andM, are not similar whereas, in each case, the mismatching no i
is two times shorter than iN; (i € {1,2}). We would expect the difference of substitution score
to be the same in both cases. When considering the durationtree substitution scores are the
same.

These experiments indicate that the choice of considerurgtibn ratio for the calcula-
tion of the substitution scores greatly improves the reaiiesystem. EXisting systems like



[Mongeau and Sankoff, 1990] consider the duration subtmacbr cannot be parametrized for
considering the difference ratio. Here again, the flexipitif the edit-based systems induces
great improvements for musical applications, since it isgilae to take into account the rhyth-
mic information and to preserve the tempo invariance pryper

Some other experiments concerning the insertion and dalstiores have been performed.
One could think that considering the note duration for thiewdation of the insertion/deletion
scores may improve the quality of the retrieval system. éaléhe insertion of a half note may
disturb more significantly a melody than the insertion of x@esnth note. Tab. 9 exhibits the
average ADR computed by the retrieval system when the insédeletion score depends on the
note duration. These results show that the improvemertisaxig is not significant. Nevertheless,
in the following, the insertion/deletion scores dependhariote duration.

Duration | average ADR | min ADR | max ADR
dependent 0.72 0.43 0.94
independent 0.71 0.39 0.93

Table 9: ADR measures (average, minimum and maximum vahigslined by the retrieval
system when considering the insertion/deletion operatcame related to the note duration.

3.3.2 Global or Local Alignment

In Sec. 2, we discuss the different existing algorithms dase edit operations. Mainly two
different techniques are proposed. The first one assumeththpieces compared have very dif-
ferent lengths: similarity between local portions of pieeestimated. The second one considers
the two pieces compared in their entirety. It is obvious twatsidering two pieces with approxi-
mately the same length considerably retains the applicatd global alignment algorithms. We
performed experiments to measure the improvement due to¢héalignment algorithm.

Tab. 10 presents the ADR measures computed by our retriggt¢ra with the local and
global alignment algorithms. Results show that the impnoset due to the local alignment
algorithm is very important, even if the MIREX training dbtese is composed of musical incipits
whose lengths are similar. In query-by-humming applicaicdhe improvement may certainly
be far more important. These results prove that the locghatient algorithm is better than the
global alignment algorithm in this context.

Alignment | average ADR | min ADR | max ADR
local 0.79 0.63 0.96
global 0.55 0.34 0.91

Table 10: ADR measures (average, minimum and maximum vablgained by the retrieval
system when considering global or local alignment.



3.3.3 Query Length Weighting

In query-by-humming applications, the length of the quergssumed to be small compared to
the length of the musical pieces of the database, thus tla¢dtignment technique is generally
more accurate. Nevertheless, the case of a short musica pighe database may be investi-
gated. Fig. 5 shows incipits from the MIREX 2005 trainingatsse. Two musical pieces (b)
and (c) are estimated as very similar to the query (a). Buts(shorter than the query and (b)
is longer. Editing algorithm based on local alignment cotepia small similarity score if the
query is longer than the piece tested, compared to the sbvatned with a long piece. Indeed,
fewer notes are compared, and as the score is limited by theuof matching scores, it is
thus limited by the number of notes. For example, in Fig. B,dimilarity score is higher when
comparing the query (a) with the second piece (b), becaedetigth of the piece tested is higher
than the length of the query. The score is thus limited by ¢hgth of the query. At the opposite,
the similarity score obtained when comparing the query withthird piece (c) is smaller.

. i — r_E:===q
I?." I —7 | I —1

Figure 5: Examples of query (a) and related musical piecean(® (c) with different lengths.

Therefore we propose to improve the editing algorithm pmese by taking into account
the length of the pieces. We assume that the length of thehingtsequence is the minimum
between the query length and the tested piece length. The somputed is then weighted by
the inverse of this minimum length. Nevertheless, if a pis@mposed of only a very few notes
(less than five for example), we propose to ignore the piestede

Tab. 11 shows the results obtained by applying our editiggréghm. These results clearly
underline that taking into account the length of the incigégsted improves the system. The
average ADR computed isT® instead of 2. Nevertheless, this improvement clearly depends
on the application. The length of the query is generally $mainpared to the length of the
musical pieces of the database. Therefore, in this casghtireg all the computed scores by the
length of the query would not improve the retrieval system.

3.34 Complexity, Implementation and Time Computation

The editing algorithms we detailed in this paper have begriedmented in C++ language. As
explained in Sec. 2, the algorithm complexity is quadratic)(|S;| x |S|), where|S;| and|S,|



Query length weighting | average ADR | min ADR | max ADR
with 0.79 0.63 0.96
without 0.72 0.55 0.94

Table 11: ADR measures (average, minimum and maximum vablgained by the retrieval
system when considering or not the lengths of the query amththpits.

are the lengths of the musical sequences compared. Hoveewvesidering musical applications
such as query-by-humming retrieval systems implies thatehgth of the quersp, is very small
compared to the lengt® of the musical pieces of the database.

Tab. 12 presents computation times spent by the retriesBs)s evaluated during MIREX
2005. It also indicates the computation time spent by oulesys The lower computation times
are generally obtained by the simplest system (N-grams;destance or geometric), whereas
they may be evaluated as very accurate (see next secticahk simple N-grams system pro-
posed by [Suyoto and Uitdenbogerd, 2005a]. Furthermoeeslitwest system in MIREX 2005
has been highly improved and is now very fast [Typke et al0Gh). These results underline
that the computation time spent by our algorithm is very ligmpared to the other ones. It is
mainly due to the score of thmaximum algorithm presented for taking into account two pitch
representations (see Sec. 3.2.1). Furthermore, the ingpltrtion can be optimised and we soon
expect time computation reaches the same values as thstfaster systems.

Algorithm Author(s) | Computation time (s)
Improved editing 110
Edit distance I/R| Grachten 80
N-grams Orio 24
Simple N-grams| Uitdenbogerd 48

Geometric Typke 50000

Geometric Lemstrom 10
Edit distance Lemstrom 10
Hybrid Frieler 54

Table 12: Comparison of the computation times for the reéfiesystem proposed (top) and
retrieval systems evaluated during MIREX 2005.

Improvements in editing algorithm may induce a significactease of the time computation,
whereas the accuracy due to the improvement may be limitmeXample, [Mongeau and Sankoff, 1990]
proposes two new operationsnsolidation andfragmentation. In this case, the complexity be-
comes cubic.



3.4 Comparisonswith Existing Systems

In this section, we present the results obtained by our ingmeystem and the results of the
evaluations obtained during MIREX 2005. It is important titethat our system has not been
evaluated during MIREX 2005. In order to evaluate our systgthout training, we then par-
ticipated to MIREX 2006 symbolic melodic similarity conteshese results are presented in
Sec. 3.5.

Results obtained with the MIREX 2005 training database are@ood : the average ADR
obtained with our improved algorithm is™ (the minimum ADR is 33 and the maximum
ADR is 0.96). Tab. 13 shows the results obtained by the algorithmscpaating to the MIREX
2005. The best average ADR obtained during MIREX 2005 w&6.0

Algorithm Author Rank | average ADR | min ADR | max ADR
Edit distance I/R|  Grachten 1 0.66 0.29 0.88
N-grams Orio 2 0.65 0.31 0.91
Simple N-grams| Uitdenbogerd 3 0.64 0.31 0.91
Geometric Typke 4 0.57 0.29 0.86
Geometric Lemstrom 5 0.56 0.34 0.72
Edit distance Lemstrom 6 0.54 0.29 0.84
Hybrid Frieler 7 0.52 0.34 0.81

Table 13: Results of the evaluation of retrieval system&éguvIREX 2005.

35

During the 2nd Music Information Retrieval Evaluation eXdolge (MIREX 2006), a new sym-
bolic melodic similarity contest has been proposed. It wasposed of two tasks. The first task
consisted of retrieving the most similar incipits from th& Subset of the RISM A/ll collection
(about 15,000 incipits), given one of the incipits as a qu@wgth the query and the collection
were monophonic. Half the queries were hummed or whistlestigs that have been converted
to MIDI, thus with slight rhythmic and pitch imperfectiorend half the queries were quantized
in pitch and rhythm.

At the opposite of the MIREX 2005 contest, no ground truth wakablished in advance.
Algorithms proposed by participants computed the sintjameasures and indicated the most
similar musical pieces in the RISM database. These rel@goftthe matches were judged by
experts, according to a general evaluation — not similanesehat similar or very similar — and
one fine score from 0 to 10. Each system was then evaluatedsenttral measures (Average
Dynamic Recall for example).

Results are presented in Fig. 6. Our algorithm denoted Flimbthe best results, similar
to the ones obtained by the improved geometric algorithmrmstied by [Typke et al., 2006b].
The difference with the results obtained by [Uitdenbog@fi)6], based on edit-distance, are
significant and can be partly explained by the optimizatibadsting algorithms.

Robustness to Pitch and Tempo Variations
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Figure 6: Results of the MIREX 2006 Symbolic Melodic Simitptask: FH denotes the results
obtained by the algorithm presented here.

Although our algorithm has been optimized according to MXREDOS training data, the
results with the MIREX 2006 database are very good. It cjeanderlines that our algorithm
performs similarly whatever the database. These resudts sllow that editing algorithms are
robust to pitch and time variations. Results with hummed bistled queries are comparable
to results obtained with quantized queries. Finally, tigeecBnces with other editing algorithms
show that the experiments detailed in this paper signifigamiprove such algorithms.

4 Conclusion and futureworks

Editing algorithms have already been presented for appdicsa in the musical context. Never-
theless, to our knowledge, no complete evaluation of sugbriéthms has been proposed. We
present in this paper several experiments in order to opirand to adapt these editing algo-
rithms for computing similarity measures between monojphiorelodies. The representation of
melodies and the editing algorithms are discussed and iexpeted. All the optimisations pro-
posed lead to an algorithm which obtains the best results MIREX 2005 training database.
It also participated to the MIREX 2006 contgéand obtained the best results in the monophonic
context. Differences with other editing algorithms showattthe experiments detailed in this
paper permit to significantly improve such algorithms. THhe editing algorithm that has been
improved according to MIREX 2005 training data is robust itclpand time variation and per-
forms similarly whatever the database. Furthermore, tesuith hummed or whistled queries

2http://ww. nusi c-ir.org/ mrex2006/ i ndex. php/ M REX2006_Resul t s



are comparable to results obtained with quantized queries.

We can now raise the questions of improvements of such #tgosidedicated to monophonic
musical pieces. Indeed, the evaluations indicate highracguor our retrieval system. The
comparison between the results obtained with MIREX 200hitrg database and the results of
the similarity evaluation established by musical expendarlines that our algorithm generally
computes better results than one single expert. Since thieus of the similarity measure is
subjective, it is difficult to propose a retrieval systemsging every musical expert.

And it is certainly impossible to propose a retrieval systetrich satisfies every musical
expert, because of the subjective attribute of the sintylameasure.

The main goal of all these experiments performed is to shamMldxibility of the editing
algorithms. Edit operations can perfectly be adapted tartbhsical context. Musical elements
such as tonality or rhythm are particularly important in gexception of music. Edit operations
allow us to take into account musical properties of the Westsusic by including weights
according to the musical importance of each note [Robiné,@07]. This flexibility also
encourages us to adapt such algorithms to the polyphoniexiofHanna and Ferraro, 2007].
Indeed, new operations related to the nature of chords maphsidered in the future in order
to take into account all the notes that sound at the same ftiFhes extension is necessary to
propose a system which computes a measure from any kind aegqueith any kind of musical
pieces (monophonic or polyphonic). In particular, the egsshould be improved in the case of
a polyphonic query with a polyphonic database. Other clspekific edit operations are thus
necessary and can be included in the system.

From an algorithmic point of view, we propose in this papeiracat application of the algo-
rithm of [Smith and Waterman, 1981]. However, heuristicepproximate local alignment can
be applied to the musical context and may lead to the reductidime computation of local
score. For instance, tigasic Local Alignment Tool (BLAST) [Altschul et al., 1990] is a well
known searching engine for biological sequence datab&¥esaim to extend BLAST heuristic
to musical sequences.
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