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Abstract

Previously it has been shown that some classes of mixing dynamical systems have limiting

return times distributions that are almost everywhere Poissonian. Here we study the behaviour of

return times at periodic points and show that the limiting distribution is a compound Poissonian

distribution. We also derive error terms for the convergence to the limiting distribution. We also

prove a very general theorem that can be used to establish compound Poisson distributions in many

other settings.

1 Introduction

In 1899 Poincaré showed that for a map T on some space Ω which has an invariant probability measure
µ, almost every every point returns within finite time arbitrarily close. This means that for every
(measuable) A ⊂ Ω with µ(A) > 0 the returntime function τA(x) = min{k ≥ 1 : T kx ∈ A} is finite
for µ-almost every x ∈ A. This result was quantified by Kac in 1947 for ergodic measures. His theorem
states that

∫

A
τA(x) dµ(x) = 1, provided µ is ergodic, which implies that τA(x) is on average equal to

1/µ(A). Since 1990 there has been a growing interest in the statistics of return times and in particular
in the distribution of τA. Considering that it was shown in [22, 21] that for ergodic measures the
limiting distribution of a sequence of (rescaled) return functions τUn

for n→ ∞ can be any arbitrarily
prescribed distribution for suitably chosen sets Un, it is necessary to assume that the return sets A are
dynamically regular.

For the measure of maximal entropy on a subshift of finite type, Pitskel [27] showed that the return
times are in the limit Poisson distributed for cylinder sets An(x) (µ(An(x)) → 0 as n→ ∞) where the
set of suitable ‘centres’ x ∈ Ω form a full measure set. A similar result had independently been obtained
by Hirata [17, 18] by a different method. For φ-mixing Gibbs measures Galves and Schmitt [12] showed
in 1997 that the first return time is in the limit exponentially distributed and that the convergence is
at an exponential rate. Subsequent results (e.g. [30, 10, 19, 15, 7, 3]) established limiting distribution
results for first or multiple return times in various settings and sometimes with rates of convergence.

Almost all previous results look at the distribution of return times near generic points. The notable
exception being the paper [17] by Hirata which gives the distribution of the first return time at a periodic
point. In the present paper we consider periodic points for sufficiently well mixing invariant measures
and show that the limiting distribution is compound Poissonian. The compound Poisson distribution
has previously been used in various settings including the analysis of internet traffic where the waiting
time between packets is exponential and the size of each packet is geometrically distributed. It has
also been used to model the survival of capitalist enterprises in the free market system [23]. The main
technical result, Proposition 1, provides conditions under which one obtains a compound Poissonian
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distribution with error terms. This result in itself will be of interest to a much larger community than
the one of dynamicists addressed in this paper.

Let µ be a probability measure on a space Ω which carries a transformation T , preserving µ, and whose
σ-algebra is generated by the joins Ak =

∨k−1
j=0 T

−jA, k = 1, 2, . . ., of a given finite measurable partition

A. The elements of Ak are called k-cylinders. We assume A is generating, i.e. the elements of A∞ are
single points. Denote by χA the characteristic function of a (measurable) set A and define the random
variable:

ζA(z) =

τ
∑

j=1

χA ◦ T j(z),

z ∈ Ω. The value of ζA measures the number of times a given point returns to A within the time τ .
Typically the obsevation time τ is chosen to be [t/µ(A)] where t is a parameter value. (The rescaling
factor 1/µ(A) agrees with Kac’s theorem.) For instance, if µ is the measure of maximal entropy on a
subshift of finite type, then Pitskel [27] showed that ζAn(x) is for µ-almost every x ∈ Ω in the limit
n → ∞ Poisson distributed (where τn = [t/µ(An(x))] and An(x) denotes the unique n-cylinder that
contains x). In [15] we have proven a similar result for a much wider class of systems and provided
error estimtes.

We develop a mechanism which allows to prove the compound Poisson distribution of return times
at periodic points x and also to obtain error estimates as the cylinder sets An(x) shrink in measure to
zero.

To be more precise, if we denote by ζt
n(z) the counting function

∑τn

j=1 χAn(x) ◦ T j(z), with the

observation time τn =
[

t
(1−p)µ(An(x))

]

, we will study the following distribution:

P
(

ζt
n = r

)

, r = 0, 1, 2, . . . , (1) {DE}

where t > 0 is a parameter and p ∈ [0, 1) depends on the periodic point x and will be given in Sect. 3.
We will show that the limit n→ ∞ is the compound Poisson distribution (see Section 2) if µ is a (φ, f)-
mixing measure. We also provide rates of convergence. This then implies under some mild additional
assumptions [16] the uniform integrability of the process ζt

n.
We then extend this result to return times, i.e. to the distribution of the process ζt

n(z) restricted to

the cylinder An(x). The measure µ is then replaced by the conditional measure µn = 1
µ(An(x))µ

∣

∣

∣

An(x)
.

We refer to this second case as the distribution of the number of visits for return times.
Our results for return times considerably improve on the work of Hirata [17], where he computed

(without error) the distribution of the first return time (order r = 0) around periodic points and for
Gibbs measures on Axiom-A systems.

The plan of the paper is the following. The purpose of section 2 is to prove result (Proposition 1)
that gives general conditions under which a sum of mutually dependent 0, 1-valued random variables
converges to the compound Poisson distribution and provides error terms. A similar result that had
been inspired by a theorem of Sevast’yanov [28], was proved and used in [15] for the Poisson distribution.

The distribution of return times is tied to the mixing properties of the invariant measure considered.
For that purpose we introduce in the third section the (φ, f)-mixing property. This property is more
general that the widely used φ-mixing property and is reminiscent of Philipp and Stout [26] ‘retarded
strong mixing property’. In this way one can obtain distribution results on return times of some
well studied dynamical systems that are not φ-mixing, e.g. rational maps, parabolic maps, piecewise
expanding maps in higher dimension . . . .

The third section is devoted to the proof of the existence of the limit distribution and rates of
convergece for entry times (Theorem 7), while the fourth section extends those results to return times
(Theorem 10). Section 5 contains a careful application to rational maps with critical points (Theo-
rem 11).

We conclude this introduction with an interesting observation. Limit distributions for entry and
return times have been provided along nested sequences of cylinder sets converging to points x which
were chosen almost everywhere or as periodic points. In section 3.4 we will show how to find points
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x which do not have limit distributions at all, and this will be achieved by using our results on the
compound Poisson distribution around periodic points.

2 Factorial moments and mixing

The main purpose of this section is to prove a very general result which we use to prove the main
results in sections 3 and 5 but which can also be useful to establish compound Poisson distribution
with respect to the geometric distributiion in many other settings. For more general compound Poisson
distributions see [11]. More recently (e.g. [9, 4]) there have been efforts to approach compound Poisson
distributions using the Chen-Stein method. The treatment in [9] has a more general setting, but the
result is far from applicable to our situation.1 Proposition 1 is of general interest and is reminiscent
of existing theorems which establish the Poisson distribution (cf. [28, 15]). from the convergence of
the moments. It provides general conditions under which the distribution of a finite set of 0, 1-valued
random variables is close to compound Poisson (and provides error terms). In sections 3 and 5 we
then use it to obtain the speed of convergence for the limiting distributions for φ-mixing systems, some
non-Markovian systems and equilibrium states for rational maps with critical points.

2.1 Compound Poisson distribution

For a parameter p ∈ [0, 1) let us define the polynomials

Pr(t, p) =
r
∑

j=1

pr−j(1 − p)j t
j

j!

(

r − 1
j − 1

)

,

r = 1, 2, . . ., where P0 = 1 (r = 0). The distribution e−tPr(t, p), r = 0, 1, 2, . . . is sometimes called the
Pólya-Aeppli distribution [20]. It has the generating function

gp(z) = e−t
∞
∑

r=0

zrPr = et z−1

1−pz ,

its mean is t
1−p and its variance is t 1+p

(1−p)2 . Note that for p = 0 we recover the Poisson terms e−tPr(t, 0) =

e−t tr

r! and the generating function g0(z) = et(z−1) which is analytic in the entire plane whereas for
p > 0 the generating function gp(z) has an essential singularity at 1

p . The expansion at z0 = 1 yields

gp(z) =
∑∞

k=0(z − 1)kQk where

Qk(t, p) =
1

(1 − p)k

k
∑

j=1

pk−j t
j

j!

(

k − 1
j − 1

)

(Q0 = 1) are the factorial moments. Note that in particular P0(0, p) = 1 and Pr(0, p) = 0 for all r ≥ 1.

2.2 Return times patterns
{returntimespatterns

Let M and m < M be given integers (typically m << M) and let τ ∈ N be some (large) number. For
r = 1, 2, 3, . . . we define the following:
(I)Gr(τ): We denote byGr(τ) the r-vectors ~v = (v1, . . . , vr) ∈ Z

r for which 1 ≤ v1 < v2 < · · · < vr ≤ τ .
(II) Gr,j(τ): We divide the set Gr into disjoint subsets Gr,j where Gr,j consists of all ~v ∈ Gr for which
we can find j indices i1, i2, . . . , ij ∈ {1, 2, . . . , r}, i1 = 1, so that vk − vk−1 ≤M if k 6= i2, . . . , ij and so
that vk − vk−1 > M for all k = i2, . . . , ij .

For ~v ∈ Gr,j the values of vi will be identified with returns; returns that occur within less than
time M are called immediate returns and if the return time is ≥ M then we call it a long return (i.e.
if vi+1 − vi < M then we say vi+1 is an immediate return and if vi+1 − vi ≥ M the we call vi a long
return). That means that Gr,j consists of all return time patterns ~v which have r−j immediate returns

1We thank the referee for pointing us towards Chen and Roos’ work and also for other enlightening remarks.
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that are clustered into j blocks of immediate returns and j− 1 long returns between those blocks. The
entries vik

, k = 1, . . . , j, are the beginnings (heads) of the blocks (of immediate returns). We assume
from now on that all short returns are multiples of m. (This reflects the periodic structure around
periodic points, cf. condition (II) of Proposition 1.)
(III) Gr,j,w(τ): For ~v ∈ Gr,j the length of each block is vik+1−1 − vik

, k = 1, . . . , j − 1. Consequently

let us put wk = 1
m (vk − vk−1) for the individual overlaps, for k 6= i1, i2, . . . , ij . Then

∑ik+1−1
ℓ=ik+1 wℓ =

1
m (vik+1−1 − vik

) is the overlap of the kth block and w = w(~v) =
∑

k 6=i1,i2,...,ij
wk the total overlap of

~v. We now put Gr,j,w = {~v ∈ Gr,j : w(~v) = w}. (Gr,j =
⋃

w Gr,j,w is a disjoint union.)
(IV) ∆(~v): For ~v in Gr,j we put

∆(~v) = min {vik
− vik−1 : k = 2, . . . , j}

for the minimal distance between the ‘tail’ and the ‘head’ of successive blocks of immediate returns (or
the length of the shortest one of the long gaps).

2.3 Compound Poisson approximations

The purpose of this section is to prove the following result on the approximation of the compound
Poisson distribution.

{sevastyanov}

Proposition 1 Let M,m, τ be as above. Let ηj, j = 1, . . . , τ , be 0, 1-valued random variables on
some Ω for ~v ∈ Gr put η~v =

∏

i ηvi
. Choose δ > 0 and define the ‘rare set’ Rr =

⋃r
j=1Rr,j, where

Rr,j = {~v ∈ Gr,j : ∆(~v) < δ}. Let µ be a probability measure on Ω which satisfies the following
conditions (C0 is a constant):
(I) E(ηj) = β for all j = 1, . . . , τ (invariance of the measure).
(II) Suppose that there are numbers 0 < p− ≤ p ≤ p+, φ ≥ 0 so that for all ~v ∈ Gr,j,w \Rr,j

∣

∣E(η~v) − pwβj
∣

∣ ≤ C0β
j(pw

+ − pw
−) + pw

(

(1 + φ)j − 1
)

if all of the individual overlaps wℓ are multiples of m, and

E(η~v) = 0

if some of the individual overlaps wℓ are not multiples of m.
(III) There are some constants γ ≥ 1, γ1, γ2 small (e.g. γ(γ1 + γ2) <

1
12), so that for all r

∑

~v∈Rr

E(η~v) ≤ C0rγ
r

r
∑

j=2

j−1
∑

s=1

(

j − 1
s− 1

)

γj−s
1

(τβ)s

s!

(

r − 1
j − 1

)

γr−j
2 .

Let us put ζ =
∑τ

j=1 ηj and t = (1 − p)τβ.
Then there exists a constant C1 so that for every t > 0 one has

∣

∣P(ζ = r) − e−tPr(t, p)
∣

∣ ≤ C1(γ1+δβ)tr−1 e
2r

r!
+C1

(

p
M
m

+ + p+ − p− + φ
)

{

tr

r! e
2r+ 5

2
t if t > 1

2pr

(2p)ret 1+2p
1−4p if t ≤ 1

2pr
.

Note that the constants γ and γ2 don’t enter the final estimate in an explicit way. The significant
quantity here is γ1 which typically is << 1 where γ, γ2 only have to be small enough of order O(1).

The choice of δ is central to the application of this proposition. In the application however φ depends
on δ and in fact φ(δ) → 0+ as δ → ∞. Obviously a larger value for δ increases the error term as one
sees from the expression, but also a smaller value increases the error term since the rare set Rr becomes
larger and the ‘mixing property’ in (II) will require larger p+ and smaller p−, thus again increasing the
error estimate. The trick is to optimise δ.

Proof. We compare the generating function ψ(z) for the process ζ with the generating function gp(z)
for the compound Poissonian. In part (A) we compare their Taylor coefficients at z = 1 and in part

4



(B) we use Cauchy estimates to compare their Taylor coefficients at z = 0 which then gives us the final
result.

(A) The coefficients at z = 1 (factorial moments) of the generating function ψ(z) =
∑∞

r=0 z
r
P(ζ =

r) =
∑∞

r=0(z − 1)rUr are

Ur =
∑

~v∈Gr

E(η~v),

while the coefficients of the generating function gp(z) =
∑∞

r=0(z−1)rQr(t, p) for the compound Poisson
distribution are

Qr(t, p) =
1

(1 − p)r

r
∑

j=1

tj

j!

(

r − 1
j − 1

)

pr−j =

∞
∑

u=r−j

r
∑

j=1

puβj τ
j

j!

(

u− 1
r − j − 1

)(

r − 1
j − 1

)

,

where t = (1 − p)βτ . We will now compare the coefficients Qr to the coefficients Ur. There are three
parts to the comparison: (i) Assumption (II) is used to compare the terms for which ~v ∈ Gr \ Rr; (ii)
Assumptions (I) and (III) are used to estimate the total contributions made by ~v ∈ Rr; (iii) We have
to estimate the contribution to Qr that correspond to overlaps u which do not occur for vectors ~v in
Gr and therefore cannot be matched with terms in the sum that defines Ur.

More precisely, we estimate as follows:

|Ur −Qr((1 − p)βτ, p)| ≤
∑

j

∑

u

∑

~v∈Gr,j,u\Rj

∣

∣E(η~v) − pwβj
∣

∣+
∑

~v∈Rr

(

E(η~v) + pu(~v)βj
)

+ V (r).

Before we proceed to bound the three terms on the right hand side let us estimate the cardinality of
the sets Gr,j,u. (Note that u ≥ r − j if Gr,j,u is nonempty.) Since Gr,j,u consists of all ~v ∈ Gr,j that
have a total overlap u (in j blocks of immediate returns) we get

|Gr,j,u| ≤
τ j

j!

(

u− (r − j) + r − j − 1
r − j − 1

)(

r − 1
j − 1

)

=
τ j

j!

(

u− 1
r − j − 1

)(

r − 1
j − 1

)

(j blocks positioned ‘anywhere’ on an interval of length τ , u overlaps distributed on r − j immediate
returns and j blocks beginning on any of the r return times).

Now we estimate the three terms in the coefficient comparison as follows:
(i) The first error term (difference between the dominating terms) is bounded using assumption (II):

r
∑

j=1

∞
∑

u=r−j

∑

~v∈Gr,j,u\Rr

∣

∣E(η~v) − pwβj
∣

∣

≤
r
∑

j=1

∞
∑

u=r−j

|Gr,j,u|βj
(

pu
+ − pu

−(1 − φ)
)

≤
r
∑

j=1

∞
∑

u=r−j

τ j

j!

(

u− 1
r − j − 1

)(

r − 1
j − 1

)

βj
(

pu
+ − pu

−(1 − φ)
)

≤
r
∑

j=1

τ j

j!
βj

(

r − 1
j − 1

)

(

(

p+

1 − p+

)r−j

−
(

p−
1 − p−

)r−j

(1 − φ)

)

≤ c1q

(1 − p+)2

r−1
∑

j=1

(r − 1)
τ jβj

j!

(

r − 2
j − 1

)(

p+

1 − p+

)r−j−1

+ φ

r
∑

j=1

τ j

j!
βj

(

r − 1
j − 1

)(

p+

1 − p+

)r−j

≤ c2q(r − 1)Qr−1(t, p+) + φQr(t, p+)

(because (r − j)
(

r − 1
j − 1

)

= (r − 1)
(

r − 2
j − 1

)

), where t = (1 − p)τβ and q = p+ − p−.

(ii) For the second term let us note that Rr =
⋃

j Rr,j where Rr,j = {~v ∈ Gr,j : ∆(~v) < δ}. Put Rs
r

for those ~v ∈ Rr where vi+1 − vi ≥ δ for exactly s− 1 indices i1, i2, . . . , is−1 and put is = vr (obviously
1 ≤ s ≤ j − 1 ≤ r − 1 and is−1 ≤ r − 1).
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To estimate the cardinality of Rs
r,j,u = Rs

r ∩ Gr,j,u let us note that the number of possibilities of

vi1 < vi2 · · · < vis
(entrance times for long returns bigger than δ) is bounded above by 1

s!τ
s (this is the

upper bound for the number of possibilities to obtain s − 1 intervals contained in the interval [1, τ ]),
and each of the remaining j − s return times less than δ assume no more than δ different values. Since

the indices is, . . . , iks
can be picked in

(

j − 1
s − 1

)

many ways out of j blocks, we obtain:

|Rs
r,j,u| ≤

(

j − 1
s− 1

)

δj−s

s!
τ s

(

r − 1
j − 1

)(

u− 1
r − j − 1

)

,

To estimate the contribution made by the portion of the sum in the definition of Qr which corresponds
to the vectors ~v ∈ Rr we obtain by summing over s:

∑

~v∈Rr

βjpw(~v) ≤
∑

j

j−1
∑

s=1

∞
∑

u=r−j

βjpu|Rs
r,j,u|

≤
r
∑

j=2

j−1
∑

s=1

(

j − 1
s− 1

)

(τβ)s

s!
(δβ)j−s

(

r − 1
j − 1

) ∞
∑

u=r−j

(

u− 1
r − j − 1

)

pu

≤
r
∑

j=2

j−1
∑

s=1

(

j − 1
s− 1

)

(τβ)s

s!
(δβ)j−s

(

r − 1
j − 1

)(

p

1 − p

)r−j

.

The corresponding term for the actual expected values of η~v where ~v is in the rare set is bounded by
assumption (II). Hence we obtain

∑

j

∑

~v∈Rr,j

(E(η~v) + βjpw(~v)) ≤ Sr,

where

Sr = c3rγ
r

r
∑

j=2

j−1
∑

s=1

(

j − 1
s− 1

)

γ̂j−s
1

(τβ)s

s!

(

r − 1
j − 1

)

γ̂r−j
2 ,

for some c3, and γ̂1 = γ1 + δβ, γ̂2 = γ2 + p
1−p .

(iii) Since the sum for Qr contains many terms that cannot be paired with terms in the sum of Ur let
us look at those combinations of r, j, and u that do not correspond to vectors in Gr. Let us denote
by Vr,j,u the number of elements for the values of r, j, u that occur in the representation of Qr and are
not in Gr. Those overcounts occur for overlaps which have lengths ≥ M . Denote by ũ1, ũ2, . . . , ũr−j

the individual overlaps of these r − j fictitious ‘immediate returns’. Then, if the first intersection is of
length ũ1 (≥ M

m ), then

Vr,j,u ≤ r

u−(r−j)
∑

ũ1=
M
m

|Gr,j,u−ũ1
| ,

Hence (for u > M
m + (r − j − 1) and j < r)

Vr,j,u ≤ r
τ j

j!

u−(r−j−1)
∑

ũ1=
M
m

(

u− ũ1 − 1
r − j − 1

)(

r − 1
j − 1

)

= r
τ j

j!

(

r − 1
j − 1

)(

u− M
m

r − j − 1

)

where we used the identity
∑a

y=b

(

y − 1
b − 1

)

=
(

a
b

)

. Let us put Hr for the set of ficticious vectors ~v

that have individual overlaps ui (i 6= i1, . . . ij) that are not allowed, i.e. where at least one overlap is
longer than M

m . Then we can estimate the contribution one gets by counting over Hr as follows:

V (r) =
∑

~v∈Hr

βjp
u(~v)
+

6



= r

r−1
∑

j=1

∞
∑

u= M
m

+r−j

Vr,j,uβ
jpu

+

≤ r

r−1
∑

j=1

βj τ
j

j!

(

r − 1
j − 1

) ∞
∑

u= M
m

+r−j−1

pu
+

(

u− M
m

r − j − 1

)

= r
r−1
∑

j=1

βj τ
j

j!

(

r − 1
j − 1

)

p
M
m

−1
+

(

p+

1 − p+

)r−j

where we used the identity
∑∞

u=a p
u
(

u − 1
a − 1

)

=
(

p
1−p

)a

. Hence

V (r) ≤ rp
M
m

−1
+

r−1
∑

j=1

βj τ
j

j!

(

r − 1
j − 1

)(

p+

1 − p+

)r−j

= rp
M
m

−1
+ Qr (t, p+) .

Combining the three estimates (i), (ii) and (iii) yields

|Ur −Qr(t, p)| ≤
(

rp
M
m

−1 + φ
)

Qr(t, p+) + c5q(r − 1)Qr−1(t, p+) + Sr

(B) The difference ϕ(z) = ψ(z) − gp(z) between the two generating functions splits into two parts,
ϕ = ϕ1 + ϕ2, which we analyse separately (ϕ1 reflects the estimates of parts (A-i) and (A-iii), and ϕ2

reflects the estimate of (A-ii)):
(i) The function ϕ1(z) is majorised by the power series

c6

(

p
M
m + q + φ

)

∑

r

|z − 1|rrQr(t, p+).

The sum over r is equal to d
dwe

t w
1−p+−p+w (where w = |z − 1|) which can be bounded by 4e

t w
1−p+−p+w

if |w| ≤ 3
4

1−p+

p+
. A Cauchy estimate with |z| = R now yields

E1 =
1

r!

∣

∣

∣
ϕ

(r)
1 (0)

∣

∣

∣
≤ 4

Rr
e
t R+1

1−2p+−p+R .

If t is large so that r
t <

1
2p then we can take R = r

t and obtain for instance that (assuming p+ < 1
20 )

E1 ≤ c7ǫ

(

t

r

)r

e
5
2
(r+t) ≤ c8ǫ

tr

r!
e2r+ 5

2
t

using Stirling’s formula, where ǫ = c6

(

p
M
m

+ + q + φ
)

. If t is small so that for instance r
t ≥ 1

2p then we

take R = 1
2p and thus obtain E1 = 1

r!

∣

∣

∣
ϕ

(r)
1 (0)

∣

∣

∣
≤ c8ǫ(2p)

ret 1+2p
1−4p .

(ii) The second error function ϕ2(z) is majorised by the power series (t′ = βτ)

∑

r

|z − 1|rSr =
∞
∑

r=2

|z − 1|rγr
r
∑

j=2

j−1
∑

s=1

(

j − 1
s− 1

)

t′s

s!

(

r − 1
j − 1

)

γ̂j−s
1 γ̂r−j

2

= exp
t′γ|z − 1|

1 − (γ̂1 + γ̂2)γ|z − 1| − exp
t′γ|z − 1|

1 − γ̂2γ|z − 1|

≤ 6γγ̂1|z − 1| exp
t′γ|z − 1|

1 − (γ̂1 + γ̂2)γ|z − 1| .

if |z − 1|γ(γ̂1 + γ̂2) is small enough (e.g. ≤ 1
3 ), where we have used the identity

∞
∑

r=2

r
∑

j=2

j−1
∑

s=1

(

j − 1
s− 1

)

xs

s!

(

r − 1
j − 1

)

yj−szr−j = exp
x

1 − y − z
− exp

x

1 − z

7



(develop into a Taylor series with variable x and use the identity
∑∞

k=ℓ

(

k − 1
ℓ − 1

)

bk−ℓ = (1 − b)−ℓ).

Hence if we put |z| = R (R > 1) then

E2 =
1

r!

∣

∣

∣
ϕ

(r)
2 (0)

∣

∣

∣
≤ c9γγ̂1

e2γRt′

Rr−1

if we assume that (R + 1)γγ̂1 is small enough (e.g. < 1
3 ). If R = r

2t′ then we get (using Stirling’s
formula)

1

r!

∣

∣

∣
ϕ

(r)
2 (0)

∣

∣

∣
≤ c10γ̂12

rr2tr−1 e
r

r!

(if t′ is close enough to t).

Since P(ζ = r) = 1
r!ψ

(r)(0) and e−tPr(t, p) = g
(r)
p (0) we get by combining the estimates (i) and (ii)

∣

∣P(ζ = r) − e−tPr(t, p)
∣

∣ ≤ 1

r!

∣

∣

∣
ϕ(r)(0)

∣

∣

∣
≤ E1 + E2

(and 1 + log 2 < 2) from which follows the result of the proposition.

In the following we will apply this proposition to situations that typically arise in dynamical systems.
There the stationarity condition (I) of the proposition is implied by the invariance of the measure. The
random variables ηj will be the indicator function of a cylinder set pulled back under the jth iterate
of the map. Condition (II) is then implied by the mixing property (see below Definition 2). The most
difficult condition to satisfy is (III) because it involves ‘short range’ interaction over which one has
little control and which require more delicate estimates (see Lemma 5 below). A simpler version of
Proposition 1 is the following corollary (m = 1) which is easily deduced by putting γ2 = 0, γ = 1, γ1 = ε.

Corollary 2 Let M, τ be as above. Let ηj, j = 1, . . . , τ , be 0, 1-valued random variables and η~v =
∏

i ηvi

for ~v ∈ Gr. For some δ > 0 let Rr =
⋃r

j=1Rr,j, where Rr,j = {~v ∈ Gr,j : ∆(~v) < δ}. Assume µ be a
probability measure on Ω which satisfies the following conditions (C0 is a constant, ε > 0):
(I) E(ηj) = β for all j = 1, . . . , τ (invariance of the measure);
(II) Suppose there is a p ∈ (0, 1) so that for all ~v ∈ Gr,j,w \Rr,j:

∣

∣E(η~v) − pwβj
∣

∣ ≤ εpw;

for all r, j and w;
(III)

∑

~v∈Rr

E(η~v) ≤ ε.

for all r = 1, 2, . . ..
Then there exists a constant C1 so that for every t > 0 one has (ζ =

∑τ
j=1 ηj and t = (1 − p)τβ)

∣

∣P(ζ = r) − e−tPr(t, p)
∣

∣ ≤ C1(ε+ δβ)tr−1 e
2r

r!
+ C1

(

pM + ε
)

{

tr

r! e
2r+ 5

2
t if t > 1

2pr

(2p)ret 1+2p
1−4p if t ≤ 1

2pr
.

3 Measures that are (φ, f)-mixing

Let T be a map on a space Ω and µ a probability measure on Ω. Moreover let A be a measurable
partition of Ω and denote by An =

∨n−1
j=0 T

−jA its n-th join which also is a measurable partition of Ω

for every n ≥ 1. The atoms of An are called n-cylinders. Let us put A∗ =
⋃∞

n=1 An for the collection
of all cylinders in Ω and put |A| for the length of an n-cylinder A ∈ A∗, i.e. |A| = n if A ∈ An.

We shall assume that A is generating, i.e. that the atoms of A∞ are single points in Ω.
In the following definition we generalise the ‘retarded strong mixing condition’ (see e.g. [26]). We

consider mixing dynamical systems in which the function φ determines the rate of mixing while the
separation function f specifies a lower bound for the size of the gap m that is necessary to get the
mixing property.

8



{phi.mixing}
Definition 3 Assume µ is a T -invariant probability measure on Ω and that there are functions f and
φ so that:
(i) f : N → N0 (N0 = N ∪ {0}) is non-decreasing
(ii) φ : N0 → R

+ is non-increasing.
We say that the dynamical system (T, µ) is (φ, f)-mixing if

∣

∣µ(U ∩ T−m−nV ) − µ(U)µ(V )
∣

∣ ≤ φ(m)µ(U)µ(V )

for all m ≥ f(n), n ≥ 0, measurable V (in the σ-algebra generated by A∗) and U which are unions of
n-cylinders.

Systems that are (φ, f)-mixing are for instance:

1. Classical φ-mixing systems (see, e.g. [8]): f = 0. These include equilibrium states for Hölder
continuous potentials on Axiom A systems (which include subshifts of finite type) or on the Julia
set of hyperbolic rational maps. In this case the partition A is finite.

2. Dispersing billiards [25]: f is linear.

3. Equilibrium states for Hölder continuous potentials (that satisfy the supremum gap (see section 5)
on the Julia set of rational maps where the Julia set contains critical points: f is linear, φ is
exponential.

4. Multidimensional piecewise continuous maps [24]: f depends on the individual cylinders (|A| <
∞).

For r ≥ 1 and (large) τ ∈ N let as above Gr(τ) be the r-vectors ~v = (v1, . . . , vr) ∈ Z
r for which

1 ≤ v1 < v2 < · · · < vr ≤ τ . Let t be a positive parameter, W ⊂ Ω and put τ = [t/µ(W )] be the
normalised time. Then the entries vj of the vector ~v ∈ Gr(τ) are the times at which all the points in
C~v =

⋂r
j=1 T

−vjW hit the set W during the time interval [1, τ ].
{product.mixing}

Lemma 4 Let (T, µ) be (φ, f)-mixing.
Then for all r > 1, Wi ⊂ Ω unions of ni-cylinders, i = 1, . . . , r (ni ≥ 1), and all ‘hitting vectors’

~v ∈ Gr(τ) with return times vi+1 − vi ≥ f(ni) + ni (i = 1, . . . , r − 1) one has

∣

∣

∣

∣

µ (
⋂r

i=1 T
−viWi)

∏r
i=1 µ(Wi)

− 1

∣

∣

∣

∣

≤ (1 + φ(d(~v, ~n)))r − 1,

and d(~v, ~n) = mini(vi+1 − vi − ni).

A consequence of this is that there exists a 0 < η < 1 so that for all µ(A) ≤ η|A| for all A ∈ A∗.

3.1 Estimate of the rare set
{section.return.times

In this section we provide an estimate for the rare set for general (φ, f)-mixing maps. We will then
use this result in its full strength later to show that the return times distribution at periodic points is
compound Poissonian for rational maps that have critical points. For a ‘hitting vector’ ~v ∈ Gr(τ) (τ a
large integer) we put C~v =

⋂r
k=1 T

−vkW . Let δ ≥ f(|W |) (W a union of cylinders of the same lengths)
then

Rr,j(τ) = {~v ∈ Gr,j(τ) : min
k

(vik+1 − vik
− |W |) < δ},

where the values vi1 , . . . , vij
are the beginnings of the j blocks of immediate returns (notation as in

section 2.2 (II)).
{R.small}

Lemma 5 Assume (T, µ) is (φ, f)-mixing and assume that there is an m ∈ N so that for every n for
which f(n) ≤ δ there exists an M < n so that An ∩ T−ℓAn 6= ∅ for ℓ < M implies that ℓ is a multiple
of m.
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Then there exists a constant C2 so that for all n-cylinders An:

∑

~v∈Rr

µ(C~v) ≤ C2γ
r−1

r
∑

j=2

j−1
∑

s=1

(

j − 1
s− 1

)

(δµ(An′))j−s (τµ(An))s

s!

(

r − 1
j − 1

)

(γµ(Am′))r−j ,

where:
(i) n′,m′ (m′ ≤ n′) satisfy f(n′) ≤M − n′ and f(m′) ≤ m−m′,
(ii) γ > 1 + φ(mini(vi+1 − vi) − n′),
(iii) An′ ∈ An′

, An ⊂ An′ ,
(iv) Am′ ∈ Am′

, An′ ⊂ Am′ .

Proof. As in section (A-ii) of the proof of Proposition 1, put Rs
r,j for those ~v ∈ Rr,j for which

vi+1 − vi ≥ δ for s − 1 indices i1, . . . , is−1 (is = vr, s ≤ j − 1). We consider two separate cases: (I)
s ≥ 2 and (II) s = 1.
(I) Assume s ≥ 2 and i1, i2, . . . , is−1 be the indices for which vik+1−vik

≥ δ ≥ f(n) for k = 1, . . . , s−1.
All the other differences are ≥ M and smaller than δ. Let An′ be an n′-cylinder so that An ⊂ An′

where n′ is so that f(n′) ≤ M − n′. Let j be the number of blocks (i.e. ~v ∈ Gr,j) and let i′1, . . . , i
′
j be

the beginnings of the ‘blocks of immediate returns’ (clearly s ≤ j−1). There are r− j immediate short
returns of lengths ∈ [m,n). Let us put

Wik
= An for k = 1, . . . , s,

Wi′
k

= An′ for k = 1, . . . , j,

Wi = Am′ ∩ T−mAm′ ∩ T−2mAm′ ∩ · · · ∩ T−(ui−1)mAm′ for all i 6∈ {ik : k} ∪ {i′k : k}

where ui is the overlap for the ith return (which is an immediate periodic return). By our choice of n′

we have achieved that vik+1 − vik
≥ δ ≥ f(n) and vi+1 − vi ≥ f(n′) for i 6= ik, k = 1, . . . , s − 1 and

i 6= i′k, k = 1, . . . , j. By Lemma 4 we obtain

µ (C~v) ≤ µ

(

r
⋂

i=1

T−viWi

)

≤ αr−1
1

r
∏

i=1

µ(Wi) ≤ αr−1
1 µ(An′)j−sµ(An)s(α2µ(Am′))u,

(α1 = 1 + min(φ(δ − n), φ(n − n′)), α2 = 1 + φ(m −m′)) where the components of ~n = (n1, . . . , nr)
are given by nik

= n for k = 1, . . . , s and ni = n′ for i 6= ik, k = 1, . . . , s), where u =
∑

i ui is the total
overlap.

The cardinality of Rs
r,j,u = Rs

r ∩Gr,j,u has been estimated in part (A-ii) of Proposition 1 to be

|Rs
r,j,u| ≤

(

j − 1
s− 1

)

δj−s

s!
τ s

(

r − 1
j − 1

)(

u− 1
r − j − 1

)

,

Therefore

∑

~v∈Rs
r,j,u

µ(C~v) ≤ αr−1
1

(

j − 1
s− 1

)

(τµ(An))s

s!
(δµ(An′))j−s

(

r − 1
j − 1

)(

u− 1
r − j − 1

)

(α2µ(Am′))u.

(II) If s = 1 then all returns between blocks are less than δ for all k. In the same way as above we
obtain

∑

~v∈R1
r,j,u

µ(C~v) ≤ αr−1
1 τµ(An)(δµ(An′))j−1

(

r − 1
j − 1

)(

u− 1
r − j − 1

)

(α2µ(Am′))u.

Summing over s and using the estimates from (I) and (II) yields

∑

~v∈Rr

µ(C~v) =
∑

j

j−1
∑

s=1

∞
∑

u=r−j

∑

~v∈Rs
r,j,u

µ(C~v)
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≤
r
∑

j=2

αr−1
1

j−1
∑

s=1

(

j − 1
s− 1

)

(τµ(An))s

s!
(δµ(An′))j−s

(

r − 1
j − 1

) ∞
∑

u=r−j

(

u− 1
r − j − 1

)

(α2µ(Am′))u

≤
r
∑

j=2

αr−1
1

j−1
∑

s=1

(

j − 1
s− 1

)

(τµ(An))s

s!
(δµ(An′))j−s

(

r − 1
j − 1

)(

α2µ(Am′)

1 − α2µ(Am′)

)r−j

The lemma now follows since α2µ(Am′ )
1−α2µ(Am′ )

≤ α′µ(Am′) with a α′ which is slightly larger than α2. Now

we write α2 instead of α′.

In the case of classical φ-mixing maps (see subsection 3.2 below), when f is zero, we get the following
simpler result. (We simply put n′ = n and m′ = m which then results in An′ = An and Am′ = Am.)

{R.small.phi-mixing
Corollary 6 Assume (T, µ) is φ-mixing and assume that there is an m ∈ N so that for every n there
exists an M < n so that An ∩ T−ℓAn 6= ∅ for ℓ < M implies that ℓ is a multiple of m.

Then there exists a constant C3 so that for all n-cylinders An:

∑

~v∈Rr

µ(C~v) ≤ C3α
r−1

r
∑

j=2

j−1
∑

s=1

(

j − 1
s− 1

)

(δµ(An))j−s (τµ(An))s

s!

(

r − 1
j − 1

)

(αµ(Am))r−j ,

where α = 1 + φ(0) and Am ∈ Am contains An.

3.2 φ-mixing measures

We say that the dynamical system (T, µ) is φ-mixing if f is identically zero, i.e.

∣

∣µ(U ∩ T−m−nV ) − µ(U)µ(V )
∣

∣ ≤ φ(m)µ(U)µ(V )

for all m, measurable V (in the σ-algebra generated by A∗) and U which are unions of cylinders of the
same length n, for all n. The function φ is assumed to be monotonically decreasing to zero.

Let W be a set in Ω. Then the entries vi of the vector ~v ∈ Gr(τ) are the times at which all the
points in C~v =

⋂r
i=1 T

−viW hit the set W during the time interval [1, τ ]. Following Lemma 4 we get
that for ni-cylinders Wi ⊂ Ω, i = 1, . . . , r:

∣

∣

∣

∣

µ (
⋂r

i=1 T
−viWi)

∏r
i=1 µ(Wi)

− 1

∣

∣

∣

∣

≤ (1 + φ(d(~v)))r − 1, (2) {phi.mixing}

for all ‘hitting vectors’ ~v ∈ Gr(τ) with return times vi+1 − vi ≥ ni (i = 1, . . . r − 1) where d(~v) =
mini(vi+1 − vi − ni).

3.3 Distribution near periodic points for φ-mixing measures

Lemma 7 Let x be a periodic point with minimal period m. If µ is φ-mixing then the limit

p = lim
ℓ→∞

∣

∣

∣

∣

1

ℓ
logµ(Aℓm(x))

∣

∣

∣

∣

exists.

Proof. We show that the quantity inside the logarithms is nearly superadditive. Let ∆ be an integer
so that φ(∆m) ≤ 1

2 . Then we have

|logµ(Akm+∆m+ℓm(x))| ≥
∣

∣logµ(Akm ∩ T−km−∆mAℓm(T−km−∆mx))
∣

∣

and by the mixing property

µ(Akm ∩ T−km−∆mAℓm(x)) = µ(Akm)µ(Aℓm(x))(1 + O∗(φ(∆m)))
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(where O∗ means that
∣

∣

∣

O∗(ε)
ε

∣

∣

∣
≤ 1 for all ε). If we put aj = |logµ(Ajm(x))|, then

ak+∆+ℓ ≥ ak + aℓ − |log(1 − φ(∆m))| ≥ ak + aℓ − 2φ(∆m)

for all positive integers k, ℓ. Iterating this inequality yields

ark+(r−1)∆+s

(rk + (r − 1)∆ + s)m
≥ rak − 2(r − 1)φ(∆m)

(rk + (r − 1)∆ + s)m

≥ 1

1 + ∆
k + s

kr

ak

km
− 2φ(∆m)

k + ∆
,

for positive integers k, r and s ∈ [0, k + ∆). If we put n = kr + (r − 1)∆ + s, 0 ≤ s ≤ k + ∆ − 1, and
let r → ∞ we obtain

lim inf
n→∞

an

nm
≥ 1

1 + ∆
k

ak

km
− 2φ(∆m)

k + ∆
.

Now let k → ∞ and we finally get

lim inf
n→∞

an

nm
≥ lim sup

k→∞

ak

km

which implies the lemma.

As a consequence of the lemma we see that p ≤ ηm for some η < 1. (This follows from the fact that
m-cylinders have measure ≤ ηm for some η < 1 [15].) In particular p is always strictly less than 1.

In the following we shall assume the stronger property that p = limn→∞
µ(An+m(x))

µ(An(x)) . This of course

implies the limit in the lemma, but we are not sure whether the reverse implication is generally true.

Also put qn = supℓ≥n

∣

∣

∣

µ(Aℓ+m(x))
µ(Aℓ(x)) − p

∣

∣

∣
. For t > 0 and integers n we put ζt

n for the counting function
∑τn

j=0 χAn(x)) ◦ T j with the observation time

τn =

[

t

(1 − p)µ(An(x))

]

(where x is periodic with minimal period m).

In order to satisfy the assumptions of Proposition 1 we put γ = α, γ1 = αδnµ(An) and γ2 = αµ(Am))
and Corollary 6.

{phi-mixing}
Theorem 8 Let (µ,Ω) be a φ-mixing measure with partition A (finite or infinite), x a periodic point
with minimal period m and p and qn as above.

Then there exists a constant C4 so that for every δ > 0 and every t > 0 one has

∣

∣P(ζt
n = r) − e−tPr

∣

∣ ≤ C4δµ(An)tr−1 e
2r

r!
+ C4

(

p
n
m + qn + φ(δ)

)

{

tr

r! e
2r+ 5

2
t if t > 1

2pr

(2p)ret 1+2p
1−4p if t ≤ 1

2pr
,

Proof. We use Proposition 1 and have to verify conditions (I)–(III) From the definition of p and qn
assumption (I) is clearly satisfied with p± = p± qn.

To verify condition (II) let ~v ∈ Gr,j,u and let us look at the measure of µ(C~v). By (2) we have (∆
is as defined in section 2.2)

∣

∣

∣

∣

∣

µ(C~v) −
j
∏

k=1

µ(Dk)

∣

∣

∣

∣

∣

≤ ((1 + φ(∆(~v) − n))j − 1)

j
∏

k=1

µ(Dk),

where Dk is the kth block, i.e.

Dk =

ik+1−1
⋂

ℓ=ik

T−vℓAn(x).
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Since µ(Dk) = µ(An+muk
(T vik (x))) we get by definition of qn

µ(Dk)

µ(An)
=

µ(An+muk
)

µ(An)

=
µ(An+m)

µ(An)

µ(An+2m)

µ(An+m)
· · · µ(An+muk

)

µ(An+m(uk−1))

= (p+ O(qn))
uk

and therefore
j
∏

k=1

µ(Dk)

µ(An)
=

j
∏

k=1

(p+ O(qn))
uk = (p+ O(qn))

u
,

where u =
∑j

k=1 uk. Hence

∣

∣

∣

∣

∣

j
∏

k=1

µ(Dk) − puµ(An)j

∣

∣

∣

∣

∣

≤ µ(An)j ((p+ qn)u − pu)

and consequently
∣

∣µ(C~v) − puµ(An)j
∣

∣ ≤ µ(An)j
(

(p+ qn)u − pu + pu((1 + φ(∆(~v) − n))j − 1)
)

.

Hence, if ~v 6∈ Rr,j then we get assumption (II) with γ = α, p± = p ± qn (and γ(γ1 + γ2) ≤ 1
12 if m,n

are not too small). Here we use M = n−m.
To verify assumption (III) we use Corollary 6 . We obtain

∑

~v∈Rr

µ(C~v) ≤ C2α
r−1

r
∑

j=2

j−1
∑

s=1

(

j − 1
s− 1

)

(δµ(An))j−s (τµ(An))s

s!

(

r − 1
j − 1

)

(αµ(Am))r−j ,

where α = 1 + φ(0). Hence condition (III) of Proposition 1 is satisfied with γ1 = δµ(An(x)), γ2 =

αµ(Am(x)) and β = µ(An(x)).

Let us note that this result applies to finite as well as infinite partitions A. Since here we focus on the
recurrence properties around periodic points we do not require the condition

∑

A∈A −µ(A) logµ(A) <
∞ (which is necessary in order to get finite entropy or the theorem of Shannon-McMillan-Breiman).

Equilibrium states for Axiom A systems: Let us now assume that µ is an equilibrium state for a
Hölder continuous function f(with pressure zero) on an Axiom A space (shift space) which has the finite,
generating partition A. Then µ = hν where h is a normalised eigenfunction for the largest eigenvalue
of the transfer operator and ν is the associated eigenfunction. In particular ν is e−f -conformal, i.e. if
T is one-to-one on a set A then ν(TA) =

∫

A
e−f dν(x). If we replace f by f̃ = f +log h− log h◦T then

µ is e−f̃ -conformal. Thus, if x is a periodic point with period m, then

µ(An(x)) = µ(TmAn+m(x)) =

∫

An+m(x)

e−f̃m(y) dµ(y) = µ(An+m(x))q̃ne
−f̃m(x),

where q̃n is a number that can be estimated by

| log q̃n| ≤ varnf̃
m ≤ const.(varnf + varn+m log h+ varn log h) ≤ const.θn,

for some θ ∈ (0, 1) (Hölder exponent). Hence

µ(An+m(x))

µ(An(x))
= p+ qn,

where p = efm(x) and qn = p(q̃n − 1) can be estimated by |qn| ≤ pθnconst.. In particular the limit

limn→∞
µ(An+m(x))

µ(An(x)) exists and equals p. It is known that µ is φ-mixing where φ(k) = ρk for some

ρ ∈ (θ, 1). Let us now apply Proposition 2 and in order to minimise the term ǫn = C1

(

p
n
m + qn + ρδn

)

we choose δn = log µ(An(x))
log ρ . Then ǫn ≤ const.(p

n
m + nµ(An(x))) (again M = n−m).

13



Corollary 9 Let µ be an equilibrium state for a Hölder continuous function on an Axiom A system.
Then there exists a constant C5 so that for all periodic points x, t > 0 and r = 0, 1, . . . one has (p is as
above):

∣

∣P(ζt
n = r) − e−tPr

∣

∣ ≤ C5µ(An)| logµ(An(x))|tr−1 e
2r

r!
+C5

(

p
n
m + nµ(An(x))

)

{

tr

r! e
2r+ 5

2
t if t > 1

2pr

(2p)ret 1+2p
1−4p if t ≤ 1

2pr
.

Algebraically φ-mixing systems. If we assume that µ is φ-mixing (with respect to the partition A)
where φ(k) = O(k−κ) for some κ > 0, then let us note that

p+ qn =
µ(An+m(x))

µ(An(x))
≤ (1 + φ(0))µ(An(x))µ(Am(x))

µ(An(x))
≤ c1µ(Am(x))

implies the very rough estimate qn ≤ µ(Am(x)). With δn = µ(Am(x))−
1
κ one now obtains (n >> m)

ǫn ≤ c2
(

p
n
m + µ(Am(x)) + δ−κ

)

≤ c3µ(Am(x)).

Corollary 10 Let µ is φ-mixing and φ(k) ∼ k−κ for some κ > 0. Then there exists a constant C6 so
that for all periodic points x, t > 0 and r = 0, 1, . . . one has (p is as above):

∣

∣P(ζt
n = r) − e−tPr

∣

∣ ≤ C6µ(An)| logµ(An(x))|tr−1 e
2r

r!
+ C6nµ(Am(x))

{

tr

r! e
2r+ 5

2
t if t > 1

2pr

(2p)ret 1+2p
1−4p if t ≤ 1

2pr
.

3.4 Example

In [21, 22] it has been shown that for ergodic systems every possible distribution can be realised for
entry and return times of ergodic systems if the sequence of sets is suitably chosen. Naturally all
settings in which the limiting distributions are shown to be exponential or Poissonian (in the case of
higher returns) have to assume that the target set is a cylinder set (or a topological ball as in [27, 13]).
Here we show that even if we take cylinder sets then there are points which do not have a limiting
distribution at all.

For simplicity’s sake let Σ be the full two shift with symbols 0, 1 on which we put the Bernoulli
measure with weights w, 1 − w > 0 (w 6= 1

2 ). Let y = 0∞ and z = 1∞ be the two fixed points under
the shift transformation σ. They have periods m1 = m2 = 1. The entry times at y, z are compound
Poissonian with the p-weights p1 = w and p2 = 1 − w. Put ε = 1

3 |p1 − p2| and we will now produce a
point x so that the return times distribution up to some order r0 oscillates between the two compound
Poisson distributions. Choose n1 so that the cylinder An1

(y) = An1
(0n1) has the distribution

∣

∣P(ζt
n1

= r) − e−tPr(t, p1)
∣

∣ <
ε

3

for t ≤ t0 and r = 1, . . . , r0 for some t0 > 0. Now we choose n2 > n1 so that for the cylinder
An2

(0n11n2−n1) one has
∣

∣P(ζt
n2

= r) − e−tPr(t, p2)
∣

∣ <
ε

3

for t ≤ t0 and r = 1, . . . , r0. This can be done because the limiting distribution is invariant under
the shift σ (i.e. the limiting distribution of the cylinder An2

(0n11n2−n1) as n2 → ∞ is equal to the
limiting distribution of the cylinder An(1∞) as n → ∞). Continuing in this way we find a sequence
of integers n1, n2, n3, . . . so that the distribution of ζt

nj
alternates within an error of ε

3 between the

distribution e−tPr(t, p1) (for odd j) and e−tPr(t, p2) (for even j) for t ≤ t0 and r ≤ r0. Hence the
point x =

⋂

j Anj
(0n11n2−n1 · · · ∗nj−nj−1−···−n1) (∗ is 0 is j is odd and 1 if j is even) has no limiting

distribution.
Naturally, this construction can be carried out in all φ-mixing systems. Instead of two fixed points

one can also take any finite number of periodic points and then construct a point which takes turns
visiting all of those so that at each visit it stays long enough so that its return time distribution gets
arbitrarily close to the return time distribution of the periodic orbit it visits.
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4 Return times
{section.return.times

Instead of looking at the probability of a randomly chosen point in the space Ω to enter a given set
A, he we look at the statistics with which points within A return to A again. In the case of the first
entry and return times, these two distributions have for general ergodic systems been linked in [16].
Higher order entry and return times have been related in [6]. It turns out that these distributions are
the same only if the first return time is exponential. Similarly, the number of entry and return times
have the same distribution if it is Poissonian. However, near periodic orbits we get for the return times
a distribution which is very similar, namely it is in the limit given by the following compound Poisson
distribution.

Let p ∈ (0, 1). If we define

P̂r(t, p) =

r
∑

j=0

pr−j(1 − p)j+1 t
j

j!

(

r
j

)

for r = 1, 2, . . . and P̂0 = 1 − p then the generating function for the probabilities e−tP̂r is

ĝp(z) = e−t
∞
∑

r=0

zrP̂r =
1 − p

1 − zp
et z−1

1−pz .

The mean of this distribution is t+p
1−p and the variance is t+tp+p

(1−p)2 . Again note that if p = 0 then we get

the Poisson terms e−tP̂r(t, 0) = e−t tr

r! and the generating function et(z−1) which is analytic in the entire
plane whereas for p > 0 the generating function ĝp(z) has an essential singularity at 1

p . The expansion

at z0 = 1 yields ĝp(z) =
∑∞

k=0(z − 1)kQ̂k where

Q̂k(t, p) =
1

(1 − p)k

k
∑

j=0

pk−j t
j

j!

(

k
j

)

(Q̂0 = 1) are the factorial moments.

For a set A let us now define the random variable ζ̂A = χA

∑τn

j=1 χA ◦T j and put ζ̂t
n = ζ̂An(x) where

t = (1 − p)τnµ(An(x)); we also denote with µn the conditional measure to the cylinder An(x). In a
similar way we can now prove the following result.

{phi-mixing}
Theorem 11 Let (µ,Ω) be a φ-mixing measure with partition A, x a periodic point with period m and
p and qn as above.

Then there exists a constant C7 so that for every δ > 0 and every t > 0 one has

∣

∣

∣
P(ζ̂t

n = r|An) − e−tP̂r

∣

∣

∣
≤ C7nδµ(An)tr−1 e

2r

r!
+ C7n

(

p
n
m + qn + φ(δ)

)

{

tr

r! e
2r+ 5

2
t if t > 1

2pr

(2p)ret 1+2p
1−4p if t ≤ 1

2pr
,

where τn = t
(1−p)µ(An(x)) .

If we compare these error terms to the ones for the entry times, we notice the additional factor n which
comes from satisfying the condition (I) of Proposition 1 (cf. [15]).

Let us note that for r = 0 this result has previously been obtained by Hirata [17] for equilibrium
states for Hölder continuous function on Axiom A systems. Here however we also get error estimates:

∣

∣

∣
P(ζ̂t

n = 0|An) − (1 − p)e−t
∣

∣

∣
≤ C6

(

p
n
m + nµ(An(x))

)

.

Note that if p > 0 then P̂0(0, p) = 1 − p is strictly less than one and P̂r(0, p) = pr(1 − p) for r ≥ 1.
There is a point mass at t = 0 which corresponds to immediate returns within the neighborhood of the
periodic point. These are clearly geometrically distributed.
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Remark: By adapting a recent remark of Chamôıtre and Kupsa [6], we proved in [16] under the
condition of the existence of the asymptotic distribution of successive return times that the asymptotic
distributions for the entry and return times are related by the formula (k = 1, . . .)

Dk(t) =

∫ t

0

(

D̂k−1(s) − D̂k(x)
)

ds

where Dk(t) is the limiting distribution P(ζt
n = k) as n→ ∞, and D̂k(t) = limn→∞ P(ζ̂t

n = k).

5 Rational Maps

Let T be a rational map of degree at least 2 and J its Julia set. Assume that we executed appropriate
branch cuts on the Riemann sphere so that we can define univalent inverse branches Sn of Tn on J for
all n ≥ 1. Put An = {ϕ(J) : ϕ ∈ Sn} (n-cylinders). Note that the diameters of the elements in An

go to zero as n → ∞. Moreover, An is not the join of a partition, yet they have all the properties we
require.

Let f be a Hölder continuous function on J so that P (f) > sup f (P (f) is the pressure of f), let µ be
its unique equilibrium state on J and ζn =

∑τn

j=1 χAn
◦T−j the ‘counting function’ which measures the

number of times a given point returns to the n-cylinder An within the normalised time τn = [t/µ(An)].
Although µ is not a Gibbs measure we showed in [15] that for almost every x

P(ζn = r) → tr

r!
e−t,

as n→ ∞.
{rational.maps}

Theorem 12 Let T be a rational map of degree ≥ 2 and µ an equilibrium state for Hölder continuous
f (with P (f) > sup f).

Then there exists a ρ̃ ∈ (0, 1) and C8 so that for every periodic point x ∈ J the return times are
approximately compound Poissonian with the following error terms:

∣

∣P(ζt
n = r) − e−tPr

∣

∣ ≤ C8ρ̃
ntr−1 e

3r

r!
+ C8ρ̃

n
m

{

tr

r!

√
r if t > 1

2pr

(2tr)re
t
p

1
1−2p if t ≤ 1

2pr
,

where p = e−fm(x)−mP (f) and m is the minimal period of x.

The univalent inverse branches Sn of Tn (with appropriate branch cuts) split into two categories,
namely the uniformly exponentially contracting inverse branches S′

n and the remaining S′′
n = Sn \ S′

n

for which do not contract uniformly. In [13] we showed the following result:
{product.mixing.rational

Lemma 13 ([13] Lemma 9) Let η ∈ (0, 1). Then there exists a constant υ > 0 so that for all r ≥ 1
and ~v = (v1, v2, . . . , vr) ∈ Gr satisfying minj(vj+1 − vj) ≥ (1 + υ)n (clearly r < τn

(1+υ)n):

∣

∣

∣

∣

∣

µ(
⋂r

j=1 T
−vjWj)

∏r
j=1 µ(Wj)

− 1

∣

∣

∣

∣

∣

≤ ηn,

for all sets W1, . . . ,Wr each of which is a union of atoms in An and for all large enough n.

Let us define the rare set Rr: We put Rr for the set all ~v ∈ Gr(τn) for which minj(vj+1−vj) ≤ (1+q)n.
{rational.periodic

Lemma 14 Let x ∈ J be a periodic point with (minimal) period m. For all large enough n one has
that An(x) ∩ T−ℓAn(x) 6= ∅ for ℓ < n/2 only if ℓ is a multiple of m.

Proof. Put n = km + n′, 0 ≤ n′ < n, and φ = ψk · · ·ψ1φn′

, where ψ1, . . . , ψk ∈ Sm, φn′ ∈ Sn′ .
Since x ∈ A is periodic with period m we get that T imA ∩ A 6= ∅ and in particular x ∈ T imA for all
i = 1, . . . , k. Since the sets ψ(J ∩ Ωm) are all disjoint for different i, we obtain ψi = ψ1 for all i. Put
ψ = ψ1 and we get φ = (ψ)kφk (with ψ concatenated k times).
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Now assume that A ∩ T−ℓA 6= ∅ for some ℓ < n
2 which is not a multiple of m. Since for some i,

im < ℓ < (i + 1)m and T imA ∩ T−ℓ+imA 6= ∅, we can assume that ℓ < m. Suppose that there are
arbitrarily large n so that ℓ < m and V = A ∩ T−ℓA 6= ∅. Similarly as above we put n = k′ℓ + n′′

(0 ≤ n′′ < ℓ) and obtain that φ ∈ Sn decomposes as φ = (ψ̃)k′

φ̃n′′

where ψ̃ ∈ Sℓ, φ̃
n′′ ∈ Sn′′ .

Now since (ψ̃)k′

(J ∩ Ωℓ) → x as k′ → ∞, and x is periodic with period m, we see that such ℓ < m
cannot exist. Hence, for all n large enough T ℓA ∩ A 6= ∅ and ℓ < n

2 implies that ℓ is a multiple of the

period m.

Proof of Theorem 12. We are going to verify the conditions of Proposition 1 are satisfied. Let x ∈ J
be periodic with minimal period m. Then
(I) holds by invariance of the measure β = µ(Aϕ) for all j.
(II) Since µ = hν where h is a Hölder continuous density and ν is e−f -conformal we obtain as before
that

µ(An(x)) = µ(TmAn+m(x)) =

∫

An+m(x)

e−f̃m(y) dµ(y) = µ(An+m(x))q̃ne
−f̃m(x),

where we have used that fact that µ is e−f̃ -conformal with respect to the function f̃ = f+log h−log h◦T .
The factor q̃n satisfies | log q̃n| ≤ varnf̃

m ≤ const.θn, for some θ ∈ (0, 1). Hence

µ(An+m(x))

µ(An(x))
= p+ qn,

where p = efm(x) (independent of n) and the error term qn = p(q̃n − 1) is bounded as |qn| ≤ c1pθ
n for

a constant c1 which is independent of the periodic point x.
(III) Here we use Lemma 5. By Lemma 14 we can choose M = [n/2]. Furthermore we set δ = (1+υ)n.
According to Lemma 13 our separation function f is given by f(k) = (1 + υ)k. Hence n′ = [n/(1 + υ)]
and m′ = [m/(1 + υ)]. Then An′ is the n′-cylinder that contains An = An(x) and whose measure is
µ(An′) ≤ ρn/(1+υ). Similarly Am′ is the m′-cylinder that contains Am(x) and and whose measure is

µ(Am′) ≤ ρm/(1+υ). Let us choose ρ̃ < 1 so that ρ̃ > max
(

ρ
1

1+υ , η, ϑ
)

. Then (for all large enough n)

∑

~v∈Rr

µ(C~v) ≤ C2γ
r−1

r
∑

j=2

j−1
∑

s=1

(

j − 1
s− 1

)

γj−s
1

βs

s!

(

r − 1
j − 1

)

γr−j
2 ,

where γ1 = δµ(An′) ≤ ρ̃n, γ2 ≤ αµ(Am′) ≤ ρ̃m, β = τµ(An) and by Lemma 13 α = 1 + ηδ−n′

.
Moreover, since p+ = p+ qn ≤ ρ̃m, δ

τ ≤ ρ̃n, p+ −p− ≤ qn ≤ ρn and φ = φ(δ−n′) ≤ ηδ−n′ ≤ ρ̃n one has

p
n
m

+ + p+ − p− + φ ≤ c1ρ̃
n
m

for some c1. The theorem now follows from Proposition 1.
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