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Abstract

Let P be a probability distribution onRd (equipped with an Euclidean norm). Letr, s > 0
and assume(αn)n≥1 is an (asymptotically)Lr(P )-optimal sequence ofn-quantizers. In this
paper we investigate the asymptotic behavior of the maximalradius sequence induced by the
sequence(αn)n≥1 and defined to be for everyn ≥ 1, ρ(αn) = max{|a|, a ∈ αn}. We show
that if card(supp(P )) is infinite, the maximal radius sequence goes tosup{|x|, x ∈ supp(P )}
asn goes to infinity. We then give the rate of convergence for two classes of distributions with
unbounded support : distributions with exponential tails and distributions with polynomial tails.

1 Introduction

Quantization has become an important field of information theory since the early1940’s. Nowadays,
it plays an important rule in Digital Signal Processing (DSP), the basis of many areas of technology,
from mobile phones to modems and multimedia PCs. In DSP, quantization is the process of approxi-
mating a continuous range of values or a very large set of discrete values by a relatively small set of
discrete values. A common use of quantization is the conversion of a continuous signal into a digital
signal. This is performed in analog-to-digital converterswith a given quantization level. Beside these
fields, quantization has recently become a domain of interest in Numerical Probability specially in nu-
merical pricing of financial derivatives when their prices read as an expectation (or involve conditional
expectations) of some random processes (see e.g.[1]).

From a mathematical point of view, theLr-optimal quantization problem at leveln for a R
d-

valued random vectorX lying in Lr(Ω,A,P) consists in finding the best approximation ofX by
q(X), whereq is a Borel function taking at mostn values. This reads as the following minimization
problem:

en,r(X) = inf {‖X − q(X)‖r, q : R
d Borel−→ R

d, card(q(Rd)) ≤ n}.
∗E-mail: gilles.pages@upmc.fr
†E-mail: abass.sagna@upmc.fr
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Note that in facten,r(X) only depends on the distributionP = PX of X so that we will also use the
notationen,r(P ) . However, for any Borel functionq : R

d → α we have

|X − q(X)| ≥ min
a∈α

d(X,a) = d(X,α) = |X − X̂α| P a.s

so that the quantization problem reduces to

en,r(X) = inf {‖X − X̂α‖r, α ⊂ R
d, card(α) ≤ n}

= inf
α⊂R

d

card(α)≤n

(∫

Rd

d(x, α)rdP (x)

)1/r

. (1.1)

whereX̂α =
∑

a∈α a1{X∈Ca(α)} and (Ca(α))a∈α corresponds to a Voronoi partition ofR
d (with

respect to a norm| · | on R
d), that is, a Borel partition ofRd satisfying for everya ∈ α,

Ca(α) ⊂ {x ∈ R
d : |x− a| = min

b∈α
|x− b|}.

For everyn ≥ 1, the infimum in(1.1) holds as a finite minimum reached (at least) at one grid
α⋆. In this caseα⋆ is called anLr(P )-optimal (or Lr-optimal forX) and a sequence ofn-quantizers
(αn)n≥1 is Lr(P )-optimal if for everyn ≥ 1, αn is Lr(P )-optimal. A sequence(αn)n≥1 is said
asymptotically Lr(P )-optimal if

∫

Rd

d(x, αn)rP (dx) = ern,r(X) + o(ern,r(X)) asn→ ∞.

Moreover theLr-quantization erroren,r(X) decreases to0 asn goes to infinity and if there is
an (r + η)-moment ofX, for η > 0, the so-called Zador’s theorem recalled below rules its rate of
convergence to0.

Zador’s Theorem (see[4]). Let P = Pa + Ps be the Lebesgue decomposition ofP with respect to
the Lebesgue measureλd, wherePa denotes the absolutely continuous part andPs the singular part
of P . SupposeE|X|r+η < +∞ for someη > 0. Then

lim
n→+∞

nr/d(en,r(P ))r = Qr(P ).

with

Qr(P ) = Jr,d

(∫

Rd

f
d

d+r dλd

) d+r
d

= Jr,d ‖f‖ d
d+r

∈ [0,+∞),

Jr,d = inf
n≥1

nr/dern,r(U([0, 1]d)) ∈ (0,+∞),

whereU([0, 1]d) denotes the uniform distribution on the set[0, 1]d and f = dPa
dλd

. Note that the
moment assumption :E|X|r+η < +∞ ensure that‖f‖ d

d+r
is finite.

Very little is known about the geometric properties of optimal quantizers. In this paper we address
a first problem in this direction: we study the asymptotic behavior of the radii of a sequence(αn)n≥1

of Lr-optimal quantizers. The maximal radius (or simply radius)ρ(α) of a quantizerα ⊂ R
d is

defined by
ρ(α) = max{|a|, a ∈ α}.
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In our framework,|·| will be an Euclidean norm onRd. For the sake of simplicity, we will denote from
now on by(ρn)n≥1 the sequence(ρ(αn))n≥1 of radii of a sequence(αn)n≥1 of optimal quantizers
(although it may be not unique).

We will show that, as soon assupp(P ) is unbounded, lim
n→+∞

ρn = +∞. Besides, our key inequal-

ities to get the upper and lower estimates of the maximal radius sequence are provided in Theorem
3.1 and Theorem3.2. The first theorem yields amount others the maximal rate of convergence of
F̄r(

ρn

cr,d+ε) (whenn → +∞) to 0, for everyε > 0, with cr,d = 1 if d = 1; r ≥ 1 andcr,d = 2

otherwise. It claims that this rate is at most equals ton−(1+r/d).
Theorem3.2 maintains in particular that for everyu > 1, F̄r(ρnu) goes to0, asn goes to in-

finity, at a rate at less equals ton−
r+ν

d , whereν is such that the random vectorX has an(r, r + ν)-
distribution (see Definition3.1). We will see later on that the indexν⋆

X ensuring thatX has an
(r, r + ν)-distribution for everyν ∈ (0, ν⋆) will play a crucial role in the lower limit estimates of the
maximal radius sequence.

Then we will emphasize how knowing the asymptotic behavior of the function− log F̄r allow to
derive the asymptotic estimates ofρn (or log ρn ). As an important example we can already mention
distributions with density functionf satisfying

f(x) ∝

(log |x|)β
|x|c 1{|x|>1} x ∈ R

d, β ∈ R, c > r + d

for which the optimal rate of convergence oflog ρn is computed and given by

lim
n→+∞

log ρn

log(n)
=

1

c− r − d

r + d

d
.

Of course, this result is less accurate as giving the rate of convergence of the sequence(ρn) itself
for which the exact limit can not be computed with our approach because the upper and lower limits
make appear no identified constants. Another example concerns distributions with exponential tail for
which the upper and lower rates of convergence of the sequence (ρn) are provided. This is the case
for the normally distributed random vector onR

d for which we have
√

2(r + d)

d
≤ lim inf

n→+∞

ρn√
log(n)

≤ lim sup
n→+∞

ρn√
log(n)

≤ 2

√
2(r + d)

d
.

Our general conjecture for such distributions, which is proved whend = 1 andr ≥ 1, is that the
liminf bound is sharp, that is,

lim
n→+∞

ρn√
log(n)

=

√
2(r + d)

d
.

Moreover, an alternative approach is given for the lower limit estimates. This approach is based
on random quantization and reliesρn to the expectation of ani.i.d sequence of random variables
distributed asX.

The paper is organized as follows. In Section 2, upper and lower estimates of the maximal radius
sequence are given and the exact limit is provided when the cardinal of the support ofP is infinite.
This limit corresponds tosup{|x|, x ∈ supp(P )} and Section 3 is entirely devoted to the convergence
rate of the sequence of radii to this limit value.
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Notations : Throughout the paperX will denote anRd-valued random vector defined in the probability space
(Ω,A,P) with distributionP having a moment of orderr > 0 i.e. E|X |r < +∞. We define

Lr+(P) =
⋃

ε>0

Lr+ε(P).

We will denote byλd the Lebesgue measure on
(
R

d,B(Rd)
)
. We will also denote byF̄ the survival

function ofX , that is, the(0, 1]-valued function defined onR+ by

F̄ : x 7→ F̄ (x) = P({|X | > x})

and for everyr > 0, we define the generalized survival function ofX by

F̄r : x 7→ F̄r(x) = E
(
|X |r1{|X|>x}

)
.

Note that this last function is defined onR+ and takes values on the set(0,E|X |r] .
For a given setA, A will stand for its closure,∂A its boundary,Conv(A) its convex hull and̊A or Int(A)

its interior. The cardinal ofA is denoted bycard(A). For everyx ≥ 0, [x] will denote the integral part ofx.

2 Asymptotics of the the maximal radius sequence

In this section we give an asymptotic upper bound and a lower bound of the sequence of radii. For
distributions supported by a infinite set, the exact limit isprovided.

Proposition 2.1. LetX ∈ Lr
Rd(P). Let(αn)n≥1 be a sequence ofn-quantizers such thaten,r(X) → 0

asn→ +∞. Then,
lim inf
n→+∞

ρn ≥ sup{|x|, x ∈ supp(P )}. (2.1)

Remark that this result also holds for any norm onR
d.

Proof. Let x ∈ supp(P ). Suppose that there existsε0 > 0 and a subsequence(ρnk
)k≥1 such that

∀k ≥ 1, ρnk
< |x| − 2ε0. (2.2)

Thus
∃ η > 0 such that∀k, d(B(0, ρnk

), B(x, ε0)) > η > 0.

Then one has for everyk ≥ 1,

enk,r(X) = ‖d(X,αnk
)‖r

≥ ‖d(X,B(0, ρnk
))‖r (since αnk

⊂ B(0, ρnk
))

≥ ‖d(X,B(0, ρnk
))1{X∈B(x,ε0)}‖r

≥ ‖d(B(x, ε0), B(0, ρnk
))1{X∈B(x,ε0)}‖r

= d(B(x, ε0), B(0, ρnk
))P(X ∈ B(x, ε0))

1/r

> η P(X ∈ B(x, ε0))
1/r > 0.

This is not possible sinceen,r(X) → 0. Then, we have shown that

∀x ∈ supp(P ), lim inf
n

ρn ≥ |x|.

Hencelim inf
n

ρn ≥ sup{|x|, x ∈ supp(P )}.
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Among other results, the next proposition provides the limit of the sequence(ρn)n≥1 when the
support ofP is infinite.

Proposition 2.2. (a) Letα be anLr-optimal quantizer at leveln. If card(supp(P )) ≥ n then

α ⊂ Conv(supp(P )) and ρn ≤ sup{|x|, x ∈ supp(P )}. (2.3)

(b) If card(supp(P )) = +∞ then

lim
n→+∞

ρn = sup
n≥1

ρn = sup{|x|, x ∈ supp(P )}. (2.4)

for anyLr(P )-optimal sequence of quantizers(αn)n≥1.

Proof. (a) If α is Lr-optimal at leveln then card(α) = n sincecard(supp(P )) ≥ n (see[9]).

Now, suppose thatα 6⊂ Conv(supp(P )). Then let a ∈ α ∩
(
Conv(supp(P ))

)c
and set

α′ = (α\{a}) ∪ {Π(a)}

whereΠ denotes the projection on the non empty closed convex setConv(supp(P )). The projection
is 1-Lipschitz andX is P-a.s supp(P )-valued, hence

d(X,a) ≥ d(Π(X),Π(a))
P-a.s
= d(X,Π(a)).

It follows that
d(X,α) ≥ d(X,α′) P-a.s.

Sinceα isLr(P )-optimal at leveln andcard(α′) ≤ card(α) = n,

E(d(X,α′)r) = E(d(X,α)r)

so that the three statements hold:

- d(X,α′) = d(X,α) P−a.s

- Π(a) 6∈ α\{a} sinceα′ isLr(P )-optimal (which implies thatcard(α′) = n),

- P(X ∈ CΠ(a)(α
′)) > 0 (otherwiseα′\{Π(a)} would be optimal).

On the other hand,X ∈ Conv(supp(P )) P-a.s so that
(
a− Π(a)|X − Π(a)

)
≤ 0 P-a.s.

Consequently

|X − a|2 − |X − Π(a)|2 = 2(Π(a) − a|X − Π(a)) + |a− Π(a)|2
≥ |a− Π(a)|2 > 0 sincea 6∈ Conv(supp(P )).

As a consequence
d(X,α′) < d(X,α) P-a.s on{X ∈ C̊Π(a)(α

′)}
whereC̊Π(a)(α

′) = {ξ ∈ R
d, d(ξ,Π(a)) < d(ξ, α\{a})} since the norm is Euclidean.
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This implies thatP(X ∈ C̊Π(a)(α
′)) = 0 and thenP(X ∈ ∂CΠ(a)(α

′)) > 0; this is impossible
sinceα′ isLr-optimal (see[4]). Henceα ⊂ Conv(supp(P )).

Now, let us prove thatρn ≤ sup{|x|, x ∈ supp(P )}. Note first that this assertion is obvious if
supp(P ) is unbounded.

On the other hand ifsupp(P ) is bounded then it is compact and so isConv(supp(P )). Let
x0 ∈ Conv(supp(P )) be such that|x0| = sup{|x|, x ∈ Conv(supp(P ))}. Thus

x0 = λ0ξ1 + (1 − λ0)ξ2, ξ1, ξ2 ∈ supp(P )

andλ 7−→ |λξ1+(1−λ)ξ2| is convex so that it reaches its maximum atλ = 0 orλ = 1. Consequently
x0 ∈ supp(P ).

(b) This follows from the assertion aboutρ(αn) in the item(a) and from Proposition2.1.

Remark 2.1. If the norm onR
d is an arbitrary norm, the assertion(a) of the proposition may fail.

An example is given with thel∞-norm in [4], p. 25.

3 Convergence rate of the maximal radius sequence

We first start by giving two examples of distributions for which the sharp convergence rate of the
maximal radius sequence can be computed rather easily. In fact the semi-closed forms established in
[7] for theLr-optimal quantizers of the exponential and the Pareto distributions and summed up in
the following proposition allow to derive some sharp asymptotics for the maximal radius sequence
(ρn)n≥1 induced by the unique sequence ofLr-optimal quantizers at leveln. These rates will be very
useful to validate the asymptotic rates obtained by others approaches.

Proposition 3.1. (see [7] ) (a) Let r > 0 and letX be an exponentially distributed random variable
with scale parameterλ > 0. Then, for everyn ≥ 1, theLr-optimal quantizerαn = (αn,1, · · · , αn,n)
is unique and given by

αn,k =
1

λ

(
an

2
+

n−1∑

i=n+1−k

ai

)
, 1 ≤ k ≤ n, (3.1)

where(ak)k≥1 is anR+-valued sequence recursively defined by the following implicit equation:

a0 := +∞, φr(−ak+1) := φr(ak), k ≥ 0

with φr(x) :=
∫ x/2
0 |u|r−1sign(u)e−udu (convention :00 = 1).

Furthermore, the sequence(ak)k≥1 decreases to zero and for everyk ≥ 1,

ak =
r + 1

k

(
1 +

cr
k

+ O(
1

k2
)

)

for some positive real constantcr.
(b) Let r > 0 and letX be a random variable having a Pareto distribution with indexγ > r. Letf
be the density function :f(x) = γx−(γ+1)1{x>1}. Then for everyn ≥ 1, theLr-optimal quantizer
αn = (αn,1, · · · , αn,n) is unique and given by

αn,k =
1

1 + an

n−1∏

i=n−k+1

(1 + ai), 1 ≤ k ≤ n, (3.2)
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where(ak)k≥1 is anR+-valued sequence recursively defined by the following implicit equation:

a0 = +∞, φγ

(
− ak+1

1 + ak+1

)
:= φγ(ak), k ≥ 1,

with φγ(x) :=
∫ x/2
0 γ|u|r−1sign(u)(1 + u)−(γ+1)du. The sequence(ak)k≥1 decreases to zero and

there is some positive real constantc such that for everyk ≥ 1,

ak =
r + 1

(γ − r)k

(
1 +

c

k
+O(

1

k2
)

)
.

Let us give now the sharp asymptotic derived from these semi-closed forms.

Proposition 3.2. (a) Let r > 0 and letX be an exponentially distributed random variable with
parameterλ > 0. Then

ρn =
r + 1

λ
log(n) +

Cr

λ
+ O

( 1

n

)
, (3.3)

whereCr is a real constant depending only onr.

(b) Let r > 0 and letX be a random variable with Pareto distribution of indexγ such thatγ > r.
Then,

log(ρn) =
r + 1

γ − r
log(n) + Cr + O

( 1

n

)
, (3.4)

whereCr is a real constant depending only onr.

Proof. (a) It follows from (3.1) that

λ ρn =
an

2
+

n−1∑

i=1

ai

where the sequence(an)n≥1 decreases to zero and satisfies for everyn ≥ 1, an =
(
(r + 1)/n

)(
1 +

cr/n + O(1/n2)
)
, for some real constantcr. Thus,

λ ρn =
an

2
+ (r + 1)

n−1∑

i=1

1

i
+ cr

n−1∑

i=1

1

i2
+

n−1∑

i=1

O(1/i3)

= (r + 1) log(n) + Cr + O
( 1

n

)
.

(b) It follows from (3.2) that

ρn =
1

1 + an

n−1∏

i=1

(1 + ai)

where(an)n≥1 is anR+-valued sequence, decreasing to zero and satisfying: ∀n ≥ 1,
an = r+1

(γ−r)n

(
1 + cr/n + O(1/n2)

)
, for some real constantcr.

Then,

log(ρn) = − log(1 + an) +

n−1∑

i=1

(
ai −

a2
i

2
+ O(a3

i )
)

=
r + 1

γ − r
log(n) + Cr + O

( 1

n

)

where we used that
∑∞

i=1 a
2
i <∞ and

∑∞
i=1 O(a3

i ) <∞.
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3.1 Upper estimate

We investigate in this section the rate of convergence of(ρn) to infinity. Let us give first some defini-
tions and some hypotheses which will be useful later on.

Let (αn)n≥1 be anLr(P )-optimal sequence of quantizers at leveln. Forn ≥ 1, we defineM(αn)
to be

M(αn) = {a ∈ αn such that|a| = max
b∈αn

|b|}.

We will need the following assumption onP

(H) ≡ P (dx) ≥ ε0 1{x∈B̄(x0,r0)}λd(dx), ε0, r0 > 0, x0 ∈ R
d.

In the one dimensional setting, we will need the following specific assumption depending onr ∈
[1,+∞) :

(Gr) P = f · λd wheref is non-increasing to0 on [A,+∞) for some real constantA and

lim
y→+∞

∫ +∞

1
(u− 1)r−1 f(uy)

f(y)
du = 0. (3.5)

Let us make some brief comments on theses assumptions as wellas some simple criterions.
• Note that Assumption(H) holds as soon asX has a densityf which is bounded away from0

on a closed ball̄B(x0, r0), r0 > 0, x0 ∈ R
d, i.e. ε0 := minx∈B̄(x0,r0) f(x) > 0. This is a very light

assumption satisfied by all usual distributions (Gaussian distribution, the exponential distribution, the
Pareto distribution, etc).

• Assumption(Gr) holds for distributions with density functions of the form

f(x) ∝ |x|c e−ϑ|x|κ x ∈ R; ϑ, κ > 0; c > −1.

Indeed, we have for large enoughy, f is non-increasing and
∫ +∞

1
(u− 1)r−1 f(uy)

f(y)
du =

∫ +∞

1
(u− 1)r−1uce−ϑyκ(uκ−1)du

≤
∫ +∞

1
(u− 1)r−1uce−ϑAκ(uκ−1)du < +∞.

The existence of the last integral follows from the existence of the moment of every order.
It follows from the Lebesgue convergence theorem that(3.5) holds. Then Assumption(Gr) holds

in particular for the Gaussian distribution, for the Weibull distribution and for the Gamma distribution.
However it fails for example for the Pareto distribution. But, we will see later that we do not need this
assumption for distributions with polynomial tails to estimate the sequence(log ρn)n≥1.

Let us recall theLr-stationary property which will be also useful. AssumeP = f · λd. The
so-calledLr-distorsion functionDX

n,r : (Rd)n −→ R+ is defined by :

α = (α1, · · · , αn) 7−→ E

(
min

i=1,··· ,n
|X − αi|r

)
.

Then, for everyr ≥ 1, DX
n,r is differentiable at any codebook having pairwise distinctcomponents

and (see[6] for details)

∇DX
n,r(α) = r

(∫

Ci(α)
(αi − u)|u− αi|r−2f(u)du

)

1≤i≤n

. (3.6)
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An optimalLr-quantizer at leveln α = {α1, · · · , αn} for P has full sizen, so that,

∇DX
n,r(α) = 0.

α is said to satisfy anLr-stationary property.
Whend = 1 then for any (ordered) quantizerαn = {x(n)

1 , · · · , x(n)
n }, x(n)

1 < · · · < x
(n
n ) at level

n, its Voronoi partition is given by

C1(αn) = (−∞, x
(n)
1
2

], Cn(αn) = (x
(n)

n− 1
2

,+∞), Ci(αn) = (x
(n)

i− 1
2

, x
(n)

i+ 1
2

], i = 2, · · · , n− 1,

with x
(n)

i− 1
2

=
x
(n)
i +x

(n)
i−1

2 and x(n)

i+ 1
2

=
x
(n)
i +x

(n)
i+1

2 .

The main result of this section is the following.

Theorem 3.1. Suppose thatX has an unbounded support and that(H) holds. Let(αn)n≥1 be an
Lr(P )-optimal sequence of quantizers. Then,

(a)

lim
ε↓0

lim inf
n→+∞

(
n1+ r

d F̄r

( ρn

2 + ε

))
≥ Cr,d,U . (3.7)

(b) If d = 1, r ≥ 1 and if furthermore(Gr) holds then,

lim
ε↓0

lim inf
n→+∞

(
nr+1F̄r

( ρn

1 + ε

))
≥ Cr,1,U . (3.8)

Cr,d,U is a positive real constant depending onr, d and the uniform distributionU on [0, 1]d.

The Lemmas below are used to prove this result.

Lemma 3.1. LetX be anR
d valued random variable with unbounded support and probability distri-

butionP and let(αn)n≥1 be anLr(P )-optimal sequence ofn-quantizers,r > 0. Let (ρn)n≥1 be the
maximal radius sequence induced by(αn)n≥1. Then,

(a) ∀ ε > 0, ∃ nε such that∀n ≥ nε,

∀ a ∈M(αn), ∀ ξ ∈ Ca(αn), |ξ| ≥ ρn

2 + ε
. (3.9)

(b) If d = 1, r ≥ 1 and if furthermore(Gr) holds then, for large enoughn,

∀ a ∈M(αn), ∀ ξ ∈ Ca(αn), |ξ| ≥ ρn

1 + ε
. (3.10)

Proof. (a) Since(αn) is Lr(P )-optimal,en,r(X) → 0 asn → +∞. Then, the following asymptotic
density property of(αn) in the support ofP holds:

∀ε > 0, ∀x ∈ supp(P ) B(x, ε) ∩ αn 6= ∅. (3.11)

Otherwise, if there existsx ∈ supp(P ), ε > 0 and a subsequence(αnk
)k≥1 so that∀k ≥ 1, B(x, ε)∩

αnk
= ∅, then, for everyk ≥ 1,

enk,r(X) ≥ ‖d(X,αnk
)1X∈B(x,ε/2)‖r ≥ ε

2
P (B(x, ε/2))1/r > 0.

9



Which contradicts the fact thaten,r(X) → 0 asn→ +∞.
Now, to prove the result assume first0 ∈ supp(P ). Let ε > 0, a ∈ M(αn). Then,∃N1 ∈ N

such thatB(0, ε) ∩ αn 6= ∅, ∀n ≥ N1. Now ρn → +∞ implies thatB(0, ε) ∩ (αn\M(αn)) 6= ∅ for
n ≥ N ′1.

Let b ∈ B(x, ε) ∩ (αn\M(αn)). We have for everyξ ∈ Ca(αn),

|ξ − b|2 ≥ |ξ − a|2,

namely

2(ξ|a − b) ≥ |a|2 − |b|2 (≥ 0)

≥ ρ2
n − |b|2.

Now, |ξ||a− b| ≥ (ξ|a− b), then,

|ξ||a− b| ≥ (ρn + |b|)(ρn − |b|)
2

.

Moreover,|a− b| ≤ |a| + |b| ≤ ρn + |b|. One finally gets

|ξ| ≥ ρn − |b|
2

≥ ρn − ε

2
.

Sinceρn → +∞ asn→ +∞, |ξ| ≥ ρn

2+ε , for large enoughn.

If 0 6∈ supp(P ) we show likewise that|ξ| ≥ ρn−|x0|−ε
2 , ∀x0 ∈ supp(P ) which implies the

announced result sinceρn → +∞.

(b) We will make an abuse of notation by considering that

ρn = ρ+
n := max{x, x ∈ α}.

In what follows all results onρ−(α) := max{−x, x ∈ α} can be derived by using−X instead ofX.

Let αn = {x(n)
1 , · · · , x(n)

n } and suppose that (up to a subsequence)

x
(n)
n−1

x
(n)
n

→ ρ < 1.

Let ε > 0 such thatρ+ ε < 1. We have for large enoughn,

x
(n)
n−1

x
(n)
n

< ρ+ ε < 1

or equivalently,
x

(n)
n−1 + x

(n)
n

2
< x(n)

n

(
1 + ρ+ ε

2

)
. (3.12)

Let ρ′ be such that0 < ρ′ < 1−(ρ+ε)
2 , that is,

(
1 + ρ+ ε

2

)
< 1 − ρ′ < 1. (3.13)

10



It follows from (3.12) and(3.12) that

∫ x
(n)
n

x
(n)
n−1

+x
(n)
n

2

(
1 − u

x
(n)
n

)r−1

f(u)du ≥
∫ x

(n)
n (1−ρ′)

x
(n)
n (1+ρ+ε)

2

(
1 − u

x
(n)
n

)r−1

f(u)du

≥ (ρ′)r−1

∫ x
(n)
n (1−ρ′)

x
(n)
n (1+ρ+ε)

2

f(u)du

≥ ρ′′x(n)
n f(cn)

with ρ′′ = (ρ′)r−1(1
2 − ρ′ − ρ+ε

2 ) > 0 andcn ∈ (x
(n)
n (1 + ρ+ ε)/2, x

(n)
n (1 − ρ′)).

On the other hand, we have

1

x
(n)
n f(x

(n)
n )

∫ +∞

x
(n)
n

(
u

x
(n)
n

− 1

)r−1

f(u)du =

∫ +∞

1
(u− 1)r−1 f(ux

(n)
n )

f(x
(n)
n )

du.

It follows from Assumption(Gr) that

lim sup
n→+∞

1

x
(n)
n f(x

(n)
n )

∫ +∞

x
(n)
n

(
u

x
(n)
n

− 1

)r−1

f(u)du = 0.

Consequently we have for large enoughn,

1

x
(n)
n f(x

(n)
n )

∫ +∞

x
(n)
n

(
u

x
(n)
n

− 1

)r−1

f(u)du < ρ′′

so that (A < cn < x
(n)
n for large enoughn andf is non-increasing in[A,+∞))

∫ +∞

x
(n)
n

(
u

x
(n)
n

− 1

)r−1

f(u)du < ρ′′x(n)
n f(x(n)

n ) ≤ ρ′′x(n)
n f(cn) ≤

∫ x
(n)
n

x
(n)
n−1+x

(n)
n

2

(
1 − u

x
(n)
n

)r−1

f(u)du

which is not possible since theLr-stationary equation implies

∫ x
(n)
n

x
(n)
n−1

+x
(n)
n

2

(
1 − u

x
(n)
n

)r−1

f(u)du =

∫ +∞

x
(n)
n

(
u

x
(n)
n

− 1

)r−1

f(u)du.

We have then shown that

lim
n→+∞

x
(n)
n

x
(n)
n−1

= 1.

It follows that ∀ε >,∃ nε such that∀n ≥ nε, x
(n)
n < (1 + ε)x

(n)
n−1. Thus,

ρn = x(n)
n < (1 + ε)x

(n)
n−1 < (1 + ε)ξ ∀ ξ ∈ Ca(αn), a ∈M(αn).

This completes the proof.
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Lemma 3.2. Let (αn)n≥1 be a sequence ofLr-optimaln-quantizers of the distributionP . Suppose
that (H) holds. Then for large enoughn,

ern,r(X) − ern+1,r(X) ≥ Cr,d,U n−
r+d

d , (3.14)

where

Cr,d,U = 2−(r+d)

(
r

d+ r

)1/r ( d

d+ r

)d/r ε0
1 + ε0

Qd+r(U(B̄(x0,
r0
2

))). (3.15)

Proof. Step1. Let y ∈ R
d. Without lost of generality we temporarily setδn = d(y, αn). Following

the lines of the proof of Theorem2 in [5] we have for everyx ∈ B(y, δn/2) anda ∈ αn,

|x− a| ≥ |y − a| − |x− a| ≥ δn/2

and hence
d(x, αn) ≥ δn/2 ≥ |x− y|, x ∈ B(y, δn/2).

It follows, by settingβn = αn ∪ {y}, that

d(x, βn) = |x− y|, x ∈ B(y, δn/2).

Consequently for everyb ∈ (0, 1/2),

ern,r(X) − ern+1,r(X) ≥
∫
d(x, αn)rdP (x) −

∫
d(x, βn)rdP (x)

≥
∫

B(y,δnb)
(d(x, αn)r − d(x, βn)r)dP (x)

=

∫

B(y,δnb)
(d(x, αn)r − |x− y|r)dP (x)

≥
∫

B(y,δnb)
((δn/2)

r − (δnb)
r)dP (x)

= (2−r − br) δr
n P (B(y, δnb)).

Step2. Now, coming back to the core of our proof letx0 andr0 be as in(H). For everyy ∈ B̄(x0,
r0
2 )

we have

ern,r(X) − ern+1,r(X) ≥ (2−r − br) δr
n P (B(y, (b δn) ∧ r0

2
))

≥ (2−r − br) δr
nε0

(
(b δn)d ∧ (

r0
2

)d
)

1{y∈B̄(x0,
r0
2

)}.

One checks that
sup

y∈B̄(x0,
r0
2

)

d(y, αn) → 0.

Otherwise∃y∞ ∈ B̄(x0,
r0
2 ), η > 0 and a subsequence(αϕ(n))n≥1 of (αn)n≥1 such that for every

n ≥ 1, d(y∞, αϕ(n)) >
η
2 . Then

∫
d(αϕ(n), ξ)

rP (dξ) ≥
∫

B̄(y∞, η
4
)
d(αϕ(n), ξ)

rP (dξ).

12



Moreover for everyξ ∈ B(y∞, η
4
)

d(αϕ(n), ξ) ≥ d(y∞, αϕ(n)) − d(y∞, ξ) ≥
η

2
− η

4

so that ∫
d(αϕ(n), ξ)

rP (dξ) ≥ (
η

2
)rP (B(y∞, η

4
)).

This contradicts the fact thaten,r(X) → 0 asn goes to infinity. Consequently, for large enoughn,

sup
y∈B̄(x0,

r0
2

)

d(y, αn) ≤ r0
2

so that
ern,r(X) − ern+1,r(X) ≥ (2−r − br) bdd(y, αn)d+rε0 1{y∈B̄(x0,

r0
2

)}.

It follows that
∫

B̄(x0,
r0
2

)
(ern,r(X) − ern+1,r(X))λd(dy) ≥ (2−r − br) ε0 b

d

∫

B̄(x0,
r0
2

)
d(y, αn)d+rλd(dy)

≥ (2−r − br) ε0 bd λd(B̄(x0,
r0
2

)) er+d
n,r+d(U(B̄(x0,

r0
2

))).

Then,
ern,r(X) − ern+1,r(X) ≥ (2−r − br) ε0 b

d er+d
n,r+d(U(B̄(x0,

r0
2

))).

Consequently, for large enoughn,

ern,r(X) − ern+1,r(X) ≥ (2−r − br)
ε0

1 + ε0
bd Qd+r(U(B̄(x0,

r0
2

))) n−
d+r

d .

As a function ofb, the right hand side of this last inequality reaches its maximum atb⋆ = 1
2

(
d

d+r

)1/r
.

Which completes the proof.

Proof of Theorem 3.1. Let a ∈M(αn) andε > 0. We have,

E|X − X̂αn−1 |r ≤ E|X − X̂αn\{a}|r

and

E|X − X̂αn\a|r = E
(
|X − X̂αn |r1{X∈Cc

a(αn)}

)
+ E

(
min

b∈αn\{a}
|X − b|r1{X∈Ca(αn)}

)

≤ E|X − X̂αn |r + E
(

min
b∈αn\{a}

(|X| + |b|)r1{X∈Ca(αn)}

)
.

It follows from Lemma3.1 (a) that∃ nε ∈ N such that∀n ≥ nε, |X| > ρn

2+ε on {X ∈ Ca(αn)}.
Consequently, for allb ∈ αn\{a}, |b| ≤ |a| = ρn < (2 + ε) |X|.

Hence,
E|X − X̂αn−1 |r − E|X − X̂αn |r ≤ (3 + ε)rE

(
|X|r1{|X|> ρn

2+ε
}

)
.

Lemma3.2 yields (since(n− 1)−
r+d

d ∼ n−
r+d

d asn→ +∞)

(1 + ε)−1Cr,d,U n−
r+d

d ≤ (3 + ε)rE
(
|X|r1{|X|> ρn

2+ε
}

)
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for large enoughn, so that for everyε > 0,

lim inf
n

(
n

r+d
d F̄r

( ρn

2 + ε

))
≥ Cr,d,U

(3 + ε)r(1 + ε)
.

Taking the limit asε → 0 gives the statement(3.7). Assertion(3.8) is proved as above by using
Lemma3.1 (b) instead of Lemma3.1 (a).

Recall thatF̄r(x) = E
(
|X|r1{|X|>x}

)
. It is clear that this function is non-increasing and goes

to 0 asx → +∞ (providedE|X|r < +∞). Consequently,− log F̄r(x) is monotone nondecreasing
and goes to+∞ asx goes to+∞. Moreover, we know that if a functionf defined on(0,+∞) is
increasing to+∞ (at+∞), its generalized inverse functionf← defined by∀x > 0,

f←(x) = inf{t > 0, f(t) ≥ x} (3.16)

is monotone increasing to+∞. On the other hand, the following result holds (see [2]): If furthermore
f is regularly varying (at+∞) with index1/δ, δ > 0, then there exists a functionψ, regularly varying
with indexδ and satisfying

ψ(f(x)) ∼ f(ψ(x)) ∼ x as x→ +∞. (3.17)

The functionψ is an asymptotic inverse off and it is not necessarily increasing neither continuous.
Moreover,ψ is unique up to asymptotic equivalence andf← is one version ofψ.

We next show that for distributions with exponential tails,specifying either the asymptotic in-
verseφr (if any) of the function− log F̄r or finding some asymptotic upper boundψr of φr (having
some ” nice” properties) leads to an upper estimate of the maximal radius sequence. This estimate is
connected to the chosen functionψr.

When the distribution has a polynomial tail, we will look forthe asymptotic inverse function of
− log F̄r(e

x) or some asymptotic upper boundψr of it to provide an upper estimate of(log ρn)n≥1.

Proposition 3.3. Assume that the distributionP of X has an unbounded support and satisfies(H).
Let (αn)n≥1 be anLr(P )-optimal sequence ofn-quantizers.

(a) If ψr is a measurable nondecreasing function, regularly varyingwith indexδ and

ψr(− log F̄r(x)) ≥ x+ o(x) asx→ +∞, (3.18)

then

lim sup
n→+∞

ρn

ψr(log(n))
≤ 2

(
1 +

r

d

)δ
. (3.19)

If d = 1 andr ≥ 1 and if (Gr) holds then, one has

lim sup
n→+∞

ρn

ψr(log(n))
≤ (r + 1)δ . (3.20)

In particular if− log F̄r has regular variation with index1/δ then(3.19) holds withψr = (− log F̄r)
←.

(b) If ψr is a measurable nondecreasing function, regularly varyingwith indexδ and

ψr(− log F̄r(e
x)) ≥ x+ o(x) asx→ +∞, (3.21)

then

lim sup
n→+∞

log ρn

ψr(log(n))
≤
(
1 +

r

d

)δ
. (3.22)

If − log F̄r(e
�) has regular variation of index1/δ then(3.22) holds withψr = (− log F̄r(e

�))←.
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Prior to the proof, let us make some comment on the proposition. First note that the measurability
of ψr is necessary to define the regular varying property. On the other hand we have for everyr > 0
and for everyx > 0,

F̄r(x) ≥ xrF̄ (x).

Then
− log F̄r(x) ≤ − log F̄ (x) − r log(x).

According to the nondecreasing hypothesis onψ we have for everyx > 1,

ψr(− log F̄r(x)) ≤ ψr(− log F̄ (x) − r log(x)) ≤ ψr(− log F̄ (x)) (3.23)

sincelog(x) > 0. Hence if Assumption(3.18) holds then

ψr(− log F̄ (x)) ≥ x+ o(x).

We will see further on that for distributions with exponential tails, the functionψr in the statement(a)
of the proposition does not depend onr. However in the situation of the item(b) of the proposition,
Assumption(3.21) implies that

ψr(− log F̄ (ex)) ≥ (r + 1)x+ o(x).

Consequently, takinḡF instead ofF̄r in Assumption(3.21) will induce a loss of precision in the upper
estimate oflog ρn.

Also remark that if− log F̄r (resp. − log F̄r(e
�) ) is measurable, locally bounded and regu-

larly varying with index1/δ, δ > 0 then its generalized inverse functionφr (resp. Φr ) is mea-
surable increasing to+∞, regularly varying with indexδ and,φr(− log F̄r(x)) = x + o(x) (resp.
Φr(− log F̄r(e

x)) = x+o(x)). Consequently, both inequalities(3.19) and(3.20) (resp. claim(3.22))
hold with φr (resp. Φr) in place ofψr. However,φr (resp. Φr ) is in general not easy to compute
and the examples below show that it is often easier to exhibitdirectly a functionψr satisfying the
announced hypotheses without inducing any asymptotic lossof accuracy.

We prove now the proposition.

Proof. (a) It follows from (3.7) and (3.8) that for everyε > 0, there is a positive real constant
Cr,d,U,ε depending on the indexing parameters such that

n−
d+r

d Cr,d,U,ε ≤ F̄r

( ρn

cr,d + ε

)

where (from now on)cr,1 = 1 if r > 1; cr,d = 2 otherwise. Therefore, one has

r + d

d
log(n) − log(Cr,d,U,ε) ≥ − log F̄r

( ρn

cr,d + ε

)
.

Combining the fact thatψr is nondecreasing and Assumption(3.18) yield

ψr

(r + d

d
log(n) − log(Cr,d,U,ε)

)
≥ ψr

(
− log F̄r

( ρn

cr,d + ε

))

≥ ρn

cr,d + ε
+ o(ρn).
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Moreover, dividing byψr(log(n)) (which is positive for large enoughn) yields

ρn

ψr(log(n))
≤ (cr,d + ε)

(
1 +

o(ρn)

ρn

)−1ψr

(
r+d
d log(n) − log(Cr,d,U,ε)

)

ψr(log(n))
.

It follows from the regular varying hypothesis onψr andlim
n
ρn = +∞ that

lim sup
n→+∞

ρn

ψr(log(n))
≤ (cr,d + ε)

(
r + d

d

)δ

, ∀ε > 0.

The result follows by lettingε→ 0.
(b) As previously, one derives from(3.7) and from Assumption(3.21) and the nondecreasing hy-
pothesis onψr that

ψr

(r + d

d
log(n) − log(Cr,d,U,ε)

)
≥ ψr

(
− log F̄r

( ρn

cr,d + ε

))

≥ log ρn − log(cr,d + ε) + o(log ρn).

It follows that

log ρn

ψr(log(n))
≤
(

1 − log(cr,d + ε)

log ρn
+
o(log ρn)

log ρn

)−1 ψr

(
r+d
d log(n) − log(Cr,d,U,ε)

)

ψr(log(n))
.

Owing to the regular varying hypothesis onψr and the fact thatlim
n
ρn = +∞, we have

lim sup
n→+∞

log ρn

ψr(log(n))
≤
(
r + d

d

)δ

.

We next give an explicit asymptotic upper bound for the convergence rate of the maximal radius
sequence in the sense that the functionψr is made explicit. These bounds are derived on the rate of
decay of the generalized survival function̄Fr.

Criterion 3.1. (a) LetX be a random variable with unbounded support. Letr > 0 and let(αn)n≥1

be anLr-optimal sequence ofn-quantizers forX. Letκ > 0 such thate|X|
κ ∈ L0+(P). Set

θ⋆ = sup
{
θ > 0, lim sup

x→+∞
eθxκ

F̄r(x) < +∞
}

= sup
{
θ > 0, E eθ|X|

κ
< +∞

}
. (3.24)

Thenθ⋆ ∈ (0,+∞] and

lim sup
n→+∞

ρn
(
log(n)

)1/κ
≤ 2

(
r + d

d θ⋆

)1/κ

. (3.25)

Whend = 1 andr ≥ 1, if (Gr) holds then

lim sup
n→+∞

ρn
(
log(n)

)1/κ
≤
(
r + 1

θ⋆

)1/κ

.

(b) LetX ∈ Lr+(P) be a random variable with unbounded support. Set

ζ⋆ = sup
{
ζ > 0, lim sup

x→+∞
xζ−rF̄r(x) < +∞

}
= sup

{
ζ > r, E|X|ζ < +∞

}
. (3.26)

16



Thenζ⋆ ∈ (r,+∞] and

lim sup
n→+∞

log ρn

log(n)
≤ 1

ζ⋆ − r

r + d

d
. (3.27)

Prior to the proof we can make the following remark.

Remark 3.1. If X ∈ ⋂
r>0

Lr(P) thenζ⋆ = +∞ and consequently lim
n→+∞

log ρn

log(n) = 0.

Proof . (a) The equalities in(3.24) and(3.26) are obvious.
Let θ ∈ (0, θ⋆). We have

E
(
|X|r1{|X|>x}

)
= E

(
|X|r1{

eθ|X|κ>eθxκ
}) ≤ e−θxκ

E
(
|X|reθ|X|κ

)
.

Now, the right hand side of this last inequality is finite because ifθ′ ∈ (θ, θ⋆),

|x|reθ|x|κ ≤ 1 + Cθ,θ′e
θ′|x|κ.

As a consequence,
− log F̄r(x) ≥ θxκ + CX , CX ∈ R.

Let ψθ(y) =
(y

θ

)1/κ
. As a function ofy, ψθ is continuous (then measurable) increasing to+∞,

regularly varying with indexδ = 1
κ and we have

ψθ(− log F̄r(x)) ≥
(
xκ +

CX

θ

)1/κ

= x+ o(x), asx→ +∞.

It follows from Proposition3.3 (a) that

lim sup
n→+∞

ρn
(
log(n)

)1/κ
≤ cr,d

(
d+ r

d θ

)1/κ

∀θ ∈ (0, θ⋆).

Letting θ → θ⋆ completes the proof.

(b) Let ζ ∈ (r, ζ⋆). We have

E
(
|X|r1{|X|>x}

)
= E

(
|X|r1{1<x−ζ+r |X|ζ−r}

)

≤ x−ζ+r
E|X|ζ .

Then
− log F̄r(x) ≥ (ζ − r) log(x) + C

so that by settingψr(x) = x
ζ−r , it follows from Proposition3.3 (b) that

lim sup
n→+∞

log ρn

log(n)
≤ 1

ζ − r

r + d

d
.

Letting ζ go toζ⋆ yields the assertion(3.27) .

Remark 3.2. Note that the choice of the functionψr in the statement(a) of Proposition3.3 does not
depend onr as approved in the proof of the item(a) of the previous criterion. But for distributions
with polynomial tails the choice ofψr clearly depends onr.
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We now give more explicit results for specified density functions.

Corollary 3.1. (a) Suppose that the densityf ofX satisfies

f(x) ∝ |x|c e−ϑ|x|κ x ∈ R
d; ϑ, κ > 0; c > −d. (3.28)

Thenθ⋆ = ϑ and

lim sup
n→+∞

ρn
(
log(n)

)1/κ
≤ cr,d

ϑ1/κ

(
1 +

r

d

)1/κ
. (3.29)

(b) If the density ofX reads

f(x) ∝

(log |x|)β
|x|c 1{|x|>1} x ∈ R

d, β ∈ R, c > r + d (3.30)

thenζ⋆ = c− d and

lim sup
n→+∞

log ρn

log(n)
≤ 1

c− d− r

r + d

d
. (3.31)

(c) The statement(3.29) (resp(3.31)) holds if the density ofX is simply equivalent to the specified
density in(3.28) (resp in(3.30)).

Notice that the restrictionc > r + d in (3.30) ensures thatE|X|r < +∞.

Proof. (a) We have

F̄r(x) = E
(
|X|r1{|X|>x}

)
= K

∫

{|u|>x}
|u|r+c e−ϑ|u|κdλd(u)

= K Vd

∫ +∞

x
ρr+c+d−1 e−ϑρκ

dρ

whereK =
∫
|x|ce−ϑ|x|κdλd(x) is the normalizing positive real constant in(3.28) andVd denotes

the volume of the Euclidean unit ball. Integrating by parts and using usual integral comparison rules
yields

F̄r(x) = Cd,ϑ,κ x
r+c+d−κ e−ϑxκ(

1 + o(1)
)

for a positive real constantCd,ϑ,κ. It follows that if θ < ϑ then

lim sup
x→+∞

eθxκ
F̄r(x) < +∞

and ifθ > ϑ then
lim sup
x→+∞

eθxκ
F̄r(x) = +∞.

Which means thatθ⋆ = ϑ and the statement(3.29) follows from Criterion3.1 (a).

(b) We have for everyr > 0, for everyx > 1,

F̄r(x) =

∫

{|u|>x}

(log |u|)β
|u|c−r

dλd(u) = Vd

∫ +∞

x

(log ρ)β

ρc′
dρ.
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with c′ = c − r − d + 1 (c′ > 1) andVd defined as previously. Integrating by parts and multiplying
by xζ−r yields

xζ−rF̄r(x) =
K Vd

c− (r + d)
log(x)βxζ−c+d(1 + o(1)).

Consequently,ζ⋆ = c− d. The statement(3.31) follows from Criterion3.1 (b).

(c) Obvious from the forgoing.

We now give some examples for usual distributions.

Example 3.1. (a)• If X ∼ N (0; Id), we have

f(x) = (2π)−d/2e−
1
2
|x|2.

It follows from the item(a) of the previous corollary (withϑ = 1/2, κ = 2, c = 0) that for every
r > 0, for everyd ≥ 1,

lim sup
n→+∞

ρn√
log(n)

≤ 2

√
2
(
1 +

r

d

)
.

In particular, whenr ≥ 1, d = 1 we havelim sup
n→+∞

ρn√
log(n)

≤
√

2(r + 1).

• For a double Gamma distribution in the real line where

f(x) =
λa

2Γ(a)
|x|a−1e−λ|x|, x ∈ R; λ, a > 0

or a Gamma distribution for which

f(x) =
λa

Γ(a)
xa−1e−λx1{x≥0}, λ, a > 0

we have (from Corollary3.1 (a) with c = a− 1, ϑ = λ, κ = 1) for everyr ∈ (0, 1),

lim sup
n→+∞

ρn

log(n)
≤ 2(r + 1)

λ

and in caser ≥ 1 we have

lim sup
n→+∞

ρn

log(n)
≤ r + 1

λ
;

which coincides with the sharp rate given in(3.3).

• WhenX has a logistic distribution with densityf(x) = e−x

(1+e−x)2
we have

f(x) ∼ e−x asx→ +∞.

Then, it follows from Corollary3.1 (c) that(ρn)n≥1 has the same upper asymptotic as the exponential
distribution with parameterλ = 1.

• As concern the Weibull distribution with shape parameterκ > 0 with density function

f(x) = κxκ−1e−xκ
1{x≥0}
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it follows from Corollary3.1, (a) (with ϑ = 1) that forr ∈ (0, 1),

lim sup
n→+∞

ρn
(
log(n)

)1/κ
≤ 2(r + 1)1/κ

and if r ≥ 1

lim sup
n→+∞

ρn
(
log(n)

)1/κ
≤ (r + 1)1/κ.

(b) SupposeX is a random variable having a Pareto distribution with indexγ > r. The density
function reads

f(x) = γx−(γ+1)1{x>1}.

Then we deduce from Corollary3.1 (b) (with d = 1, c = γ + 1, β = 0) that

lim sup
n→+∞

log ρn

log(n)
≤ r + 1

γ − r
.

3.2 Lower estimate

In this section we investigate the asymptotic lower estimate of the maximal radius sequence(ρn)n≥1

induced by anLr-optimal sequence ofn-quantizers. First we introduce the family of the(r, s)-
distributions which will play a crucial role to obtain the optimal lower estimate for the rate of the
maximal radius sequence.

Let r > 0, s > r. Since theLr-norm is increasing, it is clear that for everys ≤ r anyLr-optimal
sequence of quantizers(αn)n≥1 is Ls-rate optimal i.e.

lim sup
n→+∞

n1/d‖X − X̂αn‖s < +∞. (3.32)

But if s > r (andX ∈ Ls(P)) this asymptotic rate optimality usually fails . So is always the case
whens > r + d andX has a probability distributionf satisfyingλd(f > 0) = +∞, see[5]. But it is
established in[11] that some linear transformation of theLr-optimal quantizers(αn) makes possible
to overcome the critical exponentr+d, that is, one can always construct anLs-rate-optimal sequence
of quantizers by a linear transformation of theLr-optimal sequence of quantizers(αn). However
there is some distributions for which(3.32) holds for everys ∈ [r, r+ d). This leads to the following
definition:

Definition 3.1. Let s, r > 0, s > r. A random vectorX ∈ Ls(P) has an(r, s)-distribution if any
Lr-optimal sequence(αn)n≥1 is Ls-rate optimal.

Forν ∈ (0, d), sufficient conditions such thatX has an(r, r + ν)-distribution are provided in[5].
Let us mention two criterions ensuring that a random vectorX has an(r, r+ν)-distribution. The first
one deals with distributions with radial tails.

Criterion 3.2. (a) Let d ≥ 1. If f = h(| · |) onB|·|(0, N)c with h : (R,+∞) → R+, R ∈ R+, a
decreasing function and| · | any norm onRd. If

∫
f(cx)−

r+ν
r+d dP (x) < +∞ (3.33)

for somec > 1. ThenX has an(r, r + ν)-distribution.
(b) If d = 1 and ifsupp(P ) ⊂ [R0,+∞) for someR0 ∈ R andf

|(R
′
0,+∞)

is decreasing forR
′

0 ≥ R0.

If further Assumption(3.33) holds for somec > 1. ThenX has an(r, r + ν)-distribution.
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The following criterion works for distributions with non radial tails.

Criterion 3.3. Let r > 0, ν ∈ (0, d), P = f · λd and
∫
|x|r+ηP (dx) < +∞ for someη > 0.

Assume thatsupp(P ) is convex and thatf satisfies the local growth control assumption : there exists
real numbersε ≥ 0, η ∈ (0, 1/2), M,C > 0 such that

∀x, y ∈ supp(P ), |x| ≥M, |y − x| ≤ 2η|x| =⇒ f(y) ≥ Cf(x)1+ε.

If ∫
f(x)−

(r+ν)(1+ε)
r+d dP (x) < +∞, (3.34)

thenX has an(r, r + ν)-distribution.

Furthermore a necessary condition forX (with densityf ) to have an(r, r+ ν)-distribution is (see
[5]) :

X has an(r, r + ν)-distribution =⇒
∫
f(x)−

(r+ν)
d+r dP (x) < +∞. (3.35)

It follows from (3.33) and (3.35) that the Gaussian distribution, the Weibull and the Gamma
distributions have an(r, r + ν)-distribution if and only ifν ∈ (0, d). The Pareto distribution with
indexγ > r has an(r, r + ν)-distribution if and only ifν ∈ (0, γ−r

γ+1).
Now, suppose thatX has an(r, r + ν)-distribution for someν ∈ (0, d) and set

ν⋆
X := sup{ν > 0 s.t.X has an(r, r + ν)-distribution}.

Note that
{ν > 0 s.t.X has an(r, r + ν)-distribution} = (0, ν⋆

X ) or (0, ν⋆
X ]

and thatX ∈ Lr+ν(P), ∀ν ∈ (0, ν⋆
X ). When

{ν > 0 s.t.X has an(r, r + ν)-distribution} = ∅

we setν⋆
X = 0.

This indexν⋆
X will play a crucial role to determine the lower bound of the maximal radius se-

quence. Recall that ifX has a densityf satisfyingλd(f > 0) = +∞ then a necessary condition for
X to have(r, r + ν)-distribution is thatν < d. Which means thatν⋆

X ≤ d. However, this inequality
may stand strictly as approved by the Pareto distribution with indexγ for whichν⋆

X = γ−r
γ+1 < 1.

We present below two different approaches to get the lower bound for the maximal radius se-
quence. The first one involves the generalized survival functions F̄r like for upper bounds and is
based on tail estimates. The second one is probably more original. It is based on random quantiza-
tion: its specificity is to provide a close connection between the sequence(ρn)n≥1 and the maximum
of the norm of ani.i.d sequence of random variables with distributionsP .

3.2.1 Distribution tail approach

The main result of this section is the following theorem.

Theorem 3.2. Let r > 0 and letX be aR
d-valued random variable with probability distributionP .

Let (αn)n≥1 be anLr(P )-optimal sequence ofn-quantizers. For everyν ∈ (0, ν⋆
X ), the following

statements hold:
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(a)
lim sup
n→+∞

sup
c>0

(
cr+ν n

r+ν
d F̄

(
ρn + c

))
< +∞. (3.36)

(b)
lim sup
n→+∞

sup
u>1

((
1 − 1/u

)r+ν
n

r+ν
d F̄r

(
uρn

))
< +∞. (3.37)

Proof. (a) Let c > 0 and letν ∈ (0, ν⋆
X). Then

E|X − X̂αn |r+ν ≥ E

(
min
a∈αn

|X − a|r+ν1{|X|>ρn+c}

)
.

On the events{|X| > ρn + c}, we have:|X| > ρn + c > ρn ≥ |a|, ∀a ∈ αn. Then

E|X − X̂αn |r+ν ≥ E

(
min
a∈αn

|X − a|r+ν1{|X|>ρn+c}

)

≥ E

(
min
a∈αn

(
|X| − |a|

)r+ν1{|X|>ρn+c}

)

≥ E

((
|X| − ρn

)r+ν1{|X|>ρn+c}

)
(3.38)

≥ cr+ν
P ({|X| > ρn + c}) .

It follows that
E|X − X̂αn |r+ν ≥ sup

c>0

(
cr+ν

P
(
{|X| > ρn + c}

))
.

SinceX has an(r, r + ν)-distribution we have

lim sup
n

n
r+ν

d ‖X − X̂αn‖r+ν
r+ν < +∞.

Which completes the proof.

(b) is proved like(a). Inequality(3.38) becomes: for everyu > 1,

E|X − X̂αn |r+ν ≥ E

((
|X| − ρn

)r+ν1{|X|>uρn}

)
≥ E

(
|X|r+ν (1 − 1/u)r+ν 1{|X|>uρn}

)
.

Then,
E|X − X̂αn |r+ν ≥ sup

u>1

[
(1 − 1/u)r+ν

E
(
|X|r+ν1{|X|>uρn}

)]
.

Inequality(3.37) follows by noticing thatlim sup
n

n
r+ν

d ‖X − X̂αn‖r+ν
r+ν < +∞.

Like for the upper estimate, given the asymptotic inverse functionφ of − log F̄ or given an asymp-
totic lower boundψ of φ satisfying some standard hypotheses specified below, we provide the asymp-
totic lower estimate for the maximal radius sequence for distributions with exponential tails.

For distributions with polynomial tails, we will rather look for the asymptotic inverse function
Φr,ν, ν ∈ (0, ν⋆

X ) (if any) of − log F̄r+ν(e
x) or some asymptotic lower bound of it to provide a lower

estimate oflog ρn.
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Proposition 3.4. Letr > 0 and letX be anR
d-valued random variable with distributionP . Suppose

thatX has an unbounded support. Let(αn)n≥1 be anLr(P )-optimal sequence ofn-quantizers.

(a) If ψ is a measurable nondecreasing function going to+∞ asx → +∞, regularly varying with
indexδ and satisfying

ψ(− log F̄ (x)) ≤ x+ o(x), (3.39)

then

lim inf
n→+∞

ρn

ψ(log(n))
≥
(
r + ν⋆

X

d

)δ

. (3.40)

If − log F̄ is regularly varying of index1/δ then(3.40) holds withψ = (− log F̄ )←.

(b) Let ν ∈ (0, ν⋆
X). If there is a measurable nondecreasing functionψr,ν(x) going to+∞ asx →

+∞, regularly varying with indexδ and satisfying

ψr,ν(− log F̄r+ν(e
x)) ≤ x+ o(x), (3.41)

then

lim inf
n→+∞

log ρn

ψr,ν(log(n))
≥
(
r + ν

d

)δ

. (3.42)

In particular if − log F̄r+ν(ex) has regular variation with index1/δ then(3.42) holds withψr,ν(x) =
(− log F̄r+ν(e

x))←.

Let us provide a few comments on this proposition. We have forevery r > 0 and for every
x > 0, F̄r(x) > xrF̄ (x). Then

− log F̄r(x) ≤ − log F̄ (x) − r log(x).

According to the nondecreasing hypothesis onψ we have for everyx > 1

ψ(− log F̄r(x)) ≤ ψ(− log F̄ (x) − r log(x)) ≤ ψ(− log F̄ (x))

so that if(3.39) holds then for everyr > 0, for everyν ∈ (0, ν⋆
X),

ψ(− log F̄r+ν(x)) ≤ x+ o(x).

Reproducing the proof (given below) of Proposition3.4 (a) by using(3.37) instead of(3.36) shows
that (3.40) still holds true. This means that for distribution with exponential tails, the functionψ do
not depend onr andν even if in Assumption(3.39) we take the generalized survival function̄Fr+ν in
place of the regular survival function̄F . However for distributions with polynomial tails like Pareto
distribution the functionψr,ν in (3.41) may depend onr and taking the regular survival function
F̄ in place of the generalized survival function̄Fr+ν would make lose the dependance uponr and
consequently lead to a less accurate result.

We next prove the proposition.

Proof. (a) Assumeν⋆
X > 0 and letν ∈ (0, ν⋆

X ). It follows from (3.37) that for large enoughn,

− log F̄ (ρn + c) ≥ − log(Cν,c) +
r + ν

d
log(n)

23



whereCν,c is a positive real constant depending on the indexing parameters. It follows from the fact
thatψ is nondecreasing and goes to+∞ and from Assumption(3.39) that

ρn

ψ(log(n))
≥
(

1 +
c

ρn
+
o(ρn)

ρn

)−1 ψ( r+ν
d log(n) − log(Cν,c))

ψ(log(n))
.

Sinceψ is regularly varying with indexδ we have

lim inf
n→+∞

ρn

ψ(log(n))
≥
(
r + ν

d

)δ

, ∀ν ∈ (0, ν⋆
X ).

Lettingν → ν⋆
X give the announced result. Ifν⋆

X = 0, one follows the same proof withν = 0.

(b) This is proved like the statement(b) in Proposition3.3 by consideringF̄r+ν instead ofF̄r, for
ν ∈ (0, ν⋆

X).

The next criterion is the lower limit counterpart of Criterion 3.1.

Criterion 3.4. (a) LetX be anR
d-valued random variable with unbounded support and suppose

that
θ⋆ = inf

{
θ > 0, lim inf

x→+∞
eθxκ

P(|X| > x) > 0
}
∈ (0,+∞]. (3.43)

Then

lim inf
n→+∞

ρn
(
log(n)

)1/κ
≥
(
r + ν⋆

X

d θ⋆

)1/κ

. (3.44)

(b) LetX be a random variable with unbounded support such thatν⋆
X > 0. Set

ζ⋆ = inf
{
ζ > 0, ∀ν ∈ (0, ν⋆

X ), lim inf
x→+∞

xζ−r−νF̄r+ν(x) > 0
}
∈ [r + ν⋆

X ,+∞]. (3.45)

Then

lim inf
n→+∞

log ρn

log(n)
≥ 1

ζ⋆ − r − ν⋆
X

r + ν⋆
X

d
. (3.46)

Proof . (a) Let θ ∈ (θ⋆,+∞). Then

F̄ (x) ≥ C e−θxκ

for large enoughx and for a positive real constantC. Therefore

− log F̄ (x) ≤ θxκ(1 − log(C)

xκ
)

so that by settingψθ(x) = (x/θ)1/κ we have

ψθ(− log F̄ (x)) ≤ x+ o(x).

It follows from Proposition3.4 (a) that

lim inf
n→+∞

ρn
(
log(n)

)1/κ
≥ 1

θ1/κ

(
r + ν⋆

X

d

)1/κ

.
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We letθ go toθ⋆ to get the announced result.

(b) Let ζ ∈ (0, ζ⋆). We have, for everyν ∈ (0, ν⋆
X ),

F̄r+ν(x) ≥ Cν x
−ζ+r+ν

for large enoughx and for a positive real constantCν . Then, by settingψr,ν(x) = x
ζ−r−ν we get

ψr,ν(− log F̄r+ν(x)) ≤ log(x) + o(log(x)). It follows from Proposition3.4 (b) that

lim inf
n→+∞

log ρn

log(n)
≥ 1

ζ − r − ν

r + ν

d
.

The right hand side of this last inequality is increasing on(0, ν⋆
X ) (as a function ofν) and on(0, ζ⋆)

(as a function ofζ) so that by lettingν andζ go respectively toν⋆
X andζ⋆ we get

lim inf
n→+∞

log ρn

log(n)
≥ 1

ζ⋆ − r − ν⋆
X

r + ν⋆
X

d
.

Corollary 3.2. (a) If the density function ofX reads

f(x) ∝ |x|c e−ϑ|x|κ x ∈ R
d; ϑ, κ > 0; c > −d (3.47)

thenν⋆
X = d and θ⋆ = θ⋆ = ϑ. In this case we have for everyr > 0, for everyd ≥ 1,

1

ϑ1/κ

(
1 +

r

d

)1/κ
≤ lim inf

n→+∞

ρn
(
log(n)

)1/κ
≤ lim sup

n→+∞

ρn
(
log(n)

)1/κ
≤ 2

ϑ1/κ

(
1 +

r

d

)1/κ
. (3.48)

Whend = 1 andr ≥ 1 we have

lim
n→+∞

ρn
(
log(n)

)1/κ
=

(
r + 1

ϑ

)1/κ

. (3.49)

(b) If X has a densityf satisfying

f(x) ∝

(log |x|)β
|x|c 1{|x|>1} x ∈ R

d, β ∈ R, c > r + d (3.50)

thenν⋆
X = d

(
1 − r+d

c

)
∈ (0, d) and ζ⋆ = ζ⋆ = c − d. Furthermore we have for everyr > 0 and

everyd ≥ 1,

lim
n→+∞

log ρn

log(n)
=

1

c− r − d

r + d

d
. (3.51)

(c) The claim(3.48) (resp(3.51)) holds if the density ofX is simply equivalent to the specified density
in (3.47) (resp in(3.50)).
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Proof . (a) It is obvious from Criterion3.2 and(3.35) thatν⋆
X = d. LetK be the normalizing positive

real constant in(3.47). We have for everyx > 0,

P(|X| > x) = K

∫

{|u|>x}
|u|c e−ϑ|u|κdλd(u)

= Kd

∫ +∞

x
ρc+d−1 e−ϑρκ

dρ

= Kd
xc+d−κ

ϑ
e−ϑxκ

(1 + o(1))

where we used an integration by parts and usual integral comparison criterions. Consequently, if
θ > ϑ then

lim inf
x→+∞

eθxκ
P(|X| > x) = +∞

and ifθ < ϑ then
lim inf
x→+∞

eθxκ
P(|X| > x) = 0.

Which means thatθ⋆ = ϑ and the statement(3.48) follows from Criterion3.1 (a) and Criterion
3.4 (a).

(b) Let c̄ > 1. We have

∫

{f>0}
f(c̄x)−

r+ν
r+d f(x)dλd(x) = (c̄)−

r+ν
r+d

∫

{|x|>1}

(log |u|)β′

|u|c′ dλd(u) = Kd,c̄

∫ +∞

1

(log ρ)β
′

ρc′−d+1
dρ

with c′ = c(1 − r+ν
r+d ). Kd,c̄ is some positive real constant andβ′ ∈ R. We deduce that if

c′ > d ⇐⇒ ν < d

(
1 − r + d

c

)
then

∫

{f>0}
f(c̄x)−

r+ν
r+d f(x)dλd(x) < +∞

and if

c′ < d ⇐⇒ ν > d

(
1 − r + d

c

)
then

∫

{f>0}
f(x)−

r+ν
r+d f(x)dλd(x) = +∞

so that (from Criterion3.2 and Statement(3.35)) ν⋆
X = d

(
1 − r+d

c

)
.

Let us show thatζ⋆ = c− d. For everyr > 0, for everyν ∈ (0, ν⋆
X ), for everyx > 1, integrating

by parts and using integral comparison criterions yield

F̄r+ν(x) = E
(
|X|r+ν1{|X|>x}

)
=

∫

{|u|>x}

(log |u|)β
|u|c−r−ν

dλd(u)

= Vd

∫ +∞

x

(log ρ)β

ρc′
dρ

= Vd
x−c′+1

c′ − 1
log(x)β(1 + o(1))

with c′ := c− r − ν − d+ 1 > 1. It follows that

xζ−r−νF̄r+ν(x) =
Vd

c′ − 1
log(x)βxζ−c+d(1 + o(1))
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so that for everyr > 0 and for everyν ∈ (0, ν⋆
X), if ζ > c− d then

lim inf
x→+∞

xζ−r−νF̄r+ν(x) = +∞

and if ζ < c− d,
lim inf
x→+∞

xζ−r−νF̄r+ν(x) = 0.

Henceζ⋆ = c− d. It follows from Criterion3.1 (b) and Criterion3.4 (b) that

1

ζ⋆ − r − ν⋆
X

r + ν⋆
X

d
≤ lim inf

n→+∞

log ρn

log(n)
≤ lim sup

n→+∞

log ρn

log(n)
≤ 1

c− r − d

r + d

d
.

Now
(
recall thatζ⋆ = c− d andν⋆

X = d
(
1 − r+d

c

) )
,

1

ζ⋆ − r − ν⋆
X

r + ν⋆
X

d
=

1

c− r − d

r + d

d

so that

lim
n→+∞

log ρn

log(n)
=

1

c− r − d

r + d

d
.

(c) Obvious from what forgoes.

We deal now with examples.

Example 3.2. (1)It follows from Corollary3.2 (a) that

• WhenX ∼ N (0, Id), for everyr > 0, for everyd ≥ 1,
√

2(r + d)

d
≤ lim inf

n→+∞

ρn√
log(n)

≤ lim sup
n→+∞

ρn√
log(n)

≤ 2

√
2(r + d)

d
.

In cased = 1 andr ≥ 1 we have

lim
n→+∞

ρn√
log(n)

=
√

2(r + 1).

• If X ∼ Γ(a, λ), a > 0, λ > 0 or if X has a double gamma distribution we have for everyr ≥ 1,

lim
n→+∞

ρn

log(n)
=
r + 1

λ

(which coincides to the exact rate given in(3.3) for the exponential distribution) and for everyr ∈
(0, 1),

r + 1

λ
≤ lim inf

n→+∞

ρn

log(n)
≤ lim sup

n→+∞

ρn

log(n)
≤ 2(r + 1)

λ
.

• As concern the logistic distribution, the maximal radius sequence has the same asymptotic as the
exponential distribution with parameterλ = 1 following Corollary3.2 (c).

• For a Weibull distribution with shape parameterκ > 0 we have for everyr ≥ 1,

lim
n→+∞

ρn
(
log(n)

)1/κ
= (r + 1)1/κ.

27



For r ∈ (0, 1), one has

(r + 1)1/κ ≤ lim inf
n→+∞

ρn
(
log(n)

)1/κ
≤ lim sup

n→+∞

ρn
(
log(n)

)1/κ
≤ 2(r + 1)1/κ.

(2) SupposeX is a random variable having a Pareto distribution with indexγ > r where the density
readsf(x) = γx−(γ+1)1{x>1}. It follows from Corollary3.2 (b) (with c = γ + 1, d = 1)

lim
n→+∞

log ρn

log(n)
=
r + 1

γ − r
. (3.52)

We retrieve of course the sharp rate given in(3.4).

3.2.2 An alternative approach by random quantization approach

Let X ∼ P . Random quantization is another tool to compute the lower estimate of the maximal
radius sequence. It makes a connection betweenρn and the maximum of ani.i.d sequence of random
variables with distributionsP .

Theorem 3.3. Let r > 0 and letX be a random variable taking values inRd with probability
distribution P with Pa 6= 0. Assume(αn)n≥1 is anLr(P )-optimal sequence ofn-quantizers. Let
(Xk)k≥1 be an i.i.d sequence ofRd-valued random variables with probability distributionP . For
everyν ∈ (0, ν⋆

X),
lim inf
n→+∞

(
ρn − E

(
max

k≤[n(r+ν)/d]
|Xk|

))
≥ − Cν (3.53)

where Cν is a positive real constant.

Proof. Let ν ∈ (0, ν⋆
X) and letX̂αn

k =
∑

a∈αn
a1{Xk∈Ca(αn)}. We have,

ρn ≥ max
k≤m

|X̂αn
k |

≥
m∑

k=1

max
l≤m

|X̂αn
l |1{|Xk|>maxi6=k |Xi|}

≥
m∑

k=1

|X̂αn
k |1{|Xk|>maxi6=k |Xi|}

≥
m∑

k=1

(
|Xk| − |Xk − X̂αn

k |
)
1{|Xk|>maxi6=k |Xi|}

≥ E max
k≤m

|Xk| −
m∑

k=1

E

(
|Xk − X̂αn

k |1{|Xk|>maxi6=k |Xi|}

)
.

Furthermore,

∀k ≥ 1, |Xk − X̂αn
k |1{|Xk|>maxi6=k |Xi|}

L
= |X1 − X̂αn

1 |1{|X1|>maxi6=1 |Xi|}.

Hence,

ρn ≥ E max
k≤m

|Xk| −m E

(
|X1 − X̂αn

1 |1{|X1|>maxi6=1 |Xi|}

)

≥ E max
k≤m

|Xk| −m ‖X1 − X̂αn
1 ‖r+ν

(
P
(
|X1| > max

i6=1
|Xi|

))1−1/(r+ν)

.
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Since the events
{|Xk| > max

i6=k
|Xi|}, k = 1, · · · ,m

are pairwise disjoint with the same probability we have

P
(
|X1| > max

i6=1
|Xi|

)
≤ 1

m
.

Finally,

ρn ≥ E max
k≤m

|Xk| −m
1

r+ν ‖X1 − X̂αn
1 ‖r+ν .

It follows, by settingm = [n(r+ν)/d], that

lim inf
n→+∞

(
ρn − E

(
max

k≤[n(r+ν)/d]
|Xk|

))
≥ − lim sup

n→+∞
n

1
d ‖X1 − X̂αn

1 ‖r+ν .

However, sinceX has an(r, r+ ν)-distribution, the upper limit on the right hand side of the equation
is finite.

Example 3.3. (Exponential distribution) Letr > 0 and letX be an exponentially distributed random
variable with parameterλ > 0. If (αn)n≥1 is anLr-optimal sequence ofn-quantizers forX then
Theorem3.3 implies

lim inf
n→+∞

ρn

log(n)
≥ r + 1

λ
. (3.54)

which is the sharp rate given by(3.3).

Indeed, letν ∈ (0, ν⋆
X ) and let(Xi){i=1,··· ,[nr+ν]}, be ani.i.d exponentially distributed sequence

of random variables with parameterλ. We have for everyu ≥ 0,

P( max
i≤[nr+ν ]

Xi ≥ u) = 1 − P(X1 ≤ u)[n
r+ν ] = 1 − F (u)[n

r+ν ],

whereF is the distribution function ofX (we will denote byf its density function). Then

E
(

max
i≤[nr+ν ]

Xi

)
=

∫ +∞

0
P( max

i≤[nr+ν ]
Xi ≥ u)du =

∫ +∞

0
(1 − (1 − e−λu)[n

r+ν ])du

=

∫ +∞

0

( [nr+ν ]−1∑

i=0

F (u)i
)
e−λudu

=

∫ +∞

0

(
1 + F (u) + · · · + F (u)[n

r+ν ]−1
) f(u)

λ
du

=
1

λ
(1 +

1

2
+ · · · + 1

[nr+ν ]
)

≥ 1

λ
log(1 + [nr+ν ]) ≥ r + ν

λ
log(n).

Consequently, it follows from the super-additivity of the liminf that for everyν ∈ (0, 1),

lim inf
n→+∞

ρn

log(n)
≥ lim inf

n→+∞

ρn − E
(
maxi≤[nr+ν ]

)

log(n)
+ lim inf

n→+∞

E
(
maxi≤[nr+ν ]

)

log(n)

≥ r + ν

λ
.

The result follows by lettingν go toν⋆
X = 1.
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Example 3.4. (Pareto distribution) LetX be a random variable having a Pareto distribution with index
γ > 0. If (αn)n≥1 is an asymptoticallyLr-optimal sequence ofn-quantizers forX, r is such that
γ > r, then Theorem3.3 yields

lim inf
n→+∞

log ρn

log(n)
≥ r + 1

γ + 1
.

Which is not the sharp rate given by(3.4).

Notice that ifγ > r thenX ∈ Lr+η(P) for η ∈
(
0, γ − r

)
. Now, to prove this result, letν ∈

(0, ν⋆
X) and let(Xi){i=1,··· ,[nr+ν]} be ani.i.d sequence of random variables with Pareto distribution

with indexγ. We have

∀m ≥ 1,∀u ≥ 1, P(max
i≤m

Xi ≤ u) = (1 − u−γ)m.

Then, the density function ofmax1≤i≤mXi is mγu−(γ+1)(1 − u−γ)m−1.
Hence

E
(

max
1≤i≤m

Xi

)
= mγ

∫ +∞

1
x−γ(1 − x−γ)m−1dx

= m

∫ 1

0
u−1/γ(1 − u)m−1du (u = x−γ)

= mB(1 − 1

γ
,m)

=
Γ(1 − 1

γ )Γ(m+ 1)

Γ(m+ 1 − 1
γ )

∼ Γ(1 − 1

γ
) m

1
γ asm → +∞

where we used Stirling’s formula for the last statement. We finally setm = [nr+ν ] to get

E
(

max
1≤i≤[nr+ν ]

Xi

)
∼ Γ(1 − 1

γ
) n

r+ν
γ .

It follows from (3.53) that for everyε ∈ (0, 1),

ρn − (1 − ε)Γ(1 − 1

γ
) n

r+ν
γ ≥ −ε− Cν .

Dividing both side of the inequality byn
r+ν

γ and taking the logarithm yields

log ρn − r + ν

γ
log(n) ≥ log

(
(1 − ε)Γ(1 − 1

γ
) − (ε+ Cν)n

− r+ν
γ

)
.

Consequently

lim inf
n→+∞

log ρn

log(n)
≥ r + ν

γ

for everyν ∈ (0, ν⋆
X). The announced result follows by lettingν go toν⋆

X = γ−r
γ+1 .
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Comment. Let φ be the inverse (if any) function of− log F̄ . It can be noticed that in both previous
examples we have

E
(

max
k≤[n

r+ν⋆
X ]

|Xk|
)
∼ φ((r + ν⋆

X) log(n)) asn→ +∞ (3.55)

which, for distributions with exponential tail leads to thesame asymptotic lower bound for the se-
quence(ρn)n≥1 as in (3.40). For Pareto distribution, using the approximation(3.55) to compute
the asymptotic lower estimate of the maximal radius sequence make us loose the” − r” term in the
exact asymptotic. To recover this reminding term we have simply to consider the inverse function
of − log F̄r+ν⋆

X
(as done in the previous section) instead of− log F̄ , and, the random quantization

approach clearly does not allow us to do so.

3.2.3 A conjecture about the sharp rate

The previous results related to distributions with exponential tails strongly suggest the following con-
jecture: supposeX is a distribution with exponential tail in the sense of claim(3.43). Then for every
r > 0, for everyd ≥ 1,

lim
n→+∞

ρn
(
log(n)

)1/κ
=

(
r + d

d θ⋆

)1/κ

.

This conjecture is proved ford = 1 andr ≥ 1. To be satisfied for hight dimension we need to
proof that the geometric statement(3.9) of Lemma3.1 (a) holds true with”1 + ε” instead of”2 + ε”
like in 1-dimension. Although this inequality looks quite intuitive in any dimension its proof seems
out of reach whend ≥ 2.

3.2.4 Numerical experiments

We now attempt to focus on numerical experiment of the maximal radius sequence(ρn)n≥1 for the
quadratic optimal quantizers of the Gaussian, the Weibull and the exponential distributions. A whole
package of quadratic optimaln-quantizers of theN (0, Id) distributions are available in the website

www.quantize.maths-fi.com

for d ∈ {1, · · · , 10} andn ∈ {1, · · · , 5000}. Whend = 1, theseL2-optimal grids are obtained by
the Newton method, see e.g.[10] for details. For the exponential distribution the quadratic optimal
quantizers are computed by using the semi-closed formulae given in Proposition3.1.

As concern the Weibull distribution with shape parameterκ = 2, we compute the quadratic
optimal quantizers up to3000 using the Lloyd’s I algorithm described in[10] (see[8] for a more
itemized description of the algorithm).

In these three cases we depicted the ratio betweenρn and the expected asymptotic optimal rate.
For the exponential distribution we represent the graph ofρn

3 log(n) as a function of the grid sizes

(see Figure1). One remarks that the convergence ofρn

3 log(n) to 1 asn goes to infinity is almost
instantaneous.

However, the cases of the Gaussian and the Weibull distributions are more delicate. Indeed, for
the Gaussian distribution the ratio ρn√

6 log(n)
seems increasing but has not reached yet the value9 even

for a grid size equals100000, as emphasized by Figure1 (right hand side graph). For the Weibull
distribution, ρn√

3 log(n)
also seems increasing but takes values around0.927 for a grid size equal to

3000 (see Figure2). Then for both cases, the convergence to1 of the ratio between the maximal
radius and the expected asymptotic optimal rate seems increasing but very low.
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Figure 1:Left: ρn

3 log(n) as a function of the grid sizen for the exponential distribution. Right: ρn√
6 log(n)

as a

function of the grid sizen for the normal distribution.

Figure 2: ρn√
3 log(n)

as a function of the grid size for the Weibull distribution with shape parameterκ = 2.
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