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Abstract

Let P be a probability distribution oiR? (equipped with an Euclidean norm). Lets > 0
and assuméaw,),>1 is an (asymptotically)L” (P)-optimal sequence of-quantizers. In this
paper we investigate the asymptotic behavior of the maxnadius sequence induced by the
sequencéa,, ),>1 and defined to be for every > 1, p(a,) = max{|a|, a € a,}. We show
that if card(supp(P)) is infinite, the maximal radius sequence goesup{|z|,z € supp(P)}
asn goes to infinity. We then give the rate of convergence for tesses of distributions with
unbounded support : distributions with exponential taild distributions with polynomial tails.

1 Introduction

Quantization has become an important field of informatiaotii since the early940’s. Nowadays,

it plays an important rule in Digital Signal Processing (DSRe basis of many areas of technology,
from mobile phones to modems and multimedia PCs. In DSP,tiadion is the process of approxi-
mating a continuous range of values or a very large set ofatiswalues by a relatively small set of
discrete values. A common use of quantization is the comred a continuous signal into a digital
signal. This is performed in analog-to-digital convertaith a given quantization level. Beside these
fields, quantization has recently become a domain of int@rééumerical Probability specially in nu-
merical pricing of financial derivatives when their pricead as an expectation (or involve conditional
expectations) of some random processes (sedi)g.

From a mathematical point of view, the-optimal quantization problem at level for a R?-
valued random vectoX lying in L" (2, .A,P) consists in finding the best approximation &f by
q(X), wheregq is a Borel function taking at most values. This reads as the following minimization
problem:

enr(X) = inf {|X = q(X)||, q : R 2R, cardg(RY)) < n}.
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Note that in fact,, ,(X) only depends on the distributiafl = Px of X so that we will also use the
notatione,, .(P) . However, for any Borel function : RY — o we have

X —q(X)] > mind(X,a) = d(X,0) = |X - X% Pas
acx
so that the quantization problem reduces to

enr(X) = inf{|X — X%|,,a c R% carda) < n}

1/r
= aléléd </Rd d(z,a) dP(:U)) . (1.1)

carda)<n

where X = > aca WLxec, (@)} @nd (Cu(a))aca cOrresponds to a Voronoi partition & (with
respect to a norm- | onR?), that is, a Borel partition oR¢ satisfying for every: € «,

Cola) c{z eR:: |z —a| = rbnin |z — b|}.
ca

For everyn > 1, the infimum in([L.1)) holds as a finite minimum reached (at least) at one grid
a*. In this casex* is called anL” (P)-optimal (or L"-optimal for X') and a sequence afquantizers
(an)n>1 is L7(P)-optimal if for everyn > 1, «y, is L"(P)-optimal. A sequencéa,,),>1 Is said
asymptotically L"(P)-optimal if

/Rd d(w, )" P(dx) = ey, .(X) +o(ey, (X)) asn — oo.

Moreover theL”-quantization erroe,, ,(X) decreases t0 asn goes to infinity and if there is
an (r + n)-moment ofX, for n > 0, the so-called Zador’s theorem recalled below rules its cédt
convergence to.

Zador's Theorem (see[d]). Let P = P, + P; be the Lebesgue decomposition@fwith respect to
the Lebesgue measurg, where P, denotes the absolutely continuous part @dhe singular part
of P. Supposé| X |"*" < +oo for somen > 0. Then

lim n"/%en,(P))" = Q.(P).

n—-+o00

with

d+r

QuP)=da ([ 155 0a) T =l e €0.450)

Jra = inf n"lel (U([0,1]) € (0, +00),
where U ([0, 1]¢) denotes the uniform distribution on the $8t1]¢ and f = dP“. Note that the
moment assumptionE| X |" " < +oc ensure thaf f||_« is finite.
Very little is known about the geometric propert|e+s of oimuantizers. In this paper we address
a first problem in this direction: we study the asymptoticdebr of the radii of a sequende,,),,>1
of L"-optimal quantizers. The maximal radius (or simply radip&)) of a quantizera C R? is
defined by
p(a) = max{|a|, a € a}.



In our framework/ - | will be an Euclidean norm oR?. For the sake of simplicity, we will denote from
now on by(p,),>1 the sequencép(a,,)),>1 of radii of a sequencéw,),>1 of optimal quantizers
(although it may be not unique).

We will show that, as soon aspp(P) is unboundedﬁgrfoopn = 4o0. Besides, our key inequal-

ities to get the upper and lower estimates of the maximalgadequence are provided in Theorem
B.1 and Theoren.3. The first theorem yields amount others the maximal rate of@gence of

Fr(cﬂ;a) (whenn — 400) to 0, for everye > 0, with ¢,y = 1if d = 1;7 > 1 andc, g = 2

otherwise. It claims that this rate is at most equala 16" t7/4)

TheoremB.9 maintains in particular that for every > 1, F,(p,u) goes to0, asn goes to in-
finity, at a rate at less equals to &, wherev is such that the random vectaf has an(r,r + v)-
distribution (see DefinitioB.1). We will see later on that the index; ensuring thatX has an
(r,r + v)-distribution for everyv € (0, v*) will play a crucial role in the lower limit estimates of the
maximal radius sequence.

Then we will emphasize how knowing the asymptotic behavighe function— log F, allow to
derive the asymptotic estimates @f (or log p,, ). As an important example we can already mention
distributions with density functiorf satisfying

(log |])"

f(CC) x 1{|$|>1} S Rd, BeR c>r+d

||
for which the optimal rate of convergencelog p,, is computed and given by

. log pn, 1 r+d
im = .
n—+oolog(n) c¢—r—d d

Of course, this result is less accurate as giving the rateofargence of the sequente,) itself
for which the exact limit can not be computed with our applobecause the upper and lower limits
make appear no identified constants. Another example comdéstributions with exponential tail for
which the upper and lower rates of convergence of the sequeng are provided. This is the case
for the normally distributed random vector &¢ for which we have

2(r 4+ d)

2(T + d) s Pn . Pn
(| ——— <liminf ——— < limsup —— <2
d —on—+too /log(n) nﬂ"rOCF)) Vd1og(n) — d

Our general conjecture for such distributions, which isvptbwhend = 1 andr > 1, is that the
liminf bound is sharp, that is,

lim pn__ _ [HrEd)
ooy /log(n) d
Moreover, an alternative approach is given for the loweiitliestimates. This approach is based

on random quantization and religg to the expectation of ani.d sequence of random variables
distributed asX.

The paper is organized as follows. In Section 2, upper andi@stimates of the maximal radius
sequence are given and the exact limit is provided when tirdinzd of the support of? is infinite.
This limit corresponds tsup{|z|, « € supp(P)} and Section 3 is entirely devoted to the convergence
rate of the sequence of radii to this limit value.



Notations : Throughout the papeX will denote anR¢-valued random vector defined in the probability space
(Q, A, P) with distribution P having a moment of order> 0 i.e. E|X|" < +o00. We define

LTJF(]P)) _ ULTJFE(]P’)
e>0

We will denote by), the Lebesgue measure ¢i¢, B(R?)). We will also denote byf" the survival
function of X, that is, the(0, 1]-valued function defined oR .. by

F:zw— F(x) =P{|X|>z})
and for everyr > 0, we define the generalized survival function6tby
F,- M F,(ac) = E(|X|71{\X|>x})

Note that this last function is defined @ and takes values on the S8t E| X |"] .
For a given setd, A will stand for its closured A its boundaryConv(A) its convex hull and4 or Int(A)
its interior. The cardinal ofl is denoted byard(A). For everyxz > 0, [z] will denote the integral part of.

2 Asymptotics of the the maximal radius sequence

In this section we give an asymptotic upper bound and a lowant of the sequence of radii. For
distributions supported by a infinite set, the exact limjisvided.

Proposition 2.1. Let X € Lg,(P). Let(a,)n>1 be asequence efquantizers such that, ,.(X) — 0
asn — -+oo. Then,
limJirnf pn > sup{|z|, = € supp(P)}. (2.2)
n—-rod

Remark that this result also holds for any normksh
Proof. Letx € supgP). Suppose that there exists > 0 and a subsequencg,,, );>1 such that
Vk > 1, Pn,, < |z| — 2e0. (2.2)
Thus
3dn > 0 such that'k, d(B(0, py, ), B(x,e0)) >n > 0.

Then one has for every > 1,

enyr(X) 1d(X, )|
1d(X, B(0, pp,.)

1d(X, B(0, pny, ))L{xeB(@.e0)}Ir
1d(B(x,€0), B(0, pny,)) L {xeBeon lIr
d(B(z,20), B(0, pny))P(X € B(w,20))""
nP(X € B(z,2))/" > 0.

M (since Oy, C B(O7pnk))

AVARAVARIV]

vV

This is not possible sincs, ,.(X) — 0. Then, we have shown that

Vz € supdP), liminfp, > |z|.

Hencelim infp,, > sup{|z|, x € supp(P)}. O
n



Among other results, the next proposition provides thetlohithe sequencép,,),>1 when the
support ofP is infinite.

Proposition 2.2. (a) Let« be anL"-optimal quantizer at level. If card(supp(P)) > n then

a C Conv(supp(P)) and p, < sup{|z|, = € supp(P)}. (2.3)
(b) If card(supp(P)) = +oo then

n—-400

lim p, = 51;1; pn = sup{|z|, = € supp(P)}. (2.4)
n>
for any L™ (P)-optimal sequence of quantizgs,, ),>1.

Proof. (a) If o is L"-optimal at levelr then carda) = n sincecard(supp(P)) > n (see[d)).
Now, suppose that ¢ Conv(supp(P)). Thenleta € a N (Conv(supp(P))> and set

o/ = (e\{a}) U{II(a)}

wherell denotes the projection on the non empty closed conveX&et(supp(P)). The projection
is 1-Lipschitz andX is P-a.s supp(P)-valued, hence

d(X,a) > dI1(X),I(a)) "2* d(X, II(a)).

It follows that
d(X,a) > d(X,a) P-a.s.

Sincea is L"(P)-optimal at leveln andcard (o) < card(«) = n,
E(d(X, o)) = E(d(X, 2)")

so that the three statements hold:

-d(X,d)=d(X,a) P-as

- II(a) ¢ a\{a} sinced’ is L"(P)-optimal (which implies thatard(a/) = n),

- P(X € Cryq)()) > 0 (otherwisea’\{I1(a)} would be optimal).
On the other handX € Conv(supp(P)) P-a.s so that

(a —I(a)|X —1I(a)) <0 P-a.s.

Consequently

X —af? — X ~ (@) = 2(Il(a) - alX —TI(a)) + |a — I(a)?
la —(a)]* >0 sincea ¢ Conv(supp(P)).

Y

As a consequence )
d(X,d') <d(X,a) P-as on{X € Crya)(a’)}

Whereé’n(a) (/) = {€ € RY, d(&,T1(a)) < d(€,a\{a})} since the norm is Euclidean.
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This implies thatP(X € Crya)(e’)) = 0 and therP(X € dCp@(a’)) > 0; this is impossible
sincea’ is L"-optimal (sedf]). Hencea C Conv(supp(P)).

Now, let us prove thap,, < sup{|z|, = € supp(P)}. Note first that this assertion is obvious if
supp(P) is unbounded.

On the other hand ifupp(P) is bounded then it is compact and soUsnv(supp(P)). Let
xo € Conv(supp(P)) be such thatry| = sup{|z|,z € Conv(supp(P))}. Thus

xo = X1 + (1 — No)&a, &1, & € supp(P)

andX — |+ (1—N)&.| is convex so that it reaches its maximum\at 0 or A = 1. Consequently
xo € supp(P).

(b) This follows from the assertion aboptc, ) in the item(a) and from Propositiof.1]. O

Remark 2.1. If the norm onR¢ is an arbitrary norm, the assertiofu) of the proposition may fail.
An example is given with tHg,-norm in ], p. 25.

3 Convergence rate of the maximal radius sequence

We first start by giving two examples of distributions for withe sharp convergence rate of the
maximal radius sequence can be computed rather easilyctlthfasemi-closed forms established in
[@] for the L"-optimal quantizers of the exponential and the Paretoibligtons and summed up in
the following proposition allow to derive some sharp asywtips for the maximal radius sequence
(pn)n>1 induced by the unique sequencelétoptimal quantizers at level. These rates will be very
useful to validate the asymptotic rates obtained by othgpscaches.

Proposition 3.1. (see [J])(a) Letr > 0 and letX be an exponentially distributed random variable
with scale parametek > 0. Then, for every, > 1, the L"-optimal quantizety,, = (a1, , 0 p)
is unigue and given by

n—1
1 {a,
O‘n,kzx<7+ Z ai>> 1<k <n, (3.1)

i=n+1-k
where(ay)r>1 is anR-valued sequence recursively defined by the following aitglguation:
ap := +00,  ¢r(—ary1) = ¢r(ax), k>0
with ¢, (x) := fOJC/Q |u|"~tsign(u)e~“du (convention :0° = 1).
Furthermore, the sequencey,);>; decreases to zero and for evéry> 1,

r+1 Cr 1
— 1+ o=
="t (14 o)

for some positive real constant.

(b) Letr > 0 and letX be a random variable having a Pareto distribution with index- r. Let f
be the density function f(z) = y2~*1,.;. Then for everyn > 1, the L"-optimal quantizer
an = (a1, -+, any) IS Unique and given by

1 n—1
QU = 14+a;), 1<k<n, 3.2
k= T ”Em( i) (3.2)
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where(ay)r>1 is anR-valued sequence recursively defined by the following @itglguation:

A+1

apg = 400, —— | == ¢ (ar), k> 1,
0 %( 1+ak+1> wa( k)

with ¢ (z) == [*/*y|ul"~tsign(u)(1 + u)~O0+Ddu. The sequencéuy);>1 decreases to zero and

there is some positive real constansuch that for every: > 1,

ak:%<1+%+0(k—12)>.

Let us give now the sharp asymptotic derived from these stwsied forms.

Proposition 3.2. (@) Letr > 0 and let X be an exponentially distributed random variable with

parameterh > 0. Then
r+1 C, 1
Pn = )\ log(n) + BN + O(E)’ (3.3)

whereC is a real constant depending only en

(b) Letr > 0 and letX be a random variable with Pareto distribution of indexsuch thaty > r.

Then, . .
T+
1 n) = 1 C,+0(—), 34
0g(pn) = —— log(n) +Cr +0(7) (3.4)
where(C is a real constant depending only en

Proof. (a) It follows from (B.1) that

where the sequende,,),,> decreases to zero and satisfies for every 1, a,, = ((r +1)/n) (1 +
¢r/n 4 O(1/n?)), for some real constamt. Thus,

a n_ll, n—1 1 n—1
— n .3
Apn = 7—1—(7“—1—1)2;—1—67»21.—24-20(1/2)
=1 =1 =1
1

= (r+1)log(n) + C. + O(
(b) It follows from (B.3) that

1 n—1
= 1 )
1 + an ZH1( + al)
where(a,,),>1 Is anR -valued sequence, decreasing to zero and satisfyig > 1,
an = (77:1)” (1+ ¢r/n+0O(1/n?)), for some real constant.

Pn

Then,
n—1 a2
i 3
log(pn,) = —log(l+a,)+ Z; (ai - + O(aj ))

r+1 1

= 1 Cr+0O(—
S loa(n) + G+ 0()

where we used thap %, a? < co and)_;°; O(a?) < cc. O



3.1 Upper estimate

We investigate in this section the rate of convergencig#f to infinity. Let us give first some defini-
tions and some hypotheses which will be useful later on.
Let (o, )n>1 be anL” (P)-optimal sequence of quantizers at leweForn > 1, we defineM («,)
to be
M(ay,) = {a € a, such thata| = irelgx‘b‘}.

We will need the following assumption an
(H) = P(dz) > €0 Lipe Bag.ronra(dz), €0, 70 >0, 29 € R

In the one dimensional setting, we will need the followingdfic assumption depending eanc
[1,400):
(Gr) P = f-Agwheref is non-increasing t6 on [A, +o00) for some real constant and

Lim +oo(u _ 1)r71 f(uy)

Y=+ Jy f(y)

du = 0. (3.5)

Let us make some brief comments on theses assumptions aasvgeline simple criterions.

¢ Note that AssumptiorfH) holds as soon a&¥ has a densityf which is bounded away fror
on a closed balB(zg, (), 70 > 0,29 € R%, i.e. gy := Min, ¢ 5y ) £ () > 0. This is a very light
assumption satisfied by all usual distributions (Gaussistnilouition, the exponential distribution, the
Pareto distribution, etc).

e Assumption(G,) holds for distributions with density functions of the form

f(x) o |z]¢ eVl r€e€R; 9,k >0; ¢c>—1.
Indeed, we have for large enoughf is non-increasing and

e U — r—lf(uy) = oo w— r_luce_g R (uf—1) U
[ e = [ e T

+O() K K
< / (u— 1) e A" =D gy < 4oo.
1

The existence of the last integral follows from the exiseeatthe moment of every order.

It follows from the Lebesgue convergence theorem ¢Ba}) holds. Then Assumptio(iG,.) holds
in particular for the Gaussian distribution, for the Welldistribution and for the Gamma distribution.
However it fails for example for the Pareto distribution.tBue will see later that we do not need this
assumption for distributions with polynomial tails to estite the sequendéog py,)n>1.

Let us recall theL"-stationary property which will be also useful. AssuRle= f - \;. The
so-calledZ"-distorsion functionD;), : (R%)" — R, is defined by :

a=(ag,- - ,an)}—ﬂE(_ min |X—ai|r>.

i=1,-,n

Then, for everyr > 1, fom is differentiable at any codebook having pairwise distic@mmnponents
and (sedf] for details)

VDZ{T(O[) =r (/ (i — u)|u — ozi|’"_2f(u)du> . (3.6)
Ci(a)

1<i<n

8



An optimal L"-quantizer at leveh « = {aq,--- , a,} for P has full sizen, so that,
VD,{T(Q) =0.

« is said to satisfy arl.”-stationary property.
Whend = 1 then for any (ordered) quantizer, = {x 2, x&") <. < 2™ atlevel

n, its Voronoi partition is given by

Ci(an) = (=00, 2], Culan) = (&, +00), Cilan) = ( Z(m“x(n)_], P= 2 m—1,
2

2 () ) e

with x(”)l = 7' Land 2\, = Tt
i—3 its 2
2 2

The main result of this section is the following.

Theorem 3.1. Suppose thaf has an unbounded support and ti{&t) holds. Let(a,),>1 be an
L"(P)-optimal sequence of quantizers. Then,

@

i it (+* 4R (G5E) ) > Crar @
(b) If d =1, r > 1 and if furthermore(G,.) holds then,

. .. r41 Pn

i it (7 RGE)) = G @9

C.,.q.u is a positive real constant depending ari and the uniform distributior/ on [0, 1]%.
The Lemmas below are used to prove this result.

Lemma 3.1. Let X be anR? valued random variable with unbounded support and profigtilistri-
bution P and let(«,),>1 be anL”(P)-optimal sequence of-quantizers;” > 0. Let(p;,),>1 be the
maximal radius sequence induced (by,),>1. Then,

(@ Ve >0, dn. such thatvn > n.,

Vaée M(ay), V€ Cylay), €] > 2+€ (3.9)
(b) If d =1, » > 1 and if furthermore(G,.) holds then, for large enough,
Vae M(an), V€€ Colan), €] = (3.10)

- 1+5

Proof. (a) Since(ay,) is L"(P)-optimal,e,, ,(X) — 0 asn — +oo. Then, the following asymptotic
density property ofc,) in the support ofP holds:

Ve > 0, Vx € supp(P) B(z,e) Nay, # 0. (3.11)

Otherwise, if there exists € supp(P),e > 0 and a subsequen¢e,,, );>1 so thatvk > 1, B(x,e)N
ay, = 0, then, for everyk > 1,

€ s
enr(X) 2 (X, 0, ) Ixee lIr = 5 P(B(z,e/2)Y" > 0.

9



Which contradicts the fact that, ,.(X) — 0 asn — +oc.

Now, to prove the result assume fitste supp(P). Lete > 0, a € M (o). Then,3N; € N
such thatB(0,¢) N, # 0, Vn > Ni. Now p,, — +oo implies thatB(0,¢) N (a, \M (av,)) # 0 for
n > Nji.

Letd € B(x,e) N (o \M(av,)). We have for every € C,(ay,),

€ —b* > |€ —af”,
namely

la* = o> (>0)
pr — |b]*.

2(¢la — )

Now, [¢||la —b] > (&]a — b), then,

(pn + 1b1) (o0 — 1)
lla =] > :

Moreover,|a — b| < |a| + |b| < p,, + |b]. One finally gets

14 > Pn <

-2

Pn —
>
R

Sincep,, — +oo asn — +oo, [¢| > i% for large enough.

If 0 ¢ supp(P) we show likewise thaf¢| > £2=20—= vz € supp(P) which implies the
announced result singg, — +oc.

(b) We will make an abuse of notation by considering that
pn = pt = max{z, ¥ € a}.

In what follows all results op_(«) := max{—=x, = € o} can be derived by using X instead ofX .
Leta, = {m@, -+, 2™} and suppose that (up to a subsequence)

wg?l

(n)

Tn

—p <Ll

Lete > 0 such thap + ¢ < 1. We have for large enough,

wg?l
m)<p+e<1
Tn
or equivalently,
(n) (n)
Lpo1F ¥n_ < ") l+p+e ) (3.12)
2 n 2
Let o/ be such thab < p' < #, that is,
1
(%) <1-p<1. (3.13)

10



It follows from (B.13) and (B.12) that

xgln) w r—1 :v%”)(lfp/) u r—1
ﬂ%ww (1— p) fluydu = ﬂm%s) <1‘ p) fu)du
2 n 2 n

- 27 (1-p')
> () / ()

M) (14 pte)
2
> P”%(mn) f(cn)

with o = (o) 1(L — o/ — 22) > 0 ande, € (&5 (1 + p+)/2, 257 (1 = ).
On the other hand, we have

T e )
-1 du = — 1)t 27 du.
7 L (A“’ ) flogda = J o=

It follows from AssumptionG,) that

lim sup

1 oo r—1
u
S 1] fu)du=0.

n n

Consequently we have for large enough

1 +o00 r—1

U
S — =1 fu)du < p”
xﬁl”) f (:Uﬁln)) /x%”) (;cﬁl”) )

sothatd < ¢, < x%") for large enoug and f is non-increasing ifA, +co))

r=1 (n) r—1
—+00 z\
/ <—2Ln) — 1) fu)du < p”xg")f(xg")) < p//xgn)f(cn) < /w(") RO (1 - —?n)> flu)du
z Ty @

(n) n—1
n 2

which is not possible since the -stationary equation implies

mgl") u r—1 Too u r—1
/$5171,)1+xsln) (1 - ﬁ) flu)du = /;p(”) <ﬁ - 1) f(u)du.
2 n n

n

We have then shown that )

Tn
n)
—1

lim =1.

n—-+o00 T

IS =

It follows that Ve >, d n. such thatVn > n., x,&" < (1+ e)xfﬁ)l. Thus,

N

Pn = :Ug") < (1+ 5)5'3£LT21 <(1+e)¢ VEeCian),a € M(ay).

This completes the proof. O
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Lemma 3.2. Let (a,),,>1 be a sequence di"-optimal n-quantizers of the distributio®. Suppose
that (H) holds. Then for large enough,

IS

r+

e:z,r(X) - €2+1,T(X) > C’r,d,U nod, (314)
where
C — 9—(r+d) r 1/r d d/r €0 o) (U(B(:U 7“_0))) (3.15)
e d+r d+r) 1+ 005 '

Proof. Stepl. Lety € R?. Without lost of generality we temporarily s&t = d(y, ov,,). Following
the lines of the proof of Theoremin [H] we have for every: € B(y, 6,,/2) anda € a,,,

[ —al > |y —al = |z —a| > 6,/2

and hence
d(x,0n) 2 0,/2 > |z —yl, x€ B(y,0,/2).

It follows, by settings,, = «,, U {y}, that
d(z,B,) =z —y|, =z € B(y,on/2).

Consequently for everly € (0,1/2),

e (X) = ehyr (X)) > / d(z, 0n) dP(z) - / d(z, B,) dP(z)
> /B 00— de, )P
S R I T E)
B(yvénb)
> / ((6n/2)" — (825)")dP(z)
B(yvénb)

= (277 =0") 6, P(B(y, 0nb))-

Step2. Now, coming back to the core of our proof laf andr be as in(H). For everyy € B(zo, 2)
we have

(27 =) &, P(B(y, (b6:) A 5)

—-Tr T T T
> (27 =) dheo (002" A (5)7) Lyepan. -

enr(X) = €pp1,0(X)

n,r

Y

One checks that
sup  d(y,ap) — 0.
yEB’(a:o,%O)

Otherwisedy., € B(zo, %), n > 0 and a subsequendev,,))n>1 Of (o, )n>1 such that for every
n > 1, d(Yoo, ¥p(ny) > 3. Then
[ P = [ g P

B(yocng)

12



Moreover for every € B(yoo,g)

d(aga(n)af) > d(yom a(p(n)) (yom §) >

l\ﬁld
»Jkld

so that
[ sy, €7 P = (B P(Bl, 1)

This contradicts the fact that, ,.(X) — 0 asn goes to infinity. Consequently, for large enough

70
supd(y, ) < 72
yeB(zo0,73)

so that
en o (X) = epyq (X)) > (277 =) bd(y, o)™ "eg LiyeB(eo,20)}
It follows that

[0 =, CNaldy) = @ =)ot [ d(gan) ™ Auldy)
B(xo,7%) B(xo,7%)
- T D r T D, T
> (27 =0 eo b Ma(Blxo, ) ety (U(Blao,
Then,
(X r X)> (277 " bd r+d U(B 7o
En(X) = ey, (X) = ( ) €0 b% ey 5 o(U(B(zo, 5))).

Consequently, for large enough

enr(X) = enp1,(X) > (277 = 1)

n,r

b Qui (U (Blan, ) n

1/r
As a function ofb, the right hand side of this last inequality reaches its maxn atb* = % (—) / :
Which completes the proof. O

Proof of TheoremB.]]. Leta € M(a,,) ande > 0. We have,

E|X — X" < E|X — Xon\Ma}r

and
E[X — Xo\" = E(X - X*"["Lxecs(an)) + B(, min  1X — b Lxec, @)
< E|X - X*|"+E( min (\X! + 10D L xeCa (an)})-

bECln\

It follows from LemmaB.1] (a) that3 n. € N such that'n > n., | X| > 7= on{X € Cy(an)}.
Consequently, for ab € an\{a} bl < la| = pn < (2+4¢) | X].
Hence, R
E|X — Xo1|" —E[X — X" < (3+¢)"E(|X|" Lixp> £ny)-

Lemmap.g yields (since(n — 1)*%‘1 ~n~ "0 asn — +00)

r+d

(1+e) 'Craun @ <(B+e)E(IX| 1 xp>en

2+4¢ )

13
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for large enough, so that for every > 0,
lim inf nrjirdl*:}( P ) > Crau .
n 2+¢ B+e)"(1+¢)

Taking the limit ass — 0 gives the statemer(.7). Assertion(B.§) is proved as above by using
LemmaB.1] (b) instead of Lemmg.1] (a). O

Recall thatF;(x) = E(|X["1{x|>s}). Itis clear that this function is non-increasing and goes
to 0 asz — oo (providedE|X|" < +o0). Consequently;- log F,.(z) is monotone nondecreasing
and goes totoo asx goes to+oo. Moreover, we know that if a functiorf defined on(0, +o0) is
increasing tot-oco (at+o0), its generalized inverse functiofi~ defined byvz > 0,

fT(x)=mf{t >0, f(t) >z} (3.16)

is monotone increasing teoo. On the other hand, the following result holds (d¢e [2])ultfiermore
f is regularly varying (at-oo) with index1/4, 6 > 0, then there exists a functian, regularly varying
with index§ and satisfying

P(f (@) ~ f(P(z)) ~ 2z asz — +oc. (3.17)

The functiomy is an asymptotic inverse gfand it is not necessarily increasing neither continuous.
Moreover,y is unique up to asymptotic equivalence afid is one version of).

We next show that for distributions with exponential tagpecifying either the asymptotic in-
verseg, (if any) of the function—log F, or finding some asymptotic upper bour of ¢, (having
some " nice” properties) leads to an upper estimate of themraxadius sequence. This estimate is
connected to the chosen functign.

When the distribution has a polynomial tail, we will look fthre asymptotic inverse function of
—log F}.(e*) or some asymptotic upper bouxg of it to provide an upper estimate @bg p;, )n>1-

Proposition 3.3. Assume that the distributio® of X has an unbounded support and satisfiel.
Let (a,)n>1 be anL” (P)-optimal sequence of-quantizers.

(a) If ¢, is a measurable nondecreasing function, regularly varyiritp indexé and

Yp(—log (7)) >z +o(xr) asx — +oo, (3.18)
then S
. Pn r
limsup ————— <2 (1+—) . 3.19
oo Uy (log(n)) ( d> (3.19)
If d = 1andr > 1 and if (G,) holds then, one has
lim sup P < (r+1)°. (3.20)

n—+00 1/}7" (IOg(n))
In particular if — log F,. has regular variation with index/d then(B-19) holds withy, = (—log F,.) .

(b) If ¢, is @ measurable nondecreasing function, regularly varyiritp indexé and

Yp(—log F.(e*)) > x +o(x) asx — +oo, (3.21)
then | s
. 0g Pn r
Iimsup——— < (1+ - . 3.22
n—>+o<I>) ¥ (log(n)) < d) ( )

If —log F.(e*) has regular variation of index /s then(B.22) holds withy, = (—log F;.(e*)).

14



Prior to the proof, let us make some comment on the propasikast note that the measurability
of 1, is necessary to define the regular varying property. On therdtand we have for every> 0
and for everyr > 0,
F.(z) > 2"F(x).

Then
—log Fy.(z) < —log F(z) — rlog(z).

According to the nondecreasing hypothesig/owe have for every: > 1,

Ur(—log Fy()) < ¢p(—log F(z) —rlog(z)) < ¢(—log F(x)) (3.23)

sincelog(x) > 0. Hence if Assumptior{.1§) holds then
Yy (—log F(x)) > a + ofx).

We will see further on that for distributions with exponatails, the function), in the statemen(ta)
of the proposition does not depend @anHowever in the situation of the iteifd) of the proposition,
Assumption(B.21]) implies that

P (—log F(e*)) > (r + 1)z + o(x).

Consequently, taking instead off,. in Assumption(B.21)) will induce a loss of precision in the upper
estimate ofog p,,.

Also remark that if—log F,. (resp. —log F;.(e*) ) is measurable, locally bounded and regu-
larly varying with index1/6,6 > 0 then its generalized inverse functiah (resp. ®, ) is mea-
surable increasing ta-oo, regularly varying with indexs and, ¢,(— log Fy.(z)) = x + o(z) (resp.
®,.(—log F,.(e*)) = z+o(z)). Consequently, both inequalitié€l. 19) and(B-2q) (resp. claim(B.23))
hold with ¢, (resp. ®..) in place ofy,.. However,¢, (resp. ®.. ) is in general not easy to compute
and the examples below show that it is often easier to exdilgctly a functiony, satisfying the
announced hypotheses without inducing any asymptoticdbascuracy.

We prove now the proposition.

Proof. (a) It follows from (B.7) and (B.§) that for everys > 0, there is a positive real constant
C:.4,u depending on the indexing parameters such that

_d+r = Pn
n~d C < F,
rd,Uge > r(cr,d +€)

where (from now ony,.; = 1if » > 1; ¢, 4 = 2 otherwise. Therefore, one has

r+d — n
d log(n) — log(Cyqv,:) > —log Fr(pi)-

Combining the fact that, is nondecreasing and Assumptihig) yield

r+d n Pn
U ( 7 log(n) — log(Crauve)) = wr(—log Fr(cr,d + s))
Pn
Crd+¢ + O(Pn)

15



Moreover, dividing by, (log(n)) (which is positive for large enough) yields

on ey (1 g 9en)y -1 (P52 log(n) — log(Crav,))
rllog() = (Cra T+ =E) 5,108 0)

It follows from the regular varying hypothesis @n andlim p,, = +oo that

limsupp7"<(c +¢) <T+d>6 Ve >0
n—+00 wr(l()g(n)) = d 7 .

The result follows by letting — 0.

(b) As previously, one derives frorffg.7) and from Assumptior{B.21)) and the nondecreasing hy-

pothesis ony, that

r+d

: v~ o By (—22))

Crd+ €
> log Pn — 10g(cr,d + 5) + O(IOg pn)'

Un(

log(n) —log(Cya,u.))

Y

It follows that

log pp, - <1 B log(c.q + ¢€) N o(log pn)>1 wr(% log(n) — log(C’r,dﬂﬁ))
¥r(log(n)) — log pn log pn, ¥r(log(n))

Owing to the regular varying hypothesis ¢n and the fact thatim p,, = 400, we have

lim sup logpn <r*_d>6
n—+oo Yr(log(n)) — d .

O

We next give an explicit asymptotic upper bound for the caywece rate of the maximal radius
sequence in the sense that the functignis made explicit. These bounds are derived on the rate of
decay of the generalized survival functidh.

Criterion 3.1. (a) LetX be a random variable with unbounded support. tet 0 and let(ay,),>1
be anL’-optimal sequence of-quantizers forX. Letx > 0 such thate!X|" € L0+ (P). Set

0* = sup {9 >0, limsup " F,(z) < —{—oo} = sup {9 >0, E /X" < —|—oo}. (3.24)
T—+00
Thenf* € (0, +oo] and
N d 1/k
lim sup pil/ <2 (2) . (3.25)
n—+o0 (10g(n)) r do

Whend = 1 andr > 1, if (G,) holds then

N 1 1/k
lim sup P Tn < <T;; > .
oo (log(n))

(b) LetX € L™ (P) be a random variable with unbounded support. Set

¢* =sup{¢ >0, limsup 2 TF(z) < +oo} =sup {¢ >r, E|IX|¢ < +o00}. (3.26)

T——400

16



Then(* € (r, +o0] and
lim sup log pn < L r+d

n—+too log(n) = *—r d (3:27)

Prior to the proof we can make the following remark.

Remark 3.1. If X € () L"(P) then(* = 400 and consequently lim ll"—g@ =0.
r>0 n—-+4oo Og(n)

Proof . (a) The equalities ir(3.24) and(B.2d) are obvious.
Letd € (0,0*). We have

E(IXI"21x150)) = E(X"Ly e poey) < € TE(IX]ME).

>efz"
Now, the right hand side of this last inequality is finite besaifd’ € (6, 6*),
|£C|7"66|3[:|f€ <1+ C@ﬁ/@ella}lﬂ.

As a consequence,
—IOgFT(I') ZH.%'K—FCX, Cx € R.

Let vp(y) = (%)1/“. As a function ofy, 1y is continuous (then measurable) increasing+ts,
regularly varying with index = % and we have

B Cx 1/k
Yo(—log Fy.(x)) > (m"‘ + 7) =z +o(x), asr — +oo.
It follows from PropositiorB.d () that

N d 1/k
lim sup '071/5 < ¢ <%> Vo € (0,6).
n—teo (log(n))

Letting# — 6* completes the proof.
(b) Let¢ € (r,¢*). We have

E(IXI"Yx501) = E(IXLpcocorpxiery)
< :U_C+TE|X|C.

Then
—log Fy.(z) > (¢ —r)log(z) + C

so that by setting), (z) = #%;, it follows from PropositiorB.d (b) that

. log pn - 1 r+d
im su

Letting ¢ go to¢* yields the assertio(B.27) . O

Remark 3.2. Note that the choice of the functiafy. in the statementa) of PropositionB.d does not
depend on as approved in the proof of the item) of the previous criterion. But for distributions
with polynomial tails the choice ap, clearly depends on.
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We now give more explicit results for specified density fumms.

Corollary 3.1. (a) Suppose that the densifyof X satisfies

f(@) o |z|¢ e Pl z€RY Y,k >0; ¢ > —d. (3.28)
Thend* = ¥ and . o ‘o o Un
lizrgigcl? (1og(n))1/“ < 1917/'% <1 + E) . (3.29)
(b) If the density ofX reads
flz) o % gy T€RLBER c>r+d (3.30)
then(* = ¢ — d and
lim sup 10 pr L It d. (3.32)

n—too log(n) “c—d—r d

(c) The statement.29) (resp(B.31))) holds if the density oX is simply equivalent to the specified
density in(B.29) (resp in(B.30)).

Notice that the restriction > r + d in (8.30) ensures thaE| X|" < +oc.

Proof. (a) We have
Fo(x) = E(IX[" 1 x>2}) = K/ Jul ¢ e N g (u)
{lul>z}
+o0o "
_ de/ pT+C+d—1 e—ﬂp dp

where K = [ |z|e~?I#I"d)\,(x) is the normalizing positive real constant {.28) and V; denotes
the volume of the Euclidean unit ball. Integrating by partd asing usual integral comparison rules
yields

Fr(x) — Cdﬁ,n xT‘+C+d—K 6—1990“ (1 + 0(1))

for a positive real constardt, » ... It follows that if & < «J then

limsup e’ F,.(z) < 400

T——+00

and if > 9 then

limsup e’ F.(z) = 4.
r—+00

Which means that* = ¢ and the statemerip.29) follows from CriterionB.1 (a).
(b) We have for every > 0, for everyz > 1,

_ B +oo B
Rw=[ S =ve [ EE,
{|u|>z} T

|u|cfr C

18



withd = c—r —d+ 1 (¢ > 1) andV; defined as previously. Integrating by parts and multiplying
by ¢~ yields

_ KV,
¢—r _ d B, .(—ct+d
x> " F(x) ot d log(z) z (1+0(1)).
Consequently(* = ¢ — d. The statemenff.31)) follows from CriterionB.1] (b).
(c) Obvious from the forgoing. O

We now give some examples for usual distributions.

Example 3.1. (a)e If X ~ N(0;1;), we have
fl@) = (2m) el

It follows from the item(a) of the previous corollary (with? = 1/2,x = 2,¢ = 0) that for every
r > 0, foreveryd > 1,
lim sup P < 24/2 (1 + z)

n—+oo 4/log(n) d

In particular, whenr > 1,d = 1 we havelim sup —22— < /2(r + 1).

n—-4oo lOg(n)
e For a double Gamma distribution in the real line where
)\a

flx) = m|x|“7167>“x‘, reR; A\ja>0

or a Gamma distribution for which
)\a

f(fﬂ)zm

.Iaileikvl{mzo}, )\, a>0

we have (from Corollar.1 (a) with ¢ = a — 1,9 = )\, x = 1) for everyr € (0, 1),

2 1
lim sup P < (r+1)
n—+oo log(n) A

and in case > 1 we have

. Pn r+1
lim sup <
n—+oo l0g(n) A

which coincides with the sharp rate given(jh3).

?

e When X has a logistic distribution with densitf(x) = ﬁ we have
flz) ~e™® asx — +oo.

Then, it follows from CorollanB.1] (¢) that(p,,),>1 has the same upper asymptotic as the exponential
distribution with parametek = 1.

e As concern the Weibull distribution with shape parameter 0 with density function

f(CC) = Ii:ﬂﬁ_le_x'i 1{x20}
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it follows from CorollaryB.1, (a) (with ¥ = 1) that forr € (0, 1),

lim sup Pinl/n < 2(r +1)V/*
n—too (log(n))
andifr > 1
< (r+1)V",

lim sup Pinl/n
n=too (log(n))

(b) SupposeX is a random variable having a Pareto distribution with index- r. The density
function reads

f(z) = 7x7(7+1)1{x>1}-
Then we deduce from Corollaf/d (b) (with d = 1,¢ = v + 1,3 = 0) that

1 1
lim sup O8 Pn < dins .
n—too log(n) =T

3.2 Lower estimate

In this section we investigate the asymptotic lower estinwditthe maximal radius sequengs, ),,>1
induced by anL"-optimal sequence ofi-quantizers. First we introduce the family of tke s)-
distributions which will play a crucial role to obtain thetopal lower estimate for the rate of the
maximal radius sequence.
Letr > 0,s > r. Since thel"-norm is increasing, it is clear that for every< r any L"-optimal
sequence of quantize(s, ), >1 is L*-rate optimal i.e.
limsup n'/4||X — X, < +o0. (3.32)
n—-+o00
Butif s > r (and X € L*(IP)) this asymptotic rate optimality usually fails . So is alwape case
whens > r + d and X has a probability distributiorf satisfying\;(f > 0) = +oo, see[f]. Butitis
established iffL]] that some linear transformation of ti&-optimal quantizergc,,) makes possible
to overcome the critical exponent- d, that is, one can always construct &fiirate-optimal sequence
of quantizers by a linear transformation of thé-optimal sequence of quantizefs,,). However
there is some distributions for whi¢f.32) holds for everys € [r, + d). This leads to the following
definition:

Definition 3.1. Lets,r > 0,s > r. Arandom vectotX € L*(IP) has an(r, s)-distribution if any
L"-optimal sequencéw,, ), >1 is L*-rate optimal.

Forv € (0,d), sufficient conditions such tha& has anr, r + v)-distribution are provided iff].
Let us mention two criterions ensuring that a random ve&tdras anr,  + v)-distribution. The first
one deals with distributions with radial tails.

Criterion 3.2. (a) Letd > 1. If f = h(|-[) on B, (0, N)¢ with h : (R, +00) — Ry, R € Ry, a
decreasing function angd- | any norm oriR¢. If

/ Flex) HdP(z) < +oo (3.33)

for somec > 1. ThenX has an(r, r + v)-distribution.

(b) If d = 1 and ifsupp(P) C [Ryp, +oo) for someRy € Randf‘(R/ o0 is decreasing me’O > Ry.
0°

If further Assumptior{B.33) holds for some > 1. ThenX has an(r, r + v)-distribution.

20



The following criterion works for distributions with nondal tails.

Criterion 3.3. Letr > 0, v € (0,d), P = f-Xgand [ |z]"""P(dz) < +oo for somen > 0.
Assume thatupp(P) is convex and thaf satisfies the local growth control assumption : there exists
real numbers > 0, n € (0,1/2), M,C > 0 such that

Va,y € SUpRP), [a| = M, |y —z| < 22| = f(y) = Cf(z)"**.

_ ) (14e)
/f & dP(x) < 400, (3.34)
then X has an(r, r + v)-distribution.

Furthermore a necessary condition for(with density f) to have ar(r, r + v)-distribution is (see

B) :

X has an(r, r + v)-distribution — /f(x)(gi:) dP(z) < 4o0. (3.35)

It follows from (B.33) and (B-3§) that the Gaussian distribution, the Weibull and the Gamma
distributions have aftr,r + v)-distribution if and only ifv € (0,d). The Pareto distribution with
index~ > r has anr,r + v)-distribution if and only ifv € (0, +1)

Now, suppose thaX has an(r, r + v)-distribution for some’ € (0, d) and set

vy = sup{v > 0s.t. X has an(r,r + v)-distribution}.

Note that
{v > 0s.t. X has an(r, r + v)-distribution} = (0, %) or (0, vx]

and thatX € L"™"(P), Vv € (0,v%). When
{v > 0s.t. X has an(r,r + v)-distribution} = ()

we setvy = 0.

This indexvy will play a crucial role to determine the lower bound of thexmnaal radius se-
quence. Recall that iK' has a density satisfyingAs(f > 0) = +oo then a necessary condition for
X to have(r, r + v)-distribution is thatr < d. Which means that} < d. However, this inequality

may stand strictly as approved by the Pareto distributiah imidex~y for which vy, = 'WY +§ < 1.

We present below two different approaches to get the lowentidor the maximal radius se-
quence. The first one involves the generalized survivaltfans F,. like for upper bounds and is
based on tail estimates. The second one is probably morearidt is based on random quantiza-
tion: its specificity is to provide a close connection betw#ee sequencgp,,),>1 and the maximum
of the norm of an.i.d sequence of random variables with distributidhs

3.2.1 Distribution tail approach

The main result of this section is the following theorem.

Theorem 3.2. Letr > 0 and letX be aR%valued random variable with probability distributioR.
Let (ov,)n>1 be anL”(P)-optimal sequence of-quantizers. For every € (0,v% ), the following
statements hold:
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(@)

limsup sup <c’"+” nr:;yl*:’(pn + c)) < 400. (3.36)

n—+oo ¢>0

(b)

lim sup sup ((1 — 1/u)r+y n"T F, (upn)) < +o00. (3.37)

n—+oo u>1
Proof. (a)Letc > 0andletr € (0,v%). Then
Y on |7+ ; +
ElX — X" > E <£’é£ | X —al ”1{|X>pn+c}> :
Onthe event§| X| > p,, + ¢}, we have:| X| > p, + ¢ > p, > |a|, Va € a,. Then

EX — X"tV > R <min |1 X — a|7"+"1{X|>pn+c}>

acon

. r4+v
> E (mm (IX] = lal) 1{X|>pn+c})

acon

E ((1X] = pu) " Lx15 k0 (3.38)
> T P{IX] > po b))

Y

It follows that

E[X — X" > sup (T PH{IX] > pn+c})) .
c>0

SinceX has an(r, r + v)-distribution we have

lim sup n%VHX - )?a"H:iZ < +o00.
n

Which completes the proof.
(b) is proved like(a). Inequality (B.3d) becomes: for every > 1,

San “+v
E|X — X© |r+l/ >E <(|X| . pn)r 1{|X‘>upn}> >E (|X|r+u (1— 1/u)r+u l{\x|>upn}) .

Then,
E|X — X* "™ > sup [(1 — 1/u) ™ E (I X" 1{x|>upn})] -
u>1
Inequality (B37) follows by noticing thatlim sup n" " || X — X |1+ < 4oc. O
n

Like for the upper estimate, given the asymptotic inversetion ¢ of — log I’ or given an asymp-
totic lower boundy of ¢ satisfying some standard hypotheses specified below, wilerthe asymp-
totic lower estimate for the maximal radius sequence fdridigions with exponential tails.

For distributions with polynomial tails, we will rather ledor the asymptotic inverse function
®,,, v € (0,v%) (if any) of —log F,1,(e®) or some asymptotic lower bound of it to provide a lower
estimate ofog p,, .
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Proposition 3.4. Letr > 0 and letX be anR?-valued random variable with distributioR. Suppose
that X has an unbounded support. Liet,),>1 be anL"(P)-optimal sequence of-quantizers.

(a) If ¢ is a measurable nondecreasing function goingt-tso asx — +oo, regularly varying with
indexd and satisfying

W(~log F(x)) < 2+ ofa), (3.39)
then )
.. Pn r 4 v
bt oz > () -

If —log F' is regularly varying of index /§ then (B-40) holds withy) = (—log F')~.

(b) Letr € (0,v%). If there is a measurable nondecreasing functign, (x) going to+oco asz —
+o00, regularly varying with index and satisfying

wr,u(_ log Fr—l—u(ex)) <z +o(x), (3.41)
then )
.. log pp, <r + V)
lim inf > . 3.42
it g =\ d (342

In particular if — log F,.,,,(e*) has regular variation with index/§ then(B.43) holds withy,. , (x) =
(— log Fyp (c))—.

Let us provide a few comments on this proposition. We haveet@ryr > 0 and for every
x>0, F.(x) > 2" F(x). Then
—log Fy.(z) < —log F(z) — rlog(z).
According to the nondecreasing hypothesis/owe have for every > 1
P(=log Fy(x)) < ¢(—log F(x) — rlog(z)) < 9(—log F(z))
so that if(B.39) holds then for every > 0, for everyv € (0,v%),
(~log Fypy (1)) < @+ o(2).

Reproducing the proof (given below) of Propositfd (a) by using(B.37) instead of(B.3q) shows
that (B.40) still holds true. This means that for distribution with exieatial tails, the function) do
not depend om andv even if in Assumptior({B.39) we take the generalized survival functidp,,, in
place of the regular survival functioR. However for distributions with polynomial tails like P#we
distribution the functiorw),.,, in (B.41)) may depend on and taking the regular survival function
F in place of the generalized survival functidn_,, would make lose the dependance upoand
consequently lead to a less accurate result.

We next prove the proposition.

Proof. (a) Assumevy > 0 and letv € (0,v%). It follows from (B.37) that for large enough,

+ v

d

—log F(pn +¢) > —log(Cye) + —Z log(n)
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whereC),, .. is a positive real constant depending on the indexing paemelt follows from the fact
thats is nondecreasing and goestac and from AssumptioriB.39) that

P e o(pn)\ T Y(F log(n) —log(Cuc))
Plog(n) = <”pn+ on ) (log(n)) '

Sincey is regularly varying with index we have

lim inf

n—+oo ¢(log(n)) —

Letting v — v% give the announced result. i, = 0, one follows the same proof with = 0.

r+v J
P > <T> , Vv e (0,vy).

(b) This is proved like the statemetth) in PropositionB.3 by consideringF, ., instead ofF,., for
v e (0,v%). O
The next criterion is the lower limit counterpart of Critamip.]).

Criterion 3.4. (a) Let X be anR?valued random variable with unbounded support and suppose
that

0, = inf {6 > 0, lim inf " P(|X| > z) > 0} € (0,+00). (3.43)
Then ) i\ Vs
lim inf " T 2 ( T X) . (3.44)
n—-+oo (log(n)) %

(b) Let X be a random variable with unbounded support such tHat> 0. Set

Go=inf {¢ >0, Vv e (0,v%), limJirnf 2"V oy (z) > 0} € [r + vk, +00). (3.45)
Then | ) )
liminf —8°" > 'y (3.46)

n—too log(n) — Go—r—vy d

Proof . (a)Let® € (0,,+o0). Then
F(z) > Ce %"
for large enough: and for a positive real consta6t Therefore

—log F(x) < 02"(1 — IO%U#)

so that by settingyy(z) = (2/0)'/* we have
Yo(—log F(x)) < o+ o(x).
It follows from Propositiorp.4 (a) that

lim inf >
n——+00 (log(n))l/ﬁ 9L/r

Pn 1 T+ vk 1/k
y .
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We letf go tod, to get the announced result.
(b) Let¢ € (0,¢,). We have, for every € (0,v%),

Foy(z) >C, gty

for large enough: and for a positive real constant,. Then, by setting), , (z) = C_;’f_y we get
Y (—log Fry (7)) < log(z) + o(log(z)). It follows from Propositior.4 (b) that

logpn> 1 r+v
n—+too log(n) — (—r—v d

The right hand side of this last inequality is increasing(0n% ) (as a function oi’) and on(0, ¢,)
(as a function of)) so that by letting’ and¢ go respectively tey, and(, we get

log py, < 1 r4+ vy
n—+too log(n) = Go—r—vy d

O
Corollary 3.2. (a) If the density function ok reads
f@) o |z|ce B 2 e RY 9,6 > 0; ¢ > —d (3.47)
thenvy = d and 0* = 0, = 9. In this case we have for every> 0, for everyd > 1,
1 r\ 1/k L Pn . Pn 2 r\1/k
— 1+ = <liminf ————— < limsup < 1+ - . (3.48)
1/k n——+00 1/k 1/k 1/k
91/ ( d) + (log(n)) / 00 (log(n)) / 9L/ < d)
Whend = 1 andr > 1 we have
1 1/k
lim Pn = (Tj’j ) . (3.49)
n—-—+o0o (log(n))
(b) If X has a density satisfying
1 B
flx) o« % 1fjz>1} zeRY BER, e>r+d (3.50)

thenvy =d(1— %) € (0,d) and (, = ¢* = ¢ — d. Furthermore we have for every> 0 and
everyd > 1,

log pp, 1 r—+d

oo log(n) c—r—d d °

(3.51)

(c) The claim(B-4q) (resp(B-5])) holds if the density ok is simply equivalent to the specified density
in (B27) (resp in(B:50))-
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Proof . (a) Itis obvious from Criteriofs.3 and(B.3H) thatv} = d. Let K be the normalizing positive
real constant irfB.47). We have for every: > 0,

P(|X|>z) = K lul® e 1" d\ g (u)
{lu[>z}

+o0 .
= Kd/ pet e " dp
T
ctd—k
9

where we used an integration by parts and usual integral aosgn criterions. Consequently, if
0 > 9 then

X

= Ky e " (14 0(1))

liminf e’ P(|X| > z) = +o0
r—-+00

and if¢ < o then

liminf P P(|1X| > z) = 0.
Which means thaf, = + and the statemer{3.4g) follows from CriterionB.1 () and Criterion
B4 (a).

(b) Lete > 1. We have

T4V T+ UV ﬂ/ +m /8/
/ Flex)™ 55 f(a)dha(e) = () / Qog U 3 (w) = K / (12,%’21 dp
{f>0} {|z|>1} 1 P

Jul

with ¢ = ¢(1 — :*TZ). K,z is some positive real constant afilc R. We deduce that if

d>d <= v<d (1 - ﬂ) then / f(éx)_%f(x)d)\d(:v) < 400
¢ {f>0}

and if
r+d

C

c’<d<:>u>d<1—

) then / Fz)” 7 f(2)dAg(z) = +00
{70}

so that (from Criteriof8.3 and Statemen@:39)) v% =d (1 — =2) .

Let us show that, = ¢ — d. For everyr > 0, for everyv € (0,v%), for everyz > 1, integrating
by parts and using integral comparison criterions yield

— » log |u|)?
Fopu(@) =B (X" Y x50)) = /{ %d)\d(u)

[u|>x} |u

+00 16
= Vu / 7(10&,0) dp

c
—c'+1

d—1

=V log(z)? (1 + o(1))

withd :=c—r—v —d+1 > 1. It follows that

—r—v Vd —cC
2T P (@) = S log(2) 2T (1 4 0(1))
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so that for every- > 0 and for every € (0,v%), if { > ¢ — d then

lim inf 27" By (2) = +o00
andif( <c—d,
liminf 25"V F,,,(x) = 0.

T——400

Hence(, = ¢ — d. It follows from CriterionB.]] (b) and Criterior.4 (b) that

1 b 1 lo 1 d
*T+VX < liminf 08 Pn < lim sup 98 P < i )
Go—r—vyx d n—+oo log(n) = nojoo log(n) ~c—r—d d

Now (recall that¢, = ¢ — d andvk = d (1 — £4) ),

1 r+vy 1 r+d
Go—r—vy d c—r—d d
so that
log pr, 1 r+d
11 = .
n—+oo log(n) c¢—r—d d
(c) Obvious from what forgoes. O

We deal now with examples.

Example 3.2. (1)it follows from CorollaryB.g (a) that
e WhenX ~ N(0, 1), for everyr > 0, for everyd > 1,

r+d

< liminf ——— < limsup

Pn
— <2
n—+oo /log(n) ~ n—+too y/log(n) —

In cased = 1 andr > 1 we have

lim Pn

- 2r +1).
n—+oo /log(n) ( )

olf X ~T'(a,\),a >0,\>0orif X has a double gamma distribution we have for every 1,

On r+1
1 pr—
n—stoo log(n) A

(which coincides to the exact rate given(fJ) for the exponential distribution) and for everye
(0,1),
r+1 On

Pn 2(r+1)
<l f <l < .
N Sl ey SIS T

e As concern the logistic distribution, the maximal radiugugnce has the same asymptotic as the
exponential distribution with parametgr= 1 following CorollaryB.3 (c)

e For a Weibull distribution with shape parameter- 0 we have for every > 1,

. Pn o 1/k
lim —————— = (r+1)/".
nHJroo(lOg(n))l/
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Forr € (0,1), one has

(r+1)"* < liminf P < lim sup P < 2(r 4+ 1)V~

=t (log(n)) /" T n—toe (log(n)) "

(2) SupposeX is a random variable having a Pareto distribution with ingex » where the density
readsf (z) = yz~*1, 1. It follows from CorollaryB-3 (b) (with c = v+ 1,d = 1)

logp, r+1

= . 3.52
n-> oo log(n) ~vy-—7r (3.52)

We retrieve of course the sharp rate giverffin]).

3.2.2 An alternative approach by random quantization apprach

Let X ~ P. Random quantization is another tool to compute the lowBmeage of the maximal
radius sequence. It makes a connection betwgend the maximum of aii.d sequence of random
variables with distributiong’.

Theorem 3.3. Let > 0 and let X be a random variable taking values ®? with probability
distribution P with P, # 0. Assumga,,),>1 is an L"(P)-optimal sequence of-quantizers. Let
(Xk)r>1 be an i.i.d sequence oR?-valued random variables with probability distributiaR. For
everyv € (0,vy),

1712141_1;({; (pn —E( max ] |Xk|)) > —C, (3.53)

kg[n(r+y)/d

where G, is a positive real constant.

Proof. Letv e (0,v%) and letX2" = > acan WL{x,eCa(an)y- We have,

> Xon
Pn > I,gganfl o

3

San
> k,lrlrgi%Xm |1{|Xk|>maxi;ék|xi|}

m
San
E :‘Xk ‘1{\Xk\>maxz'¢k [ X[}

Vv
>~
l

(|X/f| — [ Xk — X?n|)1{\Xk\>maX¢¢k |X[}

NE

k=1
m o~
> Equc X0l = 3B (15— X im0
Furthermore,
~ g ~

VE>1, [ Xk = XX s maxi X0} = X1 — X771 x0 s ma X0
Hence,

Pn = Ei;ngaﬁb( ’Xk‘ —-mE (’Xl - X?n’1{|X1\>maXi¢1 |Xz|})

N 1-1/(r+v)
Qn
> Eguacl Xl - m [0 X5l (P > maxl X))
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Since the events
{|Xg| > max |X;|}, k=1,---,m
i£k

are pairwise disjoint with the same probability we have

3=

P(|X1| > max [ Xil) <

Finally,
1 S
pn > Emax | Xp| — mmv || X1 — X7 {40
k<m

It follows, by setting m = [n("t*)/4], that

1 ~
. _ T 1 _ am ‘
lim inf (pn E(kg[nna}i)/d] 1)) 2 limsupne X1 = X5

However, sinceX has an(r, r + v)-distribution, the upper limit on the right hand side of tlugiation
is finite. ]

Example 3.3. (Exponential distribution) Let > 0 and letX be an exponentially distributed random
variable with parametek > 0. If (ay,),>1 iS an L"-optimal sequence of-quantizers forX then
TheorenB.3 implies
lim inf > .
n—+oo log(n) A
which is the sharp rate given §.9).

(3.54)

Indeed, letv € (0,v%) and let(X;)—; ... [or+v]}, D€ @ni.i.d exponentially distributed sequence
of random variables with parametgr We have for every, > 0,
P( max X;>u)=1-P(X; < u)[”HV] =1- F(u)["rw}7

i<[n7+v]
whereF is the distribution function oX (we will denote byf its density function). Then
+o00 +00 N [
E( max X;) = / P( max XiZudu:/ 1—(1—e " du
(nax, Xo) = | P(max Xizwdu= [ (1 )y

-1

+00 )
_ /0 (S P)e du

=0

) /om (14 P+ P 17) L,

Y
|
<)
PN
[a—
+
E)

ey r+v
W) = = log(n).

Consequently, it follows from the super-additivity of thminf that for everyv € (0, 1),

— E . ety E ) .
lim inf —~> > liminf fn (maxlg[n il ) + lim inf (mang[n ] )
n—+oo log(n) n—+00 log(n) n—+00 log(n)
> r+ 1/.
- A

The result follows by letting’ go tovy, = 1.
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Example 3.4. (Pareto distribution) Lek be a random variable having a Pareto distribution with index
v > 0. If (ay,)n>1 is an asymptoticallyL"-optimal sequence of-quantizers forX, r is such that
v > r, then Theoren.d yields
1 1
liminf —&P7 > Tt .
n—+oo log(n) — y+1

Which is not the sharp rate given y.4).

Notice that ify > r thenX € L”’?(]P’) forn € (0,7 — r). Now, to prove this result, let €
(0,v%) and let(X;)—1,... [»~+v)} be ani.i.d sequence of random variables with Pareto distribution
with index~y. We have

Ym>1,Vu>1, PmaxX; <wu)=(1—-u"")".

i<m

Then, the density function afiax; <;<,, X; is myu~ 0+ (1 —u=7)m 1,

Hence
+oo 1
E X)) = 1— =7y
(o %) = my [0 —a e
= m/ V71 —w)™ du (u=2a"")
= mB(l-—- m)
Y
B I(1—2)0(m+1)
= 1
1. 1
~ I'l——=)m~ asm — +oo
Y

where we used Stirling’s formula for the last statement. \Wallfy setm = [n" "] to get

E( max X;)~I(1- l) n
1<i<[n+7] o

It follows from (B.53) that for everye € (0, 1),

1 rv
pn— (1 =1 -)n" > —c—C,.
Y

Dividing both side of the inequality by% and taking the logarithm yields

1 _rtv
log pn — " log(n) > log ((1 L ) .

Consequently

1
liminf —2P > rtv
n—+oo log(n) gl

for everyv € (0,v% ). The announced result follows by lettinggo tovy = z;l.
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Comment. Let ¢ be the inverse (if any) function of log F. It can be noticed that in both previous
examples we have

E( max | Xk|) ~ o((r + vx)log(n)) asn — +o0o (3.55)

k<[n" X

which, for distributions with exponential tail leads to tt@me asymptotic lower bound for the se-
quence(p,,),>1 as in(B.40). For Pareto distribution, using the approximatih5) to compute
the asymptotic lower estimate of the maximal radius seqeiemake us loose thie— »” term in the
exact asymptotic. To recover this reminding term we havepbirto consider the inverse function
of —log FT+V;( (as done in the previous section) instead-abg F, and, the random quantization
approach clearly does not allow us to do so.

3.2.3 A conjecture about the sharp rate

The previous results related to distributions with expaia¢tails strongly suggest the following con-
jecture: suppos« is a distribution with exponential tail in the sense of cldnd3). Then for every

r > 0, foreveryd > 1,
’ Pn r+d\'"
oo i7s — \dor '
(log(n))

This conjecture is proved fat = 1 andr > 1. To be satisfied for hight dimension we need to
proof that the geometric statemeptd) of LemmaB.1] (a) holds true with’ 1 + ¢” instead of’2 + ”
like in 1-dimension. Although this inequality looks quite intudn any dimension its proof seems
out of reach whel > 2.

3.2.4 Numerical experiments

We now attempt to focus on numerical experiment of the malkraius sequencép,,),>1 for the
quadratic optimal quantizers of the Gaussian, the Weilnditae exponential distributions. A whole
package of quadratic optimatquantizers of theéV/(0, 1) distributions are available in the website

www. quanti ze. mat hs-fi.com

ford € {1,---,10} andn € {1,--- ,5000}. Whend = 1, theseL?-optimal grids are obtained by
the Newton method, see e.{L{] for details. For the exponential distribution the quadraptimal
quantizers are computed by using the semi-closed formuae ¢n Propositior.]].

As concern the Weibull distribution with shape parameter= 2, we compute the quadratic
optimal quantizers up t8000 using the Lloyd's | algorithm described iffQ] (see[d for a more
itemized description of the algorithm).

In these three cases we depicted the ratio betweeand the expected asymptotic optimal rate.
For the exponential distribution we represent the graplg—loégm as a function of the grid sizes
_(see Figurdl). One remarks that the convergencegqtfg—n) to 1 asn goes to infinity is almost
instantaneous.

However, the cases of the Gaussian and the Weibull diswitmitare more delicate. Indeed, for

the Gaussian distribution the rati 6’1)" =) seems increasing but has not reached yet the Yadwen
og(n

for a grid size equald00000, as emphasized by Figufie(right hand side graph). For the Weibull
distribution, 3”” also seems increasing but takes values ardu®2ir for a grid size equal to

og(n
3000 (see Figure2). Then for both cases, the convergencel tof the ratio between the maximal
radius and the expected asymptotic optimal rate seemsasiogebut very low.

31



Exponential distribution Gaussian distribution

09+

1.20-

i 08
1,15 |

1 07+
1,10

] 06
1,05

1 054

1 miL/ 0.4+

o L S e S B
100 200 300 400

T T T T
500 600 700 800
giid size grid size

T . T T T T T T T T T T T T
900 1000 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Figure 1:Left: ﬁ&n) as a function of the grid size for the exponential distribution. Righi/tﬁm as a

function of the grid size: for the normal distribution.
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Figure 2: —£2=— as a function of the grid size for the Weibull distributiorthvshape parameter= 2.
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