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LP-solutions of backward doubly stochastic differential
equations

Auguste Aman*
UFR de Mathématiques et Informatique,
22 BP 582 Abidjan 22, Céte d’Ivoire

Abstract

In this paper, our goal is solving backward doubly stochastic differential equation
(BDSDE for short) under weak assumptions on the data. The first part of the paper is
devoted to the development of some new technical aspects of stochastic calculus related
to BDSDEs. Then we derive a priori estimates and prove existence and uniqueness of
solutions, extending the results of Pardoux and Peng [ to the case where the solution is
taked in LP, p > 1 and the monotonicity conditions are satisfied. This study is limited to
deterministic terminal time.

MSC 2000: 60H05, 60H20.
Key Words: Backward doubly stochastic differential equations; monotone generator; p-
integrable data.

1 Introduction

In this paper, we are concerned with backward doubly stochastic differential equations (BDS-
DEs for short in the remaining); a BDSDE is an equation of the following type:

T T - T
Y, — g+/ f(r,Yr,Zr)der/ g(r,K,ZT)dBr—/ Z.dW, 0<t<T. (L1)
t t t

This kind of equations has two different directions of stochastic integrals, i.e., the equations
involve both a standard (forward) stochastic Ito integral dWW; and a backward stochastic It6
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integral cﬁt. ¢ is a random variable measurable with respect to the past of W up to time
T and it called the terminal condition. f and g are coefficients (also called generator) and,
the unknowns are the adapted processes {Y;}icjo,r) and {Z;}ejo,r) with respect to the object
oc(W,;0 <r <t)Vo(B,— Byt <r <T), which is not a filtration. Such equations, in the
nonlinear case, have been introduced by Pardoux and Peng [[J]. They proved an existence and
uniqueness result under the following assumption: f and ¢ are Lipschitz continuous in both
variables i and z and the data, £ and the processes {f(,0,0)}¢cio,r) and {g(t,0,0)}ic0,17, are
square integrable. They also showed that BDSDEs are useful in probabilistic representations
for solutions to some quasi-linear stochastic partial differential equations (SPDEs). Since this
first existence and uniqueness result, many papers have been devoted to existence and/or
uniqueness results under weaker assumptions. Among these papers, we can distinguish two
different classes: scalar BDSDEs and multidimensional BDSDEs. In the first case, one can
take advantage of the comparison theorem: we refer to Shi et al. [f] for this result. In this
spirit, let us mention the contributions of N’zi and Owo [{], which dealt with discontinuous
coefficients. For multidimensional BDSDEs, there is no comparison theorem and to overcome
this difficulty a monotonicity assumption on the generator f in the variable y is used. This
appear in the works of Peng and Shi [§]. More recently, N’zi and Owo [f] established existence
and uniqueness result under non-Lipschitz assumptions

|f(ty,2) = fty, 2] < plt, |y —y'1?) + Cllz = 2|

lg(t,y,2) = g(t,y', ) < p(t, |y = y'[°) + allz = 2'|]?
where C' > and 0 < a < 1 are two constants and, p a positive function satisfied some appropriate
condtions.

Let us mention also that when the generator f is monotone and continuous in y and, g = 0,
a result of Pardoux et al. [f], provides the existence and uniqueness of a solution when the
data & and {f(t,0,0)}sc0,r) are in L? even for p € (1,2), both for equations on a fixed and on
a random time interval. This paper is devoted to the generalization of this result to the case
of g # 0 and a monotone generator f for BDSDEs only on a fixed time interval.

The paper is organized as follows: the next section contains all the notations and some
basic identities, while Section 3 contains essential estimates. Section 4 is devoted to the main
result that is existence and uniqueness of BDSDEs ([[.I)) where the data are in L” with p € (1,2)
on a fixed time interval.

2  Preliminaries

2.1 Assumptions and basic notations

Let (2, F,IP) be a probability space, and 7' > 0 be fixed throughout this paper. Let {IV;,0 <
t <T}and {B;,0 <t <T} betwo mutually independent standard Brownian motion processes,



with values respectively in IR and in IR’, defined on (€2, F,IP). Let NV denote the class of IP-null
sets of F. For each t € [0,T], we define

Fo=F @ F
where for any process {n.}, F¢, = o{n, —ns,s <r <t} VN, F = F,.

Note that the collection {F;,t € [0,T]} is neither increasing nor decreasing, and it does
not constitute a filtration. For any real p > 0, let us define the following spaces:
SP(IR™), denotes set of IR"-valued, adapted cadlag processes {X;}.co.7] such that

1AL
P
| X||sr = IE ( sup |Xt|p) < +00;
0<t<T

and MP(IR")) is the set of predictable processes {X;}ico,r) such that

b

T 2 N
HXHMp =1 [(/ |Xt‘2dt) ] < +00.
0

If p> 1, then || X||sr (resp || X||mr) is a norm on SP(IR™) (resp. MP(IR™)) and these spaces are
Banach spaces. But if pe (0,1), (X, X') — || X — X'||g, (vesp || X — X'|| ;) defines a distance
on SP(IR™), (resp. MP(IR™)) and under this metric, SP(IR") (resp. MP(IR")) is complete.

Let
f:Qx[0,T] XIRkXIRkaﬁIRk; g:Qx [O,T]X]R,kX]R/ka—)]R/E
be jointly measurable such that for any (y,z) € IR x IR™*

(H1) f(.,y,2) € MP(0,T,IRF), g(.,y,z) € M?(0,T,IR"")

Moreover, we assume that there exist constants A > 0 and 0 < o < 1 such that for any
(w,t) € Qx[0,T); (g1, 21), (Y2, 22) € RF x RF*?,

(@) |f(t,y1, 21) — f(t,y2, 22) ]2 < AJ21 — 22|,
(Hl) (Z’L) <y - y/a f(tv Y, Z) - f(tv y/v Z>> S :U"y - y/‘27
(12) [lg(t, y1, 21) = g(t, 2, 22) 1> < Nyr — 9a|* + al|21 — 2.

Given a IR*-valued Fr-measurable random vector &, we consider the following backward doubly
stochastic differential equation:

T T - T
Y, =¢ +/ f(s,Ys, Zs)ds +/ 9(s,Ys, Zs) dB —/ ZydW,, 0<t<T. (2.1)
t t t
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We recall that the integral with respect to {B;} is a "backward Ito integral" and the integral
with respect to {IW;} is a standard forward It6 integral. These two types of integrals are
particular cases of the [to-Skorohod integral, see Nualart and Pardoux [(]. Before of all let us
give meaning of a solution of backward doubly SDE.

Definition 2.1 A solution of backward doubly SDE (BJ)) is a pair (Y:, Zi)o<i<r of progres-
sively measurable processes taking values in IR® x IR™? such that: IP a.s., t — Z, belongs in

L*0,T), t — f(t,Ys, Z;) belongs in L*(0,T) and satisfies (B-1)).

2.2 A basic identity

In the spirit of the works of Pardoux et al. (see [B]), which treated the BSDE case i.e g = 0,
we want to deal with backward doubly SDEs with data in L?, p € (1,2). That why, we start
by a generalization to the multidimensional case of the Tanaka formula. Let us now introduce
the notation & = |z|'z1(,—¢}. The following lemma will be our basic tool in the treatment of
LP-solutions and generalized Lemma 2.2 of [B.

Lemma 2.1 Let {K;}icpor), {Hiticpor) and {Gilicpm be three progressively measurable pro-
cesses with values respectively in IR*, IR*¢ and IR such that IP-a.s.,

T
/ (K, + |HoJ? + |Gy)ds < oo.
0
We consider the IR*-valued semi martingale {Xitieor) defined by
t t t
K:X0+/st8—l—/Gsst—l—/HdeS, 0<t<T. (2.2)
0 0 0
Then, for any p > 1, we have
t
|Xt|p_ 1{p:1}Lt = |X0|p_|_p/ |X5|p_1<X8aKs>d5
t ' A~ — t A~
s [P G +p [ 1P )
0 0
t
p - . »
—5/0 X" Lx200{(2 = P)(IGS* — (X5, GoGIXG)) + (p — 1)|Gs| s
t
p - % * v
+§/ (X1 20y A (2 = P) (| HL? = (X, HAH X)) + (p — 1) H[*}ds,
0

where {Lt}te[O,T] 15 a continuous, increasing process with Lo = 0, which increases only on the
boundary of the random set {t € [0,T], X; = 0}.
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Proof. Since the function x — |z[? is not smooth enough (for p € [1,2)), by the approximation
argument used in [g], we set for ¢ > 0, wu.(z) = (|z|> +&?)/2. It is a smooth function and in
virtue of Lemma 1.3 (e.g [[]), we have

t
W) = () +p [ (X)X K)ds
t ‘ - t
s [ X)X G +p [ o (X)X A
1 ot o1 t
—5/ trace(D*uP(X,)G,G*)ds + 5/ trace(D*uP (X, )H,H?)ds.
0 0
The rest of the proof follows identically as lemma 2.2 proof’s so that we omit it. m

Corollary 2.1 If (Y, Z) is a solution of the BSDE (R1)), p > 1, c¢(p) = pl(p — 1) A 1]/2 and
0<t<T, then

T
VP + clp) / Y, P12y | Z P
t
T A
< [Vl +p / YLV, f(s. Y, Z,))ds
t
T
e(p) / Y7Ly soy g (s, Vi Z)Pds
t

T ) « t .
+p / YL (Vs (s, Yo, Z0)dB.) — p / Y, [P1 (Y, ZodIW).
t 0

Proof. As consequence of Lemma 2.1, for 0 <¢ < 7T and ¢(p) = p[(p — 1) A 1]/2, we get
T A
[Xr[P = [ X +p/ | X [P H(X,, K)ds
T t A~ — T ~
o [P NRLGBY +p [ X Hal)
t - t
—C(p)/ | Xs|P 1 x. 20| Gs[Pds
t

T
Te(p) / X P21 sy | H 2.
t

Replace (X, H) by (Y, Z) the solution of backward doubly SDE (), setting K = f(.,Y, Z)
and G = g(.,Y, Z), we get the result. m



3 Apriori estimates

We give now an estimate which permit to control the process Z with the data and the process
Y.

Lemma 3.1 Let assumptions (H1)-(H2) hold and let (Y, Z) be a solution of backward doubly
SDE (R.0). IfY € S then Z belong to MP and there exists a real constant C,,  depending only
on p and A such that,

T p/2 T P T p/2
E[(/ ) ] < osz{sup i ([ i) o ([ ) }
0 0<t<T 0 0

Proof. Let a be a real constant and for each integer n let us define:

¢
T, = inf {t € [O,T],/ | Z,|dr > n} NT.
0

The sequence (7,)n,>0 is of stationary type since the process Z belongs to MP and then
fOT |Z4|?ds < oo, IP- a.s.. Next we use [t6’s formula to give

|Y[)|2+/ e | Z,|2dr
0
= e [ e g 2) - aidr+ [ e gt 2 Par
0 0
Tn — Tn
+2/ e (Y, g(r,Y,, Z,)dB,) —2/ e (Y, Z.dW,.). (3.3)
0 0

But, from assumption on f together the standard inequality 2ab < %az + eb?, for any e, we
have:

20V, f(r, Y, Z:) —aY,) < 2\Y 7]+ 2ulY ] + 2MY, || Z,| — alY; ]

< 2V 4+ Cu+ 23 + 7N —a) |V, ]2 + €| Z %

Moreover, from the assumption on g, we use again the above standard inequality to get

1
lg(r, Yo, YOIP < (14 DAY * + (1 + a2 + (1 + S)lgr]



Plugging this two last inequalities in (3.4), we obtain:
|Yo)? +/ e | Z, |2 dr
0

< e“T"|YTn|2+[2,u—l—(3+6')>\+6_1)\2—a]/ e | Y, |*dr
0

Tn

+[5+(1+5')a]/ e‘”"|Zr|2dr+2/
0 0

+2/ e (Y, g(r,Y,, Z,)dB,) —2/ e (Y,, Z,dW,).
0 0

1 ™
Y| fldr + (14 ) [ erlgepar
0

Choosing now ¢ and ¢’ small enough such that ¢ + (1 +¢’)a < 1 and a such that
2+ (3+e)A+e71A? —a <0, we derive

n p/2 s p/2 n p/2
([M1zkar)" < cund s wir ([Cipar) ([ ear)
0 0<t<my, 0 0

p/2
_'_

—

+ / (Yo g(5, Yo, Z,)0B,)
0

/ (Y, ZodW,)
0

p/2}

Next thanks to BDG’s inequality we have:

p/2 Tn p/4
IE < d4,E (/ |Y,,|2|Z,,|2dr)
0

/ e (Y., Z.dW,)
0

B Tn p/4
< | s i ([ 1z par)
0<t<my, 0
C,Q Tn p/2
< —pIE)<sup |Yt|p)—|—7711E)</ |ZT|2dr) :
m 0<t<mn 0
and
Tn - p/2 n p/4
(| [ et v 20| ) < 4 ( / |1¢|2|g(r,n,zr>|2dr)
0 0
B Tn p/4
< C,E | sup |v;P/? (/ |g(7“,Yr,Zr)|2d7’)
0<t<rn 0
C—Q Tn p/2
< 2w sup )+ ([ lotr v, 2P0 )
T2 0<t<ty, 0
<

Tn p/2
ey (s i+ ([ 1aer)
0<t<rm 0
Tn p/2
+(1 + n3)n2alE (/ |Zr|2dr) :
0
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Finally plugging the two last inequalities in the previous one, choosing 7,7, and 73 small
enough, we finally use Fatou’s Lemma to obtain the desired result. m

We keep on this study by stating the standard estimate in our context. The difficulty comes
from the fact that f is not Lipschitz in y and also from the fact that the function y — |y|P is
not C? since we will work with p € (1,2).

Lemma 3.2 Assume (H1)-(H2). Let (Y, Z) be a solution of the backward doubly SDE asso-
ciated to the data (&, f,g) where Y belong to SP. Then there exists a constant C, » depending
only on p and X such that

T p/2 T P
E{sup m|p+(/ |Zs|2ds) } < CP,AJE{|5|P+(/ |f£|ds)
0<t<T 0 0
T p/2 T
+( / |g2|2ds) + |Ys|p_21{Yssﬁ0}|92|2d3}-
0 0

Proof. From Corollary 2.1 for any a > 0 and any 0 <t < u < T we have

PP ) [ eIV g 0l Zi1ds
t

IA

T u
PV —ap [ emYPdsp [ YT S Y Z))s
U t

«—

tel(p) / Y, Py ]9, Yy Z2) s + p / Y, PNV, g(s, Y, Z,)dB,)
t t
—p / Y, 1T, Zad W),
t

The assumption on f and g yields the inequalities

@, f(s.y,2)) < |f2+ plyl+ Az]
and (3.4)

1
lg(s; 9, 2)I° < (LAYl + (L +e)alz* + (1 + D).



for € > 0, from which we deduce that with probability one, for all ¢ € [0, T,
Y clp) [ eIV s o2 s
t
T
< TP o)+ )N [ e lvipds
+p/ e Y [P £ ds + e(p) (1 + 5—1)/ e |YolP 2 1y, 2 oy |9t | ds
t t
+c(p)(1+ 8)@/ PN Ly 2 )| Z|ds +pA/ Y P Z,| ds
t t
u N PR u ~
p / eIV, g(s, Ve, Z,)AB,) - p / Y, P (Y, Zed W),
t t
First of all we deduce from the previous inequality that, IP-a.s.,
T
/ e |Y [P 1y, 2 03] ZsPds < oc.
0

Moreover, use again the standard algebraic inequality we have

pA?

PAYPHZ | < 7 s
TPy

YS[P + ve)|Ys P Ly, 20y | Z6)

for any . Thus we take ¢, small enough such that o’ =1—[(14+¢e)a++] > 0and set T =u
to derive:

T
—I—o/c(p)/ e YL [P 1y, 2 03] Zs|Pds
t
T
< TIEP 4 p / e |Y, [P |10 ds
t

T T
+c(a, e,7) / e |Y,|Pds + c(p)(1 +e71) / e PP |Y [P 1y, 2 03] 907 ds
t t

—

T T
+p/ eaps‘}/;|p_1<}/;vg(87}/;7Zs)dBS> _p/ epaS‘Y’s|p—1<Y’s’stWs>’ (35)
t t

where c(a,e,7) = p+ [(1+) A+~ N]/2[(p— 1) Al] —a.

Let us set
T T

X = TP [ e lds )14 ) [ eyt oldds
0 0

then, taking the expectation, the use of Gronwall lemma give us

IE (e™|V;]") < CIE(X)

9



because, from BDG inequality, on can show that M, = {ftT eS|, [P 1Y, g(s, Y, Zs)cﬁs)} and
N, =/ ftT P |V, [P=1(Y,, Z,dW,)} are respectively uniformly integrable martingale. Coming
back to inequality (B.7), taking the expectation, for t = 0, we get

T
O/C(p)IE/ PP v,z 0y | Zs|ds < CLIE(X) (3.6)
0
and
E < sup e“pt|Yt|p> < IE(X) 4 k,JE(M, M)Y? + h,JE(N, N)Y*. (3.7)
0<t<T

But, we have

1 T
BN, N)Y? < 7B ( sup em\mp) AR / Y, Py, 03| 2P

0<t<T

and

1 T
BN < 8 (sup WP ) U [P ol Y Z0Pds

4 0<t<T

IA

1 a g aps —
ZIE (Oiltlf’l“e pt\Y}\”) +4h12,IE/0 e Y [P 1y, 2 03] Zs[Pds

+d B (X).

Coming back to inequalities (B.6) and (B.7), we obtain

IE ( sup e“pt|Y}|p) < CLE(X)

0<t<T

Applying once again Young’s inequality, we get

T 1 T p
pCp/ P fds < 5 sup [YiP+C (/ 6”‘“IfSOIdS)
0 0

0<s<T

from which we deduce, coming back to the definition of X, that

T p T
E(sup e“pﬂmp)gcpm [|s|p+( / e”‘”lfflds) w [ e, o}|92|2ds].
0 0

0<t<T

The result follows from Lemma 3.1. =
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4 Existence and uniqueness of a solution

In this section we prove existence and uniqueness result for the backward doubly SDE associated
to data (&, f, g) in LP, with the help of L>-approximation and priori estimates given above.

In addition to the previous hypothesis, we will work under the following assumptions: for
some p > 1,

( (1) E[|¢F] < oo,
(i3) P a.s. ¥ (t, 2) € [0,T] x R*? y s f(t,y, 2)is continuous,

(H3)
(i) ¢(.,0,0) =0,

| (i0) V7 >0, 1, (t) = supy, ., | f(t,y,0) — f2] € L]0, T],m @ IP).

We want to obtain an existence and uniqueness result for backward doubly SDE (R.I]) under
the previous assumptions for all p > 0.

Firstly, let us give this result, that in our mind extended the result of Pardoux and Peng
(see Theorem 1.1, [[]]). Indeed, here the coefficient f is supposed to be non-Lipschitz in y but
monotonic. For this, let us introduce the following assumption:

(H4) Pa.s. ¥ (t,y) € [0,7] x R*, | f(t,9,0)| < |£(£,0,0)] +(ly)),
where ¢ : IR, — IR, is a deterministic continuous increasing function.

Theorem 4.1 Let p = 2. Under assumptions (H1)-(H4), BSDE (B1]) has a unique solution
in S? x M?.

Proof. It follows easily by combining argument of Pardoux (see Theorem 2.2 [d]) with one
used in Pardoux and Peng (see Theorem 1.1, []]) m

We now prove our existence and uniqueness result.
Theorem 4.2 Under assumptions (H1)-(H3), BSDE (R.1) has a unique solution in SP x MP.

Proof. Uniqueness

Let us consider (Y, Z) and (Y’, Z’") two solutions of backward SDE with data (£, f,g) in the
appropriate space. We denote by (U, V') the process (Y —Y', Z — Z'); we show easily that this
process is solution to the following backward doubly SDE:

T T - T
Ut:/ h(s,Us,%)ds+/ k:(s,Us,Vs)st—/ V,dW,, 0<t<T,
t t t

11



where h and k stand the random functions

h(s,y,2) = f(s,y + Y, 2+ Zy) — f(s, Y], Zy),
k’(S,y,Z) = g(S,y—l— YZ,Z + Z;) - (Sa}/Z>Z;)'

Thanks to assumptions (H2), functions i and k satisfy assumption (B.4) with respectively
hY = kY = 0. By Lemma 3.2, we get immediately that (U, V) = (0, 0).

Existence
In order to simplify the calculations, we will always assume that condition (H2-(i7)) is satisfied
with p = 0. If it is not true, the change of variables Yt = ey, Zt = e 7, reduces to this case.
We also split existence into two steps
Step 1. In this part &, sup f°, are supposed bounded random variables and r a positive real
such that

(¢l + TN fOlle) < 7
Let 6, be a smooth function such that 0 < 6, <1 and

1 for |y| <r

0. (y) =
0 for |y| > r+ 1.

For each n € IN*, we denote ¢,(z) = z and set

_n_
|z|[vn

hn(tv Y, Z) = Hr(y>(f(t7 Y, Qn(z>> ft ) + fto'

Tr41 (t) Vn

Thanks to Pardoux et al. [P, this function still satisfies quadratic condition (H2-(ii)) but with
a positive constant. Then data (§, h,, g) satisfies assumptions of Theorem 4.1. Hence, for each
n € IN*, backward doubly SDE associated to (£, h,,g) has a unique solution (Y, Z") in space
S?% x M2,

Since

¢ is bounded and ¢? is null, the similar argument used in [] (see proposition 2.1) provide that
the process Y™ satisfies the inequality ||Y"|l < r. In addition, from Lemma 3.2,

12" | sz < ' (4.1)

where 7’ is another constant. As a byproduct (Y™, Z") is a solution to backward doubly SDE
associated to (&, f,, g) where

fult,y,2) = (f(tayaQH(Z))_ftO) +ft0

Tr41 (t) Vn

12



which satisfied assumption (H2-(4i)) with = 0.

We now have, for i € IN, setting Y™ = Yn+i —yn Zmi = zn+i _ 7n applying assump-
tions (H2) on f,4; and g

T
eat‘Y;n,zP 4 (1 — ¢ —Oé)/ eas|Z;L,i‘2d8
t

IA

T

2 [ e fua( Y220 = (s Y2 Z)ds
1 v
+(g)\2+)\—a)/ €55 |V 2
t
T —_ . . .

2 / e (V1 (g(s, Y, Z) — g(s, Y7, Z"))dB,)

t

T
-9 / %8 <}_/8n,i’ Zg’idW5>,
t

for any @ > 0 and € > 0. Next, choosing € small enough such that y =1 —¢ —a > 0 and after
a such that (1A2 + A —a) < 0, we obtain

T
6at|}_/;n72|2_‘_7/ 6as|ZgL,i|2ds
t

IN

T
2 / T fora(s, Y 20 — fuls, Y2, Z0))ds
t
1 v
—l—(g)\2 +A—a) / ™|V | ds
t
T p— . . .
2 / e (V2 (g(s, Y, Z04) — g(s, Y7, Z"))dB.)
t
T p— . p— .
_2/ e <Y*sn,z’ an’ZdWs>-
t
But [|[Y™||, < 2r so that
—_ . T p— .
6at|y;n7l|2 _‘_7/ 6as|zgz,z|2ds
t
T
< 4 / €| frsa(s, Y, Z) — fuls, Y Z0)|ds
t
1 v
—l—(g)\2 +A—a) / ™|V | ds
t
T p— . . .
2 / e (V2 (g(s, Y, Z04) — g(s, YT, Z7))dB.)
t
T — . p— .
_2/ eaS <}/Tsn7l’ Z?,ZdWS>
t

13



and using successively Gronwall lemma and the BDG inequality, we get, for a constant C'
depending only on A, o and T,

T T
| sup 197+ [ 120 Pas| < 0t | [ Ut v 2 - s 2 2|
0 0

0<t<T

On the other hand, since ||Y"||o < 7, we get
|fn+i(5> Y;n’ Zg) - fn(5> Y;n’ Z;L)| < 2)‘|Z§L|1{|Zgl| >n} T 2)‘|Z§L|1{m-+1(8)>n} + 27TT+1(S)1{7T7-+1(8)>11}

from which we deduce, according assumption (H3-(iv)) and inequality ([.1)) that (Y™, Z")
is a cauchy sequence in the Banach space S? x M2 It is easy to pass to the limit in the
approximating equation, yielding a solution to backward doubly SDE (B.0)).

Step 2. We now treat the general case. For each n € IN*, let us define

gn = Qn(g)a fn(t>y>z) = .f (t,y,Z) - fto + Qn(fto)

For each triplet (&,, fn,g), BSDE (1) has a unique solution (Y™, Z") € L? thanks to the first
step of this proof, but in fact also in all LP,p > 1 according to Lemma 3.1. Now from Lemma
3.2 an assumption (H2), for (i,n) € IN x IN*,

T p/2
IE{ sup [V Y7 ( / |Zs+i—zs|2ds) }
0<t<T 0
T P
< CE {m e+ ( [ (- qn(f3)|d8) }

where C' depends on T, o and .

The right-hand side of the last inequality clearly tends to 0, as n — oo, uniformly in 7, so
we have again a Cauchy sequence and the limit is a solution to backward doubly SDE (P7]). m
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