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Lp-solution of bakward doubly stohasti di�erentialequationsAuguste Aman∗UFR de Mathématiques et Informatique,22 BP 582 Abidjan 22, C�te d'Ivoire
AbstratIn this paper, our goal is solving bakward doubly stohasti di�erential equation(BDSDE for short) under weak assumptions on the data. The �rst part of the paper isdevoted to the development of some new tehnial aspets of stohasti alulus relatedto BDSDEs. Then we derive a priori estimates and prove existene and uniqueness ofsolutions, extending the results of Pardoux and Peng [6℄ to the ase where the solution istaked in Lp, p > 1 and the monotoniity onditions are satis�ed. This study is limited todeterministi terminal time.MSC 2000: 60H05, 60H20.Key Words: Bakward doubly stohasti di�erential equations; monotone generator; p-integrable data.1 IntrodutionIn this paper, we are onerned with bakward doubly stohasti di�erential equations (BDS-DEs for short in the remaining); a BDSDE is an equation of the following type:

Yt = ξ +

∫ T

t

f(r, Yr, Zr)dr +

∫ T

t

g(r, Yr, Zr)
←−
dBr −

∫ T

t

ZrdWr, 0 ≤ t ≤ T. (1.1)This kind of equations has two di�erent diretions of stohasti integrals, i.e., the equationsinvolve both a standard (forward) stohasti It� integral dWt and a bakward stohasti It�
∗E-mail address: augusteaman5�yahoo.fr 1



integral ←−dBt. ξ is a random variable measurable with respet to the past of W up to time
T and it alled the terminal ondition. f and g are oe�ients (also alled generator) and,the unknowns are the adapted proesses {Yt}t∈[0,T ] and {Zt}t∈[0,T ] with respet to the objet
σ(Wr; 0 ≤ r ≤ t) ∨ σ(Br − Bt; t ≤ r ≤ T ), whih is not a �ltration. Suh equations, in thenonlinear ase, have been introdued by Pardoux and Peng [6℄. They proved an existene anduniqueness result under the following assumption: f and g are Lipshitz ontinuous in bothvariables y and z and the data, ξ and the proesses {f(t, 0, 0)}t∈[0,T ] and {g(t, 0, 0)}t∈[0,T ], aresquare integrable. They also showed that BDSDEs are useful in probabilisti representationsfor solutions to some quasi-linear stohasti partial di�erential equations (SPDEs). Sine this�rst existene and uniqueness result, many papers have been devoted to existene and/oruniqueness results under weaker assumptions. Among these papers, we an distinguish twodi�erent lasses: salar BDSDEs and multidimensional BDSDEs. In the �rst ase, one antake advantage of the omparison theorem: we refer to Shi et al. [8℄ for this result. In thisspirit, let us mention the ontributions of N'zi and Owo [4℄, whih dealt with disontinuousoe�ients. For multidimensional BDSDEs, there is no omparison theorem and to overomethis di�ulty a monotoniity assumption on the generator f in the variable y is used. Thisappear in the works of Peng and Shi [7℄. More reently, N'zi and Owo [5℄ established existeneand uniqueness result under non-Lipshitz assumptions

|f(t, y, z)− f(t, y′, z′)| ≤ ρ(t, |y − y′|2) + C‖z − z′‖2

‖g(t, y, z)− g(t, y′, z′)‖ ≤ ρ(t, |y − y′|2) + α‖z − z′‖2where C > and 0 < α < 1 are two onstants and, ρ a positive funtion satis�ed some appropriateondtions.Let us mention also that when the generator f is monotone and ontinuous in y and, g ≡ 0,a result of Pardoux et al. [2℄, provides the existene and uniqueness of a solution when thedata ξ and {f(t, 0, 0)}t∈[0,T ] are in Lp even for p ∈ (1, 2), both for equations on a �xed and ona random time interval. This paper is devoted to the generalization of this result to the aseof g 6= 0 and a monotone generator f for BDSDEs only on a �xed time interval.The paper is organized as follows: the next setion ontains all the notations and somebasi identities, while Setion 3 ontains essential estimates. Setion 4 is devoted to the mainresult that is existene and uniqueness of BDSDEs (1.1) where the data are in Lp with p ∈ (1, 2)on a �xed time interval.2 Preliminaries2.1 Assumptions and basi notationsLet (Ω,F , IP) be a probability spae, and T > 0 be �xed throughout this paper. Let {Wt, 0 ≤
t ≤ T} and {Bt, 0 ≤ t ≤ T} be two mutually independent standard Brownian motion proesses,2



with values respetively in IRd and in IRℓ, de�ned on (Ω,F , IP). LetN denote the lass of IP-nullsets of F . For eah t ∈ [0, T ], we de�ne
Ft = FB

t ⊗F
W
t,Twhere for any proess {ηt}, F

η
s,t = σ{ηr − ηs, s ≤ r ≤ t} ∨ N , Fη

t = Fη
0,t.Note that the olletion {Ft, t ∈ [0, T ]} is neither inreasing nor dereasing, and it doesnot onstitute a �ltration. For any real p > 0, let us de�ne the following spaes:

Sp(IRn), denotes set of IRn-valued, adapted àdlàg proesses {Xt}t∈[0,T ] suh that
‖X‖Sp = IE( sup

0≤t≤T
|Xt|

p

)1∧ 1

p

< +∞;andMp(IRn)) is the set of preditable proesses {Xt}t∈[0,T ] suh that
‖X‖Mp = IE [(∫ T

0

|Xt|
2dt

) p

2

]1∧ 1

p

< +∞.If p ≥ 1, then ‖X‖Sp (resp ‖X‖Mp) is a norm on Sp(IR) (resp. Mp(IRd)) and these spaes areBanah spaes. But if p∈ (0, 1) , (X,X ′) 7−→ ‖X −X ′‖Sp (resp ‖X −X ′‖Mp) de�nes a distaneon Sp(IR), (resp. Mp(IRd)) and under this metri, Sp(IRn) (resp. Mp(IRn)) is omplete.Let
f : Ω× [0, T ]× IRk × IRd×k → IRk; g : Ω× [0, T ]× IRk × IRd×k → IRℓbe jointly measurable suh that for any (y, z) ∈ IR× IRd×k

f(., y, z) ∈Mp(0, T, IRk), g(., y, z) ∈Mp(0, T, IRk×ℓ) (A1)Moreover, we assume that there exist onstants λ > 0 and 0 < α < 1 suh that for any
(ω, t) ∈ Ω× [0, T ]; (y1, z1), (y2, z2) ∈ IRk × IRk×d,

|f(t, y1, z1)− f(t, y2, z2)|
2 ≤ λ‖z1 − z2‖

2 (A2)
〈y − y′, f(t, y, z)− f(t, y′, z)〉 ≤ µ|y − y′|2 (A3)

‖g(t, y1, z1)− g(t, y2, z2)‖
2 ≤ λ|y1 − y2|

2 + α‖z1 − z2‖
2. (A4)Given a IRk-valued FT -measurable random vetor ξ, we onsider the following bakward doublystohasti di�erential equation:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

g(s, Ys, Zs)
←−
dBs −

∫ T

t

Zs dWs, 0 ≤ t ≤ T. (2.1)We reall that the integral with respet to {Bt} is a "bakward It� integral" and the integralwith respet to {Wt} is a standard forward It� integral. These two types of integrals arepartiular ases of the It�-Skorohod integral, see Nualart and Pardoux [3℄. Before of all let usgive meaning of a solution of bakward doubly SDE.3



De�nition 2.1 A solution of bakward doubly SDE (2.1) is a pair (Yt, Zt)0≤t≤T of progres-sively measurable proesses taking values in IRk × IRk×d suh that: IP a.s., t 7→ Zt belongs in
L2(0, T ), t 7→ f(t, Yt, Zt) belongs in L1(0, T ) and satis�es (2.1).2.2 A basi identityIn the spirit of the works of Pardoux et al. (see[2℄), whih treated the BSDE ase i.e g = 0,we want to deal with bakward doubly SDEs with data in Lp, p ∈ (1, 2). That why, we startby a generalization to the multidimensional ase of the Tanaka formula. Let us now introduethe notation x̂ = |x|−1x1{x=0}. The following lemma will be our basi tool in the treatment of
Lp-solutions and generalized Lemma 2.2 of [2℄.Lemma 2.1 Let {Kt}t∈[0,T ], {Ht}t∈[0,T ] and {Gt}t∈[0,T ] be three progressively measurable pro-esses with values respetively in IRk, IRk×d and IRk×l suh that IP-a.s.,

∫ T

0

(Ks + |Hs|
2 + |Gs|

2)ds <∞.We onsider the IRk-valued semi martingale {Xt}t∈[0,T ] de�ned by
Yt = X0 +

∫ t

0

Ks ds+

∫ t

0

Gs

←−
dBs +

∫ t

0

Hs dWs, 0 ≤ t ≤ T. (2.2)Then, for any p ≥ 1, we have
|Xt|

p − 1{p=1}Lt = |X0|
p + p

∫ t

0

|Xs|
p−1〈X̂s, Ks〉ds

+p

∫ t

0

|Xs|
p−1〈X̂s, Gs

←−
dBs〉+ p

∫ t

0

|Xs|
p−1〈X̂s, HsdWs〉

−
p

2

∫ t

0

|Xs|
p−2

1{Xs 6=0}{(2− p)(|Gs|
2 − 〈X̂s, GsG

∗
sX̂s〉) + (p− 1)|Gs|

2}ds

+
p

2

∫ t

0

|Xs|
p−2

1{Xs 6=0}{(2− p)(|Hs|
2 − 〈X̂s, HsH

∗
s X̂s〉) + (p− 1)|Hs|

2}ds,where {Lt}t∈[0,T ] is a ontinuous, inreasing proess with L0 = 0, whih inreases only on theboundary of the random set {t ∈ [0, T ], Xt = 0}.Proof. Sine the funtion x 7→ |x|p is not smooth enough (for p ∈ [1, 2)), by the approximationargument used in [2℄, we set for ε > 0, uε(x) = (|x|2 + ε2)1/2. It is a smooth funtion and in4



virtue of Lemma 1.3 (e.g [6℄), we have
up

ε(Xt) = up
ε(X0) + p

∫ t

0

up−1
ε (Xs)〈Xs, Ks〉ds

+p

∫ t

0

up−1
ε (Xs)〈Xs, Gs

←−
dBs〉+ p

∫ t

0

up−1
ε (Xs)〈Xs, HsdWs〉

−
1

2

∫ t

0

trace(D2up
ε(Xs)GsG

∗
s)ds+

1

2

∫ t

0

trace(D2up
ε(Xs)HsH

∗
s )ds.The rest of the proof follows identially as lemma 2.2 proof's so that we omit it.Corollary 2.1 If (Y, Z) is a solution of the BSDE (2.1), p ≥ 1, c(p) = p[(p − 1) ∧ 1]/2 and

0 ≤ t ≤ T , then
|Yt|

p + c(p)

∫ T

t

|Ys|
p−2

1{Ys 6=0}|Zs|
2ds

≤ |YT |
p + p

∫ T

t

|Ys|
p−1〈Ŷs, f(s, Ys, Zs)〉ds

+c(p)

∫ T

t

|Ys|
p−2

1{Ys 6=0}|g(s, Ys, Zs)|
2ds

+p

∫ T

t

|Ys|
p−1〈Ŷs, g(s, Ys, Zs)

←−
dBs〉 − p

∫ t

0

|Ys|
p−1〈Ŷs, ZsdWs〉.Proof. As onsequene of Lemma 2.1, for 0 ≤ t ≤ T and c(p) = p[(p− 1) ∧ 1]/2, we get

|XT |
p ≥ |Xt|

p + p

∫ T

t

|Xs|
p−1〈X̂s, Ks〉ds

+p

∫ T

t

|Xs|
p−1〈X̂s, Gs

←−
dBs〉+ p

∫ T

t

|Xs|
p−1〈X̂s, HsdWs〉

−c(p)

∫ T

t

|Xs|
p−2

1{Xs 6=0}|Gs|
2ds

+c(p)

∫ T

t

|Xs|
p−2

1{Xs 6=0}|Hs|
2ds.Replae (X,H) by (Y, Z) the solution of bakward doubly SDE (2.1), setting K = f(., Y, Z)and G = g(., Y, Z), we get the result.3 Apriori estimatesWe give now an estimate whih permit to ontrol the proess Z with the data and the proess

Y . 5



Lemma 3.1 Let assumptions (A1)-(A4) hold and let (Y, Z) be a solution of bakward doublySDE (2.1). If Y ∈ Sp then Z belong toMp and there exists a real onstant Cp,λ depending onlyon p and λ suh that,IE[(∫ T

0

|Zr|
2dr

)p/2
]
≤ CpIE{ sup

0≤t≤T
|Yt|

p +

(∫ T

0

|f 0
r |dr

)p

+

(∫ T

0

|g0
r |

2dr

)p/2
}
.Proof. Let a be a real onstant and for eah integer n let us de�ne:

τn = inf

{
t ∈ [0, T ],

∫ t

0

|Zr|dr ≥ n

}
∧ T.The sequene (τn)n≥0 is of stationary type sine the proess Z belongs to Mp and then∫ T

0
|Zs|2ds <∞, IP- a.s.. Next we use It�'s formula to give

|Y0|
2 +

∫ τn

0

ear|Zr|
2dr

= eaτn |Yτn
|2 + 2

∫ τn

0

ear〈Yr, f(r, Yr, Zr)− aYr〉dr +

∫ τn

0

ear|g(r, Yr, Zr)|
2dr

+2

∫ τn

0

ear〈Yr, g(r, Yr, Zr)
←−
dBr〉 − 2

∫ τn

0

ear〈Yr, ZrdWr〉. (3.3)But, from assumption on f together the standard inequality 2ab ≤ 1
ε
a2 + εb2, for any ε, wehave:

2〈Yr, f(r, Yr, Zr)− aYr〉 ≤ 2|Yr||f
0
r |+ 2µ|Yr|

2 + 2λ|Yr||Zr| − a|Yr|
2

≤ 2|Yr||f
0
r |+ (2µ+ 2λ+ ε−1λ2 − a)|Yr|

2 + ε|Zr|
2.Moreover, from the assumption on g, we use again the above standard inequality to get

‖g(r, Yr, Yr)‖
2 ≤ (1 + ε′)λ|Yr|

2 + (1 + ε′)α|Zr|
2 + (1 +

1

ε′
)|g0

r |
2.Plugging this two last inequalities in (3.4), we obtain:

|Y0|
2 +

∫ τn

0

ear|Zr|
2dr

≤ eaτn |Yτn
|2 + [2µ+ (3 + ε′)λ+ ε−1λ2 − a]

∫ τn

0

ear|Yr|
2dr

+[ε+ (1 + ε′)α]

∫ τn

0

ear|Zr|
2dr + 2

∫ τn

0

ear|Yr||f
0
r |dr + (1 +

1

ε′
)

∫ τn

0

ear|g0
r |

2dr

+2

∫ τn

0

ear〈Yr, g(r, Yr, Zr)
←−
dBr〉 − 2

∫ τn

0

ear〈Yr, ZrdWr〉.6



Choosing now ε and ε′ small enough suh that ε+ (1 + ε′)α < 1 and a suh that
2µ+ (3 + ε′)λ+ ε−1λ2 − a ≤ 0, we derive

(∫ τn

0

|Zr|
2dr

)p/2

≤ Cp,λ

{
sup

0≤t≤τn

|Yt|
p +

(∫ τn

0

|f 0
r |

2dr

)p/2

+

(∫ τn

0

|g0
r |

2dr

)p/2

+

∣∣∣∣

∫ τn

0

eαr〈Yr, g(s, Yr, Zr)
←−
dBr〉

∣∣∣∣
p/2

+

∣∣∣∣

∫ τn

0

eαr〈Yr, ZrdWr〉

∣∣∣∣
p/2
}
.Next thanks to BDG's inequality we have:IE(∣∣∣∣∫ τn

0

eαr〈Yr, ZrdWr〉

∣∣∣∣
p/2
)
≤ dpIE [(∫ τn

0

|Yr|
2|Zr|

2dr

)p/4
]

≤ C̄pIE [ sup
0≤t≤τn

|Yt|
p/2

(∫ τn

0

|Zr|
2dr

)p/4
]

≤
C̄2

p

η1
IE( sup

0≤t≤τn

|Yt|
p

)
+ η1IE(∫ τn

0

|Zr|
2dr

)p/2

.andIE(∣∣∣∣∫ τn

0

eαr〈Yr, g(s, Yr, Zr)
←−
dBr〉

∣∣∣∣
p/2
)
≤ dpIE[(∫ τn

0

|Yr|
2|g(r, Yr, Zr)|

2dr

)p/4
]

≤ C̄pIE[ sup
0≤t≤τn

|Yt|
p/2

(∫ τn

0

|g(r, Yr, Zr)|
2dr

)p/4
]

≤
C̄2

p

η2

IE( sup
0≤t≤τn

|Yt|
p

)
+ η2IE(∫ τn

0

|g(r, Yr, Zr)|
2dr

)p/2

≤ CpIE( sup
0≤t≤τn

|Yt|
p +

(∫ τn

0

|g0
r |

2

)p/2
)

+(1 + η3)η2αIE(∫ τn

0

|Zr|
2dr

)p/2

.Finally plugging the two last inequalities in the previous one, hoosing η1, η2 and η3 smallenough, we �nally use Fatou's Lemma to obtain the desired result.We keep on this study by stating the standard estimate in our ontext. The di�ulty omesfrom the fat that f is not Lipshitz in y and also from the fat that the funtion y 7→ |y|p isnot C2 sine we will work with p ∈ (1, 2).Lemma 3.2 Assume (A1)-(A4). Let (Y, Z) be a solution of the bakward doubly SDE asso-iated to the data (ξ, f, g) where Y belong to Sp. Then there exists a onstant Cp,λ depending7



only on p and λ suh thatIE{ sup
0≤t≤T

|Yt|
p +

(∫ T

0

|Zs|
2ds

)p/2
}
≤ Cp,λIE{|ξ|p +

(∫ T

0

|f 0
s |ds

)p

+

(∫ T

0

|g0
s |

2ds

)p/2

+

∫ T

0

|Ys|
p−2

1{Ys 6=0}|g
0
s |

2ds

}

.Proof. From Corollary 2.1 for any a > 0 and any 0 ≤ t ≤ u ≤ T we have
eapt|Yt|

p + c(p)

∫ u

t

eaps|Ys|
p−2

1{Ys 6= 0}|Zs|
2ds

≤ eapu|Yu|
p − ap

∫ T

u

eaps|Ys|
pds+ p

∫ u

t

eaps|Ys|
p−1〈Ŷs, f(s, Ys, Zs)〉ds

+c(p)

∫ u

t

eaps|Ys|
p−2

1{Ys 6= 0}|g(s, Ys, Zs)|
2ds+ p

∫ u

t

eaps|Ys|
p−1〈Ŷs, g(s, Ys, Zr)

←−
dBs

−p

∫ u

t

eaps|Ys|
p−1〈Ŷs, ZsdWs〉.The assumption on f and g yields the inequalities

〈ŷ, f(r, y, z)〉 ≤ |f 0
r |+ µ|y|+ λ|z|and (3.4)

‖g(r, y, z)‖2 ≤ (1 + ε)λ|y|2 + (1 + ε)α|z|2 + (1 +
1

ε
)|g0

r |
2,for ε > 0, from whih we dedue that with probability one, for all t ∈ [0, T ],

eapt|Yt|
p + c(p)

∫ u

t

eaps|Ys|
p−2

1{Ys 6= 0}|Zs|
2ds

≤ eapu|Yu|
p + [p(µ− a) + c(p)(1 + ε)λ]

∫ T

u

eaps|Ys|
pds

+p

∫ u

t

eaps|Ys|
p−1|f 0

s |ds+ c(p)(1 + ε−1)

∫ u

t

eaps|Ys|
p−2

1{Ys 6= 0}|g
0
s |

2ds

+c(p)(1 + ε)α

∫ u

t

eaps|Ys|
p−2

1{Ys 6= 0}|Zs|
2ds+ pλ

∫ u

t

eaps|Ys|
p−1|Zs|ds

+p

∫ u

t

eaps|Ys|
p−1〈Ŷs, g(s, Ys, Zr)

←−
dBs − p

∫ u

t

epαs|Ys|
p−1〈Ŷs, ZsdWs〉.First of all we dedue from the previous inequality that, IP-a.s.,

∫ T

0

eaps|Ys|
p−2

1{Ys 6= 0}|Zs|
2ds <∞.8



Moreover, use again the standard algebrai inequality we have
pλ|Ys|

p−1|Zs| ≤ γ−1 pλ2

2[(p− 1) ∧ 1]
|Ys|

p + γc(p)|Ys|
p−1

1{Ys 6=0}|Zs|
2,for any γ. Thus we take ε, γ small enough suh that α′ = 1− [(1 + ε)α+ γ] > 0 and set T = uto derive:

+α′c(p)

∫ T

t

eaps|Ys|
p−2

1{Ys 6= 0}|Zs|
2ds

≤ eapT |ξ|p + p

∫ T

t

eaps|Ys|
p−1|f 0

s |ds

+c(a, ε, γ)

∫ T

t

eaps|Ys|
pds+ c(p)(1 + ε−1)

∫ T

t

eaps|Ys|
p−2

1{Ys 6= 0}|g
0
s |

2ds

+p

∫ T

t

eaps|Ys|
p−1〈Ŷs, g(s, Ys, Zr)

←−
dBs − p

∫ T

t

epαs|Ys|
p−1〈Ŷs, ZsdWs〉, (3.5)where c(a, ε, γ) = µ+ [(1 + ε)λ+ γ−1λ2]/2[(p− 1) ∧ 1]− a.Let us set

X = eapT |ξ|p + p

∫ T

0

eaps|Ys|
p−1|f 0

s |ds+ c(p)(1 + ε−1)

∫ T

0

eaps|Ys|
p−2

1{Ys 6= 0}|g
0
s |

2ds,then, taking the expetation, the use of Gronwall lemma give usIE (eapt|Yt|
p
)
≤ CpIE(X)beause, from BDG inequality, on an show that Mt = {

∫ T

t
eaps|Ys|

p−1〈Ŷs, g(s, Ys, Zr)
←−
dBs} and

Nt = {
∫ T

t
epαs|Ys|p−1〈Ŷs, ZsdWs〉} are respetively uniformly integrable martingale. Comingbak to inequality (3.5), taking the expetation, for t = 0, we get

α′c(p)IE ∫ T

0

eaps|Ys|
p−2

1{Ys 6= 0}|Zs|
2ds ≤ CpIE(X) (3.6)and IE( sup

0≤t≤T
eapt|Yt|

p

)
≤ IE(X) + kpIE〈M,M〉1/2

T + hpIE〈N,N〉1/2
T . (3.7)But, we have

hpIE〈N,N〉1/2
T ≤

1

4
IE( sup

0≤t≤T
eapt|Yt|

p

)
+ 4h2

pIE ∫ T

0

eaps|Ys|
p−2

1{Ys 6= 0}|Zs|
2ds9



and
kpIE〈M,M〉1/2

T ≤
1

4
IE( sup

0≤t≤T
eapt|Yt|

p

)
+ 4k2

pIE ∫ T

0

eaps|Ys|
p−2

1{Ys 6= 0}|g(s, Ys, Zs)|
2ds

≤
1

4
IE( sup

0≤t≤T
eapt|Yt|

p

)
+ 4h2

pIE ∫ T

0

eaps|Ys|
p−2

1{Ys 6= 0}|Zs|
2ds

+dpIE (X) .Coming bak to inequalities (3.6) and (3.7), we obtainIE( sup
0≤t≤T

eapt|Yt|
p

)
≤ CpIE(X)Applying one again Young's inequality, we get

pCp

∫ T

0

epαs|Ys|
p−1(|f 0

s |ds ≤
1

2
sup

0≤s≤T
|Ys|

p + C ′
p

(∫ T

0

epαs|f 0
s |ds

)pfrom whih we dedue, oming bak to the de�nition of X, thatIE( sup
0≤t≤T

eapt|Yt|
p

)
≤ CpIE [|ξ|p +

(∫ T

0

epαs|f 0
s |ds

)p

+

∫ T

0

eaps|Ys|
p−2

1{Ys 6= 0}|g
0
s |

2ds

]
.The result follows from Lemma 3.1.4 Existene and uniqueness of a solutionIn this setion we prove existene and uniqueness result for the bakward doubly SDE assoiatedto data (ξ, f, g) in Lp, with the help of L∞-approximation and priori estimates given above.In addition to the previous hypothesis, we will work under the following assumptions: forsome p > 1, IE [|ξ|p] <∞., (A5)We assume also that,IP a.s. ∀ (t, z) ∈ [0, T ]× IRk×d, y 7→ f(t, y, z) is ontinuous (A6)

g(., 0, 0) ≡ 0 (A7)and �nally that,
∀ r > 0, ψr(t) = sup

|y|<r

|f(t, y, 0)− f 0
t | ∈ L

1([0, T ], m⊗ IP). (A8)10



We want to obtain an existene and uniqueness result for bakward doubly SDE (2.1) underthe previous assumptions for all p > 0.Firstly, let us give this result, that in our mind extended the result of Pardoux and Peng([6℄, Theorem 1.1). Indeed, here the oe�ient f is supposed to be non-Lipshitz in y butmonotone. However, the proof follows by the same step with slight modi�ation in estimates,due to the monotoniity of f . For this reason and in order to avoid unneessarily lengthen thepaper, we omit the proof.Theorem 4.1 Let p = 2. Under assumptions (A1)-(A6), BSDE (2.1) has a unique solutionin S2 ×M2.We now prove our existene and uniqueness result.Theorem 4.2 Under assumptions (A1)-(A8), BSDE (2.1) has a unique solution in Sp×Mp.Proof. UniquenessLet us onsider (Y, Z) and (Y ′, Z ′) two solutions of bakward SDE with data (ξ, f, g) in theappropriate spae. We denote by (U, V ) the proess (Y − Y, Z − Z); we show easily that thisproess is solution to the following bakward doubly SDE:
Ut =

∫ T

t

h(s, Uss, Vs)ds+

∫ T

t

k(s, Us, Vs)
←−
dBs −

∫ T

t

VsdWs, 0 ≤ t ≤ T,where h and k stand the random funtions
h(s, y, z) = f(s, y + Y ′

s , z + Z ′
s)− f(s, Y ′

s , Z
′
s),

k(s, y, z) = g(s, y + Y ′
s , z + Z ′

s)− g(s, Y
′
s , Z

′
s).Thanks to assumptions (A2), (A3) and (A4), funtions h and k satisfy assumption (3.4) withrespetively h0

s = k0
s = 0. By Lemma 3.2, we get immediately that (U, V ) = (0, 0).ExisteneIn order to simplify the alulations, we will always assume that ondition (A3) is satis�edwith µ = 0. If it is not true, the hange of variables Ỹt = eµtYt, Z̃t = eµtZt redues to this ase.We also split existene into two stepsStep 1. In this part ξ, sup f 0

t , are supposed bounded random variables and r a positive realsuh that
e(1+λ2)T (‖ξ‖∞ + T‖f 0‖∞) < r.Let θr be a smooth funtion suh that 0 ≤ θr ≤ 1 and
θr(y) =






1 for |y| ≤ r

0 for |y| ≥ r + 1.11



For eah n ∈ IN∗, we denote qn(z) = z n
|z|∨n

and set
hn(t, y, z) = θr(y)(f(t, y, qn(z))− f

0
t )

n

πr+1(t) ∨ n
+ f 0

t .Thanks to Pardoux et al. [2℄, this funtion still satis�es quadrati ondition (A3) but with apositive onstant. Then data (ξ, hn, g) satis�es assumptions of Theorem 4.1. Hene, for eah
n ∈ IN∗, bakward doubly SDE assoiated to (ξ, hn, g) has a unique solution (Y n, Zn) in spae
S2 ×M2.Sine

y hn(t, y, z) ≤ |y| ‖f 0‖∞ + λ|y| |z|hold and ξ and g are bounded, Lemma 2.2 in [1℄ applied in our ase provide that the proess
Y n satis�es the inequality ‖Y n‖∞ ≤ r. In addition, from Lemma 3.2,

‖Zn‖M2 ≤ r′ (4.1)where r′ is another onstant. As a byprodut (Y n, Zn) is a solution to the re�eted generalizedBSDE assoiated to (ξ, fn, g) where
fn(t, y, z) = (f(t, y, qn(z))− f

0
t )

n

πr+1(t) ∨ n
+ f 0

twhih satis�ed assumption (A3) with µ = 0.We now have, for i ∈ IN, setting Ȳ n,i = Y n+i − Y n, Z̄n,i = Zn+i − Zn, applying assumptions
(A2) and (A3) on fn+i and (A4) on g

eat|Ȳ n,i
t |

2 + (1− ε− α)

∫ T

t

eas|Z̄n,i
s |

2ds

≤ 2

∫ T

t

eas〈Ȳ n,i
s , fn+i(s, Y

n
s , Z

n
s )− fn(s, Y n

s , Z
n
s )〉ds

+(
1

ε
λ2 + λ− a)

∫ T

t

eas|Ȳ n,i
s |

2ds

+2

∫ T

t

eas〈Ȳ n,i
s , (g(s, Y n+i, Zn+i)− g(s, Y n, Zn))dBs〉

−2

∫ T

t

eas〈Ȳ n,i
s , Z̄n,i

s dWs〉,for any a > 0 and ε > 0. Next, hoosing ε small enough suh that γ = 1− ε− α > 0 and after
12



α suh that (1
ε
λ2 + λ− a) ≤ 0, we obtain

eat|Ȳ n,i
t |

2 + γ

∫ T

t

eas|Z̄n,i
s |

2ds

≤ 2

∫ T

t

eas〈Ȳ n,i
s , fn+i(s, Y

n
s , Z

n
s )− fn(s, Y n

s , Z
n
s )〉ds

+(
1

ε
λ2 + λ− a)

∫ T

t

eas|Ȳ n,i
s |

2ds

+2

∫ T

t

eas〈Ȳ n,i
s , (g(s, Y n+i, Zn+i)− g(s, Y n, Zn))dBs〉

−2

∫ T

t

eas〈Ȳ n,i
s , Z̄n,i

s dWs〉.But ‖Ȳ n,i‖∞ ≤ 2r so that
eat|Ȳ n,i

t |
2 + γ

∫ T

t

eas|Z̄n,i
s |

2ds

≤ 4r

∫ T

t

eas|fn+i(s, Y
n
s , Z

n
s )− fn(s, Y n

s , Z
n
s )|ds

+(
1

ε
λ2 + λ− a)

∫ T

t

eas|Ȳ n,i|2ds

+2

∫ T

t

eas〈Ȳ n,i
s , (g(s, Y n+i, Zn+i)− g(s, Y n, Zn))dBs〉

−2

∫ T

t

eas〈Ȳ n,i
s , Z̄n,i

s dWs〉and using suessively Gronwall lemma and the BDG inequality, we get, for a onstant Cdepending only on λ, α and T ,IE [ sup
0≤t≤T

|Ȳ n,i
t |

2 +

∫ T

t

|Z̄n,i
s |

2ds

]
≤ CrIE [∫ T

t

|fn+i(s, Y
n
s , Z

n
s )− fn(s, Y n

s , Z
n
s )|ds

]
.On the other hand, sine ‖Y n‖∞ ≤ r, we get

|fn+i(s, Y
n
s , Z

n
s )− fn(s, Y n

s , Z
n
s )| ≤ 2λ|Zn|1{|Zn| >n} + 2λ|Zn|1{πr+1>n} + 2πr+11{πr+1>n}from whih we dedue, aording assumption (A8) and inequality (4.1) that (Y n, Zn) is a auhysequene in the Banah spae S2 ×M2. It is easy to pass to the limit in the approximatingequation, yielding a solution to bakward doubly SDE (2.1).Step 2. We now treat the general ase. For eah n ∈ IN∗, let us de�ne

ξn = qn(ξ), fn(t, y, z) = f (t, y, z)− f 0
t + qn(f 0

t ).13



For eah triplet (ξn, fn, g), BSDE (1) has a unique solution (Y n, Zn) ∈ L2 thanks to the �rststep of this proof, but in fat also in all Lp, p > 1 aording to Lemma 3.1. Now from Lemma3.2 an assumption (A7), for (i, n) ∈ IN× IN∗,IE{ sup
0≤t≤T

|Y n+i
t − Y n

t |
p +

(∫ T

0

|Zn+i
t − Zn

t |
2ds

)p/2
}

≤ CIE{|ξn+i − ξn|
p +

(∫ T

0

|qn+i(f
0
s )− qn(f 0

s )|ds

)p}
,where C depends on T, α and λ.The right-hand side of the last inequality learly tends to 0, as n→∞, uniformly in i, sowe have again a Cauhy sequene and the limit is a solution to bakward doubly SDE (2.1).Referenes[1℄ Briand PH.; Carmona R. BSDE with polynomial growth generators. J. Appl. Math.Stohasti. Anal. 13 (2000), no. 3, 207− 238.[2℄ Briand, PH.; Deylon, D., Hu, Y; Pardoux, E.; Stoia L. Lp− solution of Bakward stohas-ti di�erential equations. Stohasti Proess. Appl. 108 (2003), no. 1, 109− 129.[3℄ Nualart, D.; Pardoux, É. Stohasti alulus with antiipating integrands. Probab. TheoryRelated Fields 78 (1988), no. 4, 535− 581.[4℄ N'zi, M.; Owo, J. M. Bakward doubly stohasti di�erential equations with disontinuousoe�ients. Statist. Probab. Lett. (2008), doi:10.1016/j.spl.2008.11.011.[5℄ N'zi, M.; Owo, J. M. Bakward doubly stohasti di�erential equations with non-lipshitzoe�ients. Random Oper. Stohasti Equations 16 (2008), no. 307− 324[6℄ Pardoux, E.; Peng, S. Bakward doubly stohasti di�erential equations and systems ofquasilinear SPDEs. Probab. Theory Related Fields 98 (1994), no. 2, 209− 227.[7℄ Peng, S.; Shi, Y. A type of time-symmetri forward-bakward stohasti di�erential equa-tions. C. R. Aad. Si. Paris 336 (2004), no. 1, 773− 778.[8℄ Shi, Y.; Gu, Y.; Liu, K. Comparison theorem of bakward doubly stohasti di�erentialequations and appliations. Stoh. Ana. Appl. 23 (1998), no. 1, 1− 14.
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