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We show that inflationary cosmology may be used to test the statistical
predictions of quantum theory at very short distances and at very early times.
Hidden-variables theories, such as the pilot-wave theory of de Broglie and Bohm,
allow the existence of vacuum states with non-standard field fluctuations (‘quan-
tum nonequilibrium’). We show that inflationary expansion can transfer mi-
croscopic nonequilibrium to macroscopic scales, resulting in anomalous power
spectra for the cosmic microwave background. The conclusions depend only
weakly on the details of the de Broglie-Bohm dynamics. We discuss, in partic-
ular, the nonequilibrium breaking of scale invariance for the primordial (scalar)
power spectrum. We also show how nonequilibrium can generate primordial
perturbations with non-random phases and inter-mode correlations (primordial
non-Gaussianity). We address the possibility of a low-power anomaly at large
angular scales, and show how it might arise from a nonequilibrium suppression
of quantum noise. Recent observations are used to set an approximate bound
on violations of quantum theory in the early universe.
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1 Introduction

According to inflationary cosmology [1], the early universe underwent a period
of exponential expansion, during which microscopic quantum fluctuations were
stretched to macroscopic scales. The resulting (classical) primordial pertur-
bations seem to be of the form required to explain the observed temperature
anisotropy in the cosmic microwave background (CMB), and are widely be-
lieved to have seeded the formation of large-scale structure generally. In this
scenario, precision CMB measurements today can provide information about
— and tests of — microscopic physics in the very early universe. For this rea-
son, many workers have turned to inflationary CMB predictions in the hope
that these will provide a ‘cosmic microscope’ with which to probe high-energy
physics at very short distances and at very early times. However, if the pri-
mordial perturbations do indeed have a quantum origin, then inflationary CMB
predictions will also be sensitive to the structure of quantum theory itself, as well
as to that of high-energy physics. Therefore, inflationary cosmology and CMB
measurements may equally be used to probe possible deformations of quantum
theory at very short distances and at very early times.

In a typical inflationary scenario, at very early times the cosmological scale
factor a(t) undergoes a period of approximately exponential growth, a ∝ eHt

with H ≈ const.. During inflation, field perturbation modes have physical
wavelengths λphys = a(t)λ ∝ eHt. (As usual, λ = 2π/k is the wavelength
today — the ‘comoving wavelength’ — and we set the scale factor today to be
a0 = 1.) A mode ‘exits’ the Hubble radius H−1 when λphys & H−1, at a time
texit = texit(k) (which can be defined by 2πa(texit)/k ∼ H−1 or by a(texit)/k ∼
H−1). Soon after texit(k), the perturbation ‘freezes’ and becomes part of the
primordial spectrum. After inflation ends, physical wavelengths λphys ∝ a grow
more slowly than the Hubble radius H−1 ≡ a/ȧ ∝ t (where a ∝ t1/2 or t2/3, for
radiation-dominated or matter-dominated expansion respectively). Mode ‘re-
entry’ occurs at a time tenter(k) when λphys . H−1, after which the (formerly-
frozen) perturbations begin to grow, eventually giving rise to anisotropies in the
CMB and to large-scale structure [2].

While there are many uncertainties surrounding the details of inflationary
cosmology, there is a broad consensus that the formation of (frozen) primordial
perturbations takes place when the corresponding physical wavelengths λphys &
H−1 are truly microscopic. Further, because of the huge expansion during
the inflationary phase, the relevant modes will have had very short physical
wavelengths, λphys << H−1, at the onset of inflation (where the shorter the
wavelength, the later the time at which the mode exits the Hubble radius during
the inflationary phase). Indeed, it appears that even modes with initial λphys .
lP, where lP ≈ 10−33 cm is the Planck length, may contribute to the primordial
spectrum [3]. Clearly, if inflation did indeed occur, then precision measurements
of the CMB (and of large-scale structure generally) can probe physics at very
early times and at very short distances (possibly even at distances . lP , to the
extent that this might be meaningful).

A number of possible deformations of high-energy physics have been consid-
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ered in an inflationary context. These include: (a) modified dispersion relations
(which may be introduced ad hoc [3, 4], or which may be motivated by quantum-
gravitational deformations of Lorentz invariance [5] or by quantum cosmology
[6]); (b) an ultra-violet cutoff coming from a fundamental length associated
with deformed uncertainty relations (possibly associated with quantum gravity
or string theory) [7]; (c) short-distance non-commutative geometry [8]. Some
authors consider that changes in physics at very high energies may have an ef-
fective description in terms of different choices of quantum vacuum [9] (for a
review, see ref. [10]). Excited, non-vacuum states have also been considered [11].
However, while it is generally agreed that inflationary primordial perturbations
have a quantum origin, effects on the CMB arising from possible deformations
of quantum theory itself are not usually considered. (By ‘quantum theory’ we
mean, essentially, the representation of physical states in Hilbert space, with
unitary evolution, and with probabilities given by the Born rule.) An exception
is Perez et al. [12], who discuss how predictions for the CMB could be affected
by a hypothetical dynamical collapse of the wave function, a proposal that is
motivated by the quantum measurement problem (which seems especially severe
in a cosmological setting).

Despite the widespread reluctance to consider deformations of quantum the-
ory itself, there is in fact no good scientific reason for believing that the structure
of standard quantum theory is ‘final’, or that the predictions of quantum theory
will continue to hold under all conditions. The following arguments are often
presented as evidence for the finality of quantum theory: that it provides a
universal framework applicable to all systems independently of their composi-
tion (electrons, fields, atoms etc.); that it is based on simple, elegant axioms;
that it provides the basis for powerful new technologies; and, of course, that in
all cases so far it agrees with experiment. However, arguments similar to these
could have been made in the eighteenth and nineteenth centuries concerning the
status of Newtonian mechanics: at that time, Newtonian mechanics seemed to
provide a universal framework applicable to all systems independently of their
composition (rocks, fluids, planets etc.); it was based on simple, elegant axioms
(Newton’s three laws of motion); it provided the basis for powerful new tech-
nologies; and it agreed with all experiments performed to date. And yet, we now
know that Newtonian mechanics is in fact merely approximate and emergent,
arising from a classical and low-energy limit of relativistic quantum field theory.
Of course, that Newtonian mechanics proved to be approximate and emergent
does not imply that quantum theory will necessarily turn out likewise. However,
the case of Newtonian mechanics does suggest that the above (frequently-cited)
arguments for the finality of a physical theory are not reliable.

The ultimate test of the domain of validity of a scientific theory is, of course,
experiment. No matter how well a theory has been tested in the past, it will
always be subject to possible modification in the future, in hitherto untested
regimes. Therefore, in order to expand our knowledge of the domain of validity
of any given theory, it is necessary to subject it to ever more stringent tests in
ever more extreme conditions. To accomplish this, it is helpful to have a ‘foil’
against which to test the theory in question — that is, to have a model reducing
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to the given theory only in some limit.
In the case of quantum theory, a number of alternatives or foils might be con-

sidered. Models with a nonlinear evolution or with a dynamical collapse of the
wave function have, for example, been subjected to considerable experimental
scrutiny. In this paper, we focus on a different possibility: that of nonequilib-
rium hidden variables [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

A deterministic hidden-variables theory, such as the pilot-wave theory of
de Broglie [27, 28] and Bohm [29], agrees with quantum theory only in the
limit in which the hidden parameters have a particular ‘quantum equilibrium’
distribution [13, 14, 15, 18, 24, 26]. A foil against which to test quantum theory
may then be obtained from such a theory by allowing the hidden variables
to have a non-standard or ‘quantum nonequilibrium’ distribution, resulting in
statistical predictions that deviate from those of quantum theory [25].2 Such
possible corrections to quantum theory will be explored here, in the context of
inflationary cosmology, where it will be shown how CMB observations may be
used to set bounds on the presence of quantum nonequilibrium at very short
distances and very early times.

If anomalies are observed in the CMB, one must of course ask if they are
caused by corrections to quantum theory or by some other effect. (For example,
the quantum state during the inflationary phase might differ significantly from
the standard Bunch-Davies vacuum [11].) A similar issue arises for other pro-
posed corrections to standard physics in the early universe. Ideally, one would
like to find a unique signature that could not be predicted by any quantum state
compatible with inflation. In practice, one would at least require a quantitative
prediction of a deviation from standard results. The present paper focusses on
showing that early quantum nonequilibrium – for a given (standard) quantum
state – could have observable consequences for the CMB. We also sketch two
scenarios that would lead to a specific prediction: for example, deviations for
wavelengths larger than a certain (predicted) infra-red cutoff. But the full devel-
opment of these scenarios, and the extraction of precise quantitative predictions
from them, is left for future work.

In section 2, we review the notion of quantum nonequilibrium, in de Broglie-
Bohm theory and in general (deterministic) hidden-variables theories, and we
provide motivation for why quantum nonequilibrium might exist in the very
early universe. In section 3, we develop pilot-wave field theory on an expanding
space, and we write down equations for the time evolution of arbitrary (nonequi-
librium) distributions in an expanding universe. In section 4, we discuss two
scenarios whereby quantum nonequilibrium could exist during inflation: first,
nonequilibrium for large-wavelength modes could survive from a pre-inflationary
era, since under the right conditions relaxation can be suppressed at large wave-
lengths on an expanding space; second, nonequilibrium might be generated by
novel gravitational processes at the Planck scale. In section 5, we review the
standard theory of CMB temperature anisotropies, their explanation in terms

2Note the clear distinction from the foils based on local hidden-variables models [30] or on
a particular restricted class of nonlocal models [31]: such models disagree with the quantum
predictions for any distribution (equilibrium or otherwise) of the hidden variables.

4



of primordial curvature perturbations, and the production of the latter by infla-
ton fluctuations during inflation. In section 6, we calculate the time evolution
of quantum nonequilibrium in the Bunch-Davies vacuum on de Sitter space,
and we show that the width Dk(t) of the nonequilibrium distribution for each
mode of wave number k remains in a fixed ratio

√

ξ(k) ≡ Dk(t)/∆k(t) with
the equilibrium (quantum) width ∆k(t). In section 7, we show how the power
spectrum for the primordial curvature perturbations is corrected by the factor
ξ(k). Some general remarks are made in section 8, concerning the transfer of
microscopic nonequilibrium to cosmological scales, the effective quantum mea-
surement of the inflaton field during the ‘quantum-to-classical’ transition, and
the weak dependence of our results on the details of pilot-wave dynamics. In
section 9, we use current CMB data to derive an approximate bound on quan-
tum nonequilibrium during inflation; specifically, under certain assumptions, we
show that the hidden-variable relative entropy Shv(k) (which measures the dif-
ference between nonequilibrium and quantum probabilities for a mode of wave
number k) satisfies the approximate bound |Shv(k)| . 10−2 for values of k
close to k0 = 0.002 Mpc−1. In section 10, we consider the possibility of a low-
power anomaly at large angular scales, and we discuss how it might arise from
a nonequilibrium suppression of quantum noise (ξ(k) < 1) in certain regions
of k-space. In section 11, we show how nonequilibrium can generate primor-
dial perturbations with non-random phases and inter-mode correlations. Our
conclusions are given in section 12.

2 Quantum equilibrium and quantum nonequi-

librium

The notion of quantum nonequilibrium was first discussed in detail in terms of
de Broglie-Bohm theory [13, 14, 15], and was later generalised to include all
(deterministic) hidden-variables theories [18, 19, 21, 24].

Consider, for example, the very simple case of de Broglie-Bohm theory ap-
plied to a single nonrelativistic particle with mass m and no spin. The wave
function ψ = |ψ| eiS (with units ~ = 1) acts as a ‘pilot wave’ that deter-
mines the velocity of the particle according to de Broglie’s guidance equation
dx/dt = (1/m)∇S (or dx/dt = (1/m) Im (∇ψ/ψ)) — an equation that deter-
mines the trajectory x(t) of the particle, given the initial position x(0) (assuming
that ψ = ψ(x, t) is known for all x and t, by solving the Schrödinger equation
with a given initial wave function ψ(x, 0)). Let ψ propagate in free space, then
strike a screen with two slits, and finally strike a backstop where the particle
is detected. The pilot wave undergoes interference upon traversing the screen.
The location x(t) of the particle at any time t is determined (in principle) by
the initial value x(0); in particular, where the particle lands on the backstop
is determined by x(0). Because the velocity field (1/m)∇S is equal to the
usual quantum probability current j divided by the usual quantum probabil-
ity density |ψ|2, it follows trivially that an initial ensemble of particles guided
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by the same pilot wave ψ and with positions x(0) distributed according to the

equilibrium rule ρ(x, 0) = |ψ(x, 0)|2 will evolve into an equilibrium distribution

ρ(x, t) = |ψ(x, t)|2 at later times, resulting in the usual quantum distribution
of particles at the backstop (showing the usual interference pattern). On the
other hand, it is easy to see that in general an initial ‘nonequilibrium’ ensem-
ble with distribution ρ(x, 0) 6= |ψ(x, 0)|2 results in a non-quantum distribution

ρ(x, t) 6= |ψ(x, t)|2 at the backstop. (For example, in the absence of a rapid di-
vergence of neighbouring trajectories, if ρ(x, 0) is concentrated around a single
initial point x(0) then ρ(x, t) will be concentrated around a single trajectory
x(t), and the usual interference pattern will be replaced by a single localised
spot.)

The pilot-wave theory of a many-body system was first proposed by de
Broglie at the 1927 Solvay conference [27, 28, 26]. For a system of n (non-
relativistic) particles with positions xi(t) and masses mi, de Broglie’s law of
motion takes the form

dxi

dt
=

1

mi
Im

∇iψ

ψ
=

∇iS

mi
, (1)

where ψ = ψ(x1, ....,xn, t) is the many-body wave function. De Broglie regarded
(1) as expressing a unification of the principles of Maupertuis and Fermat, re-
sulting in a new form of dynamics based on velocities [28].

Writing the total configuration as q = (x1,x2, ....,xn), it is again readily
shown that for an ensemble of systems guided by the same wave ψ and with
configurations distributed according to ρ(q, 0) = |ψ(q, 0)|2, the distribution of

configurations at later times will be ρ(q, t) = |ψ(q, t)|2.
As shown in detail by Bohm in 1952 [29], the above ‘de Broglian’ dynam-

ics may be applied to the process of quantum measurement itself, by treating
the system being measured together with the measuring apparatus as a single
many-body system of n particles. The total configuration q = (x1,x2, ....,xn)
then defines the ‘pointer position’ of the apparatus, as well as defining the con-
figuration of the measured system. For each run of a quantum experiment, the
evolution is deterministic: the initial conditions q(0), ψ(q, 0) determine the final
conditions q(t), ψ(q, t). Over an ensemble of initial configurations q(0) guided
by the same wave function ψ, if we assume the initial quantum equilibrium con-
dition ρ(q, 0) = |ψ(q, 0)|2, then the statistical distribution of pointer positions
at later times will agree with the predictions of quantum theory.

Schematically, during a standard quantum measurement, the initial packet
ψ(q, 0) on configuration space evolves into a superposition ψ(q, t) =

∑

n cnψn(q, t)
of terms ψn(q, t) that separate with respect to the pointer degrees of freedom
(that is, distinct ψn(q, t) have negligible overlap with respect to the pointer de-
grees of freedom). The final configuration q(t) can then be in (the support of)
only one ‘branch’ of the superposition, say ψi(q, t). For an initial equilibrium

ensemble, it is readily shown that this occurs with probability |ci|2, in accor-
dance with the Born rule. Further, inspection of de Broglie’s velocity law (1)
shows that the motion of q(t) will then be affected by ψi(q, t) alone, resulting
in an effective ‘reduction’ of the wave function.
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As in the simple example of a single particle undergoing interference, for a
general quantum measurement the distribution of outcomes depends crucially
on the assumed initial distribution ρ(q, 0) of initial configurations q(0). For

a nonequilibrium ensemble, ρ(q, 0) 6= |ψ(q, 0)|2, the distribution of quantum
measurement outcomes will generally disagree with the predictions of quantum
theory (assuming that relaxation to equilibrium has not taken place in the
meantime — see below).

De Broglie’s dynamics may be readily applied to fields, where (say for a scalar
field φ) the motion of the field configuration q(t) = φ(x, t) is determined by the
Schrödinger wave functional Ψ[φ(x), t]. Indeed, for any system with configura-
tion q and Hamiltonian Ĥ , as long as the Schrödinger equation i∂ψ/∂t = Ĥψ
for ψ(q, t) has an associated current j = j [ψ] = j(q, t) in configuration space,
obeying a continuity equation

∂ |ψ|2
∂t

+∇ · j = 0

(with ∇ ≡ ∂/∂q), one may define a de Broglian or pilot-wave dynamics for the
system, by introducing the configuration-space velocity field

dq

dt
=

j

|ψ|2
. (2)

Such a velocity field exists, in fact, whenever Ĥ is given by a differential oper-
ator [32]. (In this dynamics, ψ is viewed as a physical field or ‘pilot wave’ in
configuration space, guiding the motion of an individual system. Note that ψ
has no a priori connection with probabilities. Furthermore, because ψ is not
an ordinary field in spacetime, it does not itself carry an energy or momentum
density.)

For an ensemble of systems, each with the same wave function ψ(q, t), we

may consider an arbitrary initial distribution ρ(q, 0) 6= |ψ(q, 0)|2, whose time
evolution ρ(q, t) is determined by the de Broglian velocity field q̇ in accordance
with the continuity equation

∂ρ

∂t
+∇ · (ρq̇) = 0 .

Because |ψ|2 obeys the same equation, an initial distribution ρ(q, 0) = |ψ(q, 0)|2
evolves into ρ(q, t) = |ψ(q, t)|2. This is the state of quantum equilibrium, but
the theory clearly allows one (in principle) to consider any initial distribution
— just as classical mechanics allows one to consider any initial distribution
departing from thermal equilibrium.

It is worth emphasising that pilot-wave theory is a radically new form of
dynamics, very different from classical (Newtonian or Hamiltonian) mechanics.
This was in fact de Broglie’s original point of view, but it was unfortunately
obscured by Bohm’s pseudo-Newtonian reformulation of the theory in terms of
a law for acceleration (involving a ‘quantum potential’) [28].
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Pilot-wave dynamics is grounded in configuration space, where ψ propagates.
While the dynamics is local in configuration space, it is highly nonlocal when
projected down to 3-space (as required by Bell’s theorem). For example, if a
particle with position x1 is entangled with a particle with position x2, then
the velocity ẋ1 depends instantaneously on x2 (no matter how remote x2 may
be from x1), and changing the local Hamiltonian at x2 is found to have an
instantaneous effect on the distant velocity ẋ1. Such nonlocal effects are erased
upon averaging over an equilibrium ensemble ρ = |ψ|2; but in nonequilibrium,

ρ 6= |ψ|2, there are (in general) nonlocal signals at the statistical level [14, 15],
suggesting the existence of an underlying preferred foliation of spacetime [33].

Pilot-wave dynamics — as originally formulated by de Broglie — is also
first order in time in configuration space (rather than in phase space): the
fundamental law of motion determines velocities, not accelerations. This last
feature has important implications for the associated kinematics: for particles,
the natural state of motion is rest (instead of uniform motion in a straight line),
and there is indeed a natural preferred foliation of spacetime with a fundamental
time parameter t (consistent with the fundamental nonlocality of the theory)
[34].

Quantum nonequilibrium may be considered, not only in pilot-wave the-
ory, but also in any deterministic hidden-variables theory [18, 19, 21, 24]. For
any such theory, given macroscopic experimental settingsM , there is a mapping
ω = ω(M,λ) from initial hidden variables λ to final outcomes ω of quantum mea-
surements. There is also a ‘quantum equilibrium’ probability measure ρQT(λ),
defined on the set of hidden variables, that yields quantum probabilities PQT(ω)

for the outcomes. (In the case of pilot-wave theory, ρQT(λ) is given by ρ = |ψ|2.)
Once such a theory has been constructed, one may consider arbitrary ‘nonequi-
librium’ probability measures ρ(λ) 6= ρQT(λ), resulting in outcome probabilities
P (ω) 6= PQT(ω) that depart from the predictions of quantum theory.

In this paper we shall be studying quantum nonequilibrium in the context of
inflationary cosmology, using the pilot-wave theory of fields as a concrete exam-
ple. However, we emphasise that similar studies could be made in any determin-
istic hidden-variables theory, simply by making the replacement ρQT(λ) → ρ(λ).

At present, pilot-wave theory is the only deterministic hidden-variables the-
ory of broad scope that we possess, though some attempts have been made to
construct alternative theories. For example, in the 1980s, Smolin attempted to
construct a deterministic hidden-variables theory of an N -body system, based
on the classical Hamiltonian dynamics of a certain N ×N matrixMij(t), whose
eigenvalues correspond to particle positions and whose off-diagonal elements
correspond to nonlocal hidden variables associated with pairs of particles [35].
Adopting a classical action principle for the (deterministic) dynamics of the
matrix, Smolin made a number of assumptions, including a statistical assump-
tion to the effect that the coarse-grained evolution of the off-diagonal terms
amounts to a Brownian motion. In the limit of a large number N of particles
with massesmi, it was shown from these assumptions that the particle positions
also undergo a Brownian motion, that the ith particle current velocity vi (the
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average of the mean forward and backward velocities) is given by a gradient,
vi = ∇iS/mi, where S is a function on configuration space, and that the com-
plex function ψ ≡ √

ρeiS (where ρ is the particle probability distribution on
configuration space) satisfies the Schrödinger equation for a many-body non-
relativistic system. Smolin’s strategy was to show that his assumptions led, in
the limit of large N , to the basic postulates of Nelson’s stochastic mechanics
[36]. As was already known, in Nelson’s theory — which is based on a form
of Brownian motion subject to special conditions, including the condition that
vi = ∇iS/mi for some function S — the derived quantity ψ ≡ √

ρeiS indeed
satisfies the Schrödinger equation.

More recently, a model similar to the above (though based on the bosonic
part of the classical matrix models used in string and M theory) was again inves-
tigated by Smolin, with similar assumptions and results [37]. In ref. [35], it had
also been suggested that one might consider a model in which the off-diagonal
matrix elements of Mij(t) are constant, with fluctuations in a local system aris-
ing from the nonlocal transmission of fluctuations from other particles in remote
regions of space. This last model has recently been recast in terms of the dy-
namics of a graph with N nodes [38]: assuming that the edges of the graph do
not evolve in time, the corresponding adjacency matrix is constant, and is taken
to be the off-diagonal part of matrices Mij(t). Again, as in Smolin’s original
model, assumptions are made so as to arrive at Nelson’s stochastic mechanics
in some approximation.

However, while it is often claimed that Nelson’s theory is empirically equiv-
alent to quantum theory, unfortunately, as shown by Wallstrom [39], the two
theories are in fact not equivalent, because Nelson’s function S does not have
the specific multivalued structure required for the phase of a single-valued (and
continuous) complex field ψ. The Schrödinger equation is indeed derived, but
only for the exceptional set of wave functions with no nodes, for which the circu-
lation of ∇iS around all closed curves vanishes. Since almost all wave functions
have nodal points (where ψ = 0), quantum theory cannot be derived from Nel-
son’s theory, or from any model that leads to Nelson’s theory. (Note that there
is no such problem in pilot-wave theory, where ψ is regarded as a basic entity.)

Thus, as they stand, the deterministic models of refs. [35, 37, 38] seem to
yield derivations of Nelsonian mechanics, but not of quantum mechanics. Some
basic element is missing. One must somehow ensure that the circulation of ∇iS
around nodes of ρ can be non-zero but always restricted to integer multiples of
2π. (And if one wishes to derive the wave function, then of course one cannot
simply assume at the outset that S is the phase of a complex-valued field.)
Still, if some way were found to solve Wallstrom’s phase problem, then such
derivations of Nelsonian mechanics as an average over a certain statistical state
could again be generalised to arbitrary statistical states, yielding nonequilibrium
departures from quantum theory in the sense considered here.3

3Smolin [40] has attempted to solve Wallstrom’s phase problem by allowing discontinuous
wave functions. However (even leaving aside the resulting divergences for expectation values
of quantum observables such as kinetic energy), Smolin applies his prescription only to the
case of a particle moving on a circle, which is too simple to capture the nature of the problem
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As another example, Adler [42] has constructed what appears to be a deter-
ministic hidden-variables theory, in which the parameters λ are matrices with
Grassmann (even and odd) valued elements, obeying a generalised form of clas-
sical Hamiltonian dynamics. The state of thermal equilibrium, defined in the
usual way on phase space, is argued to lead (after some approximations) to
a quantum-like phenomenology with a dynamical wave function collapse. The
precise nature of Adler’s theory seems to require further elucidation; but if it is
indeed a hidden-variables theory in the sense meant here, then thermal nonequi-
librium in Adler’s theory should again correspond to quantum nonequilibrium.

In the author’s view, because Hamiltonian dynamics is of second order in
configuration space, it is not a natural framework for nonlocal theories with
a preferred state of rest or preferred slicing of spacetime — unlike pilot-wave
dynamics, which is first order in configuration space, and which therefore (as
we have mentioned) provides a natural setting for such theories [34]. But even
so, the above alternative theories based on Hamiltonian dynamics do illustrate
that the idea of quantum nonequilibrium is a general one.

For the purposes of this paper, it suffices that there exists at least one
model of quantum nonequilibrium, based on pilot-wave dynamics, that may
serve as a foil against which to test quantum theory. To be able to provide
quantitative bounds on violations of quantum theory in the early universe is
motivation enough to consider models with quantum nonequilibrium. Even
so, before proceeding, let us briefly provide some further motivation for why
quantum nonequilibrium might exist at very early times.

First, it has been shown that in pilot-wave theory the equilibrium state ρ =
|ψ|2 may be understood as arising from a process of relaxation that is analogous
to classical thermal relaxation, where the former is defined on configuration
space rather than on phase space. The difference between ρ and |ψ|2 may be
quantified by the H-function

H =

∫

dq ρ ln(ρ/ |ψ|2) (3)

(equal to minus the relative entropy of ρ with respect to |ψ|2), which obeys a
coarse-graining H-theorem analogous to the classical one, and where the mini-
mum H = 0 corresponds to ρ = |ψ|2 [13, 15, 17]. Further, numerical simulations
for simple two-dimensional systems [23, 43] show a remarkably efficient approach
to equilibrium, with an approximately exponential decay of the coarse-grained

H-function, H̄(t) → 0, and a corresponding coarse-grained relaxation ρ̄ → |ψ|2
(assuming appropriate initial conditions for ρ and ψ).4 Because all the systems
we have access to (such as hydrogen atoms in the laboratory) have a long and
violent astrophysical history, we would then expect to see quantum equilibrium

raised by Wallstrom. In higher dimensions — for example even in two dimensions, and with
just one node — allowing discontinuous wave functions results in an ill-defined (one-to-many)
mapping from Nelsonian states to quantum states. For a full discussion, see ref. [41].

4The understanding of relaxation in pilot-wave theory is subject to the usual caveats —
familiar from classical statistical mechanics — associated with initial conditions and time
reversal. For detailed discussions of this point, see refs. [15, 16, 17, 23].
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in these systems. While it is logically possible, of course, that the universe was
simply born in a state of quantum equilibrium, it seems more natural to con-
sider that the equilibrium we see today arose from relaxation processes in the
remote past [16, 17], in which case the very early universe is the natural place
to look for nonequilibrium phenomena.

Second, an appealing feature of this picture concerns the status of locality in
physics. It may be shown that quantum nonequilibrium for entangled systems
leads to nonlocal signals at the statistical level, in pilot-wave theory (as already
mentioned) and indeed in any deterministic hidden-variables theory; while in
equilibrium, the underlying nonlocal effects cancel out at the statistical level
[14, 15, 18, 19, 26]. Locality is therefore a contingency (or emergent feature)
of the equilibrium state. Similarly, standard uncertainty-principle limitations
on measurements are also contingencies of equilibrium [14, 15, 20, 24]. These
results provide an explanation for the otherwise mysterious ‘conspiracy’ in the
foundations of current physics, according to which (roughly speaking) quantum
noise and the uncertainty principle prevent us from using quantum nonlocality
for practical nonlocal signalling. From the above perspective, this ‘conspiracy’ is
not part of the laws of physics, but merely a contingent feature of the equilibrium
state (much as the inability to convert heat into work, in a state of global thermal
equilibrium, is not a law of physics but a contingency of the state). On this view,
quantum physics is merely the effective description of a particular state — just
as, for example, the standard model of particle physics is merely the effective
description of (perturbations around) a particular vacuum state (arising from
spontaneous symmetry breaking). If one takes this view seriously, it suggests
that nonequilibrium phenomena should exist somewhere (or some time) in our
universe. And again, the early universe seems the natural place to look.

Quantum nonequilibrium at very early times may also be motivated by the
cosmological horizon problem, which may be avoided by the explicit nonlocality
associated with nonequilibrium [14, 15, 16, 19] — see section 4.1.

Finally, if one takes de Broglie-Bohm theory seriously, one should take the
possibility of nonequilibrium seriously as well, since it is only in nonequilibrium
that the underlying details of the theory become visible (via measurements
more accurate than those allowed by quantum theory [20, 24]). If instead the
universe is always and everywhere in quantum equilibrium, the details of de
Broglie-Bohm trajectories will be forever shielded from experimental tests, and
de Broglie-Bohm theory itself would be unacceptable as a scientific theory.

For the above reasons, then, we are led to consider the hypothesis of quan-
tum nonequilibrium at or close to the big bang [13, 14, 15, 16, 17, 25, 26]. It
is the purpose of this paper to show that inflationary cosmology provides a
means of testing this hypothesis, through precision measurements of the cosmic
microwave background.
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3 Pilot-wave field theory on expanding space

For simplicity we restrict ourselves to a flat metric,

dτ2 = dt2 − a2dx2 , (4)

where again a(t) is the scale factor, with Hubble parameter H ≡ ȧ/a. As is
customary, we take a0 = 1 today (at time t0), so that |dx| is a comoving distance
(or proper distance today).

A free (minimally-coupled) massless scalar field φ has a Lagrangian density
L = 1

2g
1/2∂αφ∂

αφ or

L = 1
2a

3φ̇
2 − 1

2a(∇φ)2 , (5)

with an action
∫

dt
∫

d3x L (where x are comoving coordinates). This implies

a canonical momentum density π = ∂L/∂φ̇ = a3φ̇ and a Hamiltonian density

H = 1
2

π2

a3
+ 1

2a(∇φ)2 . (6)

The equations of motion φ̇ = δH/δπ, π̇ = −δH/δφ (with H =
∫

d3x H) lead to
the classical wave equation

φ̈+
3ȧ

a
φ̇− 1

a2
∇2φ = 0 . (7)

Pilot-wave field theory is defined in terms of the functional Schrödinger pic-
ture, with a preferred foliation of spacetime [15, 16, 29, 44, 45, 46, 47, 48, 49].
For an expanding universe with metric (4), containing a scalar field φ with
Hamiltonian density (6), a general wave functional Ψ[φ, t] = 〈φ(x)|Ψ(t)〉 (where
|φ(x)〉 is a field eigenstate) satisfies the functional Schrödinger equation5

i
∂Ψ

∂t
=

∫

d3x

(

− 1

2a3
δ2

δφ2
+

1

2
a(∇φ)2

)

Ψ (8)

(with the usual realisations φ̂ → φ, π̂ → −iδ/δφ). This implies the continuity
equation

∂ |Ψ|2
∂t

+

∫

d3x
δ

δφ

(

|Ψ|2 1

a3
δS

δφ

)

= 0 (9)

(where Ψ = |Ψ| eiS), from which one may identify the de Broglie velocity

∂φ

∂t
=

1

a3
δS

δφ
(10)

for an individual field configuration. Here, again, Ψ is interpreted as a physical
field in configuration space, guiding the evolution of an individual field φ(x, t) in
3-space. (Note that S is defined only locally, as S = Im lnΨ. One may equally
write (10) as ∂φ

∂t = 1
a3 Im

1
Ψ

δΨ
δφ , without mentioning S.)

5As usual in this context, some sort of regularisation is implicitly assumed.
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A similar construction may be given in any globally-hyperbolic spacetime, by
choosing a preferred foliation [22]. Thus there is no need for spatial homogeneity.

Over an ensemble of field configurations guided by the same pilot wave Ψ,
there will be some (in principle, arbitrary) initial distribution P [φ, ti], whose
time evolution P [φ, t] will be determined by

∂P

∂t
+

∫

d3x
δ

δφ

(

P
1

a3
δS

δφ

)

= 0 . (11)

If P [φ, ti] = |Ψ[φ, ti]|2, then P [φ, t] = |Ψ[φ, t]|2 for all t, and empirical agreement
is obtained with standard quantum field theory [29, 45, 46, 47, 48, 49]. On the

other hand, for an initial nonequilibrium distribution P [φ, ti] 6= |Ψ[φ, ti]|2, for
as long as P remains in nonequilibrium, the predicted statistics will generally
differ from those of quantum field theory. In any case, whatever form P may
take (equilibrium or nonequilibrium), its time evolution will be given by (11).

It will prove convenient to rewrite the dynamics in Fourier space. Expressing
φ(x) in terms of its Fourier components

φ
k
=

1

(2π)3/2

∫

d3x φ(x)e−ik·x ,

and writing

φk =

√
V

(2π)3/2
(qk1 + iqk2)

for real qkr (r = 1, 2), where V is a box normalisation volume, the Lagrangian
L =

∫

d3x L becomes

L =
∑

kr

1

2

(

a3q̇2kr − ak2q2kr
)

.

(For V → ∞, 1
V

∑

k
→ 1

(2π)3

∫

d3k and V δkḱ → (2π)3δ3(k− ḱ). The reality of

φ requires φ∗
k
= φ−k

or qk1 = q−k1, qk2 = −q−k2, so that a sum over physical
degrees of freedom should be restricted to half the values of k.) Introducing the
canonical momenta

πkr ≡ ∂L

∂q̇kr
= a3q̇kr ,

the Hamiltonian becomes

H =
∑

kr

(

1

2a3
π2
kr +

1

2
ak2q2

kr

)

.

The Schrödinger equation for Ψ = Ψ[qkr, t] is then

i
∂Ψ

∂t
=

∑

kr

(

− 1

2a3
∂2

∂q2
kr

+
1

2
ak2q2

kr

)

Ψ , (12)
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which implies the continuity equation

∂ |Ψ|2
∂t

+
∑

kr

∂

∂qkr

(

|Ψ|2 1

a3
∂S

∂qkr

)

= 0 (13)

and the de Broglie velocities

dqkr
dt

=
1

a3
∂S

∂qkr
(14)

(again with Ψ = |Ψ| eiS). The time evolution of an arbitrary distribution
P [qkr, t] will then be given by

∂P

∂t
+
∑

kr

∂

∂qkr

(

P
1

a3
∂S

∂qkr

)

= 0 . (15)

For product states

Ψ[qkr, t] =
∏

kr

ψ
kr(qkr, t) (16)

(such as the Bunch-Davies vacuum during inflation), the wave function ψkr for
a single mode kr satisfies

i
∂ψkr

∂t
=

(

− 1

2a3
∂2

∂q2
kr

+
1

2
ak2q2kr

)

ψkr . (17)

Writing ψkr = |ψkr| eiskr (where S =
∑

kr skr), the de Broglie velocity for qkr
is then

dqkr
dt

=
1

a3
∂skr
∂qkr

. (18)

If the initial distribution P [qkr, ti] also takes the product form

P [qkr, ti] =
∏

kr

ρkr(qkr, ti) , (19)

then the time evolution of ρkr(qkr, t) will be given by

∂ρkr
∂t

+
∂

∂qkr

(

ρ
kr

1

a3
∂skr
∂qkr

)

= 0 . (20)

Note that the factorisability condition (19) for the probability distribution
P is logically independent of the factorisability condition (16) for the pilot wave
Ψ. Thus, even for a vacuum state, in nonequilibrium it is still possible to have
inter-mode correlations. For simplicity, in section 6, we shall restrict ourselves to
the case of uncorrelated nonequilibrium modes. The correlated case is discussed
in section 11.
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4 Quantum nonequilibrium in the very early uni-

verse

In this paper, the focus is on setting experimental bounds on possible violations
of quantum theory during inflation. Before proceeding with this, however, let
us indicate how one might (in future work) be able to predict details of such
violations. The scenarios sketched in this section also serve to give a preliminary
idea of the kinds of violations one might expect to find.

4.1 Relic nonequilibrium from a pre-inflationary era

One reason to expect early nonequilibrium to exist is that, as sketched in sec-
tion 2, according to de Broglie-Bohm theory ordinary matter corresponds to a
‘quantum equilibrium phase’, and it is natural to suppose that this equilibrium
state emerged from the violence of the big bang.

Another reason is that nonequilibrium at very early times would unleash the
nonlocality inherent in all hidden-variables theories, thereby evading the horizon
problem associated with an early Friedmann expansion (if there was one). For
a ∝ t1/2 the horizon distance is (with c = 1)

lh(t) = a(t)

∫ t

0

dt́

a(t́)
= 2t ,

and for any two comoving points separated by a coordinate distance |∆x|, we
have lh(t) << a(t) |∆x| for sufficiently small t. On this basis it has been widely
argued that early homogeneity — over seemingly causally-disconnected domains
— is unnatural and puzzling.6 As we have mentioned, the hypothesis of quan-
tum nonequilibrium at the big bang was originally introduced partly to solve
this problem [14, 15, 16, 19]. For the above scalar field, for example, a generic
wave functional Ψ will be entangled across space, so that the field velocity

∂φ(x, t)

∂t
=

1

a3
δS[φ, t]

δφ(x)

at a point x will depend on instantaneous values of the field at remote points
x́ 6= x, and in nonequilibrium this nonlocal dependence will not be hidden by
statistical noise (as it is in quantum theory). Of course the horizon problem
was also one of the historical motivations for introducing inflation: the period
of exponential expansion ensures that our observable region originates from
within a single causal patch [50]. However, even in an inflationary context, it
appears that some models require homogeneity as an initial condition in order
for inflation to begin [51]. Therefore, it is possible that consideration of a pre-
inflationary era will revive the horizon problem, and that some form of early
nonlocality may provide a resolution. The nonlocality could be generated by

6Note, however, that the existence of the puzzle depends on assuming a classical Friedmann
expansion a ∝ t

1/2 all the way back to t = 0.
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quantum nonequilibrium, or perhaps by some other means (other proposals
include topological fluctuations [52] and an increased speed of light at early
times [53]).

If we then assume — for whatever reason — that the pre-inflationary uni-
verse was in a state of quantum nonequilibrium, the question is how the nonequi-
librium will evolve in time, and in particular, whether any of it will survive until
entry into the inflationary era. To address this question, let us first summarise
what is known so far about relaxation in pilot-wave theory.

As already mentioned, numerical simulations for simple two-dimensional sys-
tems show an efficient relaxation, with an approximately exponential decay of
the coarse-grained H-function H̄(t) [23, 43]. Specifically, for an ensemble of
nonrelativistic particles in a two-dimensional box (on a static spacetime back-
ground), with a wave function consisting of a superposition of the first 16 modes,
it was found that H̄(t) ≈ H̄0e

−t/tc where, as discussed in ref. [23], the timescale
tc coincides approximately with a theoretical relaxation timescale τ defined by
1/τ2 ≡ −(1/H̄)d2H̄/dt2 [15], which under certain conditions may be roughly
estimated as [17, 23, 54]

τ ∼ ∆t ≡ 1/∆E ,

where ∆E is the quantum energy spread and ∆t is the usual quantum timescale
over which the wave function evolves.

Similar results have been obtained for nonrelativistic particles in a two-
dimensional harmonic oscillator potential [43], a case that has immediate impli-
cations for the field theory of a single decoupled mode k.

Writing Ψ = ψk(qk1, qk2, t)κ, where κ depends only on degrees of freedom
for modes ḱ 6= k, equations (12) and (14) imply that the wave function ψk

satisfies

i
∂ψ

k

∂t
= − 1

2a3

(

∂2

∂q2
k1

+
∂2

∂q2
k2

)

ψ
k
+

1

2
ak2

(

q2
k1 + q2

k2

)

ψ
k
, (21)

while the de Broglie velocities for (qk1, qk2) are

q̇k1 =
1

a3
∂sk
∂qk1

, q̇k2 =
1

a3
∂sk
∂qk2

(22)

(with ψ
k
= |ψ

k
| eisk). The marginal distribution ρ

k
(qk1, qk2, t) will evolve ac-

cording to
∂ρk
∂t

+
∑

r=1, 2

∂

∂qkr

(

ρk
1

a3
∂sk
∂qkr

)

= 0 . (23)

As discussed elsewhere [25, 54], these are identical to the equations of pilot-wave
dynamics for an ensemble of nonrelativistic particles with time-dependent ‘mass’
m = a3, moving in the two-dimensional qk1−qk2 plane, in a harmonic oscillator
potential of time-dependent angular frequency ω = k/a. In the short-wavelength
limit, λphys << ∆nk ·H−1 (where nk = nk1 + nk2 is the sum of the occupation
numbers for modes k1 and k2), and over timescales ∆t ≡ 1/∆Ek << H−1

(for which a is approximately constant), the above equations reduce to those
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for a decoupled mode k on Minkowski spacetime [54]. These limiting equations
are in turn just those of pilot-wave dynamics for an ensemble of nonrelativistic
particles of constant mass m = a3 in a two-dimensional harmonic oscillator
potential of constant angular frequency ω = k/a. The numerical results for this
last case [43] show that, in the Minkowski limit, for a decoupled mode k in a
superposition of many different states of definite occupation number, one will
obtain relaxation ρk(qk1, qk2, t) → |ψk(qk1, qk2, t)|2 (on a coarse-grained level,
assuming appropriate initial conditions), on a timescale τk of order

τk ∼ 1

∆Ek

.

If, in the Minkowski limit, relaxation occurs so efficiently for a single de-
coupled mode, then we may reasonably expect that for a realistic entangled
quantum state — in some pre-inflationary era — relaxation will occur at least
as efficiently. One might then conclude that, even if there is initial nonequilib-
rium, it will have relaxed away by the time inflation begins. However, before
drawing definite conclusions, one must first consider the possible effect of spatial
expansion on the relaxation process. One finds, in particular, that the character
of the evolution can be very different in the long-wavelength limit.

In the case of a decoupled mode on expanding space, described by equations
(21)–(23), it is found [54] that in the long-wavelength limit, λphys >> ∆nk ·H−1,
the wave function ψk is approximately static — or ‘frozen’ — over timescales
∼ H−1. Furthermore, one expects that the trajectories (qk1(t), qk2(t)) will
be frozen over timescales ∼ H−1, in which case an arbitrary nonequilibrium
distribution ρk 6= |ψk|2 will also be frozen over timescales ∼ H−1. (This is
of course reminiscent of the freezing of super-Hubble modes in the theory of
cosmological perturbations [1, 2].) It then begins to appear possible that the
normal process of relaxation to quantum equilibrium could be suppressed for
long-wavelength modes in a pre-inflationary era, and that remnants of initial
nonequilibrium could survive up to the beginning of inflation.

That this is indeed possible has been shown [54] by deriving a general and
rigorous condition for the freezing of quantum nonequilibrium, a condition ap-
plicable to an arbitrary time interval [ti, tf ] and to any (generally entangled)
quantum state of a scalar field. (The condition may also be applied to mixed
states and to interacting fields.) The condition is obtained by considering the
displacements of the de Broglie-Bohm trajectories over the time interval [ti, tf ].
It is found that, for a pure subensemble with (time-dependent) mean occupation
numbers 〈n̂kr〉, nonequilibrium will be frozen (or at least partially frozen) for
modes with wave number k if the time evolution of 〈n̂kr〉 satisfies the ‘freezing
inequality’ [54]

1

k
> 4af

√

〈n̂kr〉f + 1/2

∫ tf

ti

dt
1

a2

√

〈n̂kr〉+ 1/2 . (24)

For a radiation-dominated expansion on [ti, tf ], with a(t) = af (t/tf )
1/2, this
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inequality implies that (using 〈n̂kr〉 ≥ 0)

λphys(tf ) > 2πH−1
f ln(tf/ti) , (25)

where H−1
f = 2tf and the right-hand side is larger than H−1

f if tf & (1.17)ti.
Thus, in a radiation-dominated expansion, if the freezing inequality (24) is sat-
isfied, the corresponding modes must be super-Hubble [54].

We are now in a position to begin to address the question of whether or not
very early nonequilibrium in a pre-inflationary era could survive until the onset
of inflation itself. The above considerations show that, for short-wavelength
modes, any initial quantum nonequilibrium is likely to be rapidly destroyed
during a pre-inflationary phase. On the other hand, relaxation can be suppressed
for long-wavelength modes — if the freezing inequality (24) is satisfied — and
it is then possible that these modes (for whatever fields may be present) will
still be in nonequilibrium at the onset of inflation.

Denoting, for a moment, the (approximately) constant Hubble radius during
inflation by H−1

inf , relevant cosmological fluctuations originate from inside H−1
inf .

For some of these modes to be out of equilibrium, they must have evolved
from modes that were outside the Hubble radius in the (presumably radiation-
dominated) pre-inflationary phase. Therefore, for this scenario to work, some
pre-inflationary nonequilibrium modes must enter the Hubble radius during the
transition to the inflationary phase, and they must avoid complete relaxation to
equilibrium by the time inflation begins. (As we shall see in section 6, relaxation
does not occur during inflation itself.) Now, modes of physical wavelength
λphys = aλ can enter the Hubble radius H−1 = a/ȧ only if λphys increases more
slowly than does H−1, that is, only if the comoving Hubble radius H−1/a =
1/ȧ increases — as occurs for a decelerating universe, ä < 0 (which, from the
Friedmann equation ä/a = −(4πG/3)(ρ+ 3p), requires that the energy density
ρ and pressure p satisfy ρ+ 3p > 0).

During a decelerating pre-inflationary phase, then, any frozen nonequilib-
rium modes at super-Hubble radii can enter the Hubble radius. Once they do
so, they are likely to begin to relax to equilibrium. For all modes that are inside
H−1

inf at the onset of inflation, some time will necessarily have been spent in what
might be crudely termed the ‘relaxation zone’, with λphys . H−1, during the
pre-inflationary phase. For example, for a radiation-dominated pre-inflationary
phase (starting at some initial time ti) that makes an abrupt transition to an
inflationary phase at t = tf , we have a = af (t/tf )

1/2 and H−1 = 2t (on [ti, tf ]),
and a mode of comoving wavelength λ enters the Hubble radius (aλ ∼ H−1) at
a time tenter(λ) ∼ a2fλ

2/tf , so that the time spent in the relaxation zone is

∆trelax(λ) = (tf − tenter) ∼ tf (1− a2fλ
2/t2f ) .

There can be significant residual nonequilibrium at the beginning of inflation,
provided the ‘no relaxation’ condition

∆trelax(λ) . τ (λ) (26)

18



is satisfied, where τ(λ) is again a relaxation timescale as defined above (and
where τ (λ) may be evaluated at the intermediate time tenter +

1
2 (tf − tenter)).

Because τ (λ) will depend on the wave functional, a proper calculation of τ (λ)
requires a specific model of the pre-inflationary phase.

Given a specific form for the function τ(λ), the condition (26) will deter-
mine a range of wavelengths λ for which residual nonequilibrium may reason-
ably be expected to have survived from the pre-inflationary era. Because pre-
inflationary modes with larger values of λ enter the Hubble radius later and
so spend less time in the relaxation zone, the condition (26) will presumably
imply that residual nonequilibrium will be possible for λ larger than some infra-
red cutoff λc. (The scenario might be improved if, during the transition from
a pre-inflationary to an inflationary phase, the Hubble radius was a rapidly
increasing function of the scale factor (dH−1/da >> H−1/a). For then super-
Hubble nonequilibrium modes could be pushed far inside the Hubble radius in
a short time.)

We hope that future work, based on a specific pre-inflationary model, will
yield a prediction for the infra-red cutoff λc. It is of course possible that λc
will turn out to be so much larger than today’s Hubble radius that it yields a
negligible effect on CMB predictions (as could occur if the relaxation timescale
τ(λ) is too short, or if the number of inflationary e-folds is too large). This
remains to be seen.

In this paper, the focus is on ‘phenomenology’: we simply assume that some
modes could be in quantum nonequilibrium at the beginning of the inflationary
phase, and we show how CMB data may be used to set experimental bounds
on such nonequilibrium. Still, the above preliminary reasoning already suggests
that if there is residual nonequilibrium from a pre-inflationary phase, then we
should expect to find it at large wavelengths, beyond some cutoff λc.

4.2 Possible production of nonequilibrium at the Planck

scale

We have discussed whether nonequilibrium might have survived into the in-
flationary phase, on the assumption that there was nonequilibrium in some
pre-inflationary era. Another question is whether nonequilibrium might be gen-
erated during (or indeed even before) the inflationary era.

The creation of quantum nonequilibrium from a prior equilibrium state is
impossible in standard de Broglie-Bohm theory (leaving aside extremely rare
fluctuations [15]), though it might occur in alternative hidden-variables models
— for example, in models that deviate from quantum theory for processes taking
place over very short timescales [55]. But even in de Broglie-Bohm theory, it
does not seem entirely clear if we know how to incorporate gravitation [41] (see,
however, ref. [56]). It is therefore conceivable that effects involving gravity are
able to upset the equilibrium state. In particular, as has been discussed at length
elsewhere, it is not unreasonable to propose that quantum nonequilibrium can
be generated by the formation and evaporation of a black hole [22, 25].
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This proposal is motivated by the (controversial) question of information
loss in black holes. In the standard picture of black-hole formation and evapo-
ration, it appears that a closed system can evolve from an initial pure state to
a final mixed state, thereby violating ordinary quantum theory [57]. Further,
because the final state describes thermal radiation that depends on the initial
mass of the hole but not on the details of the initial state, it is impossible even
in principle to retrodict the initial state from the final state. While Hawking’s
original argument for information loss remains controversial, a new approach to
avoiding information loss invokes the possible existence of quantum nonequilib-
rium in the outgoing radiation, which could then carry more information than
ordinary radiation can in a conventional (mixed) quantum state. A mechanism
for the creation of such nonequilibrium has been outlined [22], involving an
assumed nonequilibrium behind the horizon (presumably near the singularity)
that is transferred to the exterior region by the entanglement between the in-
going and outgoing modes of the Hawking radiation. A simple rule has been
suggested, whereby the decreased ‘hidden-variable entropy’ Shv (equal to minus
the subquantum H-function (3)) of the outgoing nonequilibrium radiation bal-
ances the increase in von Neumann entropy SvonN = −Tr(ρ̂ ln ρ̂) generated by
the pure-to-mixed transition:

∆ (Shv + SvonN) = 0 . (27)

Possible experimental tests of this proposal are discussed in refs. [22, 25].
It is sometimes suggested that, at the Planck scale, processes will occur

involving the formation and evaporation of microscopic black holes. If one takes
this (rather heuristic) picture seriously and combines it with the above proposal,
one is led to the conclusion that quantum nonequilibrium will be generated at
the Planck scale. During the inflationary phase, such processes might have
an effective description in terms of nonequilibrium modes of the inflaton field
at Planckian or trans-Planckian (physical) frequencies. One might reason as
follows. If a mode of comoving wavelength λ once had a physical wavelength
λphys = aλ . lP near the beginning of inflation, one could assume that upon
exiting the Planckian regime (that is, once λphys becomes bigger than lP) the
mode will be out of equilibrium, having encountered some gravitational process
that generates nonequilibrium while λphys ∼ lP, whereas modes that were never
smaller than lP will not encounter any such process. Roughly, one could model
this by introducing a cutoff λ′c such that nonequilibrium exists only for comoving
wavelengths λ . λ′c (below the critical value λ′c, in contrast with the scenario
in the preceding section). In addition to providing an estimate for λ′c, one also
needs to estimate the degree of nonequilibrium, which for a given mode kr may
be quantified by the relative (or hidden-variable) entropy

Shv(k) ≡ −
∫

dqkr ρkr ln(ρkr/ |ψkr|2) . (28)

An estimate for Shv(k) might arise from an application of (27) in some form,
though this remains to be studied.
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It is to be hoped that further development of this idea will lead to a detailed
prediction for the form and magnitude of nonequilibrium for modes emerging
from the Planckian regime. Pending such development, again, in this paper
we restrict ourselves to using current data to set limits on any hypothetical
quantum nonequilibrium that may be present during the inflationary phase.

5 Measuring primordial quantum fluctuations

The above considerations suggest that, during inflation, some field modes may
exhibit nonequilibrium fluctuations that violate quantum theory. Our aim in
this paper is to show how to use CMB data to set bounds on such violations.

We shall first recall how measurements of the CMB today allow us to infer
statistical properties of inflaton fluctuations during the inflationary era. This
involves working backwards from the CMB data, first to classical curvature
perturbations in the early universe, and from these, backwards even further to
inflaton fluctuations during the inflationary phase. After having highlighted
the key assumptions that are made in the standard treatment, we will be in
a position to understand exactly how corrections to quantum theory during
inflation are able to have an effect on the CMB.

5.1 CMB observations and primordial curvature pertur-

bations

Employing angular coordinates (θ, φ) on the sky, CMB measurements provide
us with a temperature function T (θ, φ). Writing ∆T (θ, φ) ≡ T (θ, φ)− T̄ , where
T̄ is the average temperature over the sky, the temperature anisotropy may be
decomposed into spherical harmonics,

∆T (θ, φ)

T̄
=

∞
∑

l=2

+l
∑

m=−l

almYlm(θ, φ) (29)

(where as usual we omit the dipole term). A mode l corresponds to an angular
scale ≈ 60◦/l.

A complete measurement of the microwave sky provides us with one function
T (θ, φ), or equivalently with one set {alm} of coefficients. In order to carry out
a statistical analysis of {alm}, it is usually assumed (if only implicitly) that the
observed T (θ, φ) is a single realisation of a stochastic process, whose probability
distribution P [T (θ, φ)] (which may be thought of as representing a theoretical
‘ensemble of skies’) satisfies the condition of statistical isotropy:

P [T (θ − δθ, φ− δφ)] = P [T (θ, φ)] (30)

for arbitrary angular displacements δθ, δφ. This condition implies that, for a
given l, each alm has the same (marginal) probability distribution pl(alm), with
variance

Cl ≡
〈

|alm|2
〉

(31)
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(the angular power spectrum, where 〈...〉 denotes an average over the theoretical
ensemble).

Thus, given the assumption (30), it follows that for each l we have what are,
in effect, 2l+1 independent realisations of the same random variable (with the
same probability distribution). The observed quantity

Csky
l ≡ 1

2l+ 1

+l
∑

m=−l

|alm|2

(constructed from measurements made on a single sky) then provides an unbi-

ased estimate of the angular power spectrum Cl (that is,
〈

Csky
l

〉

= Cl), with a

‘cosmic variance’ given by

∆Csky
l

Cl
=

√

2

2l+ 1
. (32)

For large values of l, the quantity Csky
l is an accurate estimate of Cl (that is, we

expect to find Csky
l ≈ Cl). For small values of l, however, Csky

l is an inaccurate
estimate of Cl.

The observed CMB anisotropy is caused by classical inhomogeneities on the
last scattering surface, when the CMB photons decoupled (together with effects
taking place afterwards as the CMB photons propagate through space towards
us). These inhomogeneities in turn originate from classical perturbations that
were present at much earlier times. In the long ‘primordial’ period between
texit(k) and tenter(k) (during which k << Ha, or λphys >> H−1), the classical
curvature perturbation

Rk ≡ 1

4

(a

k

)2
(3)Rk (33)

is time independent. (Here, (3)Rk is the Fourier component of the spatial cur-
vature scalar on comoving hypersurfaces, that is, on hypersurfaces with zero
momentum density.) To a good first approximation, we may ignore gravita-
tional waves, in which case Rk is the only independent degree of freedom for
the classical primordial perturbations. In terms ofRk, the alm may be expressed
as [58]

alm =
il

2π2

∫

d3k T (k, l)RkYlm(k̂) , (34)

where the transfer function T (k, l) encodes the astrophysical processes that
generate the temperature anisotropy.

A given primordial curvature perturbation Rk (for all k) generates one set
{alm} of temperature-anisotropy coefficients. A probability distribution P [Rk]
for Rk will generate a probability distribution P [{alm}] for {alm}. If we make
the assumption of statistical homogeneity, that P [Rk] is translationally invariant
— that is, in position space, P [R(x−d)] = P [R(x)] for arbitrary displacements
d — it follows that 〈RkRḱ〉 e−i(k+ḱ)·d = 〈RkRḱ〉 and so

〈RkR∗
ḱ〉 = δkḱ

〈

|Rk|2
〉

. (35)
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From (34) and (35), the angular power spectrum (31) may be written as

Cl =
1

2π2

∫ ∞

0

dk

k
T 2(k, l)PR(k) , (36)

where

PR(k) ≡ 4πk3

V

〈

|Rk|2
〉

(37)

is the primordial power spectrum. We shall assume, as is usually done, that
〈

|Rk|2
〉

is a function of k only.

Current measurements of the CMB show that PR(k) ≈ const. (an approxi-
mately flat or scale-free spectrum) [59].

5.2 Inflationary slow-roll predictions

Standard inflation predicts an approximately flat primordial power spectrum
PR(k). Let us briefly review how this comes about.

An approximately homogeneous inflaton field φ0(t) + φ(x, t) (where φ is a

small perturbation), with a potential V , has an energy density ρ ≈ 1
2 φ̇

2

0+V (φ0).
In the slow-roll approximation, ρ ≈ V (φ0) is approximately constant in time.
The Friedmann equation (ȧ/a)2 = (8πG/3)ρ then implies an approximate de
Sitter expansion, a ∝ eHt, where H =

√

(8πG/3)V (φ0). The time evolution of
φ0 is given by

3
ȧ

a
φ̇0 +

dV

dφ0
= 0

(where in the slow-roll approximation we may neglect the term φ̈0). The flatness
conditions for V are ε << 1, |η| << 1, where

ε ≡ 1

16πG

(

1

V

dV

dφ0

)2

, η ≡ 1

8πG

1

V

d2V

dφ20
. (38)

The primordial perturbations are generated by quantum fluctuations dur-
ing the slow roll. As a first approximation, the quantum fluctuations may be
calculated for an eternal de Sitter expansion, and in this approximation one
obtains an exactly scale-free primordial power spectrum. Corrections to this
approximation yield small corrections to the scale-free result.

The quantum theory of primordial perturbations has been developed in great
detail [1, 58, 60]. In the slow-roll limit (Ḣ → 0), with V satisfying the flatness
conditions, the inflaton perturbation φ = φ(x, t) evolves like a free massless field
(until at least a few e-folds after texit(k) for the mode k). The quantised field

φ̂ is usually assumed to be in the vacuum state. One may then use standard
quantum field theory to calculate the probability distribution for the inflaton
perturbation φ.

It is usually assumed that, a few Hubble times or e-folds after texit(k) (that is,
in the ‘late-time limit’), the resulting quantum probability distribution for φmay
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be regarded as a classical probability distribution over classical perturbations φ.
This assumption has been justified by WKB-type classicality at late times [61],
by squeezing of the inflationary vacuum state [62, 63], and by environmental
decoherence [64, 65]. The latter, in particular, seems to distinguish the field

configuration basis (that is, the basis of eigenstates of the field operator φ̂) as
a robust pointer basis, where the relevant interactions are local in field space
[64, 65]. The resulting distribution of field configurations is then, for practical
purposes, indistinguishable from a classical distribution. Recent studies seem to
confirm these conclusions: the pointer states consist (more precisely) of narrow

Gaussians that approximate eigenstates of φ̂ [66], and the locality of interactions
in field space ensures that at late times the density matrix becomes essentially
diagonal in the field configuration basis [67]. (See also ref. [68] for further
discussion of WKB classicality in the late-time limit.)

Given a classical inflaton perturbation φ, the corresponding curvature per-
turbation is given by [1]

Rk = −
[

H

φ̇0
φ
k

]

t=t∗(k)

, (39)

where t∗(k) is a time a few e-folds after texit(k). The perturbation Rk is time
independent between t∗(k) and the approach to tenter(k) (long after inflation
ends), and is believed to seed what eventually grow into the dominant pertur-
bations in the CMB.

Note that the inflaton perturbation φ is defined on a spatially flat slicing.
(The inhomogeneous field φ necessarily vanishes on comoving slices, since the
momentum density −φ̇∇φ is by definition zero on such slices.) Then, in the
slow-roll limit Ḣ → 0, the back-reaction of metric perturbations on φ can be
ignored [1]. The curvature perturbation R is defined on the comoving slicing.
Thus, (39) relates quantities defined on different slicings.

The predicted (quantum-theoretical) primordial power spectrum, for Rk at
t = t∗, is then given by

PQT
R (k) =

[

H2

φ̇
2

0

PQT
φ (k)

]

t∗(k)

, (40)

where

PQT
φ (k) ≡ 4πk3

V

〈

|φk|2
〉

QT
(41)

is the power spectrum of the inflaton fluctuations.
As we have said, to a first approximation the inflaton fluctuations are usually

taken to be quantum vacuum fluctuations in de Sitter spacetime. From the
standard field operator expansion

φ̂(x, t) =
∑

k

(

(k/a+ iH)

k
√
2V k

âke
i(k·x+k/Ha) +

(k/a− iH)

k
√
2V k

â†
k
e−i(k·x+k/Ha)

)

(42)
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in terms of mode functions

φ+(x, t) ∝
(

k

a
+ iH

)

ei(k·x+k/Ha) (43)

(solutions of (7) reducing to positive-frequency Minkowski modes in the short-
wavelength limit k/a >> H), the Bunch-Davies vacuum is defined by âk |0〉 =
0 (for all k). In this quantum state, the two-point (equal-time) correlation
function is

〈0|φ̂(x, t)φ̂(x́, t)|0〉 =
∑

k

(k/a)2 +H2

2V k3
eik·(x−x́) (44)

(where the first term in the numerator gives a Minkowskian contribution 1/4π2a2|x−
x́|2). The quantum variance of each mode is given by the Fourier transform of
the quantum two-point function,

〈

|φk|2
〉

QT
=

V

(2π)3

∫

d3x e−ik·x〈0|φ̂(x+ y)φ̂(y)|0〉 ,

yielding
〈

|φk|2
〉

QT
=

V

2(2π)3
H2

k3

(

1 +
k2

H2a2

)

. (45)

The width decreases with time, tending to a finite constant. The power spectrum
is

PQT
φ (k) =

k2

4π2a2
+
H2

4π2
. (46)

In the long-wavelength limit k/a << H (λphys >> H−1), where the mode is
well outside the Hubble radius, we have

PQT
φ (k) =

H2

4π2
. (47)

(If instead we set k = Ha, then PQT
φ (k) = H2/2π2.)

To a lowest-order approximation, then, the quantum fluctuations of the in-
flaton field generate a scale-free spectrum of primordial curvature perturbations:

PQT
R (k) =

1

4π2

[

H4

φ̇
2

0

]

t∗(k)

. (48)

These perturbations Rk ∝ φk remain frozen outside the Hubble radius until the
time tenter(k) is approached.

Because H and φ̇0 are in fact slowly changing during the inflationary phase,

higher-order corrections lead to a small dependence of PQT
R (k) on k.
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6 Time evolution of nonequilibrium vacua

We now turn to the effect of quantum nonequilibrium on the predictions of
inflationary cosmology. (A brief, preliminary account was given in ref. [25].)
Our strategy is to consider nonequilibrium corrections to the lowest-order (scale-
free) quantum spectrum, and then to compare these effects with the higher-order
quantum corrections.

In the Bunch-Davies vacuum, a mode kr has wave function ψkr = ψkr(qkr, t) =
|ψkr| eiskr with a Gaussian amplitude

|ψ
kr|2 =

1
√

2π∆2
k

e−q2
kr/2∆

2
k (49)

of width

∆2
k =

H2

2k3

(

1 +
k2

H2a2

)

(50)

(contracting in time, and independent of r and of the direction of k) and with
a phase

skr = − ak2q2
kr

2H(1 + k2/H2a2)
+ h(t) , (51)

where

h(t) =
1

2

(

k

Ha
− tan−1

(

k

Ha

))

is independent of qkr. (It is readily verified that the above wave function
ψ
kr(qkr, t) satisfies the Schrödinger equation (17) for a mode kr, and that in the

limit H −→ 0, a→ 1 one recovers the wave function ψ
kr(qkr, t) ∝ e−kq2

kre−i 1
2
kt

for the Minkowski vacuum.)
In the quantum vacuum, the qkr are independent random variables, each

with a Gaussian distribution of zero mean. The width of each Gaussian decreases
with time, approaching the asymptotic value H/

√
2k3 (in the long-wavelength

limit k/a << H). In the nonequilibrium (de Broglie-Bohm) vacuum, in con-
trast, each qkr evolves deterministically in time, and the probability distribution
for each qkr depends on what the probability distribution was at some ‘initial’
time.

The phase (51) implies a de Broglie velocity field

dqkr
dt

=
1

a3
∂skr
∂qkr

= − k2Hqkr
k2 +H2a2

. (52)

To solve (52) for the trajectories qkr(t), it is convenient to introduce the
conformal time η, defined by dη = dt/a. (For a ∝ eHt we have η = −1/Ha; as
t runs from −∞ to +∞, η runs from −∞ to 0.) In terms of η, the equation of
motion for qkr reads

dqkr
dη

=
k2ηqkr
1 + k2η2

, (53)
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which has the solution

qkr(η) = qkr(0)
√

1 + k2η2 . (54)

The width of the packet is given by

∆2
k =

H2

2k3
(

1 + k2η2
)

. (55)

An arbitrary distribution ρkr(qkr, η) (generally 6= |ψkr(qkr, η)|2) necessarily
satisfies the continuity equation

∂ρ
kr

∂η
+

∂

∂qkr

(

ρ
kr

dqkr
dη

)

= 0 ,

which for the velocity field (53) has the solution

ρkr(qkr, η) =
1

√

1 + k2η2
ρkr(qkr/

√

1 + k2η2, 0) (56)

for any given ρkr(qkr, 0).
The time evolution amounts to a simple (homogeneous) contraction of both

|ψkr|2 and ρkr. At times η < 0, |ψkr|2 is a contracting Gaussian packet of

width ∆k(η) = ∆k(0)
√

1 + k2η2, and in the late-time limit η → 0, |ψkr|2
approaches a static Gaussian of width ∆k(0) = H/

√
2k3. At times η < 0, ρkr is

a contracting arbitrary distribution of width Dkr(η) = Dkr(0)
√

1 + k2η2 (with
arbitrary Dkr(0)), and in the late-time limit η → 0, ρkr approaches a static
packet of width Dkr(0) (where the asymptotic packet differs from the earlier
packet by a homogeneous rescaling of qkr, as in (56)).

For simplicity, we assume that (like ∆k) the nonequilibrium width Dkr is
independent of r and of the direction of k, so that Dkr = Dk(t). We then have
the result

Dk(t)

∆k(t)
= (const. in time) ≡

√

ξ(k) . (57)

Note that, for each mode, the ‘nonequilibrium factor’ ξ(k) may be defined at
any convenient fiducial time (in particular, not necessarily at the same time for
every k). At least in this lowest-order approximation for the quantum state Ψ,
it makes no difference whether we set the initial conditions for nonequilibrium
at the same time for all values of k, or at different times for different values of
k (for example, at t(k) such that λphys(k) exceeds some critical value).

7 Nonequilibrium power spectrum

The above result for the nonequilibrium Bunch-Davies vacuum may be written
as

〈

|φk|2
〉

=
〈

|φk|2
〉

QT
ξ(k) . (58)
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This implies that the nonequilibrium power spectrum for the inflaton fluctua-
tions takes the form

Pφ(k) = PQT
φ (k)ξ(k) , (59)

which for k/a << H reads

Pφ(k) =
H2

4π2
ξ(k) . (60)

The primordial power spectrum for the curvature perturbations is then

PR(k) = PQT
R (k)ξ(k) ,

where PQT
R (k) is given by (48). Thus we have

PR(k) =
ξ(k)

4π2

[

H4

φ̇
2

0

]

t∗(k)

. (61)

In general, ξ(k) 6= 1 and scale invariance is broken. In future work, along
the lines outlined in section 4, we hope to be able to predict features of the
function ξ(k). For the purposes of this paper, ξ(k) is (in principle) an arbitrary
function to be constrained by observation.

8 General remarks

Before considering how CMB data may be used to constrain the nonequilibrium
function ξ(k), we make some general remarks on the above scenario.

8.1 Transfer of microscopic nonequilibrium to cosmologi-

cal scales

We saw in section 6 that, for each mode k during the inflationary phase, the
respective widths Dk(t) and ∆k(t) of the nonequilibrium and equilibrium distri-
butions remain in a fixed ratio Dk(t)/∆k(t) =

√

ξ(k) over time. This holds in
the approximation where the inflationary phase is treated as an exact de Sitter
expansion. At least to a first approximation, then, we may conclude that quan-
tum nonequilibrium (if it exists) will not relax during the inflationary phase,
but is instead preserved over time.

Furthermore, because of the exponential expansion of physical wavelengths
λphys during inflation, nonequilibrium (if there is any to start with) will not
only be preserved but will also be transferred from microscopic to macroscopic
scales. This ‘magnification’ of the nonequilibrium lengthscale is particularly
striking in the late-time or large-wavelength limit λphys >> H−1, where the
de Broglie velocity field tends to zero for each mode, q̇kr → 0. In this limit,
which takes effect a few e-foldings after the mode exits the Hubble radius, both
ρkr and |ψkr|2 become frozen. Once this happens, any difference between ρkr
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and |ψkr|2 is preserved, and is transferred to larger and larger lengthscales as
the physical wavelength λphys = a(t)(2π/k) ∝ eHt of the mode gets larger and
larger. The frozen nonequilibrium then exists at a physical lengthscale that
grows exponentially with time, from microscopic to macroscopic scales.

Once inflation has ended, there will be a frozen nonequilibrium distribu-
tion of curvature perturbations Rk at macroscopic lengthscales. These per-
turbations are then transferred to cosmological lengthscales by the subsequent
(post-inflationary) Friedmann expansion.

8.2 Quantum measurement of the inflaton field

As we saw in section 5.2, in the standard quantum theory of inflationary cosmol-
ogy it is usual to assume that, during inflation, when the physical wavelength
of a mode significantly exceeds the Hubble radius, the corresponding inflaton
perturbation effectively ‘becomes classical’ — in the sense that the final quan-
tum probability distribution for inflaton (and hence curvature) perturbations
behaves, to a good approximation, like a classical probability distribution. As
mentioned in section 5.2, various studies seem to confirm the validity of this
assumption [61, 62, 63, 64, 65, 66, 67, 68]. In particular, the basis of eigenstates

of the field operator φ̂ (suitably smeared with narrow Gaussians) seems to act
as a robust pointer basis, so that the quantum distribution of field configura-
tions is, for practical purposes, indistinguishable from a classical distribution
[64, 65, 66].

In the pilot-wave formulation of inflationary cosmology, there is a well-
defined inflaton configuration or ‘beable’ (in Bell’s terminology [69]) at all times,
even before Hubble exit. In writing the formulas (60) and (61), we have tac-
itly identified the inflaton beable after Hubble exit with the ‘classical’ inflaton
field after Hubble exit — where the latter generates the primordial curvature
perturbation via equation (39). This identification merits some comment.

Generally speaking, in pilot-wave theory, it is the precise value of the to-
tal beable configuration that (together with the wave function) determines the
outcome of a subsequent quantum measurement. However, as a rule, one must
be cautious about identifying beable values with quantum measurement values:
their relationship must be established on a case-by-case basis, through analysis
of the particular measurement process that is taking place. As is well known
[29, 69], there are circumstances where a quantum measurement outcome does
not provide a faithful record of the actual prior value of the beable (in which case
the so-called quantum ‘measurement’ is in fact not a true measurement). For
instance, in the pilot-wave theory of nonrelativistic particles, while the outcome
of a quantum position measurement usually has the same value as the actual
particle position prior to the measurement, for a quantum momentum mea-
surement the outcome usually does not simply coincide with the prior particle
momentum given by de Broglie’s velocity formula. Instead, the quantum mo-
mentum outcome depends on the initial particle position in a way that depends
on the details of the measurement process. Thus, while quantum position mea-
surements are usually ‘faithful’, quantum momentum measurements are usually
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not.
Similarly, we expect that in the pilot-wave theory of fields, a quantum mea-

surement of the field configuration will (usually) provide a faithful record of the
value of the actual field beable appearing in the de Broglie-Bohm dynamics. For
other measurements, however, this simple identification will not hold: instead,
the outcomes will depend on the initial field beable in a way that depends on
the details of the ‘measurement’ process.

Now, in the case at hand, conventional analysis of the quantum-to-classical
transition during inflation indicates that the environment effects a quantum
measurement of the inflaton field in the basis of field configurations [64, 65, 66,
67]. If this is correct, then we are indeed justified in our above identification of
the de Broglie-Bohm inflaton field after Hubble exit with the classical inflaton
field after Hubble exit.

Should the conventional analysis (for some reason) turn out to be incorrect
— in particular, if the quantum-to-classical transition involves effective quantum
measurements of the inflaton field in a basis different from the field configura-
tion basis — then there will be a more complicated relationship between the de
Broglie-Bohm inflaton field and the emergent classical inflaton field, a relation-
ship that will depend on the details of the effective measurement process. There
would then also be a more complicated relationship between the nonequilibrium
distribution for the inflaton beable and the nonequilibrium distribution for the
primordial curvature perturbations.

8.3 Weak dependence on pilot-wave dynamics

It is worth noting that the above results for the time evolution of nonequilib-
rium vacua are only weakly dependent on the details of the de Broglie-Bohm
dynamics. The results are in fact determined by just two features: (a) there is
a field beable φ(x, t) whose time evolution is continuous and differentiable, and
(b) the dynamics is ‘separable’, in the sense that for a product quantum state
Ψ[φ, t] =

∏

kr

ψkr(qkr, t) the velocity of each component qkr is independent of the

other qkr’s.
To see this, note that from (b) the evolution reduces to that of a collection of

independent one-dimensional systems. Then, in each one-dimensional configu-
ration space with coordinate qkr, the local conservation of quantum equilibrium

∂ |ψ
kr|2
∂t

+
∂(|ψ

kr|2 vkr)
∂qkr

= 0 , (62)

for some velocity field vkr = vkr(qkr, t), uniquely fixes vkr as

vkr(qkr, t) =
1

|ψkr(qkr, t)|2
∫ ∞

qkr

dq′
kr

∂ |ψkr(q
′
kr, t)|

2

∂t

(assuming that |ψkr|2 vkr vanishes at infinity), as follows immediately by inte-
grating (62) with respect to the coordinate qkr, from some fixed value qkr to
∞.
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Thus, for the case at hand, the assumption of a differentiable and separa-
ble evolution fixes the de Broglie-Bohm velocity field uniquely. Note that this
uniqueness arises only because the system reduces to a collection of independent
one-dimensional systems. It is only in one dimension that the local conservation
of quantum equilibrium fixes the velocity field. In two or more dimensions, other
velocity fields are possible, distinct from that of de Broglie and Bohm [70].

The conditions (a) and (b) could certainly be violated in other hidden-
variables theories. There might, for example, be no field beable φ(x, t) at all.
Also, it is possible to have a pilot-wave-type theory with a non-separable dy-
namics [71]. Still, property (a) might well emerge in some limit from a deeper
hidden-variables theory. And property (b) seems desirable, even if not strictly
necessary. In any case, our point here is to emphasise that (a) and (b) are the
only features of pilot-wave dynamics that really enter into our considerations.

9 Bound on primordial quantum nonequilibrium

Let us now illustrate how the available data may be used to constrain the
nonequilibrium function ξ(k) appearing in the result (61) for the primordial

power spectrum, where the observed spectrum PR(k) = PQT
R (k)ξ(k) consists of

the usual quantum contributions together with possible nonequilibrium correc-
tions (ξ 6= 1).

It is currently a very active field of research to determine the k-dependence of
the observed spectrum PR(k), and to compare the results with the k-dependence

of the quantum-theoretical prediction PQT
R (k). It is straightforward to reinter-

pret these studies as effectively providing constraints on the nonequilibrium
function ξ(k).

The observed spectrum PR(k) is usually parameterised in terms of the spec-
tral index n(k), defined by

n(k)− 1 ≡ d lnPR
d ln k

, (63)

and the running of the spectral index, ń(k) ≡ dn/d ln k. For n(k) approximately
constant, it is convenient to write the power spectrum in the form

PR(k) = PR(k0)

(

k

k0

)n(k)−1

, (64)

where k0 is some chosen reference or pivot point. (Note that the definitions
(63), (64) of n(k) generally agree at k = k0 only, and they agree for all k if
dn(k)/dk = 0.) The index n(k) may be written as a Taylor expansion

n(k) = n0 +
1

2
ln

(

k

k0

)

n′
0 + ... ,

where n0 ≡ n(k0) is the spectral index at k = k0, and n
′
0 ≡ (dn/d ln k)0 is the

running of the spectral index at k = k0.
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The observed values of n(k), ń(k) may be used to set bounds on early quan-
tum nonequilibrium. To illustrate this, we shall consider a best-fit value of
n0,

n0 = 0.960+0.014
−0.013 (65)

at k0 = 0.002 Mpc−1 [59]. (Adding nonequilibrium parameters would of course
affect the best-fitting procedure, but the value (65) suffices here for illustration.
A best fitting of nonequilibrium inflationary models to CMB data is outside the
scope of this paper.)

We have PR(k) = PQT
R (k)ξ(k), where PQT

R (k) is predicted by standard
inflationary theory. One may adopt the following parameterisation:

PQT
R (k) = PQT

R (k0)

(

k

k0

)nQT(k)−1

, (66)

where nQT(k) is the usual (quantum-theoretical) spectral index, and

ξ(k) = ξ(k0)

(

k

k0

)ν(k)−1

, (67)

where ν(k) is the ‘nonequilibrium spectral index’. The observed index (minus
1) is then a sum

(n− 1) = (nQT − 1) + (ν − 1) (68)

of contributions from quantum theory and from nonequilibrium corrections.
In the exact limit Ḣ → 0, we have nQT − 1 = 0; and in exact quantum

equilibrium, we have ν − 1 = 0. Slow-roll inflation predicts a small tilt [1, 58]

nQT(k)− 1 = −6ε+ 2η (69)

where, in the definitions (38) of ε and η, the quantities V and dV/dφ0 are
evaluated at texit(k) (for which k = aH).

Defining ν0 ≡ ν(k0) and n
QT
0 ≡ nQT(k0), we obtain a bound for |ν0 − 1| on

the assumption that |nQT
0 − 1| is indeed significantly less than 1 (as predicted

by inflation). Otherwise, in principle, both nQT
0 − 1 and ν0 − 1 could be large

— with comparable magnitudes and opposite signs — and the observed small
value of their sum n0 − 1 = −0.04+0.014

−0.013 could be an accident. We assume here
that the observed small value |n0 − 1| . 0.1 is not due to such a ‘conspiratorial’
cancellation. Then, roughly, we may write (again at k0 = 0.002 Mpc−1)

|nQT
0 − 1| . 0.1, |ν0 − 1| . 0.1 . (70)

The bound |ν0 − 1| . 0.1 on the nonequilibrium index may be converted into
a bound on the hidden-variable entropy Shv(k) — defined by (28) — for modes
with k close to k0 = 0.002 Mpc−1. (As we have seen, Shv(k) is the relative

entropy of ρkr with respect to |ψkr|2, and is a natural measure of the difference

between ρ
kr and |ψ

kr|
2
.) We have ξ(k) ≡ D2

k/∆
2
k, where Dk and ∆k are the
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widths of ρkr and |ψkr|2, respectively. We know that |ψkr|2 is a Gaussian packet,
and that in the late-time limit ∆2

k = H2/2k3. For the purposes of illustration,
let us model ρ

kr as a Gaussian (of width Dk). We then have

Shv(k) =
1

2
(1− ξ(k) + ln ξ(k)) , (71)

with ξ(k) parameterised by (67). If ν(k) varies slowly, then close to k0 we may
write ν(k) ≈ ν0. Taking ξ(k0) = 1 and assuming that |ν0 − 1| is small, we have

Shv(k) ≈ −1

4
(ν0 − 1)2 ln2(k/k0) .

Restricting ourselves to a range of k close to k0, such that |ln(k/k0)| . O(1),
we then have

|Shv(k)| .
1

4
(ν0 − 1)2 . 10−2 . (72)

Note that approximate equilibrium in this region (close to k0) does not
preclude large departures from equilibrium at much smaller or at much larger
values of k.

10 Possible low-power anomaly at small l

In the low-l region (say l . 20), the angular power spectrum is dominated by
the Sachs-Wolfe effect (resulting from non-uniformities in the local gravitational
potential on the last scattering surface).

In this region, T 2(k, l) = πH4
0 j

2
l (2k/H0) [1], whereH0 is the Hubble constant

today, so that (using (36))

Cl =
H4

0

2π

∫ ∞

0

dk

k
j2l (2k/H0)PR(k) .

For PR(k) = const. we then have

Cl ∝
∫ ∞

0

dk

k
j2l (k) =

1

2l(l+ 1)
,

so that l(l + 1)Cl = const. at low l – the Sachs-Wolfe plateau – as seems to be
approximately observed. (The integrated Sachs-Wolfe effect, taking place along
the line of sight, adds a small ‘rise’ at very small l.)

It has been suggested that the data contain anomalously low power at small
l, though this is controversial. If there is such low power, it could of course
be due to some inadequate processing of the data (such as in the modelling of
foregrounds) or to some local astrophysical effect. Otherwise, the signal could
be primordial in origin, reflecting an anomaly in the underlying spectrum PR(k)
of curvature perturbations. In the latter case, the explanation might lie in some
modification of the standard inflationary scenario, or in new physics.

33



If there is a low-power signal at small l requiring new physics, then quantum
nonequilibrium provides a possible candidate. Taking PR(k) = PQT

R (k)ξ(k),

and assuming (to a first approximation) that PQT
R (k) = const., we may write

Cl

CQT
l

= 2l(l+ 1)

∫ ∞

0

dk

k
j2l (2k/H0)ξ(k) . (73)

If ξ(k) = 1 everywhere, then Cl/C
QT
l = 1. A low-power anomaly, Cl < CQT

l ,
could be explained by having ξ(k) < 1 in some suitable region of k-space.
Because the integral is dominated by the scale k ≈ lH0/2, a significant drop
in Cl requires ξ(k) < 1 for k in this region, that is, ξ(k) < 1 for wavelengths
λ ≈ (4π/l)H−1

0 (comparable to today’s Hubble radius).
To have ξ(k) < 1 for a primordial perturbation mode k means that the width

Dk of the nonequilibrium distribution for the corresponding inflaton mode is less
than the quantum equilibrium width ∆k. It is reasonable to expect this, if one
accepts the scenario of section 2, according to which quantum noise arises from
statistical relaxation processes (presumably taking place in the very early uni-
verse). On this view, it is natural to assume that early nonequilibrium would
have a less-than-quantum dispersion, or ξ(k) < 1 — as opposed to an early
larger-than-quantum dispersion (ξ(k) > 1) which, while possible in principle,
seems less natural. Furthermore, we saw in section 4.1 that, in a supposed
pre-inflationary era, relaxation to quantum equilibrium can be suppressed on
large spatial scales, and one expects that at the onset of inflation nonequilib-
rium is most likely to have survived at wavelengths λ & λc, where the value of
λc remains to be estimated (pending the development of an appropriate pre-
inflationary model). Therefore, it appears that a dip ξ(k) < 1 in the power
spectrum below some critical wave number kc = 2π/λc could be naturally ex-
plained in terms of early quantum nonequilibrium surviving from a very early
pre-inflationary era, though this possibility remains to be developed in detail.

As for the possible production of nonequilibrium in the Planckian regime
(section 4.2), in the absence of a more detailed model we are unable to give any
strong argument for ξ(k) < 1, as opposed to ξ(k) > 1, for modes with λ . λ′c
(where λ′c remains to be estimated; see section 4.2). Again modelling ρkr as a
Gaussian, the hidden-variable entropy Shv(k) for a single mode is given in terms
of ξ(k) by (71). For a given value of Shv(k) — perhaps set by some application
of (27) — equation (71) possesses two solutions for ξ(k), one with ξ < 1 and one
with ξ > 1. That is, the same nonequilibrium entropy can be achieved by both
a less-than-quantum and a larger-than-quantum dispersion. On the other hand,
from the behaviour of the function 1− ξ + ln ξ, one sees that the solution with
ξ < 1 always has a smaller value of |ξ − 1| than does the solution with ξ > 1;
that is, the solution with ξ < 1 has a dispersion that is closer to the quantum
value. On this (weak) basis, one might suggest that ξ < 1 will be preferred. A
stronger argument for ξ < 1 might come from a detailed understanding of the
preservation of information by means of nonequilibrium noise suppression in the
outgoing quantum state of an evaporating black hole.

In any case, focusing here on the comparison with observation, let us consider
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the effect at low l of some simple examples of functions ξ(k).
As a first example, motivated by a possible long-wavelength suppression of

relaxation at very early (pre-inflationary) times, we take ξ(k) = 0 for k < kc
and ξ(k) = 1 for k > kc, where the simple cutoff is used to model a suppression
of quantum noise at wavelengths λ > λc = 2π/kc. We then have

Cl − CQT
l

CQT
l

= −2l(l+ 1)

∫ kc

0

dk

k
j2l (2k/H0) . (74)

Again, the dominant scale is k ≈ lH0/2, and the correction to Cl will be sig-
nificant only if the range of integration (0, kc) overlaps substantially with this
scale — that is, kc cannot be much smaller than lH0/2.

Note that if, instead, we did take kc << lH0/2, the correction to Cl would
not only be small, it would be unobservable even in principle, because it would be
smaller than the cosmic variance (32). For k << lH0/2 we have approximately

j2l (2k/H0) ≈
(

2ll!/(2l+ 1)!
)2

(2k/H0)
2l, so that

Cl − CQT
l

CQT
l

≈ −(l + 1)

(

2ll!

(2l+ 1)!

)2 (
2kc
H0

)2l

.

This correction falls off rapidly with increasing l, and is very small even for
the lowest values of l: for example, even taking 2kc/H0 ≈ 1, we find (C4 −
CQT

4 )/CQT
4 ≈ −6 × 10−6. Because such corrections are much smaller than the

cosmic variance ∆Csky
l /Cl =

√

2/(2l+ 1), they cannot be measured meaning-
fully, even in principle. To obtain a measurable effect, the cutoff kc in (74) must
not be small compared to lH0/2.

A second example is motivated by the possibility of gravitationally-induced
nonequilibrium at small scales, at wavelengths λ . λ′c. If we assume that the
nonequilibrium takes the form of noise suppression (ξ < 1), one might model
this again with a simple cutoff, taking ξ(k) = 1 for k < k′c and ξ(k) = 0 for
k > k′c, where k

′
c = 2π/λ′c. We then have

Cl − CQT
l

CQT
l

= −2l(l+ 1)

∫ ∞

k′

c

dk

k
j2l (2k/H0) . (75)

For a significant effect, the range of integration (k′c,∞) must again overlap
substantially with the dominant region k ≈ lH0/2 — which now implies that k′c
cannot be much larger than lH0/2.

As a third example, we consider a power law

ξ(k) = ξ(k0)

(

k

k0

)ν0−1

(76)

(with constant index ν0). From (73) we then have

Cl

CQT
l

= 2l(l+ 1)ξ(k0)

(

H0

2k0

)ν0−1 ∫ ∞

0

dx j2l (x)x
ν0−2 , (77)
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where
∫ ∞

0

dx j2l (x)x
ν0−2 =

√
π

4

Γ[(3 − ν0)/2]Γ[l+ (ν0 − 1)/2]

Γ[(4 − ν0)/2]Γ[l+ (5 − ν0)/2]
.

Should the existence of a low-power anomaly be confirmed, one might try
to match the anomaly with one of the above nonequilibrium spectra (74), (75)
or (77).

According to the analysis in ref. [72], cutting off the power below a wave
number kc ∼ 3 × 10−4 Mpc−1 (comparable to the inverse Hubble scale H0 =
2.4 × 10−4 Mpc−1) slightly improves the fit to the three-year Wilkinson Mi-
crowave Anisotropy Probe (WMAP) data, but the improvement does not seem
large enough to justify any conclusion that such a cutoff really exists. Still, the
possibility of reduced power at large scales is worth exploring, since it could orig-
inate from an early nonequilibrium suppression of quantum noise (as discussed
in section 4.1).

11 Non-random phases and inter-mode correla-

tions

So far, we have considered only the angular power spectrum Cl of the microwave
sky, and how this could be affected by nonequilibrium corrections to the pri-
mordial (scalar) power spectrum PR(k). Here, we consider how primordial
non-Gaussianity could arise from early quantum nonequilibrium.

The primordial curvature perturbations Rk are usually assumed to consti-
tute a Gaussian random field, for which the power spectrum provides a complete
characterisation of the statistical properties. The phases of Gaussian perturba-
tions are randomly distributed, and there are no inter-mode correlations.

In standard inflationary scenarios, the Gaussianity ofRk arises directly from
the Gaussianity of the quantum vacuum fluctuations of the inflaton perturbation
φk. (The Gaussianity of Rk is not, as is sometimes claimed, a mere consequence
of the central limit theorem.) In the quantum Bunch-Davies vacuum, the infla-
ton probability distribution at conformal time η is given by

PQT[φ, η] = |Ψ[φ, η]|2 =
∏

kr

|ψkr(qkr, η)|2 ,

where, as we saw in section 6, each |ψ
kr|2 is a Gaussian of zero mean and

width ∆2
k = (H2/2k3)

(

1 + k2η2
)

. The two-point function 〈0|φ̂(x, η)φ̂(x́, η)|0〉
is given by (44). The three-point function 〈0|φ̂(x, η)φ̂(x́, η)φ̂(x́́, η)|0〉 vanishes,
as do all odd-point functions. Higher n-point functions (for n even) reduce to
sums of products of the two-point function, as expected for a Gaussian random
field. In quantum equilibrium, then, the generation of primordial curvature
perturbations Rk ∝ φ

k
by inflaton perturbations is a Gaussian random process.

However, as a general matter of principle, the primordial perturbations could
be non-Gaussian. And if one considers quantum nonequilibrium for the inflaton
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field, there is no particular reason why the nonequilibrium inflaton fluctuations
should be Gaussian.

We have already seen that, in quantum nonequilibrium, the probability dis-
tribution ρkr(qkr, η) for a single mode of the inflaton field need not take the
quantum Gaussian form (49). Simple forms of non-Gaussianity include a non-
zero skewness or kurtosis of ρkr(qkr, η) (where the marginal ρkr(qkr, η) for qkr
may, in general, be obtained from a correlated joint distribution P [qkr, η], as
discussed further below). But non-Gaussianity can take on a wide variety of
forms, and various measures of it have been proposed. Some workers have
reported significant primordial non-Gaussianity in the CMB data [73], while
others maintain that the data are consistent with primordial Gaussianity [59].

Let us show how quantum nonequilibrium can result in non-random phases
and inter-mode correlations for the primordial perturbations.

The coefficients alm = |alm| eiϕlm in the spherical harmonic expansion (29)
are of course generally complex numbers, and their phases ϕlm contain a lot
of information about the morphology of the temperature anisotropy ∆T (θ, φ)
(see, for example, ref. [74]). Assuming again that the underlying ‘ensemble
of skies’ is statistically rotationally invariant, the probability distribution for
each ϕlm must be independent of m. For a fixed value of l, we then have
2l+ 1 phases ϕlm with the same probability distribution pl(ϕlm), and for large
l we may use the measured values of the ϕlm to probe pl(ϕlm). At least to
a first approximation, current data are consistent with pl(ϕlm) being uniform
on the unit circle. According to the basic formula (34), each alm is a linear
combination of all the curvature perturbation components Rk. And according
to the inflationary result (39), each Rk is proportional to the late-time inflaton
perturbation φk. Thus, the phase ϕlm of each alm is ultimately determined by
the phases θk of all the inflaton perturbation components φ

k
= |φ

k
| eiθk .

In quantum equilibrium, the inflaton phases θk have a time-independent
distribution ρQT

k
(θk) that is uniform on the unit circle:

ρQT
k

(θk) =
1

2π
.

This follows immediately from (49): the real and imaginary parts of φk =√
V

(2π)3/2
(qk1 + iqk2) have a joint Gaussian distribution ∝ e−(q2

k1+q2
k2)/2∆

2
k that is

always constant on circles centred on the origin in the complex φk-plane.
In quantum nonequilibrium, the inflaton phases can at some initial (con-

formal) time ηi have an arbitrary distribution ρk(θk, ηi). Will the subsequent
time evolution generate a late-time distribution that tends towards uniformity
on the unit circle? Not in the approximation considered here. The trajectories
qkr(η) = qkr(0)

√

1 + k2η2 obtained in section 6 imply that

θk(η) = tan−1 (qk2(η)/qk1(η)) = tan−1 (qk2(0)/qk1(0)) .

Thus, during inflation, the phase θk of each inflaton mode is static, so that any
initial nonequilibrium distribution (with non-random phases) will remain un-
changed over time, ρ

k
(θk, η) = ρ

k
(θk, ηi) for all values of conformal time η. (In

37



the complex φk-plane, the evolution of the joint probability distribution for qk1,
qk2 amounts to a purely radial contraction with time, so that the distribution
ρ
k
(θk, η) of phases is time independent.)
We conclude that the time evolution during the inflationary era does not

scramble the phases of the inflaton perturbations. Any initial non-uniformity
(or non-randomness) in the phase distribution will remain frozen, all the way
to the late-time limit η → 0. It would be interesting, in future work, to explore
how this could affect the phases ϕlm of the measured coefficients alm in the
temperature anisotropy.

We now consider nonequilibrium inter-mode correlations. In section 6 we
assumed, for simplicity, that the nonequilibrium distribution satisfied the fac-
torisability condition (19), so that the modes were uncorrelated even in nonequi-
librium. However, in principle, correlations among modes are possible: in quan-
tum nonequilibrium, the inflaton modes can be correlated even though |Ψ|2 (for
the Bunch-Davies vacuum) is a product.

In terms of conformal time η, an arbitrary correlated joint distribution
P [qkr, η] will evolve according to the continuity equation

∂P

∂η
+
∑

kr

∂

∂qkr

(

P
dqkr
dη

)

= 0 . (78)

Because the wave functional is still that of the Bunch-Davies vacuum, the ve-
locity field dqkr/dη is still given by (53) and the trajectories in configuration
space are still given (mode by mode) by the result (54). Given the trajectories,

the general solution of (78) may be constructed using the property that P/ |Ψ|2
is constant along trajectories (where this follows from the fact that P and |Ψ|2
obey the same continuity equation). Replacing the labels kr by a single index
n, we may equate

P (q1(0), q2(0), ...., qn(0), ...., 0)

|ψ1(q1(0), 0)|2 |ψ2(q2(0), 0)|2 .... |ψn(qn(0), 0)|2 ....
with

P (q1(η), q2(η), ...., qn(η), ...., η)

|ψ1(q1(η), η)|2 |ψ2(q2(η), η)|2 .... |ψn(qn(η), η)|2 ....
.

Using the trajectories qn(η) = qn(0)
√

1 + k2nη
2 and

|ψn(qn, η)|2
∣

∣

∣
ψn(qn/

√

1 + k2nη
2, 0)

∣

∣

∣

2 =
1

√

1 + k2nη
2
=

∆n(0)

∆n(η)

(where the width ∆n(η) is given by (55)), we deduce that

P (q1, q2, ...., qn, ...., η) = P

(

∆1(0)

∆1(η)
q1,

∆2(0)

∆2(η)
q2, ....,

∆n(0)

∆n(η)
qn, ...., 0

)

∏

n

∆n(0)

∆n(η)
.

This is an exact solution for the evolution of an arbitrary distribution, expressed
in terms of the distribution P (q1, q2, ...., qn, ...., 0) at conformal time η = 0.
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The possibility of nonequilibrium allows the distribution P [qkr, ηi] at some
initial time ηi to be, in principle, anything at all. To narrow down the range
of possibilities, one might impose the requirement of statistical homogeneity,
P [φ(x− d), ηi] = P [φ(x), ηi] (for arbitrary spatial displacements d).

Clearly, allowing non-random phases and inter-mode correlations in the in-
flationary vacuum opens up a number of novel possibilities. Indeed, the subject
of non-Gaussianity for quantum nonequilibrium states deserves to be developed
in more detail.

12 Conclusion

We have shown how inflationary cosmology (assuming it to be essentially cor-
rect) may be used to test the validity of quantum theory at very short distances
and at very early times. In particular, we have considered the possible effects
of quantum nonequilibrium, as described by the hidden-variables theory of de
Broglie and Bohm, during the inflationary phase. We have shown, by means of
simple examples, how CMB data may be used to set bounds on nonequilibrium
deviations from quantum theory.

As for the possible origin of such deviations, we have outlined a scenario
where quantum nonequilibrium during the inflationary phase arises from relax-
ation suppression (for long-wavelength modes) in a pre-inflationary era. This
scenario suggests that primordial nonequilibrium could set in above some infra-
red cutoff λc (though the value of λc remains to be estimated). We have also
considered the more speculative possibility that nonequilibrium could be gen-
erated during the inflationary era, by novel gravitational effects at the Planck
scale.

We have, for the most part, discussed quantum nonequilibrium corrections
to the primordial (scalar) power spectrum PR(k). A preliminary discussion
was also given showing how primordial non-Gaussianity (in particular, non-
random phases and inter-mode correlations) could also arise from early quantum
nonequilibrium.

In this paper we have, for simplicity, considered only the (dominant) scalar
part of the primordial perturbations. The standard quantum theory of pertur-
bations around a classical background includes tensor contributions (transverse-
traceless metric perturbations, or gravitational waves), as well as the scalar part
considered here [1, 58, 60]. It would be straightforward to extend the present
treatment to include tensor perturbations. The standard formalismmay be writ-
ten in the functional Schrödinger picture and converted into a de Broglie-Bohm
theory in the usual way, by reinterpreting the quantum probability current in
configuration space in terms of an equilibrium ensemble of trajectories. (As
mentioned in section 2, a de Broglie-Bohm velocity field (2) may be defined by
this means for any system with a Hamiltonian given by a differential operator on
configuration space [32].) Once the velocity field for the trajectories has been
identified, one can consider the evolution of an arbitrary nonequilibrium en-
semble. The extended configuration would now include the transverse-traceless
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metric perturbations (with two independent components, corresponding to the
two possible states of polarization, each with approximately the same action as
a free massless scalar field). A de Broglie-Bohm velocity field would be defined
for these degrees of freedom as well.

An important topic that should be examined is how quantum nonequilibrium
would affect the consistency relation between the power spectra for the scalar
and tensor perturbations. This relation is especially interesting because it relates
fluctuations for distinct degrees of freedom, and because it is independent of
the form of the inflaton potential. Presumably, quantum nonequilibrium would
in general have different effects on different degrees of freedom, resulting in a
violation of the consistency relation.

If standard inflationary cosmology is essentially correct, then observations
of the CMB have already confirmed — to a first approximation — the validity
of the quantum (Born-rule) prediction for the inflaton power spectrum during
the inflationary phase. More accurate measurements of the primordial power
spectrum will enable us to set unprecedented bounds on violations of quantum
theory, at very short distances and at very early times. And close scrutiny of
other possible features, such as various forms of non-Gaussianity, will provide
further tests of basic quantum predictions.

Should inflation be very firmly established, and should it be found that the
predictions of quantum theory continue to hold well at all accessible lengthscales
during the inflationary era, then this would constitute considerable evidence
against the hypothesis of quantum nonequilibrium at the big bang (though of
course, nonequilibrium from an earlier era might simply have not survived into
the inflationary phase). Furthermore, it would rather undermine the view that
quantum theory is merely an effective description of an equilibrium state. In
principle, one could still believe that hidden variables exist, and that the hidden-
variables distribution is restricted to quantum equilibrium even at the shortest
distances and earliest times. But in the complete absence of nonequilibrium,
the detailed behaviour of the hidden variables (such as the precise form of the
trajectories in de Broglie-Bohm theory) would be forever untestable. While
exact equilibrium always and everywhere may constitute a logically possible
world, from a general scientific point of view it seems unacceptable, and the
complete ruling out of quantum nonequilibrium by experiment would suggest
that hidden-variables theories should be abandoned.

On the other hand, a positive detection of quantum nonequilibrium phenom-
ena in the early universe (or indeed elsewhere [25]) would be of fundamental
interest, opening up a new and deeper level of nature to experimental investi-
gation.
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