
HAL Id: hal-00284992
https://hal.science/hal-00284992

Preprint submitted on 4 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Taxonomies for the Semantic Web
Pierre Allard, Sébastien Ferré

To cite this version:

Pierre Allard, Sébastien Ferré. Dynamic Taxonomies for the Semantic Web. 2008. �hal-00284992�

https://hal.science/hal-00284992
https://hal.archives-ouvertes.fr

Dynamic Taxonomies for the Semantic Web

Pierre Allard and Sébastien Ferré

IRISA/Université de Rennes 1

Campus de Beaulieu

35042 Rennes cedex, France

piallard@irisa.fr, ferre@irisa.fr

Abstract

The semantic web aims at enabling the web to under-

stand and answer the requests from people and machines.

It relies on several standards for representing and reason-

ing about web contents. Among them, the Web Ontology

Language (OWL) is used to define ontologies, i.e. knowl-

edge bases, and is formalized with description logics. In

this paper, we demonstrate how dynamic taxonomies and

their benefits can be transposed to browse OWL-DL ontolo-

gies. We only assume the ontology has an assertional part,

i.e. defines objects and not only concepts. The existence

of relations between objects in OWL leads us to define new

navigation modes for crossing these relations. A prototype,

ODALISQUE, has been developed on top of well-known

tools for the semantic web.

1. Introduction

Dynamic taxonomies (DT) have proven their usefulness

to browse medium-to-large information bases [9]. Objects

can be classified under an arbitrary number of concepts;

and concepts are organized in a multi-dimensional taxon-

omy. This taxonomy supports both expressive querying and

flexible navigation. A query is any boolean combination

of concepts, and defines a focus over the information base.

Every query determines an extension as the set of answers

to the query, and a dynamic taxonomy as the pruning of the

taxonomy to those concepts that share objects with that ex-

tension. The dynamic taxonomy serves both as a summary

of the current focus, and as a set of navigation links to reach

other foci. A navigation link combines the current query

and a selected concept to form a new query, and hence reach

a new focus. DTs enable people with no a priori knowledge

of an information base to acquire such a knowledge, and to

reach relevant objects, as demonstrated by their use in e-

commerce applications [10].

An interesting question is whether DTs can be adapted

to more complex information bases than object collections

and taxonomies. A step in this direction is made by Logical

Information Systems (LIS) that use almost arbitrary logics

instead of taxonomies [2, 3]. Values and patterns can be

used in addition to concept names in object descriptions,

queries and dynamic taxonomies; and their organization

into a taxonomy is automatically derived by logical infer-

ence. They can also be combined to form more complex

concepts such as coordinates, or tree patterns. However, a

persisting limitation is that the information base is essen-

tially a collection of objects that are unrelated to each other,

apart from sharing common concepts. The consequence is

a biased representation in many applications. For instance,

in a bibliographic application, objects can be either docu-

ments or authors, but not both. If objects are documents,

then authors must be concepts, and hence cannot be clas-

sified themselves (e.g., institution, discipline). If objects

are authors, then documents must be concepts, and hence

cannot be classified themselves (e.g., publication year and

venue). If both documents and authors were objects, then

there would be no way in DTs to relate them.

Description Logics (DL) are logical formalisms that have

been adopted to represent and reason about ontologies [6],

which are domain-specific knowledge bases. They have

points in common with DTs such as concepts, subsump-

tion between concepts (similar to taxonomic relation), and

instance relation between objects and concepts. There are

however several important differences. First, concepts are

not only concept names, but complex combinations of con-

cepts by logical connectors. Second, the subsumption rela-

tions are derived automatically from a set of axioms mod-

elling the domain. Third, relations (called roles) can be set

between objects, so that the concepts to which an object be-

longs depend on other objects to which it is connected. The

two first differences are shared by LIS to some extent, but

the third is not.

In this paper, we show how DTs, and LIS, can be ex-

tended so as to cope with semantic web ontologies, while

retaining all their good properties. In particular, the pres-

ence of roles between objects leads us to define new nav-

igation modes. In Section 2 we shortly introduce web on-

tologies and description logics. In Section 3 we redefine the

notions of query, extension and dynamic taxonomies that

make up a focus. In Section 4 we redefine the navigation

links for zoom-in, zoom-out and pivot, and we introduce

navigation links for crossing roles: reversal and traversal.

Section 5 presents our prototype ODALISQUE, and illus-

trates it over an example ontology. Section 6 concludes and

draws perspectives.

2. Web Ontologies

The amount of data in the web is growing day by day,

giving access to more and more information. The main

problem is looking for a specific information in this flow.

Indeed, information is generally not given a formal seman-

tics, and hence is not understandable to a computer. This

is the main raison for the semantic web. Initial works

fixed the formal syntax, XML. Its main problems are its

lack of semantics, and its lack of relations between entities.

That is why other standards have been developped: RDF

(Ressource Description Framework), then the more expres-

sive DAML+OIL (fusion of DAML-ONT and OIL). This

last language is the starting point of OWL [5], the Web On-

tology Language, the W3C standard1.

The purpose of OWL is to define ontologies for mod-

elling and reasoning about application domains. OWL is

mapped onto the description logics. Description logics pro-

vides the required theoretical background, such as proving

the consistency of an ontology, or classifying concepts. The

OWL standard includes 3 expressivity levels: OWL Lite,

OWL DL and OWL Full. For example, OWL Lite does not

contain the notion of cardinality on roles, but inference is

decidable and efficient. OWL Full uses all the primitives

of OWL, then it is the most expressive (and fully includes

RDF), but becomes undecidable. In this paper, we are in-

terested in OWL DL, because it is decidable, a good com-

promise between expressivity and inference efficiency, and

well supported by most existing tools (unlike OWL Full). In

the following, we recall the basic definitions of OWL DL,

only to the extent of what is required in this paper. Here,

we adopt the terms of descriptions logics rather than those

of the OWL standard, because they provide a much more

compact syntax, and because our focus is more on theory

than on technology.

1http://www.w3.org/2004/OWL/

2.1 Description Logics

The definition of description logics is based on three

main ideas: concepts, roles and objects. Given a domain of

individuals (e.g., persons in genealogy, documents in bibli-

ography), the concepts are sets of individuals having shared

characteristics (e.g. Women); the roles are binary relations

between individuals (e.g. sibling); the objects are particu-

lar individuals (e.g. BOB). The syntax gathers these 3 main

ideas, plus constructors for building complex concepts and

roles, which determine the expressivity of the description

logic.

Definition 1 (Signature) The language of formulas of

a description logic is characterized by a signature

S = (O, Ca, Ra, Cstr), where:

• O is a set of objects;

• Ca is a set of atomic concepts (denoted ci);

• Ra is a set of atomic roles (denoted ri);

• Cstr is a set of constructors used to create complex

concepts (denoted Ci) and complex relations (denoted

Ri). Classes of constructors of the common descrip-

tion logics are represented by letters.

The description logic OWL DL is based on the descrip-

tion logic SHOIQ, whose constructors are listed in Table 1

(the notation #S represents the cardinality of a set S). This

list of constructors determines the expressivity of OWL DL.

Once the syntax is established, the second notion to de-

fine is semantics. The main difference between classical

logic and description logics is the interpretation function.

Where classical logic returns for each formula a truth value,

description logics interpretation function returns for each

concept a set of individuals, its instances, and for each

role a binary relation between individuals. The interpre-

tation function for the constructors of the description logic

SHOIQ is given in Table 1.

Definition 2 (Interpretation) Let S = (O, Ca, Ra, Cstr)
be a signature. An interpretation I = (∆I , ·I) of S is a

set of individuals ∆I , called the interpretation domain, and

a interpretation function ·I , that associates:

• to each object oi an individual oIi ∈ ∆I;

• to each concept ci a set of individuals cIi ⊆ ∆I;

• to each relation ri a binary relation between individu-

als rIi ⊆ ∆I × ∆I .

Letter Syntax Definition Interpretation

S

top (most general concept) ⊤ ∆I

bottom (most specific concept) ⊥ ∅
conjunction of two concepts C1 ⊓ C2 CI

1
∩ CI

2

disjunction of two concepts C1 ⊔ C2 CI
1
∪ CI

2

concept negation ¬C ∆I \ CI

qualified universal quantification ∀r.C {i ∈ ∆I | ∀j : (i, j) ∈ rI → j ∈ CI}
qualified existential quantification ∃r.C {i ∈ ∆I | ∃j : (i, j) ∈ rI ∧ j ∈ CI}

O at least one of objects {o1, . . . , on} {oI
1
, . . . , oIn}

Q
minimal cardinality ≥ n r.C {i ∈ ∆I | #{j ∈ CI | (i, j) ∈ rI} ≥ n}
maximal cardinality ≤ n r.C {i ∈ ∆I | #{j ∈ CI | (i, j) ∈ rI} ≤ n}
exact cardinality = n r.C {i ∈ ∆I | #{j ∈ CI | (i, j) ∈ rI} = n}

Table 1. Set of constructors of the description logic SHOIQ, with their syntax and interpretation.

The third notion to be defined for a description logic is

the knowledge base. A knowledge base divides the knowl-

edge in two parts: the terminological part, which repre-

sents general knowledge, true for all individuals, and the as-

sertional part, which represents particular knowledge, only

true for particular individuals.

Definition 3 (Knowledge base) We define a knowledge

base as a pair Σ = (T,A), where:

• T is the terminological part (T-Box), represented by

a set of axioms like “Ci is subsumed by Cj , denoted

Ci ⊑ Cj , which means that every instance of Ci is

necessarily an instance of Cj . The equivalence of 2

concepts, denoted by Ci
.
= Cj , is defined by the 2 ax-

ioms Ci ⊑ Cj and Cj ⊑ Ci;

• A is the assertional part (A-Box), represented by a set

of assertions like o : C and (oi, oj) : R, which respec-

tivly means that o belongs to the concept C, and a con-

nection R exists between oi and oj .

Moreover, the description logic SHOIQ allows addi-

tional axioms in the knowledge base. The following axioms

on roles can be added to the T-Box:

• ri ⊑ rj (called role hierarchy);

• ri inverse of rj;

• r functional;

• r transitive.

In the following, the notation r−1 is used to designate the

role that is defined to be the inverse of the role r, when

defined.

The Figure 1 presents the T-Box of an example knowl-

edge base Σex, with 3 concepts: Person, Team, and

Bigteam. A instance of Team is defined as having a leader

and at least 2 members. An instance of Bigteam is defined

Person ⊑ ⊤
Team

.
= ∃ hasleader.Person

⊓ ≥ 2 hasmember.Person
Bigteam

.
= ∃ hasleader.Person

⊓ ≥ 3 hasmember.Person

hasleader ⊑ hasmember

Figure 1. Example of T-Box

OLIVIER : Person
SEBASTIEN : Person

PIERRE : Person
LIS : Team

(LIS, OLIVIER) : hasleader
(LIS, SEBASTIEN) : hasmember

(LIS, PIERRE) : hasmember

Figure 2. Example of A-Box

as having a leader and at least 3 members. To help the read-

ing of knowledge bases, concepts are written with an upper-

case, relations in lowercase, and objects in uppercase letters.

Figure 2 presents the A-Box of Σex, with the description of

the team LIS, leaded by OLIVIER and composed of 2 others

members, PIERRE and SEBASTIEN.

Given a knowledge base Σ, some interpretations are dis-

tinguished as models of Σ.

Definition 4 (Model) Let Σ = (T, A) be a knowledge base

and I an interpretation, for the same signature S. We call

I model of Σ, denoted I |= Σ, when:

• for each Ci ⊑ Cj in T , CI
i ⊆ CI

j ;

• for each o : C in A, oI ∈ CI;

• for each (oi, oj) : R in A, (oIi , oIj) ∈ RI .

The definition of SHOIQ gives additional properties to be

checked:

• for each ri ⊑ rj in T , rIi ⊆ rIj ;

• for each ri inverse of rj in T ,

rIi = {(i, j) ∈ ∆I × ∆I | (j, i) ∈ rIj };

• for each r functional in T ,

(i, j) ∈ rI ∧ (i, j′) ∈ rI → j = j′;

• for each r transitive in T ,

(i, j) ∈ rI ∧ (j, k) ∈ rI → (i, k) ∈ rI .

From this notion of model, statements and their inference

from a knowledge base can be defined: classification and

instantiation. The classification statements establish sub-

sumption relations between concepts, and hence help to or-

ganize or classify them. The instantiation statements estab-

lish the belonging of objects to concepts, and hence help to

place objects in the concept classification.

Definition 5 (Classification and Instantiation) Let Σ be

a knowledge base. Two kinds of statements can be infered

from Σ:

• Classification: Σ |= Ci ⊑ Cj iff I |= Ci ⊑ Cj , for

every model I of Σ;

• Instantiation: Σ |= o : C iff I |= o : C, for every

model I of Σ.

For instance, it is easy to prove in our example that every

big team is also a team: Σex |= Bigteam ⊑ Team. Also,

OLIVIER being the leader of LIS, hence a member of it, and

SEBASTIEN and PIERRE being members too, we can prove

that LIS is a big team, i.e. Σex |= LIS : Bigteam.

2.2 Browsing Ontologies

There exists a number of tools for browsing ontologies.

Some of them are simply viewers that make no or little in-

ference. They present an ontology in the form of a tree or

a graph. The tree represents the classification of all named

concepts, and each concept can also be decorated by its in-

stances (e.g., Protégé). The graph represents a knowledge

base by representing concepts and objects by nodes, and

subsumption, equivalence, and assertions by edges (e.g.,

RDF-Graph-Viewer). On one hand, some viewers impose

to display the full ontology at once, making it quickly un-

readable. On the other hand, some viewers display only

predefined subsets of information, e.g. the A-Box or the T-

Box (e.g., SVG-OWL-Viewer). In summary, these viewers

do not provide navigation facilities that would allow users

to focus on various subsets of information.

Other tools provide querying facilities, by adapting the

SQL language to web ontologies. OntoQL [7] permits to

query Ontology-Based Databases (OBDB); RQL [8] is de-

signed to query RDF ontologies; OWL-QL [4] is a language

to query OWL ontologies. They heavily rely on inference

mechanisms in the course of computing answers to queries.

However, like with most querying systems, the user is not

guided in his search, and must have preliminary knowledge

about the ontology structure, and the query language, in or-

der to express relevant queries.

3. Local View: Query, Extension, and Dynamic

Taxonomy

The objective of this section is to show how a web on-

tology, i.e. a knowledge base as defined in Section 2, can

fit into the framework of dynamic taxonomies. The key no-

tions are the classification and instantiation statements that

can be inferred from a knowledge base. Classification state-

ments define a subsumption ordering over concepts, which

can play the role of a taxonomy. Indeed, this is a multi-

dimensional taxonomy because an individual can belong

to an arbitrary number of concepts, and concepts can have

several super-concepts. Instantiation statements determine

whether an object is an instance of a concept, and hence

define the deep extension of concepts. Therefore, all ingre-

dients are present to apply the framework of dynamic tax-

onomies on web ontologies. The important differences with

the usual application of DTs is that (1) the concepts may

be complex and in infinite number, and (2) the taxonomy

shape and extensions are defined through logical inference.

The infinite number of concepts is coped with by selecting

which concepts should appear in taxonomies, and also by

computation-on-demand when expanding concepts. Roles

seem absent from this picture, but in fact, they appear as

parts of complex concepts and are exploited by new kinds

of navigation links (see Section 4).

At each focus, we define the local view as the combi-

nation of a query, an extension, and a dynamic taxonomy.

The query specifies the current focus, i.e. the user location

in the vast navigation space, or her point of view over the

whole knowledge base. The extension is the set of answers

of the query, i.e. a set of objects. The dynamic taxonomy

gives feedback about this extension, and it is the support of

most navigation links. These 3 components of local views

are formally defined in the following, on top of description

logics.

Definition 6 (Query) Let S be a signature. A query is a

(complex) concept, which can be written with all OWL DL

constructors. In particular, the 3 boolean constructors are

available (conjunction, disjunction, negation).

Sometimes, it is useful to see the query as a con-

junctive set of simpler concepts, which can be obtained

from any query by putting it in conjunctive normal

form. In this paper, we use alternately the 2 forms,

whichever is the most convenient. For instance, the

query q = Team ⊓ ≥ 6 hasmember.Person is identical

to q = {Team, ≥ 6 hasmember.Person}.

Next, given a query q, the extension is defined as the set

of objects that can be proved to be instances of q.

Definition 7 (Extension) Let Σ be a knowledge base and q
be a query. The extension of q is the set of objects which are

instances of this concept:

ext(q) = {o ∈ O | Σ |= o : q}.

This definition explains why we assume the knowledge

base has an A-Box (assertional box). Otherwise, no instan-

tiation statement could be infered, and so all extents would

be empty. An important property of extensions is that they

are monotonic w.r.t. subsumption. For every concepts C, D,

if C is subsumed by D, then the extension of C is included

in the extension of D:

Σ |= C ⊑ D ⇒ ext(C) ⊆ ext(D).

This is consistent with dynamic taxonomies, where we ob-

serve the same relation between taxonomic relations and

(deep) extensions.

Before defining the dynamic taxonomy associated to a

query, we first have to define the taxonomy itself. It is made

of a subset of the concept language, ordered by subsump-

tion.

Definition 8 (Taxonomy) Let Σ be a knowledge base. The

taxonomy derived from Σ is the partially ordered set

TΣ = (XΣ,⊑Σ). The set of concepts XΣ is the smallest

set that contains:

• the concept ⊤;

• all concept names in Ca;

• for every role name r ∈ Ra, every concept

name c ∈ Ca, and every natural number n ∈ N,

the concepts ∃r.⊤, ∃r.c, ≥ n r.⊤ and ≥ n r.c.

Any 2 concepts C, D ∈ XΣ are ordered by ⊑Σ, i.e.

C ⊑Σ D iff Σ |= C ⊑ D.

The 3 boolean constructors (⊓, ⊔, and ¬) are excluded

from the taxonomy because they are easily introduced into

queries through the navigation process (see Section 4). The

“at least one of objects” can also be introduced through

navigation by a direct selection of objects in the extension.

Other constructors are excluded from the taxonomy because

they are redundant according to the following equivalences:

• ∀r.C
.
= ¬∃r.¬C;

• ≤ n r.C
.
= ¬ ≥ (n + 1) r.C;

• = n r.C
.
= ≥ n r.C ⊓ ≤ n r.C.

Another motivation for not having the constructors ∀, ≤
and = is the Open World Assumption (OWA). Indeed, de-

scription logics, hence OWL, work under this assumption.

For example, in our knowledge base Σex, we have declared

3 objects as persons and members of the team LIS. The

OWA implies that there could be other members of LIS, un-

known to the knowledge base designer. Hence, the team LIS

is not an instance of the concept ≤ 5 hasmember.Person
(“at most 5 members”), whose extension is empty in our

knowledge base. In fact, this extension is empty in most

practical knowledge bases, except if a team is explicitly de-

clared to have at most 5 members or less. By excluding

these rare concepts from the taxonomy, we make it more

compact and efficient, while retaining the ability to insert

them manually in queries.

Now, given a query q, this taxonomy is pruned to retain

only concepts that are extensionally related to the query,

which results in the dynamic taxonomy.

Definition 9 (Dynamic taxonomy) Let Σ be a knowledge

base, and q be a query. A concept x ∈ TΣ is extensionally

related to the query q iff

ext(x) ∩ ext(q) 6= ∅.

This definition can be refined by using a minimal support m
(putting m = 1 is equivalent to the last definition):

#(ext(x) ∩ ext(q)) ≥ m.

The dynamic taxonomy DTΣ(q) is the pruning of the

taxonomy TΣ to the concepts that are extensionally related

to the query q. For historical reasons [2], we name those

concepts increments of q.

Because of concepts ≥ n r.C, there is an infinite number

of concepts in the taxonomy TΣ. However, every dynamic

taxonomy is finite because a knowledge base is finite, and

therefore for every role r and every concept C, there is nec-

essarily a number k such that for every n ≥ k, the extension

of ≥ n r.C is empty. Still, dynamic taxonomies are often

too large to be computed and displayed entirely at once.

This is why users are initially presented with a fully col-

lapsed dynamic taxonomy, showing only the most general

concept ⊤, and are allowed to expand concepts on demand,

i.e. computing and displaying children increments. This

computation is performed by the function incrs(x, q, m)
that returns the children of the concept x in DTΣ(q), given

the current query q and a minimum support m.

We now sketch the definition of the func-

tion incrs(x, q, m), depending on the shape of the

parent concept x:

• x
.
= ⊤: x is the root of the dynamic taxonomy. We

must open the main ways, that is to say, return:

– the most general concept names in Ca,

– for every most general role r in Ra (and their in-

verses), the concept ∃r.⊤;

• x ∈ Ca: x is a concept name. We must return the most

general concept names in Ca that are subsumed by x;

• x = ≥ n r.C: x is a qualified cardinality (this includes

every concept ∃r.C as equivalent to ≥ 1 r.C). We

must return:

– for every most general concept name D ∈ Ca

subsumed by C, the concept ≥ n r.D,

– for every most general role name s ∈ Ra sub-

sumed by r, the concept ≥ n s.C,

– the concept ≥ (n + 1) r.C.

In fact, among returned concepts, only those that are exten-

sionally related to the query (i.e. increments) are retained,

which requires the computation of an extension and an in-

tersection for each concept.

More pruning can be done with the help of the T-Box.

For instance, knowing r is a functional role, it is not nec-

essary to return the increment ≥ 2 r.⊤, because its exten-

sion will necessarily be empty. Other prunings can be done

with inverse functional or transitive roles. Also, concepts in

the form ∃r.⊤ could be made more informative by replac-

ing ⊤ by the concept describing the range of the role r (e.g.

∃hasmember.Person instead of ∃hasmember.⊤).

4. Navigation Links

A focus is a particular point of view over a knowledge

base, and we need navigation links to move from one fo-

cus to another. We distinguish 3 types of navigation links:

zoom-in/out, pivot, and crossing roles. Every navigation

link is anchored on some element of the local view, and

defined as a function that maps the current query to a new

query. All these navigation links are defined in the follow-

ing, and are illustrated in a navigation scenario (see Sec-

tion 5.3).

4.1 Zoom-in and Zoom-out

The most common navigation link is the zoom-in link.

A zoom-in link, aka specialization or refinement, reaches a

query, whose extension is smaller than the previous exten-

sion, but not empty. A concept from the dynamic taxon-

omy DTΣ(q), an increment of q, can be used as a zoom-in

link iff ext(x) ∩ ext(q) $ ext(q), in order to ensure that a

strictly smaller extension is reached. Let x be such an in-

crement, the new query is obtained by replacing by x the

elements in q that subsume x (specialization):

q ← (q \ {C ∈ q | x ⊑ C}) ∪ {x}.

A zoom-out link, aka generalization, is the inverse of the

zoom-in. A increment x can be used as a zoom-out link iff

it subsumes some query element: ∃C ∈ q : C ⊑ x. There

are 2 cases when following a zoom-out link, respectively

the removal and the generalization of query elements. In

the first case, when x ∈ q, the concept x is simply removed

from the query:

q ← q \ {x}.

In the second case, when x /∈ q, the query elements that are

strictly subsumed by x are replaced by x (generalization):

q ← (q \ {C ∈ q | C ⊑ x}) ∪ {x}.

Hence, every zoom-in link can be undone by a zoom-out

link, and conversely.

To increase the expressivity of navigation links, we allow

the combination of increments into complex increments.

First, when several increments {xi}i≤n are selected in the

dynamic taxonomy, they are disjuncted to form a complex

increment x = x1 ⊔ . . .⊔ xn. Second, a negated zoom-in is

provided by replacing x by ¬x in the above definition.

Finally, the OWL DL logic also provides the con-

structor {o1, . . . , on}, whose extension is trivially the

set {o1, . . . , on}. These concepts can be used in zoom-in

and zoom-out links exactly like other increments. The dif-

ference is that, instead of picking concepts in the dynamic

taxonomy, the user has to pick objects in the extension. In

this way, the extension can be restricted to a subset of the

current extension (zoom-in) or a set of objects can be ex-

cluded from the current extension (negated zoom-in).

4.2 Pivot

The navigation link, called pivot link, is the most sim-

ple and consists in replacing the current query q by some

increment x in the dynamic taxonomy DTΣ(q):

q ← x.

Pivot links are useful to change from one point of view to

another that is extensionally related. Like for zoom-in, dis-

junction, negation, and object selection can also be used to

define the increment.

4.3 Reversal and Traversal

We now introduce and motivate new navigation links

that make use of roles. First of all, roles are already

present in dynamic taxonomies through quantified con-

cepts (e.g., ∃r.C and ≥ n r.C). So, they can be intro-

duced in queries by zoom-in and pivot links. For instance,

the following query can be reached in 2 zoom-in steps:

q = {Bigteam,∃hasleader.Person}, i.e. “the big teams

with a leader”. A useful navigation link would be to reach

the related query: {Person,∃isleaderof.Bigteam}, i.e.

“the leaders of big teams”, where isleaderof is defined as

the inverse of hasleader. This navigation link, called re-

versal link, changes the point of view by crossing a role in

the query, and turning upside-down the query accordingly.

In the above example, the point of view has been changed

from teams to persons, through the role hasleader.

A query element x can be used as a reversal link if it has

the form x = ∃r.C, and then the new query is defined as:

q ← {C} ∪ {∃ r−1.(q \ {∃ r.C})}.

It can be verified that, if we follow again the reversal link

on ∃r−1.(q \ {∃ r.C}), we come back to the initial query q.

The second type of navigation link using roles is a com-

position of two navigation links defined above and is called

traversal. Indeed, it often happens that the user wants to

cross a role that is not yet present in the query, but al-

ready visible in the dynamic taxonomy. Hence, for an in-

crement x = ∃r.C, x is successively used for zoom-in and

reversal. These two steps can be simplified by the following

definition of the traversal link:

q ← {C} ∪ {∃ r−1.q}.

For instance, we can move in one

step from the query Bigteam to the

query {Person,∃isleaderof.Bigteam} by traversing the

increment ∃hasleader.Person.

In the definitions of reversal and traversal, we assume

that the role r has an inverse that is defined in the knowledge

base. If a role has no inverse, we can either prevent it to

be reversed or traversed, or we can automatically define an

inverse role in the knowledge base.

5. Implementation and Examples

We developed a prototype, ODALISQUE, to experiment

DTs-like browsing of OWL ontologies. It shares a simi-

lar user interface of an existing software, Camelis [1] (a

LIS implementation), but is based on a DL reasoner to in-

fer classification and instantiation statements. It also adds

the navigation links related to roles. In the following, we

demonstrate its use on an ontology about our research labo-

ratory.

5.1 ODALISQUE

The prototype is called ODALISQUE, for Ontology De-

scription and Logical Information System Queries. It uses

the Jena API2, developed in JAVA. Jena provides several

tools for OWL, especially the parsing of OWL files, and the

interaction with a reasoner such as Pellet. This interaction

gives access to the two main statements we need: classifi-

cation and instantiation. ODALISQUE has a GUI, shown

in Figure 3, that provides a complete display of local views,

and all navigation modes presented in Section 4. At the top,

the current query (here {Person,∃isleaderof.Bigteam}),

can be read and edited. At the left, the dynamic taxonomy

is represented as a tree, and a click on a tree node selects

it as the current increment. Between the query and the dy-

namic taxonomy, there is a button for each type of naviga-

tion links, and only those that are applicable to the selected

increment are activable. At the right, the extension of the

current query is displayed as a list. The bold elements are

those that would remain if a zoom-in were applied on the se-

lected increment. Several increments can be selected at the

same time, which is equivalent to have a single increment

defined as the disjunction of those increments. By select-

ing a set of objects in the extension, the selected increment

is defined as a “at least one of objects” concept (see Sec-

tion 4.1). Finally, ODALISQUE has a standard navigation

toolbar, with home, next and previous buttons. The logical

constructors ⊤, ⊓, ⊔, ¬, ∃, and ≥ are respectively displayed

as Thing , and, or, not, some, and min.

5.2 Ontology

To illustrate the browsing of ontologies with a naviga-

tion scenario, we have created the ontology of the staff of

our research laboratory, IRISA. This ontology includes the

knowledge base Σex of Section 2, and adds:

• 2 concepts Man and Woman, that are subsumed by

Person;

• a concept Theme, that is the class of the research

themes;

• a role hastheme, that represents relations from a team

to its theme;

• the role isthemeof , that is the inverse of the

hastheme role.

The A-Box now contains 182 persons, 29 research teams, 5

themes and 241 relations between these objects.

5.3 Navigation

The starting point of our scenario is characterized by the

current query q = ⊤, the dynamic taxonomy showing only

its root ⊤, and the extension of the current query containing

2http://jena.sourceforge.net/

Figure 3. Screenshot of ODALISQUE

all the objects of the ontology. The following scenario il-

lustrates the flexibility introduced by traversal and reversal

links to build complex queries. It shows how a set of teams

can be selected by switching between two points of view:

the teams and their leaders.

5.3.1 Zooming in Teams

The first point of view we want to access is the teams

with at least 5 members. The sub-increments of the

increment ⊤ are the concepts Team, Person, Theme,

and the concepts ∃ r.⊤ for the roles hasmember,

hastheme and their inverses. The sub-increments

of the increment ∃ hasmember.⊤ are the con-

cepts ∃ hasmember.Person, ∃ hasleader.⊤,

and ≥ 2 hasmember.⊤. By 4 successive in-

crement openings, we can reach the incre-

ment x =≥ 5 hasmember.Person from the incre-

ment ≥ 2 hasmember.⊤ (1 refining ⊤ into Person, and

the 3 others incrementing the cardinality from 2 to 5). The

selection of this increment allows the following navigation

links: zoom-in and pivot. Both navigation links replace the

current query by q = {≥ 5 hasmember.Person}, and the

extension is reduced from 216 objects to 13 teams. The

dynamic taxonomy also changes: the sub-increments of ⊤
are now only Team, ∃hastheme.⊤, and ∃hasmember.⊤,

i.e. relevant concepts for teams.

5.3.2 Traversing from Teams to Persons

The second point of view we want to access

is the persons who lead the teams we have se-

lected with the last query. With the selection

of the increment x = ∃hasleader.Person, and

the traversal link, the current query becomes

q = {Person,∃isleaderof.(≥ 5 hasmember.Person)}.

The point of view has changed from teams to persons, from

a set of 13 teams to the set of their 13 leaders. Hence,

the dynamic taxonomy changes too: it contains only

increments that are relevant to persons.

5.3.3 Zooming out Persons

From the definition of Bigteam, it can be

demonstrated that every leader of team with at

least 5 members is the leader of a big team,

i.e. ∃ isleaderof.(≥ 5 hasmember.Person) ⊑
∃ isleaderof.Bigteam. Hence, the incre-

ment ∃ isleaderof.Bigteam can be used as

a zoom-out link in order to expand the se-

lected leaders. Then the current query becomes

q = {Person,∃isleaderof.Bigteam}, and the exten-

sion now contains 17 persons. Note here that we have

expanded the set of leaders by expanding the set of teams

through the role isleaderof . This shows that zoom-out

works on complex concepts as well as on concept names.

5.3.4 Zooming in Persons

Next, the user may want to select only women

among the leaders of big teams. The selec-

tion of the increment Woman (the screenshot of

ODALISQUE at this time is given in Figure 1) and

the navigation link of zoom-in gives a new query:

q = {Woman, ∃isleaderof.Bigteam}. We notice that

Person was replaced by Woman, because the statement

Woman ⊑ Person holds. After this operation, the

increment Man disappears.

5.3.5 Reversing back to Teams

Finally, the user wants to come back to the initial point of

view, i.e. teams, but taking into account all previous naviga-

tion steps. So the last step to perform is following a reversal

navigation link through the role isleaderof . This is done

by selecting the concept ∃isleaderof.Bigteam, as an ele-

ment of the current query q. This leads to the final query

q = {Bigteam, ∃hasleader.Woman}, i.e. to the selec-

tion of big teams, whose leader is a woman.

From there, the user can access the themes or the mem-

bers of this set of teams. He can then further refine this set

of teams according to their themes and members by travers-

ing the roles hastheme and hasmember.

6. Conclusion

In this paper, we have demonstrated how dynamic tax-

onomies can be adapted and applied to the browsing of web

ontologies. This has been done for the OWL DL language,

which is the most expressive among decidable ontology lan-

guages. A prototype, ODALISQUE, was developed. It is

fully compliant with the OWL standard, and only assumes

a non-empty A-Box. It relies on existing OWL reasoners,

hence ensuring the correctness of its answers. It includes

all features of dynamic taxonomies, and introduces new

possibilities. First, concepts are not only names, but can

be complex concepts made of various logical constructors.

Complex concepts are not be only used in queries, but in

dynamic taxonomy, which classical navigation modes can

be applied (e.g., zoom-in, zoom-out, pivot). Second, re-

lations can be defined between objects through role asser-

tions, and this entails new navigation links for reversing a

query (change of point of view), and traversing a role from

a set of objects to a set of related objects. Third, because

of the increased diversity of navigation links, it appears that

navigation links can be defined not only on increments, i.e.

concepts in dynamic taxonomies, but also on objects in ex-

tensions, and on some query parts.

Our first experiments have revealed important improve-

ments to be done. First, OWL reasoners are costly

and strongly limit the size of ontologies we can browse.

ODALISQUE could be made much more efficient ei-

ther by implementing a dedicated reasoner or by pre-

computing and caching many inference results. Second,

ODALISQUE does not currently provide any means for

editing an ontology. However, we think it can be done

through the same interface (i.e., local views), as it has been

done in Camelis for logical information systems. Third,

many ontologies have no A-Box and are defined only at the

terminological level. It would be interesting to provide sim-

ilar browsing capabilities as in ODALISQUE for such on-

tologies. Finally, OWL is a logic that works under the open

world assumption, which is often counter-intuitive when

browsing real data. However, this can hardly been changed

without breaking compliancy with OWL standards.

References

[1] S. Ferré. CAMELIS: Organizing and browsing a personal

photo collection with a logical information system. In J. Di-

atta, P. Eklund, and M. Liquière, editors, Int. Conf. Con-

cept Lattices and Their Applications, volume 331 of CEUR

Workshop Proceedings ISSN 1613-0073, pages 112–123,

2007.
[2] S. Ferré and O. Ridoux. An introduction to logical infor-

mation systems. Information Processing & Management,

40(3):383–419, 2004.
[3] S. Ferré and O. Ridoux. Logical information systems: from

taxonomies to logics. In Int. Work. Dynamic Taxonomies

and Faceted Search (FIND), pages 212–216. IEEE Com-

puter Society, 2007.
[4] R. Fikes, P. Hayes, and I. Horrocks. Owl-ql: A language

for deductive query answering on the semantic web. Tech-

nical Report KSL 03-14, Stanford University, Stanford, CA,

2003.
[5] I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From

SHIQ and RDF to OWL: The making of a web ontology

language. Journal of Web Semantics, 1(1):7–26, 2003.
[6] I. Horrocks and U. Sattler. Ontology reasoning in the

SHOQ(D) description logic. In B. Nebel, editor, Int. Joint

Conf. Artificial Intelligence, pages 199–204. Morgan Kauf-

mann, 2001.
[7] S. Jean, Y. A. Ameur, and G. Pierra. Querying ontology

based database using ontoql (an ontology query language).

In OTM Conferences (1), pages 704–721, 2006.
[8] G. Karvounarakis, A. Magkanaraki, S. Alexaki,

V. Christophides, D. Plexousakis, M. Scholl, and K. Tolle.

Querying the semantic web with rql. Computer Networks,

42(5):617–640, 2003.
[9] G. Sacco. Dynamic taxonomies: a model for large informa-

tion bases. Knowledge and Data Engineering, IEEE Trans-

actions on, 12(3):468–479, 2000.

[10] G. M. Sacco. The intelligent e-sales clerk: the basic ideas. In

M. R. et al, editor, Int. Conf. Human-Computer Interaction

(INTERACT), pages 876–879. IOS Press, 2003.

