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The Dirichlet problem for the minimal surface
equation -with possible infinite boundary data-

over domains in a Riemannian surface

Laurent Mazet, M. Magdalena Rodŕıguez∗and Harold Rosenberg

June 2, 2008

1 Introduction

In [8], Jenkins and Serrin considered bounded domains D ⊂ R2, with ∂D
composed of straight line segments and convex arcs. They found necessary
and sufficient conditions on the lengths of the sides of inscribed polygons,
which guarantee the existence of a minimal graph over D, taking certain
prescribed values (in R ∪ {±∞}) on the components of ∂D

Perhaps the simplest example is D a triangle and the boundary data is
zero on two sides and +∞ on the third side. The conditions of Jenkins-
Serrin reduce to the triangle inequality here and the solutions exists. It was
discovered by Scherk in 1835.

This also works on a parallelogram with sides of equal length. One pre-
scribes +∞ on opposite sides and −∞ on the other two sides. This solution
was also found by Scherk.

The theorem of Jenkins and Serrin also applies to some non-convex do-
mains. They only require ∂D to be composed of a finite number of convex
arcs, together with their endpoints.

∗Research partially supported a CNRS grant and a MEC/FEDER grant no. MTM2007-
61775. The second author would like to thanks L’Institut de Mathématiques de Jussieu
(UMR 7586) for its hospitality during the preparation of this manuscript.
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In a very interesting paper [17], Joel Spruck solved the Dirichlet problem
for the constant mean curvature H equation over bounded domains D ⊂ R2,
with ∂D composed of circle arcs of curvature ±2H, together with convex arcs
of curvature larger than 2H. The boundary data now is ±∞ on the circle
arcs and prescribed continuous data on the convex arcs. He gave necessary
and sufficient conditions on the perimeter, and area, of inscribed polygons
that solve the Dirichlet problem.

In recent years there has been much activity on this Dirichlet problem
over domains D contained in a Riemannian surface M [14, 18]. When M

is the hyperbolic plane H2, there are non-compact domains for which this
problem has been solved, and interesting applications have been obtained
(see for example [3, 6, 11]

In this paper we will extend the solution of this Dirichlet problem to gen-
eral domains. In the case of a Riemannian surface M, we consider non-convex
domains (see Section 3). For M = H2, we study non-compact domains.

Our techniques for doing this in H2 are new (and apply to domains in
arbitrary M). Previously one found a solution to the Dirichlet problem by
taking limits of monotone sequences of solutions whose boundary data con-
verges to the prescribed data. A basic tool to make this work is the maximum
principle for solutions: if u and v are solutions and u ≤ v on ∂D, then u ≤ v
on D. However, there are domains for which the maximum principle fails
(we discuss this in Section 4.3.2). In order to solve the Dirichlet problem
in the absence of a maximum principle we use the idea of divergence lines
introduced by Laurent Mazet in his thesis [9]. This enables us to obtain
convergent subsequences of non-necessarily monotone sequences.

This lack of a general maximum principle implies that one no longer has
uniqueness (up to an additive constant, in the case of infinite boundary data)
for the solutions. In section 4.3, we obtain uniqueness theorems for certain
domains and we give examples where this fails.

2 Preliminaries

From now on, M will denote a Riemannian surface. In the following, div, ∇
and | · | are defined with respect to the metric on M. Let Ω be a domain in
M and u : Ω → R be a smooth function. We define Wu =

√
1 + |∇u|2. The
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graph of such a smooth function u that satisfies

div

(∇u

Wu

)
= 0,

is a minimal surface in M×R; referred to as a minimal graph. In the following
we will denote Xu = ∇u

Wu
.

The next results have been proven by Jenkins and Serrin [8] for M = R2,
by Nelli and Rosenberg [11] when M = H2, and by Pinheiro [14] in the general
setting. In fact, these results were proven for bounded and geodesically
convex domains in [14], although their proofs remain valid in a more general
setting.

Theorem 2.1 (Compactness theorem). Let {un} be a uniformly bounded
sequence of minimal graphs in a bounded domain Ω ⊂ M. Then, there exists
a subsequence of {un} converging on compact subsets of Ω to a minimal graph
u on Ω.

Theorem 2.2 (Monotone convergence theorem). Let {un} be an increasing
sequence of minimal graphs on a domain Ω ⊂ M. There exists an open set
U ⊂ Ω (called the convergence set) such that {un} converges uniformly on
compact subsets of U and diverges uniformly to +∞ on compact subsets of
V = Ω − U (divergence set). Moreover, if {un} is bounded at a point p ∈ Ω,
then the convergence set U is non-empty (it contains a neighborhood of p).

Now we recall some results which allow us to describe the divergence set
V associated to a monotone sequence of minimal graphs.

Lemma 2.3 (Straight line lemma). Let Ω ⊂ M be a domain, C ⊂ ∂Ω a
convex compact arc, and u ∈ C0(Ω ∪ C) a minimal graph on Ω. Denote by
C(C) the (open) convex hull of C.

(i) If u is bounded above on C and C is strictly convex, then u is bounded
above on K ∩ Ω, for every compact set K ⊂ C(C).

(ii) If u diverges to +∞ or −∞ as we approach C within Ω, then C is a
geodesic arc.
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Definition 2.4. Let u be a minimal graph on a domain Ω ⊂ M and assume
that ∂Ω is arcwise smooth. When C is an arc in Ω and ν is a unit normal
to C in M we define the flux of u across C for such choice of ν by

Fu(C) =

∫

C

〈Xu, ν〉ds,

where ds is the arc length of C. Since the vector field Xu is bounded and has
vanishing divergence, the flux is also defined across a curve Γ ⊂ ∂Ω, in that
case, ν is chosen to be the outer normal to ∂Ω.

In the paper, when a flux is computed across a curve C, the curve C will
be always seen as part of the boundary of a subdomain. The normal ν will
then be chosen as the outer normal to the subdomain.

Lemma 2.5. Let u be a minimal graph on a domain Ω ⊂ M.

(i) For every compact bounded domain Ω′ ⊂ Ω, we have Fu(∂Ω′) = 0.

(ii) Let C be a piecewise smooth interior curve or a convex curve in ∂Ω
where u extends continuously and takes finite values. Then |Fu(C)| <
|C|.

(iii) Let T ⊂ ∂Ω be a geodesic arc such that u diverges to +∞ (resp −∞) as
one approaches T within Ω. Then Fu(T ) = |T | (resp. Fu(T ) = −|T |).

Remark 2.6. From Lemma 2.5 and the triangle inequality, we deduce that,
if u : Ω → R is a minimal graph and T1, T2 ⊂ ∂Ω are two geodesics where u
diverges to +∞ as we approach them, then T1, T2 cannot meet at a strictly
convex corner (strictly convex with respect to Ω).

The last statement in Lemma 2.5 admits the following generalization.

Lemma 2.7. For each n ∈ N, let un be a minimal graph on a fixed domain
Ω ⊂ M which extends continuously to Ω, and let T be a geodesic arc in ∂Ω.

(i) If {un} diverges uniformly to +∞ on compact sets of T while remaining
uniformly bounded on compact sets of Ω, then Fun

(T ) → |T |.

(ii) If {un} diverges uniformly to +∞ on compact sets of Ω while remaining
uniformly bounded on compact sets of T , then Fun

(T ) → −|T |.
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The following result is adapted to the situation of the next section. The
boundary of a domain Ω is finitely piecewise smooth and locally convex if it
is composed of a finite number of open smooth arcs which are convex towards
Ω, together with their endpoints. These endpoints are called the vertices of
Ω.

Theorem 2.8 (Divergence set theorem). Let Ω ⊂ M be a bounded domain
with finitely piecewise smooth and locally convex boundary. Let {un} be an
increasing (resp. decreasing) sequence of minimal graphs on Ω. For every
open smooth arc C ⊂ ∂Ω, we assume that, for every n, un extend continuously
on C and either un|C converges to a continuous function or un|C ր +∞
(resp. un|C ց −∞). Let V be the divergence set associated to {un}

1. The boundary of V consists of a finite set of non-intersecting interior
geodesic chords in Ω joining two vertices of ∂Ω, together with geodesics
in Ω.

2. A component of V cannot only consist of an isolated point nor an in-
terior chord.

3. No two interior chords in ∂V can have a common endpoint at a convex
corner of V.

Theorem 2.9 (Maximum principle for bounded domains). Let Ω ⊂ M be
a bounded domain, and E ⊂ ∂Ω a finite set of points. Suppose that ∂Ω\E
consists of smooth arcs Ck, and let u1, u2 be minimal graphs on Ω which
extend continuously to each Ck. If u1 ≤ u2 on ∂Ω\E, then u1 ≤ u2 on Ω.

Theorem 2.10 (Boundary values lemma). Let Ω ⊂ M be a domain and let
C be a compact convex arc in ∂Ω. Suppose {un} is a sequence of minimal
graphs on Ω converging uniformly on compact subsets of Ω to a minimal graph
u : Ω → R. Assume each un is continuous in Ω ∪ C and {un|C} converges
uniformly to a function f on C. Then u is continuous in Ω∪C and u|C = f .

3 A general Jenkins-Serrin theorem on M×R

Let Ω ⊂ M be a bounded domain whose boundary consists of a finite number
of open geodesic arcs A1, · · · , Ak1

, B1, · · · , Bk1
and a finite number of open

5



convex arcs C1, · · · , Ck3
(convex towards Ω), together with their endpoints.

We mark the Ai edges by +∞, the Bi edges by −∞, and assign arbitrary
continuous data fi on the arcs Ci.

Definition 3.1. We define a solution for the Dirichlet problem on Ω as a
minimal graph u : Ω → R which assumes the above prescribed boundary
values on ∂Ω.

Our aim in this section is to solve this Dirichlet problem on Ω. We
assume that no two Ai edges and no two Bi edges meet at a convex corner
(see Remark 2.6). When Ω is geodesically convex, this was done in [14];
in general we need another condition on the ∂Ω. We assume the following
technical condition is satisfied:

(C1) If {Ci}i = ∅, then neither ∪k1

i=1Ai nor ∪k2

i=1Bi is a connected
subset of ∂Ω.

We will say that a domain Ω as above is a Scherk domain. We notice
that the hypothesis (C1) implies that k1 ≥ 2 and k2 ≥ 2 when {Ci}i = ∅.
We remark that (C1) is always satisfied when M = R2, H2.

Condition (C1) is not necessary for the existence of a solution to the
Dirichlet problem on Ω (see Remark 3.5) but we need to assume this for our
proof.

Claim 3.2. In particular, condition (C1) holds when there exists a component
Γ of ∂Ω and a strongly geodesically convex1 domain Ω′ ⊂ M containing Ω
such that ∂Ω′ = Γ.

Proof. Suppose {Ci}i = ∅. Since Γ is the boundary of Ω′ and Ω′ is geodesi-
cally convex, we can rename the Ai, Bi edges so that Γ = A1 or Γ = B1 or
Γ = A1 ∪B1 ∪ · · · ∪Ak ∪Bk (cyclically ordered). The first two cases are not
allowed: in fact, in that cases A1 or B1 would be closed and two points on it
would be joined by two geodesic arcs in Γ ⊂ Ω′.

In the third case, we have k ≥ 2. If k = 1, the common endpoints of A1

and B1 are joined by two geodesic arcs, A1 and B1, in Ω′ which is impossible.
Thus k ≥ 2 and (C1) holds.

1A set D ⊂ M is said to be strongly geodesically convex when, for every p, q ∈ D, there
exists a unique length-minimizing geodesic arc γ in M joining p, q and γ ⊂ D; moreover,
γ is the only geodesic arc in D joining p, q.
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A polygonal domain P is said to be inscribed in Ω when P ⊂ Ω and its
vertices are drawn from the set of endpoints of the Ai, Bi, Ci edges. Given
a polygonal domain P inscribed in Ω, we denote by γ the perimeter of ∂P ,
and by α (resp. β) the total length of the edges Ai (resp. Bi) lying in ∂P .

Theorem 3.3. Let Ω be a Scherk domain. If the family {Ci}i is non-empty,
there exists a solution to the Dirichlet problem on Ω if and only if

2α < γ and 2β < γ (1)

for every polygonal domain P inscribed in Ω. Moreover, such a solution is
unique, if it exists.

When {Ci}i is empty, there is a solution to the Dirichlet problem for Ω
if and only if α = β when P = Ω, and inequalities in (1) hold for all other
polygonal domains inscribed in Ω. Such a solution is unique up to an additive
constant, if it exists.

Remark 3.4.

1. The Scherk domain Ω need not be convex, even when there are no Ai

and Bj edges. There are no conditions in the latter case; the solution
need not be continuous at the vertices.

2. Theorem 3.3 corresponds to Theorem 4 in [8], in the case M = R2.

3. Theorem 3.3 has been proven, when Ω is a geodesically convex domain,
by Nelli and Rosenberg [11] (in the case M = H2) and by Pinheiro [14].

Proof. The uniqueness part in Theorem 3.3 can be proven exactly as in [14].
Let us now prove the conditions of Theorem 3.3 are necessary for existence.
Suppose there is a minimal graph u solving the Dirichlet problem. When
{Ci}i = ∅ and P = Ω, using Lemma 2.5 we have

α =
∑

i |Ai| =
∑

i Fu(Ai) = −∑
i Fu(Bi) =

∑
i |Bi| = β,

as we wanted to prove. In the other case, again by Lemma 2.5, we obtain:

• ∑
Ai⊂∂P Fu(Ai) +

∑
Bi⊂∂P Fu(Bi) + Fu(∂P − ∪iAi − ∪iBi) = 0.

• ∑
Ai⊂∂P Fu(Ai) =

∑
Ai⊂∂P |Ai| = α.
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• ∑
Bi⊂∂P Fu(Bi) = −∑

Bi⊂∂P |Bi| = −β.

• |Fu(∂P − ∪iAi − ∪iBi)| < γ − α − β.

From all this, |α − β| < γ − α − β, so 2α < γ and 2β < γ, as desired.

Finally, let us prove the conditions are sufficient. We distinguish the fol-
lowing cases:

⋆ First case: Suppose that the families {Ai}i, {Bi}i are both empty.

In this case, Theorem 3.3 is proven, exactly as in [8] for M = R2, by means
of the Perron process (see [5, 8]), using the fact that the solution to the
Dirichlet problem exists for small geodesic disks [14] and a standard barrier
argument (a barrier exists at every convex boundary point, see [14]).

⋆ Second case: Suppose {Bi}i = ∅ and each fi is bounded below.

Using the previous step, there exists, for every n ∈ N, a unique minimal
graph un : Ω → R such that:

{
un = n , on the Ai edges.
un = min{n, fi} , on the Ci edges.

From the maximum principle for bounded domains (Theorem 2.9), we deduce
that {un} is a non-decreasing sequence. Thus Lemma 2.3 and Theorem 2.8
assure that, if it is non-empty, the divergence set V of {un} consists of a finite
number of polygonal domains inscribed in Ω. Assume that V is connected
(otherwise, we will similarly argue on each component of V). By Lemma 2.5,
the flux of un along ∂V vanishes; this is,

∑

Ai⊂∂V

Fun
(Ai) + Fun

(∂V − ∪iAi) = 0.

On the other hand, Lemma 2.7 says that Fun
(∂V − ∪iAi) → −(γ − α) as

n → +∞. Since
∑

Ai⊂∂V |Fun
(Ai)| ≤ α, we obtain 2α− γ ≥ 0, which contra-

dicts (1). Hence V = ∅, and {un} converges uniformly on compact sets of Ω
to a minimal graph u : Ω → R. The desired boundary conditions for u are
obtained from standard barrier arguments.
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Theorem 3.3 can be proven analogously when {Ai}i is empty and each fi

is bounded above.
⋆ Third case: Suppose {Ci}i 6= ∅.
By the previous step, there exist (unique) minimal graphs u+, u−, un : Ω → R

with the following boundary values:




u+ = +∞ , u− = 0 and un = n , on the Ai edges,
u+ = 0 , u− = −∞ and un = −n , on the Bi edges,
u+ = f+

i , u− = f−
i and un = fi,n , on the Ci edges,

where f+
i = max{0, fi}, f−

i = min{0, fi} and fi,n denotes the function fi

truncated above and below by n and −n, respectively. By Theorem 2.9,
u− ≤ un ≤ u+, for every n. Using the compactness theorem (Theorem 2.1)
and a diagonal process we can extract a subsequence of {un} which converges
on compact sets of Ω to a minimal graph u. The desired boundary conditions
for u are obtained from standard barrier arguments.

⋆ Fourth case: Suppose {Ci}i = ∅.
From the first case, we know there exists for each n ∈ N a minimal graph
vn : Ω → R such that

{
vn = n , on the Ai edges.
vn = 0 , on the Bi edges.

And the maximum principle implies that 0 ≤ vn ≤ n. For every c ∈ (0, n),
we define

Ec = {p ∈ D | vn(p) > c}, Fc = {p ∈ D | vn(p) < c},

and denote by Ei
c (resp. F i

c) the component of Ec (resp. Fc) whose closure
contains the edge Ai (resp. Bi). From the maximum principle for bounded
domains, we can deduce Ec = ∪iE

i
c and Fc = ∪iF

i
c .

Condition (C1) ensures that the set Fc (resp. Ec) is disconnected for
c = ε (resp. c = n − ε), with ε > 0 small enough. On the other hand, Fc is
connected when c = n − ε for ε > 0 small enough, so we can define

µn = inf{c ∈ (0, n) | the set Fc is connected},

and un = vn − µn.
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In order to prove that a subsequence of {un} converges, let us consider
the auxiliary functions

u+ = max
i

{u+
i } , u− = min

i
{u−

i } ,

where u+
i , u−

i : Ω → R are the unique minimal graphs given by

{
u+

i = +∞ , on ∪i′ 6=i Ai′

u+
i = 0 , on (∪jBj) ∪ Ai

{
u−

i = −∞ , on ∪i′ 6=i Bi′

u−
i = 0 , on (∪jAj) ∪ Bi

(such functions u+
i , u−

i exist thanks to the second case studied previously).
Observe that, by definition of µn, both Eµn

, Fµn
are disconnected. In

particular, for every i1, there exists a i2 such that Ei1
µn

∩ Ei2
µn

= ∅, and we
obtain, applying the maximum principle,

0 ≤ un|Ei1
µn

≤ u+
i2
|
E

i1
µn

.

Similarly, for every j1, there exists a j2 such that F j1
µn

∩ F j2
µn

= ∅, and

u−
j2
|
F

j1
µn

≤ un|F j1
µn

≤ 0.

From this it is not very difficult to prove that u− ≤ un ≤ u+. Hence, the
compactness theorem ensures that a subsequence of {un} converges uniformly
on compact subsets of Ω to a minimal graph u. Let us check that u satisfies
the desired boundary conditions.

Suppose that, after passing to a subsequence, {µn} converges to some
µ∞ < +∞. Hence, u = −µ∞ on each Bi and u diverges to +∞ when we
approach Ai within Ω. From Lemma 2.5, we get

∑
i Fu(Ai) +

∑
i Fu(Bi) = Fu(∂Ω) = 0,

∑
i Fu(Ai) = α and |∑i Fu(Bi)| < β,

which contradicts the assumption α = β. Thus the whole sequence {µn}
diverges to +∞. Analogously, we can prove that n−µn → +∞ as n → +∞,
and Theorem 3.3 is proven.

Remark 3.5. The following example shows condition (C1) is not necessary:
Consider a hemisphere Ω0 ⊂ S2 and a geodesic triangle T1 ⊂ Ω0. By Theo-
rem 3.3, there exists a minimal graph on Ω0 − T1 with boundary data 0 on
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T1

T2

G

Figure 1: Ω = S2 − (T1 ∪ T2) does not satisfies the condition (C1) when
∂T1 = A1 ∪ A2 ∪ A3 and ∂T2 = B1 ∪ B2 ∪ B3.

∂Ω0 and +∞ on ∂T1 (up to its vertices). Considering the π- rotation about
∂Ω0, we get a minimal graph defined on the sphere with two geodesic triangles
T1, T2 removed which has boundary data +∞ on the edges of ∂T1 and −∞
on the edges of ∂T2, see Figure 1.

Before ending this section, let us give a result which is the converse of
statement (iii) in Lemma 2.5.

Lemma 3.6. Let u be a minimal graph on a domain Ω ⊂ M2. Let T ⊂ ∂Ω
be a geodesic arc such that Fu(T ) = |T | (resp. Fu(T ) = −|T |). Then u takes
on T the boundary value +∞ (resp −∞).

Proof. Let us consider p ∈ T , and Ω′ be the set of points in Ω at distance less
than δ from p (δ is chosen very small), Ω′ is a half-disk. Let T ′ be T ∩ ∂Ω′,
we have Fu(T

′) = |T ′| and the other part of ∂Ω′ is strictly convex. From
Theorem 3.3, there exists on Ω′ a minimal graph v with u = v on ∂Ω′\T ′

and v = +∞ on T ′. The lemma is proved if we show that u = v.
If the lemma is not true, we can assume that {u < v − ε} is nonempty;

where ε is chosen to be a regular value of v − u. Let O denote {u < v − ε}.
Let C be the connected component of the complement of O which has ∂Ω′\T ′
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in its boundary and we consider O′ the complement of C: we have O ⊂ O′

and ∂O′ ⊂ ∂O ∪ T ′. Let q be a point in ∂O′ ∩ Ω′. For µ > 0, let O′(µ) be
the set of point O′ at distance larger than µ from T ′. Let q1 and q2 be the
endpoints of the connected component of ∂O′(µ)∩∂O′ which contains q. Let

pi be the projection of qi on T ′. Let Õ(µ) be the domain bounded by the
segments [q1, p1], [p1, p2] ⊂ T ′, [p2, q2] and the boundary component of O′(µ)
between q2 and q1. On this last component Γ(µ) the vector Xu − Xv points

outside Õ(µ). Since Fu(∂Õ(µ)) = 0 = Fv(∂Õ(µ)), we have:

0 <

∫

Γ(µ)

〈Xu − Xv, ν〉 = −
∫

[p1,q1]∪[p2,q2]

〈Xu − Xv, ν〉 −
∫

[p1,p2]

〈Xu − Xv, ν〉

≤ 4µ −
∫

[p1,p2]

〈Xu − Xv, ν〉

By hypothesis on u and v and Lemma 2.5−(iii), the last term vanishes;
moreover the integral on Γ(µ) increases as µ goes to 0 (see Lemma 2 in [2]).
Thus we have a contradiction and u = v.

4 A particular case: M = H2

In the rest of the paper we study the Dirichlet problem for unbounded do-
mains in H2.

Collin and Rosenberg [3] have extended Theorems 2.8 and 2.9 to some un-
bounded domains. More precisely, they consider simply connected domains
Ω ⊂ H2 whose boundary consists of finitely many ideal geodesics and finitely
many complete convex arcs (convex towards Ω) together with their endpoints
at infinity, Ω satisfying the following assumption:

(C-R) If C ⊂ ∂Ω is a convex arc with endpoint p ∈ ∂∞H2,
then the other arc γ of ∂Ω having p as an endpoint is asymptotic
to C at p; i.e., if {xn} is a sequence in γ converging to p, then
distH2(xn, C) → 0 (see Figure 2).

They solve the Dirichlet problem for such domains. The same results without
assuming Ω is simply connected can be obtained from Theorem 3.3, following
Collin and Rosenberg’s ideas. Our aim is to weaken the hypotheses on Ω, in
particular the (C-R) hypothesis. Also we will allow Ω to have arcs in ∂∞H2

in its closure.
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Figure 2: A domain Ω ⊂ H2 satisfying condition (C-R).

4.1 Minimal graphs over unbounded domains

4.1.1 First examples

Let p be a point in ∂∞H2. We consider the half-plane model for the hyperbolic
plane, H2 = {(x, y) ∈ R2 | y > 0} with metric 〈 , 〉 = 1

y2 g0, where g0 is the

Euclidean metric and assume that p is the point of coordinates (0, 0). For
(φ, θ) ∈ R×(0, π) we consider the point q = (eφ cos θ, eφ sin θ) ∈ R×R∗

+ = H2.
We will call (φ, θ) the polar coordinates of q centered at p. In these new
coordinates, the hyperbolic metric becomes 1

sin2 θ
(dφ2 + dθ2); the coordinates

(φ, θ) are conformal.
We notice that there are several polar coordinates centered at p i.e. given

a point q ∈ H2 there exists one hyperbolic isometry fixing p such that the
polar coordinates centered at p of q becomes (0, π/2). The curves {φ =
constant} are geodesics. The curve {θ = π/2} is also a geodesic of H2 and,
for any θ0 ∈ (0, π), the curve {θ = θ0} is equidistant to this geodesic; we
denote by

dθ0
=

∣∣∣∣∣

∫ π/2

θ0

dθ

sin θ

∣∣∣∣∣ (2)

the distance between the geodesic {θ = π/2} and its equidistant {θ = θ0}.
A minimal graph u which takes constant values on the equidistant curves

to the geodesic {θ = π/2} can be written u(φ, θ) = f(θ), where f satisfies
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the following differential equation (see Appendix A):

d

dθ


 f ′

√
1 + sin2 θ |f ′|2


 = 0

Thus, by integrating this equation with f(0) = 0, we get minimal surfaces
that were first obtained by Sa Earp [15] and Abresch (see Appendix A).

Lemma 4.1. Let θ0 ∈ (0, π/2]. There is a minimal graph hθ0
defined on the

domain Ωθ0
= {0 < θ < θ0} which takes constant values on the equidistant

curves to {θ = π/2}, have boundary data 0 on the boundary arc {θ = 0} and

satisfies
dhθ0

dν
= +∞ on {θ = θ0} (ν is the outer unit normal to ∂Ωθ0

). When

θ0 < π/2, hθ0
takes a constant finite value on {θ = θ0} and hπ/2 diverges to

+∞ on the geodesic {θ = π/2}

In the half-plane model, the minimal graph hπ/2 is defined on R∗
+ × R∗

+

by

hπ/2(x, y) = ln

√
x2 + y2 + y

x
(3)

Then if Ω is a domain bounded by a geodesic and an arc in ∂∞H2, Lemma
4.1 gives a minimal graph h over Ω with value 0 on the arc in ∂∞H2 and
h = +∞ on the geodesic. We notice that ±h+M is a minimal graph over Ω
with value M on the arc in ∂∞H2 and ±∞ on the geodesic. These minimal
graphs are examples of solutions to a Dirichlet problem that can be recovered
by the work of Collin and Rosenberg in [3].

In the following, we want to generalize such examples. The above surfaces
will be used as barriers to study boundary values and uniqueness. As above,
the domains Ω we shall study have arcs in ∂∞H2 as boundary; thus we shall
denote by ∂Ω the boundary of Ω in H2 and by ∂∞Ω the boundary of Ω in the
compactified space H2∪∂∞H2; Ω

∞
will denote the closure of Ω in H2∪∂∞H2.

4.1.2 Convergence of sequences of minimal graphs

In this section, we solve the Dirichlet problem in a more general setting, where
a maximum principle is not necessarily satisfied (see Section 4.3). We cannot
then apply the method developed by Jenkins and Serrin to solve the Dirichlet
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problem on Ω, since we cannot assure the monotonicity of the constructed
graphs un in the third step of the proof (see the third case “{Ci} 6= ∅” in the
proof of Theorem 3.3). We now study the convergence of a (non necessarily
monotone) sequence of minimal graphs on Ω.

Let Ω ⊂ H2 be a domain whose boundary ∂∞Ω is piecewise smooth
(possibly with some arcs at ∂∞H2). Given a sequence {un} of minimal graphs
on Ω, we define the convergence domain of the sequence {un} as

B = {p ∈ Ω | {|∇un(p)|} is bounded} ,

and the divergence set of {un} as

D = Ω − B.

We remark that, in Theorem 2.2, we have already defined a notion of conver-
gence and divergence set for monotone sequences. In the following, we only
use these new definitions.

The following lemma gives us a local description of the convergence do-
main B and the divergence set D that justifies their names. G(un) will denote
the graph of un, and Nn(p) the downward pointing normal vector to G(un)
at the point (p, un(p)); i.e. Nn = (Xun

, −1
Wun

). For writting this, we use a

vertical translation to identify the tangent space T (H2 × R) with TH2 × R.
In fact, in the following, we often use vertical translations to identify the
tangent spaces.

Lemma 4.2.

1. Given p ∈ B, there exists a subsequence of {un − un(p)} converging
uniformly to a minimal graph in a neighborhood of p in Ω. The size
of the neighborhood depends only on the distance from p to ∂Ω and
an upper-bound for {|∇un(p)|}. Also, B open follows from curvature
estimates.

2. If p ∈ D, there exists a compact geodesic arc Lp(δ) ⊂ Ω of length
2δ centered at p, δ > 0 only depends on distH2(p, ∂Ω), such that, af-
ter passing to a subsequence, {Nn(q)} converges to a horizontal vector
orthogonal to Lp(δ) at every point q ∈ Lp(δ).
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Proof. Fix p ∈ Ω, and define vn = un − un(p). We denote by G(vn) the
graph of vn. Observe that, for any q ∈ Ω, the downward pointing normal
vector to G(vn) at Q = (q, vn(q)) coincides with Nn(q), and that both the
convergence and divergence sets associated to {vn} and {un} coincide. The
distance from P = (p, 0) to the boundary of G(vn) is bigger than or equal to
d = distH2(p, ∂Ω). Hence we deduce from Schoen’s curvature estimates [16]
that there exists δ > 0 depending on d such that a neighborhood of P = (p, 0)
in G(vn) is a graph of uniformly bounded height and slope over the disk
Dn(δ) ⊂ TP G(vn) of radius δ centered at the origin of TP G(vn) (see [13],
Lemma 4.1.1, for more details). By graph here we mean a graph in geodesic
coordinates, orthogonal to Dn(δ). We call Gn(p, δ) such a graph.

Suppose p ∈ B. Since {|∇un(p)|} is uniformly bounded, a subsequence of
{Nn(p)} converges to a non-horizontal vector, so the tangent planes TP G(vn)
converge to a non-vertical plane Π, and the disks Dn(δ) converge to a disk
D(δ) ⊂ Π of radius δ. From standard arguments (see [13], Theorem 4.1.1)
we deduce that a subsequence of {Gn(p, δ)} converges to a minimal graph

G(p, δ) over D(δ). Hence there exists a disk D(p, δ̃) ⊂ Ω of radius δ̃ ∈ (0, δ]
such that {vn|D(p,eδ)} is uniformly bounded. After passing to a subsequence,

{vn|D(p,δ)} converges uniformly on compact subsets of D(p, δ̃) to a minimal
(vertical) graph. This proves 1.

Now assume p ∈ D. Since {|∇un(p)|} is unbounded, we can take a
subsequence of {un} so that |∇un(p)| → +∞ and {Nn(p)} converges to a
horizontal vector. In particular, the tangent planes TP (G(vn)) converge to
a vertical plane Π, and a subsequence of {Gn(p, δ)} converges to a minimal
graph G(p, δ) over a disk D(δ) ⊂ Π of radius δ centered at P . The graph
G(p, δ) is tangent to Π at P . The following argument follows the ideas in [7],
Claim 1: If G(p, δ) 6⊂ Π, then G(p, δ) ∩ Π consists of k ≥ 2 smooth curves
meeting transversally at P . In particular, there are parts of G(p, δ) on both
sides of Π. Thus there are points in G(p, δ) where the normal vector points
up and points where the normal points down. But this is impossible, since
G(p, δ) is the limit of vertical graphs. Therefore, G(p, δ) ⊂ Π.

We call Lp(δ) the geodesic G(p, δ) ∩ (H2 × {0}), whose length is 2δ. We
can deduce that the tangent planes of G(vn) at (q, vn(q)) converge to Π, for
every q ∈ Lp(δ) (for precise details, see [9, 10]), which completes the proof of
Lemma 4.2.

The next lemma shows D = ∪i∈ILi, where each Li is a component of the

16



intersection of a ideal geodesic in H2 with Ω. The geodesics Li are called
divergence lines.

Lemma 4.3. Given p ∈ D, there exists a geodesic L ∈ Ω joining points in
∂∞Ω (possibly at ∂∞H2) which passes through p and such that, after passing
to a subsequence, {Nn|L} converges to a horizontal vector orthogonal to L
(in particular, L ⊂ D). In fact, L is the geodesic containing Lp(δ).

Proof. Let Lp = Lp(δ) be the geodesic arc given in Lemma 4.2-2, and L be
the geodesic in Ω joining points in ∂Ω which contains Lp. For every q, we
denote by [p, q] ⊂ L the closed geodesic arc in L joining p, q. Define

Λ =

{
q ∈ L

∣∣∣ there exists a subsequence of {un} such that
Nn|[p,q] becomes horizontal and orthogonal to L

}
.

Clearly, p ∈ Λ so Λ 6= ∅. Let us prove Λ is open in L. Take q ∈ Λ, and denote
by {uσ(n)} its associated subsequence given in the definition of Λ. Since
Λ ⊂ D, Lemma 4.2-2 gives us a geodesic arc Lq through q such that, passing
to a subsequence, Nσ(n)|Lq

becomes horizontal and orthogonal to Lq. The
vector Nσ(n)(q) converges to a horizontal vector orthogonal simultaneously
to L and Lq, from which we deduce that Lq ⊂ L, and so Lq ⊂ Λ.

Finally, we prove Λ is a closed set, which finishes Lemma 4.3. Let {qm}
be a sequence of points in Λ such that qm → q ∈ L. Let us prove that
q ∈ Λ. For each m, there exists a subsequence of {un} such that Nn|[p,qm]

becomes horizontal and orthogonal to L. A diagonal argument allows us
to take a common subsequence of {un} (also denoted by {un}) such that
Nn|[p,qm] becomes horizontal and orthogonal to L, for every m. For every
m, there is a geodesic arc Lqm

⊂ L centered at qm satisfying Lemma 4.2-2
whose length depends only on distH2(qm, ∂Ω). Hence, q ∈ Lqm

for any m
large enough, and so q ∈ Λ.

Proposition 4.4. Suppose the divergence set of {un} is a countable set of
lines. Then there exists a subsequence of {un} (denoted as the original se-
quence) such that:

1. The divergence set D of {un} is composed of a countable number of
divergence lines, pairwise disjoint.

2. For any component Ω′ of B = Ω − D and any p ∈ Ω′, {un − un(p)}
converges uniformly on compact sets of Ω′ to a minimal graph over Ω′.
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Proof. Suppose L1 is a divergence line of {un}. Lemma 4.2 assures that, pass-
ing to a subsequence, {Nn(q)} converges to a horizontal vector orthogonal to
L1 at q, for each q ∈ L1. Observe that the divergence set associated to such a
subsequence (denoted again by {un}) is contained in the divergence set of the
original sequence. In particular, the divergence set for such a subsequence,
denoted by D, contains a countable number of divergence lines.

Suppose there exists a divergence line L2 ⊂ D, L2 6= L1. Passing to a sub-
sequence, we obtain that {Nn(q)} converges to a horizontal vector orthogonal
to L2, for each q ∈ L2. In particular, L1 ∩ L2 = ∅, since if there exists some
q ∈ L1 ∩ L2 then Nn(q) would converge to a horizontal vector orthogonal to
both L1, L2 simultaneously, a contradiction. The “new” divergence set D is
then a countable set of divergence lines containing L1 and L2, with L1 6= L2.

Continuing the above argument, we obtain with a diagonal process a sub-
sequence of {un} (also denoted by {un}) whose divergence set D is composed
of a countable number of pairwise disjoint divergence lines Li.

Now consider a countable set of points {pi}i dense in B, the convergence
domain associated to the subsequence obtained in the previous argument.
Using Lemma 4.2-1 and a diagonal argument, we obtain a subsequence of
{un} such that {un − un(p)} converges uniformly on compact sets of Ω′ to a
minimal graph, for every component Ω′ of B and every p ∈ Ω′. This finishes
the proof of Proposition 4.4.

Remark 4.5. In Proposition 4.4 we can remove the hypothesis D is a count-
able set of divergence lines, and we obtain that, after passing to a subsequence,
D is composed of pairwise disjoint divergence lines and, up to a vertical trans-
lation, we have uniform convergence on compact sets of each component of
the convergence domain B. The proof of this fact is more involved and will
be included in [4].

We will only use Proposition 4.4 in the case the divergence set D is com-
posed of a finite number of divergence lines.

Let {un} be a subsequence given by Proposition 4.4. We consider Ω′ a
connected component of B. Its boundary is composed of subarcs of ∂Ω and
divergence lines. Let us understand the limit u of {un−un(p)} in Ω′ (p ∈ Ω′).
Let T be a subarc of ∂Ω′ included in a divergence line. From the convergence
of {Nn} along T , Fun

(T ) converges to ±|T |. Since |Xun
| is bounded by 1,

this implies that Fu(T ) = ±|T |. Then by Lemma 3.6, u takes value ±∞ on
T . In fact we have a stronger result.

18



Lemma 4.6. Let {un} be a sequence of minimal graphs on Ω. We assume
that {un} converges to a minimal graph u on a connected subdomain Ω′ of
Ω. Let T be a subarc in ∂Ω′ included in a divergence line for the sequence
{un} such that Xun

→ ν along T with ν the outgoing normal to Ω′. Then if
p ∈ Ω′ and q ∈ T we have

lim
n→+∞

un(q) − un(p) = +∞

Proof. Since Xun
→ ν on T , Fun

(T ) converges to |T |. Thus u takes the value
+∞ on T . Let p and q be as in the lemma and consider the disk model for
H2 assuming that q is at the origin, T is a subarc of {x = 0} and ν points to
the half-plane {x ≥ 0}. Let us prove:

There is ǫ > 0 such that
∂un

∂x
> 0 on {−ǫ < x ≤ 0, y = 0} for large n. (∗)

Since u = +∞ on T there is ǫ > 0 such that
∂u

∂x
≥ 1 on {−ǫ < x < 0, y = 0}.

The convergence un → u implies : for every 0 < η < ǫ,
∂un

∂x
> 0 on {−ǫ <

x < −η, y = 0} for large n. If (∗) is not true, considering a subsequence if

necessary, there is qn in {−ǫ < x ≤ 0, y = 0} with
∂un

∂x
(qn) = 0. Observe

that it must be qn → q.
If the sequence {|∇un(qn)|} is bounded, |∇un| is uniformly bounded in a

uniform disk around qn. Since qn → q, the sequence {|∇un(q)|} is bounded
which is false since q lies on a divergence line. Hence, passing to a subse-
quence, we can assume that |∇un(qn)| → +∞. Let D1

n be the δ-geodesical
disk centered at (qn, 0) in the graph of un − un(qn) (δ is fixed small enough

with respect to the distance from q to ∂Ω). Since
∂un

∂x
(qn) = 0 we can prove

as in Lemma 4.2 that the sequence {D1
n} converges to the vertical disk in

{y = 0} × R centered at (q, 0) of radius δ. Let D2
n be the δ-geodesical disk

centered at (q, 0) in the graph of un − un(q). Since T is part of a divergence
line, {D2

n} converges to the vertical disk in {x = 0} × R centered at (q, 0)
or radius δ. Because of both convergences, for large n, D1

n and D2
n intersect

transversally. But this is impossible, since their normal vectors at a point
depends only on ∇un.

Assertion (∗) is then proved. Let qt be the point of coordinates (−t, 0).
Since u takes the value +∞ at q we can make u(qt) − u(p) as large as we
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want by taking t small . Besides, for large n, (∗) gives un(q) − un(p) ≥
un(qt) − un(p). Since un → u, we get un(q) − un(p) ≥ u(qt) − u(p) − 1. This
proves the lemma.

Remark 4.7. Let L be a divergence line and suppose there exist two compo-
nents Ω1, Ω2 of B such that L ⊂ ∂Ωi, i = 1, 2. Consider points p1 ∈ Ω1, p2 ∈
Ω2. Passing to a subsequence, {un −un(pi)} converges uniformly on compact
sets of Ωi to a minimal graph ui : Ωi → R. Assume Fu1

(T ) = |T | for each
bounded arc T ⊂ L, when L is oriented as ∂Ω1. Then Fu2

(T ) = −|T |, when
L is oriented as ∂Ω2. We deduce from Lemma 4.6 that {(un − un(p1))|L}
diverges to +∞ and {(un−un(p2))|L} diverges to −∞. In particular, we can
deduce that {un − un(p1)} diverges uniformly on compact sets of Ω2 to +∞.

Now, we are going to exclude the existence of some divergence lines under
additional constraints. In particular, if there exists minimal graphs w+, w−

defined on a neighborhood U ⊂ Ω of a point p ∈ ∂Ω such that w− ≤ un ≤ w+

for every n, then a divergence line cannot arrive at p. We will state conditions
for which such barriers exist.

Proposition 4.8. Let {un} be the subsequence given by Proposition 4.4.

1. Let C ⊂ ∂∞Ω be a smooth arc where each un extends continuously
and suppose {un|C} converges to a continuous function f . Then a
divergence line Li cannot finish at an interior point of C.

2. For every n, suppose there exists Mn ≥ 0 such that |un| ≤ Mn, and
let T ⊂ ∂Ω be a bounded geodesic arc where un extends continuously
and un|T = Mn or −Mn. Then a divergence line cannot finish at an
interior point of T .

Proof. Let C ⊂ ∂∞Ω be an arc as in item 1. Suppose C is either an arc at
∂∞H2 or a strictly convex arc (with respect to Ω). Let p ∈ C and C ′ be a
neighborhood of p in C such that C ′ ⊂ C. Consider the geodesic Γ(C ′) ⊂ H2

joining the endpoints of C ′, and define the domain ∆ ⊂ H2 bounded by
C ′ ∪ Γ(C ′). For C ′ small enough, we can assume ∆ ⊂ Ω.

Define M = maxC′ |f |. For n big enough and C ′ small enough, |un| <
M + 1 on C ′, for every n. Consider w+, w− : ∆ → R minimal graphs with
boundary values

{
w+ = M + 1 , on C ′

w+ = +∞ , on Γ(C ′)

{
w− = −M − 1 , on C ′

w− = −∞ , on Γ(C ′)
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(they exist by Lemma 4.1 and Theorem 3.3, depending on the case). By
the general maximum principle, w− ≤ un ≤ w+ for every n. Therefore, the
Compactness Theorem says ∆ ⊂ B, and so no divergence line finishes at p.

Now suppose that C is geodesic and un|C = c ∈ R for every n. We can
assume without loss of generality c = 0. By reflecting the graph surface
of un about C, we obtain a minimal surface Σ containing C, whose normal
vector along C is orthogonal to C. If there exists a divergence line L with
an endpoint at p ∈ C, then we conclude Nn(p) converges to a horizontal
vector orthogonal to L. But this is impossible, since such a vector must be
orthogonal to C. Hence, no divergence line finishes at C.

Finally, suppose C is geodesic and there exists a divergence line L with
endpoint p ∈ C. Fix ε > 0. Since {un|C} converges to a continuous function
f , there exists a small neighborhood C ′ ⊂ C of p such that |un(q)−f(p)| < ε,
for every q ∈ C ′ and n large enough. Consider a neighborhood U ⊂ Ω∪C of
p containing C ′, and define vn : U → R as the minimal graph with boundary
values {

vn = f(p) , in C ′

vn = un , in ∂U − C ′

(it exists by Theorem 3.3). The general maximum principle for bounded
domains assures

un − ε ≤ vn ≤ un + ε. (4)

Next we prove that L∩U is a divergence line for {vn}, conveniently choosing
ε and U . Fix a point q ∈ L ∩ U . From the proof of Lemma 4.2, we deduce
there exists a neighborhood of (q, 0) in the graph G(un − un(q)) converging
to the disk DL(q, δ) ⊂ L × R of radius δ centered at (q, 0). Taking ε ≤ δ/2,
we conclude using (4) that a neighborhood of the point (q, vn(q) − un(q)) in
G(vn − un(q)) converges to DL(q, δ), and L ∩ U is a divergence line for {vn}
(see [9], Proposition 1.4.8, for a detailed proof). But we know from the above
argument this is not possible, as vn is constant on C ′. This finishes item 1.

Now, consider T as in the hypothesis of 2, and let p ∈ T . Define vn =
un − un(p) for every n. Clearly, vn|T = 0 for every n. Then we obtain
from item 1 that a divergence line for {vn} cannot finish at T . Since the
divergence lines associated to {un} coincide with those of {vn}, we have
proved Proposition 4.8.
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Figure 3: An ideal Scherk domain.

4.1.3 Solving the Jenkins-Serrin problem on unbounded domains

Let Ω ⊂ H2 be a domain whose boundary ∂∞Ω consists of a finite number
of geodesic arcs Ai, Bi, a finite number of convex arcs Ci (convex towards Ω)
and a finite number of open arcs Di at ∂∞H2, together with their endpoints,
which are called the vertices of Ω (see Figure 3). We mark the Ai edges by
+∞, the Bi edges by −∞, and assign arbitrary continuous data fi, gi on
the arcs Ci, Di, respectively. Assume that no two Ai edges and no two Bi

edges meet at a convex corner. We will call such a domain Ω an ideal Scherk
domain.

A polygonal domain P is said to be inscribed in Ω if P ⊂ Ω and its
vertices are among the endpoints of the arcs Ai, Bi, Ci and Di; we notice
that a vertex may be in ∂∞H2 and an edge may be one of the Ai or Bi (see
Figure 4).

For each ideal vertex pi of Ω at ∂∞H2, we consider a horocycle Hi at pi.
Assume Hi is small enough so that it does not intersect bounded edges of ∂Ω
and Hi∩Hj = ∅ for every i 6= j. Given a polygonal domain P inscribed in Ω,
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Figure 4: An inscribed polygonal domain in Ω

we denote by Γ(P) the part of ∂P outside the horocycles, and (see Figure 4)

γ = |Γ(P)|, α =
∑

i

|Ai ∩ Γ(P)| and β =
∑

i

|Bi ∩ Γ(P)|.

Theorem 4.9. If there is at least one edge Ci or Di in ∂∞Ω, then a solution
to the Dirichlet problem on Ω exists if and only if the horocycles Hi can be
chosen so that

2α < γ and 2β < γ (5)

for every polygonal domain P inscribed in Ω.

Remark 4.10. If these conditions hold for some choice of horocycles, then
they also holds for all smaller horocycles.

Proof. Given a vertex pi ∈ ∂∞H2 of Ω, we consider a sequence of nested
horocycles {Hi,n} converging to pi. Assume Hi,n ∩ Hj,n = ∅, for every i 6= j.
Denote by Hi,n the horodisk bounded by Hi,n. Given an inscribed polygonal
domain P ⊂ Ω, we call Pn the domain bounded by ∂P − ∪iHi,n together
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with geodesic arcs contained in P ∩ (∪iHi,n) joining points in ∂P ∩ (∪iHi,n).
Define

γn = |∂P − ∪iHi,n|, αn =
∑

i

|Ai ∩ ∂Pn|, βn =
∑

i

|Bi ∩ ∂Pn|.

Observe that both sequences {2αn − γn} and {2βn − γn} are monotonically
decreasing.

Let us first prove the conditions are necessary in Theorem 4.9. Assume
there exists a solution u to the Dirichlet problem on Ω, and let P ⊂ Ω
be an inscribed polygon. Since either {Ci} 6= ∅ or {Di} 6= ∅, there exists
a curve η ⊂ ∂P which is not an Ai or Bi edge. Let η̃ ⊂ η be a fixed
bounded arc. Lemma 2.5 assures Fu(∂Pn) = 0,

∑
i Fu(Ai ∩ ∂Pn) = αn and

|Fu(∂Pn \ (∪iAi ∪ η̃))| ≤ γn − αn − |η̃|. Thus we obtain

αn ≤ γn − αn − |η̃| + |Fu(η̃)| + εn,

where εn = |∂Pn−∂P|. This is, 2αn−γn < εn− (|η̃|−|Fu(η̃)|). Analogously,

2βn − γn < εn − (|η̃| − |Fu(η̃)|).

Since |Fu(η̃)| < |η̃| (again by Lemma 2.5) and εn converges to zero as n goes
to +∞, then εn < (|η̃| −Fu(η̃)) for n big enough. Therefore, condition (5) is
satisfied for P and the horocycles Hi,n, for n large enough.

Finally, observe there are a finite number of inscribed polygonal domains
P in Ω (there are a finite number of vertices of Ω). Thus we can choose
Hi = Hi,n for n large so that (5) is satisfied for any inscribed polygonal do-
main P ⊂ Ω.

Let us now prove the conditions are sufficient. We choose Hi,1 = Hi.
Thus we have 2αn < γn and 2βn < γn for every n.

We now construct domains Ωn converging to Ω. For any vertex pi ∈ ∂∞H2

of Ω, we consider a sequence of nested ideal geodesics Γi,n converging to pi.
By nested we mean that, if ∆i,n is the component of H2\Γi,n containing pi

at its ideal boundary, then ∆i,n+1 ⊂ ∆i,n. Assume Γi,n ∩ Γj,n = ∅, for every
i 6= j, and define

Ai,n = Ai \ ∪k∆k,n, Bi,n = Bi \ ∪k∆k,n and Ci,n = Ci \ ∪k∆k,n.
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Figure 5: Construction of the domain Ωn

For r > 0 big enough, the annulus bounded by ∂∞H2 and the circle SH2(0, r)
of radius r (in the hyperbolic metric) centered at the origin of the Poincaré
disk, does not intersect the bounded components of ∂Ω. Consider a monotone
increasing sequence of radii {rn} converging to +∞. For rn big enough, we
can assume SH2(0, rn) intersects every geodesic Γk,n twice, and define by Di,n

the component of SH2(0, r)\∪k∆k,n converging to Di. We can naturally assign
the values gi on each Di,n. Finally, let us call Ωn the domain bounded by the
edges Ai,n, Bi,n, Ci,n, Di,n, and the corresponding geodesic arcs Γj

i,n ⊂ Γi,n,
together with their endpoints.

Theorem 3.3 assures, for each m ∈ N, the existence of a unique minimal
graph un

m : Ωn → R with boundary values




un
m = m , on the Ai,n edges.

un
m = −m , on the Bi,n edges.

un
m = fi,m , on the Ci,n edges.

un
m = gi,m , on the Di,n edges.

un
m = 0 , on the geodesic arcs Γj

i,n.

where fi,m (resp. gi,m) denotes the function fi (resp. gi) truncated above and
below by m and −m, respectively. By the maximum principle for bounded

25



domains, −m ≤ un
m ≤ m, for every n. Then we can extract, by using

the compactness theorem and a diagonal argument, a subsequence of {un
m}n

converging uniformly on compact subsets of Ω to a minimal graph um : Ω →
[0,m] with boundary data





um = m , on the Ai edges.
um = −m , on the Bi edges.
um = fi,m , on the Ci edges.
um = gi,m , on the Di edges.

Such boundary data are obtained from a standard barrier argument, using
as barriers the ones described in [3].

We are going to prove that a subsequence of {um} converges to a solution
to the Dirichlet problem on Ω, proving Theorem 4.9. We know from Propo-
sition 4.8 that divergence lines for {um} can only arrive at vertices of Ω. In
particular, there exists a finite number of divergence lines, and so B 6= ∅.

Passing to a subsequence, we can assume {un} satisfies Proposition 4.4.
Now suppose by contradiction that B 6= Ω; i.e., suppose there exists a diver-
gence line L ⊂ D. We then deduce from Remark 4.7 there exists a component
P ⊂ B such that {un} diverges uniformly on compact sets of P , say to +∞
(the case −∞ follows similarly). Take a point p ∈ P. Then {un − un(p)}
converges uniformly on compact subsets of P to a minimal graph u : P → R.
Observe that u diverges to −∞ as we approach any edge in ∂P∩(∂Ω − ∪iAi)
within P . We then get P is a polygonal domain and Fu(T ) = −|T | for every
bounded arc T ⊂ ∂P ∩ (∂Ω − ∪iAi).

Claim 4.11. We can choose the polygonal domain P ⊂ B so that Fu(T ) =
−|T | for any bounded geodesic arc T ⊂ ∂P − ∪iAi.

Assume Claim 4.11 is true and define Pn as at the beginning of the proof.
Thus Fu(∂Pn − ∪iAi − (∂Pn − ∂P)) = −|∂Pn − ∪iAi − (∂Pn − ∂P)|. By
Lemma 2.5,





∑
i Fu(Ai ∩ ∂Pn) + Fu(∂Pn − ∂P)

+ Fu(∂Pn − ∪iAi − (∂Pn − ∂P)) = 0,

|∑i Fu(Ai ∩ ∂Pn) + Fu(∂Pn − ∂P)| ≤ αn + εn,
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where εn = |∂Pn − ∂P|, which converges to zero as n → +∞. Hence,

γn − αn − εn ≤ αn + εn.

Thus we obtain −2εn ≤ 2αn − γn ≤ 2α1 − γ1, for every n. Since εn → 0
as n → +∞, we obtain a contradiction to the first condition in (5). (If we
suppose there exists a component P ⊂ B such that {un} diverges uniformly
to −∞ on compact sets of P , we similarly achieve a contradiction using that
2β1 − γ1 < 0). Hence there are no divergence lines for {un}, and so B = Ω.

Applying a flux argument as above, we obtain that {un} converges uni-
formly on compact sets of Ω to a minimal graph u : Ω → R. Finally, using
barrier functions as in [3] or those defined in Lemma 4.1 for the Di edges,
we deduce that u takes the desired boundary values, and this proves Theo-
rem 4.9.

So it only remains to prove Claim 4.11. Note we must only prove there
exists a component P of B such that {un} diverges to +∞ uniformly on com-
pact sets of P and Fu(T ) = −|T | for any bounded geodesic arc T contained
in a divergence line in ∂P . Observe that, since B 6= Ω is assumed, every
component of B contains at least one divergence line in its boundary.

We know there exists a component U0 ⊂ B which is an inscribed polygonal
domain and such that {un} diverges to +∞ uniformly on compact sets of
U0. If U0 satisfies Claim 4.11, we have finished. Otherwise, there exists a
divergence line L0 ⊂ ∂U0 such that Fun

(L0) → |L0| with the orientation
induced by ∂U0. Let U1 be the component of B different from U0 containing
L0 in its boundary. Hence Fun

(L0) → −|L0| when L0 is oriented as ∂U1. We
deduce from Remark 4.7 that {un} diverges to +∞ uniformly on compact
sets of U1.

If U1 satisfies the conditions of Claim 4.11, we are done. Otherwise,
there exists another divergence line L1 ⊂ ∂U1 such that Fun

(L1) → |L1|
when L1 is oriented as ∂U1. We deduce from Lemma 4.6 that, if p0 ∈ U0,
then {un − un(p0)} diverges to +∞ uniformly on compact sets of U1 and
(un − un(p0))L1

→ +∞. In particular, L1 cannot be in ∂U0 because then
Fun

(L1) → −|L1|, with the orientation in L1 induced by ∂U0, in contradiction
with (un−un(p0))L1

→ +∞. Then there exists a component U2 of B different
from U0,U1 containing L1 in its boundary.

Since there are a finite number of components of B, we eventually obtain
a component Uk of B satisfying Claim 4.11. This completes the proof of
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Theorem 4.9.

Theorem 4.12. Suppose that both families {Ci}i and {Di}i are empty.
Then, there exists a solution to the Dirichlet problem on Ω if and only if
we can choose the horocycles Hi so that α1 = β1 when P = Ω, and

2α1 < γ1 and 2β1 < γ1

for all others polygonal domain P inscribed in Ω. Moreover, the solution is
unique up to translation, if it exists.

Proof. Note that αn − βn does not depend on n.
The proof of this theorem follows exactly as in the fourth case of the proof

of Theorem 3.3. We must only clarify some points:

1. Now it is not straightforward to obtain Ec = ∪iE
i
c and Fc = ∪jF

j
c . A

detailed proof can be found in [3].

2. Once we have the minimal graph u : Ω → R obtained as the limit of a
subsequence of {un}, we must verify it satisfies the desired boundary
conditions; this is, we must prove that both sequences {µn} and {n −
µn} diverge as n → +∞.

Suppose µn → µ∞ < +∞ as n → +∞. Hence, u = −µ∞ on each Bi edge
and u diverges to +∞ when we approach Ai within Ω. From Lemma 2.5, we
get:

• ∑
i Fu(Ai,n) +

∑
i Fu(Bi,n) +

∑
i,j Fu(Γ

j
i,n) = 0,

• ∑
i Fu(Ai,n) = αn,

• ∑
i Fu(Bi,1) < β1, so there exists δ > 0 such that

∑
i Fu(Bi,1) ≤ β1 − δ.

Then Fu(Bi,n) = Fu(Bi,1) + Fu(Bi,n − Bi,1) < βn − δ, for every n.

• ∑
i,j Fu(Γ

j
i,n) < εn, where εn =

∑
i,j |Γj

i,n|.

Hence αn − βn < εn − δ, for every n. Since εn → 0 as n → +∞, we obtain
αn − βn < 0 for n large enough, a contradiction. Analogously, we obtain
n−µn → +∞ as n → +∞. The Uniqueness part follows from Theorem 4.13,
and Theorem 4.12 is proved.
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e

Figure 6: The shadowed region is one of the domains considered in Section 4.2

4.2 A minimal graph in H2 × R with non-zero flux

Let Ω ⊂ H2 be an unbounded domain whose boundary consists of two com-
ponents:

• Γext = an outer component composed of consecutive open ideal geodesics
A1, B1, · · · , Ak, Bk1

sharing their endpoints at infinity.

• Γint = an interior component consisting of open convex (convex towards
Ω) arcs C1, · · · , Ck2

, together with their endpoints.

Take a domain Ω as above satisfying (5) for every inscribed polygonal
domain P and such that α1 > β1 when P = Ω. For example, consider a
small deformation (as in Figure 6) of a domain Ω′ whose inner boundary is
composed of convex arcs together with their endpoints, and its outer bound-
ary consists of an ideal polygonal curve with vertices on the 2k-roots of 1 (in
the picture, k = 4).

By Theorem 4.9, there exists a minimal graph u : Ω → R which takes
boundary values +∞ on the Ai edges, −∞ on the Bi edges, and 0 on the Ci

edges. Let Γ ⊂ Ω be a curve homologous to Γint. Hence,

Fu(Γ) =
∑

i

Fu(Ai,n) +
∑

i

Fu(Bi,n) +
∑

i

Fu(Γi,n)
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= αn − βn +
∑

i

Fu(Γi,n),

where αn =
∑

i |Ai,n| and βn =
∑

i |Bi,n|. Since αn − βn does not depend on
n, we obtain

|Fu(Γ) − α1 + β1| ≤
∑

i

|Fu(Γi,n)| ≤
∑

i

|Γi,n|.

Finally, we know that
∑

i |Γi,n| → 0, so Fu(Γ) = α1 − β1 > 0.

4.3 The uniqueness problem in H2 × R

In this section we study the uniqueness of solutions constructed in Theorems
4.9 and 4.12. In the first subsection, we give a maximum principle for so-
lutions of the Dirichlet problem under some constraints. In the second, we
construct a counterexample to a general uniqueness result.

4.3.1 Maximum principle

Maximum principles for unbounded domains in H2 are already known in spe-
cial cases. For example, the proof of Collin and Rosenberg for the maximum
principle in [3] admits the following generalization.

Theorem 4.13 ([3]). Let Ω ⊂ H2 be a domain (not necessarily simply con-
nected) whose boundary is composed of a finite number of convex arcs together
with their endpoints, possibly at infinity. Assume the following condition (C-
R) holds. Consider a domain O ⊂ Ω and two minimal graphs u1, u2 on O
which extend continuously to O. If u1 ≤ u2 on ∂O, then u1 ≤ u2 in O.

The aim of this section is to prove that we can weaken the hypothesis
on the asymptotic behaviour of Ω when some constraints are satisfied by the
boundary data. Before stating our result, we need to introduce some defini-
tions. We notice that some notations for domains we consider are different
from the ones in Subsection 4.1.3.

We consider domains Ω ⊂ H2 whose boundary ∂∞Ω is composed of a
finite number of open arcs Ci in H2 and arcs Di in ∂∞H2 together with
their endpoints (the Ci are not supposed to be convex). The endpoints of
the arcs Ci and Di are called vertices of Ω and those in ∂∞H2 are called
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ideal vertices of Ω. Let p be an ideal vertex of Ω and Γ1 and Γ2 be two
adjacent boundary arcs at p. Let (φ, θ) be polar coordinates centered at p.

Consider a parametrization of Γi, γi : [0, 1] → {φ ≤ 0}∞, with γi(0) = p and
γi(1) ∈ {φ = 0}. We denote the polar coordinates of the parametrization by
γi(t) = (φi(t), θi(t)) and assume that θ1(1) ≤ θ2(1).

Definition 4.14. We say that Ω has necks near p if

lim inf
q∈Γ1
q→p

d(q, Γ2) = lim inf
q∈Γ2
q→p

d(q, Γ1) = 0

and the domain Ω is called admissible if, for every ideal vertex p of Ω, we
have one of the following situations:

type 1 Ω has necks near p or

type 2 lim inf
t→0

θ2(t) > 0 and lim sup
t→0

θ1(t) < π.

The limits of the second type do not depend on the choice of polar coor-
dinates. We notice that, if all Ci are convex arcs (as in section 4.1.3), every
ideal vertex is of second type i.e. Ω is admissible. The hypothesis type 2
means that the adjacent arcs do not arrives “tangentially” to ∂∞H2 on the
same side of p. As in Figure 7, consider an ideal vertex p such that, near p,
Ω is the domain between to horocycles p. The distance between Γ1 and Γ2 is
constant so p is not a type 1 vertex. Besides we have limt→0 θ2(t) = 0, thus
p is not a type 2 vertex. This is the kind of situation that we avoid by our
definition.

Let p be an ideal vertex of an admissible domain Ω. A priori, this point
is the endpoint of 2n arcs Γi in ∂∞Ω (see Figure 8). As above, let γi : [0, 1] →
{φ ≤ 0}∞ ⊂ H2∪∂∞H2, γi(t) = (φi(t), θi(t)), be a parametrization of Γi, with
γi(0) = p and γi(1) ∈ {φ = 0}. We assume that θi(1) < θj(1) if i < j. Thus
Ω ∩ {φ ≤ 0} is included in the n connected components of {φ ≤ 0}\(∪iΓi)
between Γ2k−1 and Γ2k, for k = 1, · · · , n. When u is a minimal graph on Ω
the study of u on the part between Γ2k−1 and Γ2k depends only on the values
of u on Γ2k−1, Γ2k and the other boundary arcs of Ω∩{φ ≤ 0} between Γ2k−1

and Γ2k+1. Thus the study on each part will be done separately; so we can
assume that each ideal vertex is the endpoint of only two arcs in ∂∞Ω.

Let u be a minimal graph on an admissible domain Ω. We say that u is
admissible or an admissible solution if
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Γ1

Γ2

p

Figure 7: An ideal vertex which is neither type 1 nor type 2

• u extends continuously to ∪iDi,

• u tends to +∞ on A(u) ⊂ ∂Ω with A(u) is a finite union of open
subarcs of ∪iCi,

• u tends to −∞ on B(u) ⊂ ∂Ω with B(u) is a finite union of open
subarcs of ∪iCi and

• u extends continuously to ∪iCi\A(u) ∪ B(u).

We remark that each connected component of A(u) and B(u) is a geodesic arc
(see Theorem 10.4 in [12] for the Euclidean case and Lemma 2.3). Also, we do
not say anything about the values of u at the vertices of Ω and the endpoints
of A(u) and B(u). Thus, in the following, the hypotheses on the boundary
values of an admissible solution u will be only made where it is well defined
i.e. ∪iDi, A(u), B(u) and ∪iCi\A(u) ∪ B(u). As an example, in Theorem
4.15, we shall write u2 ≤ u1 on ∂∞Ω, this means that, A(u2) ⊂ A(u1),
B(u1) ⊂ B(u2) and (∪iDi)

⋃
(∪iCi\A(u2) ∪ B(u1) is non empty and u2 ≤

u1 on it (on A(u1)\A(u2) and B(u2)\B(u1) the inequality is automatically
satisfied). When (∪iDi)

⋃
(∪iCi\A(u2) ∪ B(u1) is empty then u1 and u2 are

solutions of the Dirichlet problem studied in Theorem 4.12 and we already
know that u1−u2 is constant so no new theorem is needed. Let us now state
our generalization of Theorem 4.13.
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p

Ω
Ω

Γ4

Γ1

Γ2

Γ3

Figure 8: An ideal vertex with more than two adjacent boundary arcs

Theorem 4.15 (General maximum principle). Let Ω ⊂ H2 be an admissible
domain and u1 and u2 be two admissible solutions. We assume that u2 ≤ u1

on ∂∞Ω. Also we assume that the behaviour near each ideal vertex p ∈ ∂∞H2

is one of the following:

type 1 Ω has necks near p,

type 2-i lim infp u1 + ε > lim supp u2 (for every ε > 0) along both boundary
components with p as endpoint,

type 2-ii if A ⊂ A(u2) ⊂ A(u1) (resp. B ⊂ B(u1) ⊂ B(u2)) is a geodesic
arc with p as endpoint and Γ is the other boundary arc in ∂∞Ω with
endpoint p, lim infp u1 + ε > lim supp u2 (for every ε > 0) along Γ.

Then we have u2 ≤ u1 in Ω.

Let us make some comments on the hypotheses of the theorem. First the
hypothesis (C-R) made by Collin and Rosenberg in Theorem 4.13 implies
that, near each ideal vertex, Ω has necks. Thus Theorem 4.15 generalizes
Theorem 4.13. We notice that, when a vertex p is the endpoint of two
geodesic arcs (for example, one in A(u2) and the other in B(u1)), Ω has
necks near p. Moreover, the hypothesis lim infp u1 + ε > lim supp u2 along a
boundary component which has p as endpoint means that we are in one of
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the following three cases:

lim inf
p

u1 = +∞ and lim sup
p

u2 < +∞, (6)

lim inf
p

u1 > −∞ and lim sup
p

u2 = −∞, (7)

−∞ < lim sup
p

u2 ≤ lim inf
p

u1 < +∞. (8)

in the third case, the boundary data for u1 and u2 “stay close” so it is the
more complicated case. Hence the proof will be written in this case; small
changes suffice to treat the first two cases. We remark that our theorem does
not deal with the case limp u1 = limp u2 = +∞.

The proof of Theorem 4.15 is long and needs some preliminary results
that may have their own interest.

Let Ω be a domain in H2, we say that Ω has a finite number of point-ends
if there exist p1, · · · , pn ∈ ∂∞H2 and (φi, θi) polar coordinates centered at pi

such that:

for every m < 0 and i, Ω ∩ ∪i{φi > m} is compact and Ω ∩ {φi < m} 6= ∅.

The pi are the point-ends (we do not assume anything about the connect-
edness of Ω ∩ {φi < m}). We say the point-end pi is in a corridor if there
exists α ∈ (0, π/2) and m < 0 such that:

Ω ∩ {φi < m} ⊂ {α < θi < π − α}

We notice that these definitions do not depend on the choice of (φi, θi).
Let Ω ⊂ H2 be an admissible domain and u1 and u2 be two admissible

solutions on Ω. We assume that u1 ≥ u2 on ∂∞Ω. Let ε be positive with
O = {u1 ≤ u2−ε} nonempty. Since u1 ≥ u2 on the Di, O has a finite number
of point-ends that are among the ideal vertices of Ω. With this setting, we
have a first result which follows the ideas of Collin and Krust in [2].

Proposition 4.16. Let Ω ⊂ H2, u1, u2 admissible solutions on Ω, ε > 0
and O be as above. The subset O is assumed to be nonempty and, for each
point-end p, we assume that either p is in a corridor or Ω has necks near p.
Then the function u1 − u2 is not bounded below.
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Proof. First, we can assume that ε is a regular value of u2−u1 and so ∂O∩Ω
is smooth. Let us assume that the proposition is not satisfied i.e. there exists
M > 0 such that u2 − u1 ≤ M .

Let K be a domain in H2 with smooth boundary such that Ω ∩ K is
compact. We notice that ∂O∩ (∪iDi) = ∅ and ∂O∩ (∪iCi) ⊂ A(u2) ∪ B(u1).
For δ > 0 small, we denote by Nδ the closed δ-neighborhood of A(u2) ∪ B(u1)
and define:

O(K, δ) =
(
O ∩ K

)
\Nδ

We notice that ∂O(K, δ) is piecewise smooth and is included in Ω. This
boundary can be decomposed in three parts:

• ∂1(K, δ) = ∂O(K, δ) ∩ ∂O on which u2 − u1 = ε,

• ∂2(K, δ) = ∂O(K, δ) ∩ ∂Nδ,

• ∂3(K, δ) = ∂O(K, δ) ∩ (∂K\∂O).

β

2δ

Nδ

∂1(K, δ)

∂Ω

J2(δ, β)

O

A(u2)

J1(δ, β)

∂2(K, δ)

∂3(K, δ)

∂K

Figure 9: The boundary parts of O(K, δ)

Let us define u = u2 − u1 − ε, X = Xu2
−Xu1

and ν the outgoing normal
from O(K, δ). Let us prove that:

lim
δ→0

∣∣∣∣
∫

∂2(K,δ)

u〈X, ν〉
∣∣∣∣ = 0 (9)
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Since

∣∣∣∣
∫

∂2(K,δ)

u〈X, ν〉
∣∣∣∣ ≤ M

∫

∂2(K,δ)

|〈X, ν〉|, it suffices to prove

Claim 4.17. we have:

lim
δ→0

∫

∂2(K,δ)

|〈X, ν〉| = 0

The connected components of A(u2) ∪ B(u1) are geodesic arcs. In such
a component, for β > 0, a subarc is composed of points at a distance larger
than β from the endpoints. We denote by I(β) the union of all these subarcs.
Now, in ∂Nδ, some points are at distance δ from I(β) (we denote this part
J1(δ, β)) and the other points are at distance δ from A(u2) ∪ B(u1)\I(β) (we
denote this part J2(δ, β)). We notice that the length of J2(δ, β) is bounded
and

lim
δ→0

ℓ(J2(δ, β)) = 2n0β

where n0 is the number of endpoints of A(u2) ∪ B(u1) in H2. We have:
∫

∂2(K,δ)

|〈X, ν〉| =

∫

J1(δ,β)∩∂O(K,δ)

|〈X, ν〉| +
∫

J2(δ,β)∩∂O(K,δ)

|〈X, ν〉|

≤
∫

J1(δ,β)∩∂O(K,δ)

|X| + 2ℓ(J2(δ, β))

≤ ℓ(J1(δ, β) ∩ ∂O(K, δ)) max
J1(δ,β)∩∂O(K,δ)

|X| + 2ℓ(J2(δ, β))

As δ goes to 0, maxJ1(δ,β)∩∂O(K,δ) |X| tends to 0 and ℓ(J1(δ, β)∩ ∂O(K, δ)) is
bounded (since Ω∩K is compact). Hence for every small µ > 0, we can take
β and δ small enough such that:

∫

∂2(K,δ)

|〈X, ν〉| ≤ µ

Claim 4.17 is proved.
Also we have (see Lemma 1 in [2] for the first inequality).

∫∫

O(K,δ)

|X|2 ≤
∫

∂O(K,δ)

u〈X, ν〉 =

∫

∂1(K,δ)

u〈X, ν〉 +

∫

∂2(K,δ)

u〈X, ν〉 +

∫

∂3(K,δ)

u〈X, ν〉

=

∫

∂2(K,δ)

u〈X, ν〉 +

∫

∂3(K,δ)

u〈X, ν〉
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We notice that |X|2 ≥ 0 and
∫

∂3(K,δ)
u|〈X, ν〉| ≤ 2Mℓ(∂3(K, δ)) ≤ 2Mℓ(∂3(K, 0)).

By (9), taking δ → 0 in the above inequality, we get
∫∫

O(K,0)

|X|2 ≤
∫

∂3(K,0)

u〈X, ν〉 (10)

Let p1, · · · , pn be the point-ends of O; they are numbered such that
p1, · · · , pk are in a corridor and Ω has necks near pk+1, · · · , pn. For each
i we consider polar coordinates (φi, θi) centered at pi, chosen such that the
hyperbolic half-planes {φi < 0} do not intersect. Let α > 0 be such that, for
every i ∈ {1, · · · , k}, O ∩ {φi < 0} ⊂ {α ≥ θi ≥ π − α} with α > 0.

Let φ and ψ be negative and µ > 0. Since Ω has necks near each pi with
i ≥ k + 1, there is in Ω∩{φi < ψ} a geodesic Γi of length less than µ joining
the two adjacent arcs at pi. Let K be the compact part of Ω delimited by
the geodesic {φi = φ} for i ≤ k and the geodesic Γi for i ≥ k + 1. Besides
we denote

Oφ,ψ = O\
(( k⋃

i=1

{φi < φ}
) ⋃ ( n⋃

i=k+1

{φi < ψ}
))

From (10), we obtain:
∫∫

Oφ,ψ

|X|2 ≤
∫∫

O(K,0)

|X|2 ≤
∫

∂3(K,0)

u〈X, ν〉

≤
k∑

i=1

∫

O∩{φi=φ}

u〈X, ν〉 +
n∑

i=k+1

∫

O∩Γi

u〈X, ν〉

≤ M
k∑

i=1

∫

O∩{φi=φ}

|X| + 2M(n − k)µ

Thus letting µ going to 0, ψ going to −∞ and denoting by Oφ the subset

Oφ,−∞ and Iφ =
⋃k

i=1 O ∩ {φi = φ} a part of the boundary, we get
∫∫

Oφ

|X|2 ≤ M

∫

Iφ

|X| (11)

Let us denote by η(φ) the integral in the right-hand term. By Schwartz’s
Lemma, we obtain:

η2(φ) ≤ ℓ(Iφ)

∫

Iφ

|X|2 ≤ C(α)

∫

Iφ

|X|2
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where C(α) = k
∫ π−α

α
dθ

sin(θ)
. Thus

∫
Iφ
|X|2 ≥ η2(φ)/C(α) and, in (11), this

gives:

µ0 +

∫ 0

φ

η2(t)

C(α)
dt ≤ Mη(φ) (12)

with µ0 > 0. Let ζ be the function defined on I = (−(M2C(α))/µ0, 0] by :

M

µ0

− 1

ζ(t)
= − t

MC(α)

This function ζ satisfies ζ(0) = µ0/M and ζ ′ = −ζ2/(MC(α)). Thus for φ ∈
I we have ζ(φ) ≤ η(φ). But η(φ) ≤ 2ℓ(Iφ) ≤ 2C(α) and limt→−(M2C(α))/µ0

ζ(t) =
+∞. We have a contradiction.

We have a first lemma that allows us to bound admissible solutions.

Lemma 4.18. Let Ω be an admissible domain in H2. Let u be an admissible
solution with B(u) = ∅ and assume there exists m ∈ R such that u ≥ m on
∂∞Ω. Then u is bounded below in Ω.

Proof. There are only a finite number of points where such a lower-bound is
unknown: the vertices of Ω and the endpoints of arcs in A(u). We notice that
there are only a finite number of such points. When an endpoint of A(u) or
a vertex of Ω is in H2, a lower-bound is given by the maximum principle for
bounded domains. So let us consider an ideal vertex p. Let (φ, θ) be polar
coordinates centered at p and consider Ω′ = Ω ∩ {φ < 0}. Let m′ ≤ m be
such that u ≥ m′ on Ω ∩ {φ = 0}; let us prove that u ≥ m′ in Ω′.

Take t < 0 and consider the minimal graph wt given by Lemma 4.1 on
the domain {φ > t} which takes the value −∞ on {φ = t} and m′ on the
other boundary arc. We know that wt ≤ m′ on {φ > t}. By the maximum
principle for bounded domain, wt ≤ u on Ω′∩{φ > t}. As t → −∞, wt → m′;
hence m′ ≤ u on Ω′.

In the proof of Theorem 4.15, type 2 ideal vertices are the hardest to deal
with. Thus we need to be more precise for a bound near such a vertex. In the
following lemma, we use the minimal graph defined in Lemma 4.1 to control
a minimal graph on one side of a type 2 ideal vertex.
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Lemma 4.19. For every 0 < θ̄ ≤ π/2, there is a continuous increasing
function Hθ̄ : [0, θ̄) → R+ with Hθ̄(0) = 0 such that the following is true.

Let Ω be an admissible domain in H2 and p an ideal vertex of Ω. We
consider polar coordinates (φ, θ) centered at p. For i = 1, 2, let

γi :
(0, 1] −→ {φ ≤ 0}∞

t 7−→ (φi(t), θi(t))

be parametrizations of the two adjacent arcs in ∂∞Ω with p as endpoint; we
assume limt→0 γi(t) = p γi(1) ∈ {φ = 0} and θ1(1) < θ2(1). Let θ̄2 =
lim inft→0 θ2(t); we assume θ̄2 > 0.

Let u be an admissible solution on Ω such that u ≥ m in γ1((0, 1]). Then
for every θ0 and θ̄ with 0 < θ0 < θ̄ < θ̄2, there exists φ0 < 0 such that :

u ≥ m − Hθ̄(θ0) on Ω ∩ {φ < φ0, θ < θ0}

Proof. Let us consider (φ, θ) polar coordinates at a point in ∂∞H2 and θ̄ ∈
(0, π/2]. On Ωθ̄ = {(θ, φ) ∈ H2|θ < θ̄}, we consider the minimal graph

hθ̄(φ, θ) = hθ̄(θ) given by Lemma 4.1 with hθ̄ = 0 on {θ = 0} and
∂hθ̄

∂ν
= +∞

along {θ = θ̄}, where ν is the outward pointing normal vector. For θ0 < θ̄,
we define:

Hθ̄(θ0) = hθ̄(θ0 +
θ0

θ̄
(θ̄ − θ0)) = max

{0≤θ≤θ0+
θ0
θ̄

(θ̄−θ0)}

hθ̄

We remark that θ0 < θ0 + θ0

θ̄
(θ̄−θ0) < θ̄ when 0 < θ0 < θ̄. Hθ̄ is a continuous

increasing function with Hθ̄(0) = 0.
Let Ω, u, (φ, θ) be as in the lemma. Let θ̄ be less than θ̄2; by changing φ,

we can assume that θ2(t) ≥ θ̄ for t ∈ (0, 1]. Let s be negative, we consider the
geodesic Bs joining the points with polar coordinates (s, 0) and (0, 0) and the
arc Ds in ∂∞H2 ∩ {φ ≤ 0} joining both points. Let Cs be the equidistant to
Bs which is at distance dθ̄ (see (2)) and is in the half-plane delimited by Bs

and Ds (see Figure 10). We denote by Os the domain bounded by Cs and Ds

(Os is included in θ ≤ θ̄). On Os, we consider ks the minimal graph given by

Lemma 4.1 with ks = 0 on Ds and
∂ks

∂ν
= +∞ on Cs. We notice that ks > 0

on Os. Since θ̄ < θ2(t) for every t, the boundary of Os ∩ Ω is composed
of subarcs of Cs and subarcs of γ1. Hence, by the maximum principle for
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{θ = θ̄}
{φ = 0}

γ2

Cs

Ds

γ1

O−∞

(−∞, 0) (s, 0) (0, 0)

{θ = θ0}

Figure 10: Os is the shadowed domain

bounded domains, u ≥ m − ks on Ω ∩ Os. Let s go to −∞, ks converges to

the solution k−∞ on O−∞ with h−∞ = 0 on D−∞ and
∂h−∞

∂ν
= +∞ on C−∞

given by Lemma 4.1. Moreover, we have m − k−∞ ≤ u on Ω ∩ O−∞. Fix
0 < θ0 < θ̄. Because of the definition of Hθ̄, there is φ0 such that

k−∞ ≤ Hθ̄(θ0) on {φ < φ0, θ < θ0}

which concludes the lemma.

Actually, this Lemma says that if a solution is bounded below on one
of the two boundary components with p as endpoint, then the solution is
bounded below in some “sectorial” neighborhood of this boundary compo-
nent.

Now we have the following result

Proposition 4.20. Let Ω be an admissible domain and u an admissible
solution. Let p ∈ ∂Ω be a type 2 ideal vertex of Ω. We assume there exists
m ∈ R such that u ≥ m near p on ∂Ω. Then, for every ε > 0, u ≥ m − ε in
a neighborhood of p in Ω.

Proof. Let (φ, θ) be polar coordinates centered at p. We assume that u ≥ m
on ∂Ω ∩ {φ ≤ 0}. Let h be the minimal graph over {φ < 0} given by
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Lemma 4.1 with boundary values h = −∞ on {φ = 0} and h = m on the
other boundary arc . For every ε > 0, we have h ≥ m− ε on a neighborhood
of p, so it suffices to prove that h ≤ u on Ω ∩ {φ < 0}.

If {u < h} is nonempty, consider ε > 0 a regular value of h− u such that
{u < h − ε} 6= ∅. The only possible point-end of {u < h − ε} is p. Let us
prove that p is in a corridor. Let γi = (φi, θi) be parametrizations defined on

(0, 1] of both boundary arcs adjacent at p in {φ < 0}∞ with limt→0 γi(t) = p,
φ1(1) = φ2(1) = 0 and θ1(1) < θ2(1). Since p is of type 2, lim inft→0 θ2(t) > 0.
Let 0 < θ̄ < lim inft→0 θ2(t), Hθ̄ be defined by Lemma 4.19 and θ′ ∈ (0, θ̄) such
that Hθ̄(θ

′) < ε. Lemma 4.19 gives φ′ < 0 such that u ≥ m−Hθ̄(θ
′) ≥ m− ε

on Ω∩{φ < φ′, θ < θ′}. Applying Lemma 4.19 also on the other side of p, we
obtain φ0 < 0 and θ0 > 0 such that u ≥ m−ε in {φ < φ0}∩{sin(θ) < sin(θ0)}.
Since h ≤ m in {φ < 0}, we have {u < h − ε} ∩ ({φ < φ0} ∩ {sin(θ) <
sin(θ0)}) = ∅. Thus the end is in a corridor. Theorem 4.16 now implies that
u is not bounded below near p, that contradicts Lemma 4.18

We can now give the proof of the general maximum principle (Theo-
rem 4.15). We recall that the proof is written in the case (8).

Proof of Theorem 4.15. Let Ω, u1 and u2 be as in the theorem and assume
that u2 ≤ u1 is not true in the whole Ω, so we can choose ε > 0 such that
{u1 ≤ u2 − ε} is nonempty. Since u1 > u2 − ε on the arcs Di, the point-
ends of {u1 ≤ u2 − ε} are among the ideal vertices of Ω. In particular,
{u1 ≤ u2 − ε} has a finite number of point-ends. Let us prove that each
point-end associated to a type 2 vertex of Ω is in a corridor.

Let p be a point-end which is a type 2-i vertex of Ω. Let Γ1 and Γ2

denote the two components of ∂∞Ω with p as endpoint and consider polar
coordinates (φ, θ) centered at p. There is φ0 such that

u1 ≥ lim inf
x∈Γi
x→p

u1 − ε/4 and u2 ≤ lim sup
x∈Γi
x→p

u2 + ε/4 on Γi ∩ {φ < φ0}

Using Lemma 4.19 as in the proof of Lemma 4.20, there exist φ1 < φ0 and
θ1 ∈ (0, π/2) such that
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u1 ≥ lim inf
x∈Γ1
x→p

u1 − ε/2 on Ω ∩ {φ ≤ φ1, θ < θ1}

u2 ≤ lim sup
x∈Γ1
x→p

u2 + ε/2 on Ω ∩ {φ ≤ φ1, θ < θ1}

u1 ≥ lim inf
x∈Γ2
x→p

u1 − ε/2 on Ω ∩ {φ ≤ φ1, θ > π − θ1}

u2 ≤ lim inf
x∈Γ2
x→p

u2 + ε/2 on Ω ∩ {φ ≤ φ1, θ > π − θ1}

Thus on Ω ∩ {φ ≤ φ1, θ < θ1}, we have

u1 − u2 ≥ lim inf
x∈Γ1
x→p

u1 − ε/2 − (lim sup
x∈Γ1
x→p

u2 + ε/2) ≥ −ε

In Ω∩{φ ≤ φ1, θ > π− θ1}, we also have u1 −u2 > −ε. So p is in a corridor.
In the case the point-end p of {u1 ≤ u2 − ε} is a type 2-ii vertex of Ω, we

can choose polar coordinates (φ, θ) centered at p such that the geodesic arc

A is in {θ = π/2} and Γ ⊂ {θ < π/2}∞. As above, we prove that there exist
φ1 and θ1 > 0 such that u1 − u2 > −ε in Ω ∩ {φ ≤ φ1, θ < θ1}. So, p is in a
corridor.

Therefore, we have proved that either the point-ends of {u1 ≤ u2−ε} are
in corridors or Ω has necks near them. Thus Proposition 4.16 assures u1−u2

is not bounded below.
Let p be an ideal vertex of Ω of type 2-i. By Lemma 4.18, there are m1

and m2 in R such that u1 ≥ m1 and u2 ≤ m2 in a neighborhood of p , so
u1 − u2 ≥ m1 − m2 in a neighborhood of p. Since the number of type 2-i
vertices is finite, there is m < 0 such that u1 − u2 ≥ m in neighborhood of
type 2-i vertices. Moreover m can be chosen to be a regular value for u1−u2.
So let us denote the nonempty set

O = {u1 − u2 ≤ m}.

In fact the value of m is not already fixed : in the following, we shall need
to decrease m a finite number of times (these changes are only linked to the
geometry of the domain).
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We notice that ∂O ∩ (∪iDi) = ∅ and ∂O ∩ (∪iCi) ⊂ B(u1) ∪ A(u2). O
has a finite number of point-ends which correspond to ideal vertices of type
1 or 2-ii. Let us them denote by p1, · · · , pn and by (φi, θi) polar coordinates
centered at pi. As in the proof of Proposition 4.16, for δ > 0 small, we denote
by Nδ the closed δ-neighborhood of B(u1) ∪ A(u2) and we define:

O(φ, δ) = O\
(
Nδ

⋃
(∪i{φi ≤ φ})

)

Its boundary ∂O(φ, δ) ⊂ Ω is piecewise smooth and is composed of three
parts:

• ∂1(φ, δ) = ∂O(φ, δ) ∩ ∂O, where u2 − u1 = −m,

• ∂2(φ, δ) = ∂O(φ, δ) ∩ ∂Nδ,

• ∂3(φ, δ) = ∂O(φ, δ) ∩ (∪i{φi = φ}\∂O).

We call X = Xu2
− Xu1

and ν the outgoing normal to ∂O(φ, δ). We have:

0 =

∫

∂O(φ,δ)

〈X, ν〉 =

∫

∂1(φ,δ)

〈X, ν〉 +

∫

∂2(φ,δ)

〈X, ν〉 +

∫

∂3(φ,δ)

〈X, ν〉

We notice that along ∂1(φ, δ), ∇u2 − ∇u1 points into O so X points to O.
Hence 〈X, ν〉 is negative on ∂1(φ, δ) (see Lemma 2 in [2]). Besides, we have
|X| ≤ 2 and the length of ∂3(φ, δ) is uniformly bounded for fixed φ since
either the point-ends of O are in corridors or Ω has necks at them. Thus,
with K = ∩i{φi > φ}, Claim 4.17 implies that, letting δ goes to 0, we obtain:

0 =

∫

∂1(φ,0)

〈X, ν〉 +

∫

∂3(φ,0)

〈X, ν〉

Or

0 < −
∫

∂1(φ,0)

〈X, ν〉 =

∫

∂3(φ,0)

〈X, ν〉

We can decomposed ∂3(φ, 0) in a finite number of parts γ1(φ), · · · , γn(φ):
γi(φ) is the part of ∂3(φ, 0) in {φi = φ}. Thus we have:

−
∫

∂1(φ,0)

〈X, ν〉 =
n∑

i=1

∫

γi(φ)

〈X, ν〉

The left-hand term is positive and increases as φ ց −∞. Thus we get
a contradiction and Theorem 4.15 is proved once we have established the
following claim:
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Claim 4.21. For every i, we have

lim sup
φ→−∞

∫

γi(φ)

〈X, ν〉 ≤ 0

First we suppose pi is a type 1 vertex. Let φ0 < 0 be fixed. Since pi is
a type 1 vertex, for each µ > 0 there is a geodesic arc Γ ⊂ Ω ∩ {φ < φ0} of
length less than µ. Γ separates Ω∩{φ < φ0} into a non compact component
and a compact part ΩΓ. Let φ1 < φ0 be such that Γ ∈ {φ > φ1}. As above
we can compute the flux of X along the boundary of O ∩ ΩΓ and we get:

0 =

∫

∂(O∩ΩΓ)

〈X, ν ′〉 =

∫

∂1(φ1,0)∩ΩΓ

〈X, ν ′〉 +

∫

O∩Γ

〈X, ν ′〉 −
∫

γi(φ0)

〈X, ν〉

with ν ′ the outgoing normal from O ∩ ΩΓ. The sign of the last term comes
from the fact that ν ′ = −ν along γi(φ). As above, X points to O ∩ΩΓ along
∂1(φ1, 0) ∩ ΩΓ, thus

∫
∂1(φ1,0)∩ΩΓ

〈X, ν ′〉 ≤ 0 and

∫

γi(φ0)

〈X, ν〉 =

∫

∂1(φ1,0)∩ΩΓ

〈X, ν ′〉 +

∫

O∩Γ

〈X, ν ′〉 ≤ 2ℓ(Γ) ≤ 2µ

The above inequality occurs for every µ > 0. Then
∫

γi(φ0)
〈X, ν〉 ≤ 0 and the

claim is proved when pi is a type 1 vertex of Ω.
Let us now suppose pi is a type 2-ii vertex of Ω. We choose the polar

coordinates centered pi such that the geodesic arc A is in {θ = π/2} and
the arc Γ is in {θ < π/2}. We fix φ0 < 0. Let G : [0, 1] → H2 ∪ ∂∞H2

be a parametrization of Γ, in polar coordinates G(t) = (φ(t), θ(t)) for t > 0
with φ(1) = φ0. Since pi is an endpoint of Γ, limt→0 φ(t) = −∞. Let θ∞ be
lim supt→0 θ(t). If θ∞ = π/2, we have lim inft→0 d(G(t), A) = 0 as in type 1
vertices and we can apply the above proof.

We then assume θ∞ < π/2. Let us consider θ̄ ∈ (θ∞, π/2). By changing
φ0, we can assume that θ(t) < θ̄ for every t ∈ (0, 1].

Let us define u∞
1 = lim inf x∈Γ

x→p
u1(x) and u∞

2 = lim supx∈Γ
x→p

u2(x). From

Lemma 4.19 and Proposition 4.20, there are φ̄ < φ0 and m ≥ 1 such that
u1 ≥ u∞

1 − 1 on Ω ∩ {φ < φ̄} and u2 ≤ u∞
2 + m on Ω ∩ {φ < φ̄, θ < θ̄}. Thus

on Ω ∩ {φ < φ̄, θ ≤ θ̄}, u1 − u2 ≥ u∞
1 − 1 − u∞

2 − m̄ ≥ −1 − m. So, if m is
chosen less than −1 − m, we have (O ∩ {φ ≤ φ̄}) ⊂ {θ̄ ≤ θ ≤ π/2}.
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We can change the polar coordinate φ to have φ̄ = 0. Let Ω1 be the do-
main bounded by the geodesic joining pi to the point p− of polar coordinates
(a, π) (a < 0) and the equidistant to this geodesic which is at distance dθ∞

(see (2)) such that Ω∩Ω1 6= ∅. Here, a is chosen such that Ω1 ⊂ {φ < 0} (see
Figure 11). By Lemma 4.1, there exists the minimal graph h1 define d on Ω1

with value +∞ on the geodesic boundary component and value u∞
1 − 1 on

the equidistant. Let Ω2 be the domain delimited by the geodesic joining pi to
the point p+ of polar coordinates (a, 0) and the arc in ∂∞H2 joining pi to p+

( i.e. in polar coordinates, (−∞, a)× {0}). On Ω2, we consider the minimal
graph h2 with value +∞ on the geodesic boundary component and u∞

2 + 1
on the arc in ∂∞H2. As in the proof of Lemma 4.19, we ca deduce h1 ≤ u1

in Ω ∩ Ω1 and u2 ≤ h2 on Ω ∩ Ω2. Hence u1 − u2 ≥ h1 − h2 in Ω ∩ Ω1 ∩ Ω2

so let us bound h1 − h2 below in Ω1 ∩ Ω2.
First, because of the definition of Ω1, there is φ̄0 such that O ∩ {φ ≤

φ̄0} ⊂ {φ ≤ φ̄0, θ̄ ≤ θ ≤ π/2} ⊂ Ω1.

p+

A

Ω1

Ω2

Γ

{θ = θ∞}

{θ = θ̄}

pip− u∞
2 + 1

+∞
+∞

u∞
1 − 1

Figure 11: The domains Ω1 and Ω2 in H2

To make some computations, we use other coordinates : we consider
H2 = R × R∗

+ with the classical hyperbolic metric such that p is the infinity,
p+ = (1, 0) and p− = (−1, 0). We have Ω ⊂ R∗

+ × R∗
+ near p, Ω1 = {(x, y) ∈

(−1, +∞) × R∗
+|y > tan(θ∞)(x + 1)} and Ω2 = (1, +∞) × R∗

+. In fact, the
points of polar coordinates (φ, θ) becomes (x, y) = e−(φ−a)(cos(θ), sin(θ)).
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The functions h1 and h2 have the following expressions (see (3)):

h1(x, y) = ln




√

1 +

(
y

x + 1

)2

+
y

x + 1


 − cθ∞ + u∞

1 − 1

h2(x, y) = ln




√

1 +

(
y

x − 1

)2

+
y

x − 1


 + u∞

2 + 1

where cθ∞ is a constant which depends only on θ∞.
With a1 = y/(x + 1) and a2 = y/(x − 1) this gives:

h1(x, y) − h2(x, y) = ln

(√
1 + a2

1 + a1√
1 + a2

2 + a2

)
− cθ∞ + u∞

1 − 1 − u∞
2 − 1

≥ ln

(√
1 + a2

1 + a1√
1 + a2

2 + a2

)
− cθ∞ − 2

We have a2/a1 = (x + 1)/(x− 1) thus on {x ≥ 2}, 1 ≤ a2/a1 ≤ 3. So, on
{x ≥ 2}:

1

3
≤

√
1 + a2

1 + a1√
1 + a2

2 + a2

≤ 1

and h1(x, y)− h2(x, y) ≥ − ln 3− cθ∞ − 2 on {x ≥ 2} ∩ (Ω1 ∩Ω2). Thus if m
is chosen to be less than − ln 3 − cθ∞ − 2, we have:

(O ∩ {φ ≤ φ0}) ⊂ {0 ≤ x ≤ 2}

Then limφ→−∞ ℓ(γi(φ)) = 0. This gives Claim 4.21 since :
∣∣∣∣
∫

γi(φ))

〈X, ν〉
∣∣∣∣ ≤ 2ℓ(γi(φ)) −−−−→

φ→−∞
0

This completes the proof of Theorem 4.15.

This maximum principle gives immediately a lower-bound result and a
uniqueness result:

Corollary 4.22. Let Ω be an admissible domain and u an admissible solu-
tion. We assume there exists m ∈ R such that u ≥ m on ∂∞Ω. Then u ≥ m
in Ω.
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Corollary 4.23. Let Ω ⊂ H2 be an admissible domain and u1 and u2 be two
admissible solutions. We assume that u1 = u2 on ∂∞Ω. Besides we assume
that the behaviour near each ideal vertex p ∈ ∂∞H2 is one of the following.

type 1 Ω has necks near p;

type 2-i we have limp u1 = limp u2 exists and is finite along both boundary com-
ponents with p as endpoint;

type 2-ii if A ⊂ A(u1)(= A(u2)) (resp. B ⊂ B(u1)(= B(u2))) is a geodesic arc
with p as endpoint and Γ is the other boundary arc with endpoint p that
bounds Ω near p, we have limp u1 = limp u2 exists and is finite along Γ
and .

Then we have u1 = u2 in Ω.

4.3.2 A counterexample

In this section, we construct a counterexample to a general maximum prin-
ciple. To be more precise we have the following result:

Proposition 4.24. There is a continuous function on ∂∞H2 minus two
points that admits several minimal extensions to H2.

We remark that any such function admits a minimal extension to H2 by
Theorem 4.12. The idea to construct several extensions comes from Collin’s
construction in [1].

In the following, we shall work in the disk model for H2. Let us fix α in
(π/4, π/2), we denote zα = eiα the points in ∂∞H2. Let us consider the ideal
rectangle Rα with the points zα,−zα,−zα and zα as vertices. This domain is
symmetric with respect to the geodesics {Re z = 0} and {Im z = 0}. We can
extend the domain Rα by reflection along the ”vertical” geodesics (zα, zα)
and (−zα,−zα) and their images by these reflections. We obtain a domain
∆α which is invariant under the translation t along the geodesic {Im z = 0}
defined by t(−zα) = zα. We then denote by p0 the point −zα and by q0 the
point −zα; for n ∈ Z, we define pn and qn by pn = tn(p0) and qn = tn(q0)
(see Figure 12).

We have a first lemma.

Lemma 4.25. There exists a family of minimal graph wλ over ∆α such that
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• wλ takes on the geodesics (pk, pk+1) and (qk, qk+1) the value +∞ if k is
even and −∞ is k is odd,

• wλ = kλ on the geodesic (pk, qk),

• the graph of wλ is invariant by the translation of H2 × R defined by
(p, z) 7→ (t2(p), z + 2λ).

Proof. Since α ∈ (π/4, π/2), the rectangle Rα satisfies the hypotheses of
Theorem 4.9. So, for every λ ∈ R, we can construct a minimal graph wλ

on Rα with boundary data +∞ on (p0, p1) and (q0, q1), 0 on (p0, q0) and
λ on (p1, q1). Since wλ is constant on (p0, q0) and (p1, q1), we can extend
the definition of wλ to ∆α by Schwartz reflection. The properties of wλ are
deduced easily from its contruction.

Let H be a horocycle at a vertex pn of ∆α, we then define p−n = H ∩
(pn−1, pn) and p+

n = H ∩ (pn, pn+1); in the same way we define q−n and q+
n .

Let Dα be the domain bounded by the geodesics (p0, q0) and (p1, q1) and
the arcs in ∂∞H2 joining p0 to p1 and q0 to q1. We have a second lemma.

Lemma 4.26. Let us consider at each vertex of Rα, p0, p1, q0 and q1, a
horocycle (they are assumed to be disjoint). Let us fix ε > 0. Then there
exist m > 0 and β ∈ (α, π/2) such that the following is true. Let u be
a minimal graph over Dα which is continuous up to ∂∞Dα minus the four
vertices with:

• u = m on the boundary subarcs of ∂∞H2 joining eiβ to −e−iβ and −eiβ

to e−iβ,

• u ≤ m on ∂∞Dα,

• u ≤ 0 on (p0, q0) and (p1, q1).

Then:
∫

[p+

0
,p−

1
]

〈Xu, ν〉 ≥ ℓ([p+
0 , p−1 ]) − ε

∫

[q+

0
,q−

1
]

〈Xu, ν〉 ≥ ℓ([q+
0 , q−1 ]) − ε

with ν the outgoing normal from Rα and [p+
0 , p−1 ] denotes the segment in the

geodesic (p0, p1) joining p+
0 to p−1 .
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Proof. If the lemma is false, for every n ∈ N, there is a minimal graph un on
Dα continuous up to ∂∞Dα minus the four vertices with:

• un = n on the boundary arcs joining eiβn to −e−iβn and −eiβn to e−iβn

where βn = α + 1/n,

• u ≤ n on ∂∞Dα,

• u ≤ 0 on (p0, q0) and (p1, q1),

•
∫

[p+

0
,p−

1
]

〈Xun
, ν〉 ≤ ℓ([p+

0 , p−1 ]) − ε or

∫

[q+

0
,q−

1
]

〈Xu, ν〉 ≤ ℓ([q+
0 , q−1 ]) − ε.

We recall that w0 is defined over Rα with w0 = 0 on (p0, q0) and (p1, q1)
and w0 = +∞ on (p0, p1) and (q0, q1). Thus by the maximum principle
(Theorem 4.15), for every n ∈ N, un ≤ w0: the sequence un is bounded
above on Rα. Let hn be the minimal graph over the domain in Dα\Rα

bounded by the geodesic (−eiβn , e−iβn) and the arc in ∂∞H2 joining −eiβn

to e−iβn with boundary value −∞ on the geodesic and n on the subarc of
∂∞H2. By the maximum principle, for every n ∈ N, un ≥ hn. Since βn → α,
un → +∞ on the domain bounded by the geodesic (p0, p1) and the arc in
∂∞H2 joining p0 to p1. This implies that:

∫

[p+
0

,p−
1

]

〈Xun
, ν〉 −→ ℓ([p+

0 , p−1 ])

In the same way we prove that:

∫

[q+

0
,q−

1
]

〈Xun
, ν〉 −→ ℓ([q+

0 , q−1 ])

This a contradiction and the lemma is proved.

We can now prove Proposition 4.24.

Proof. For every n ∈ N, we denote by Ωn the domain bounded by the geodesic
(p0, q0) and (pn, qn) and the arcs in ∂∞H2 joining p0 to pn and q0 to qn, finally
we define Ω∞ = ∪nΩn (Ω∞ is a half-plane). Let o be the endpoint of the
geodesic {y = 0} in the ideal boundary of Ω∞. In the following we define a
continuous function f on ∂∞Ω∞\{o} which admits two minimal extensions
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in Ω∞; we shall have f = 0 on (p0, q0) thus, by Schwartz reflection, the
definition will extend to H2 and the proposition will be proved.

For every n ∈ N, we choose H(pn) a horocycle centered at pn. By sym-
metry with respect to the geodesic {y = 0} we define H(qn) a horocycle
centered at qn. Let p0

n and q0
n be the intersections of the geodesic (pn, qn)

with H(pn) and H(qn). We also define h(pn)(resp. h(qn)) as the arc of H(pn)
(resp. H(qn)) between p−n and p+

n (resp. q−n and q+
n ) (see Figure 12).

q0

p0 p1

p2

q1

q2

o

p−1

H(q0)

h(q1)

p+
0

p0
0

Figure 12:

Let us consider w = w1 and w′ = w−1 where w±1 are defined by Lemma 4.25.
On Ω∞∩Dα, w ≥ w′ and w = 0 = w′ on (p0, q0), thus Xw′ −Xw points out of
Ω∞. This implies that we can choose suitable H(pk) and a positive sequence
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(εk)k∈N such that:

0 <
∑

k≥0

εk +
∑

k≥0

ℓ(h(pk)) +
∑

k≥0

ℓ(h(qk)) <
1

5

∫

[p0
0
,q0

0
]

〈(Xw′ − Xw), ν〉 = ε

with ν the out-going normal from Ω∞.
For every k, Lemma 4.26 associates to εk and H(pk), H(pk+1), H(qk) and

H(qk+1) two real numbers mk > 0 and βk ∈ (α, π/2). Let Ik be the image by
tk of the arcs in ∂∞Dα joining eiβk to −e−iβk and −eiβk to e−iβk and Jk the
image by tk of the others arcs in ∂∞Dα ∩ ∂∞H2.

Let us define on ∂∞Ω∞\{o} a continuous function f which satisfies

• f = (−1)k(mk + (k + 1)) on Ik,

• |f | ≤ mk + (k + 1) on Jk,

• f = 0 on (p0, q0).

For every n ∈ N, we define on Ωn the minimal graph un and u′
n with

boundary value un = u′
n = f on ∂∞Ω∞∩ ∂∞Ωn and un = +∞ and u′

n = −∞
on (pn, qn), these minimal graphs exist because of Theorem 4.9. By the
maximum principle (Theorem 4.15), we have un ≥ u′

n and {un} (resp. {u′
n})

is a decreasing sequence (resp. increasing sequence). Hence they converge
to minimal graphs u and u′ on Ω∞ with f as boundary value. Let us prove
that u 6= u′.

To do this, let us introduce some comparison functions; first we need some
new domains : for every n > 0 we define

Bn =

(
⋃

0≤2k+1≤n

t2k+1(Rα)

)
∪

(
⋃

0≤2k≤n

t2k(Dα)

)

B′
n =

(
⋃

0≤2k≤n

t2k(Rα)

)
∪

(
⋃

0≤2k+1≤n

t2k+1(Dα)

)

On Bn, we define the minimal graph vn with boundary values −∞ on (pk, pk+1)∪
(qk, qk+1) if k ≤ n and k odd, n + 1 on (pn+1, qn+1) and f on the remainder
of ∂∞Bn. On B′

n, we define the minimal graph v′
n with boundary value +∞

on (pk, pk+1) ∪ (qk, qk+1) if k ≤ n and k even, −(n + 1) on (pn+1, qn+1) and
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f on the remainder of ∂∞B′
n. We notice that these minimal graphs exist :

Theorem 4.9 can be applied because of the existence of w.
On ∂∆α ∩ Bn, we have vn ≤ w. Thus by Theorem 4.15, vn ≤ w in

∆α ∩ Bn. Hence, for every 0 ≤ k ≤ n, vn ≤ k on (pk, qk). Let us fix k an
even integer less than n; we have vn ≤ k + 1 on (pk, qk) ∪ (pk+1, qk+1) and
vn = f = mk + (k + 1) on Ik, thus by Lemma 4.26 applied to tk(Dα) we
obtain:

∫

[p+

k
,p−

k+1
]

〈Xvn
, ν〉 ≥ ℓ([p+

k , p−k+1]) − εk (13)

∫

[q+

k
,q−

k+1
]

〈Xvn
, ν〉 ≥ ℓ([q+

k , q−k+1]) − εk (14)

With ν the outgoing normal from ∆α. When k is odd, we have

∫

[p+

k
,p−

k+1
]

〈Xvn
, ν〉 = −ℓ([p+

k , p−k+1])

∫

[q+

k
,q−

k+1
]

〈Xvn
, ν〉 = −ℓ([q+

k , q−k+1]) (15)

Let Γn be the closed curve in Bn composed of the geodesic arcs [p0
0, q

0
0],

[p+
k , p−k+1] for 0 ≤ k ≤ n, [p0

n+1, q
0
n+1] and [q+

k , q−k+1] for 0 ≤ k ≤ n and the
arcs of horocycles h(pk) ∩ Bn and h(qk) ∩ Bn for 0 ≤ k ≤ n + 1. By Stokes
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theorem
∫
Γn
〈(Xvn

− Xw), ν〉 = 0 with ν the outgoing normal, so we have :

0 =

∫

Γn

〈(Xvn
− Xw), ν〉

=

∫

[p0
0
,q0

0
]

〈(Xvn
− Xw), ν〉 +

∫

[p0
n+1

,q0
n+1

]

〈(Xvn
− Xw), ν〉

+
n∑

k=0

(∫

[p+

k
,p−

k+1
]

〈(Xvn
− Xw), ν〉 +

∫

[q+

k
,q−

k+1
]

〈(Xvn
− Xw), ν〉

)

+
n+1∑

k=0

(∫

h(pk)∩Bn

〈(Xvn
− Xw), ν〉 +

∫

h(qk)∩Bn

〈(Xvn
− Xw), ν〉

)

since Xvn
− Xw points out of Bn along (pn+1, qn+1)

≥
∫

[p0
0
,q0

0
]

〈(Xvn
− Xw), ν〉

+
n∑

k=0
k even

(∫

[p+

k
,p−

k+1
]

〈(Xvn
− Xw), ν〉 +

∫

[q+

k
,q−

k+1
]

〈(Xvn
− Xw), ν〉

)

+
n∑

k=0
k odd

(∫

[p+

k
,p−

k+1
]

〈(Xvn
− Xw), ν〉 +

∫

[q+

k
,q−

k+1
]

〈(Xvn
− Xw), ν〉

)

−
n+1∑

k=0

(2ℓ(h(pk)) + 2ℓ(h(qk)))

because of (13),(14) and (15)

≥
∫

[p0
0
,q0

0
]

〈(Xvn
− Xw), ν〉 −

n∑

k=0
k even

2εk − 2
n+1∑

k=0

(ℓ(h(pk)) + ℓ(h(qk)))

Thus since Xvn
− Xw points out of Ωn along (p0, q0):

0 ≤
∫

[p0
0
,q0

0
]

〈(Xvn
− Xw), ν〉 ≤ 2




n∑

k=0
k even

εk +
n+1∑

k=0

ℓ(h(pk)) + ℓ(h(qk))


 ≤ 2ε

Now, on ∂Bn we have un ≥ vn. So, by Theorem 4.15, un ≥ vn on Bn.
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This implies that Xvn
− Xun

points out Bn along (p0, q0) and

∫

[q0
0
,p0

0
]

〈Xun
, ν〉 ≤

∫

[q0
0
,p0

0
]

〈Xvn
, ν〉 ≤

(∫

[q0
0
,p0

0
]

〈Xw, ν〉
)

+ 2ε

Thus for the limit u, we have:

∫

[q0
0
,p0

0
]

〈Xu, ν〉 ≤
(∫

[q0
0
,p0

0
]

〈Xw, ν〉
)

+ 2ε

Working with u′
n, v′

n and w′ on B′
n in the same way we prove that :

∫

[q0
0
,p0

0
]

〈Xu′ , ν〉 ≥
(∫

[q0
0
,p0

0
]

〈Xw′ , ν〉
)

− 2ε

Thus:

∫

[q0
0
,p0

0
]

〈(Xu′ − Xu), ν〉 ≥
(∫

[q0
0
,p0

0
]

〈(Xw′ − Xw), ν〉
)

− 4ε > 0

This implies that Xu 6= Xu′ on [q0
0, p

0
0] and u 6= u′ on Ω∞

A CMC graphs in H2×R invariant under trans-

lations

In this section, we give a description of constant mean curvature (cmc) H
surfaces which are invariant under translations along a horizontal geodesic.

Let us fix a geodesic Γ in H2 and consider (φ, θ) polar coordinates at an
endpoint of Γ such that Γ = {θ = π/2}. The translations along Γ are given
by φ 7→ φ + constant.

Actually, we study cmc graphs which gives a local description of trans-
lation invariant surfaces; on such a graph, we choose the upward pointing
normal. Let u be a function defined on Ω ⊂ H2, the graph of u has constant
mean curvature H if u satisfies

div

(∇u

Wu

)
= div (Xu) = 2H (16)
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In the following we assume H > 0 i.e. the mean curvature vector is upward
pointing. Let u be a cmc graph invariant by the translations along Γ. Then
u can be written as u(φ, θ) = f(θ). We have ∇u = sin2(θ)f ′(θ) ∂

∂θ
. Let

θ0, θ1 ∈ (0, π) with θ0 < θ1 and φ0, φ1 ∈ R with φ0 < φ1. Using (16), the
Divergence Theorem gives us:

∫

∂([φ0,φ1]×[θ0,θ1])

〈Xu, ν〉 = 2HArea ([φ0, φ1] × [θ0, θ1])

Then
∫ φ1

φ0

f ′(θ1)√
1 + sin2(θ1)f ′(θ1)

2
dφ−

∫ φ1

φ0

f ′(θ0)√
1 + sin2(θ0)f ′(θ0)

2
dφ = 2H

∫ φ1

φ0

∫ θ1

θ0

1

sin2(θ)
dθdφ

Thus u is a cmc H graph if and only if f satisfies:

d

dθ


 f ′

√
1 + sin2 θ |f ′|2


 =

2H

sin2(θ)

Hence f ′ satisfies:

f ′

√
1 + sin2 θ |f ′|2

= −2H cot(θ) + A (17)

We notice that changing θ by π − θ replaces A by −A; thus, in the
following we assume A ≥ 0.

Case H = 0 (Figure 13). We have f ′ =
A√

1 − A2 sin2(θ)
. Thus there are

three subcases:

1. A < 1. f ′ and f are defined on (0, π), u is an entire graph. Moreover
f takes finite boundary value at 0 and π.

2. A = 1. f ′ is defined on (0, π/2) by f ′ = 1/ cos(θ). Then f is defined
on (0, π/2) and takes a finite boundary value at 0 and diverges to +∞
at π/2.

3. A > 1. f ′ and f are defined on (0, θ1), with θ1 = arcsin(1/A). f takes

finite boundary values at 0 and θ1 and
df

dν
(θ1) = +∞.
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0 π 0 π 0 ππ/2 θ1

H = 0, A < 1 H = 0, A = 1 H = 0, A > 1

Figure 13: H = 0 case

Let us now study the case H > 0. Equation (17) can be written:

sin(θ)f ′

√
1 + sin2 θ |f ′|2

= −2H(cos(θ) − k sin(θ))

where 2Hk = A (k ≥ 0). Then f ′ is defined when | cos(θ)−k sin(θ)| < 1/(2H)
by

f ′(θ) =
−2Hg(θ)

sin(θ)
√

1 − 4H2g2(θ)

We define g(θ) = cos(θ)−k sin(θ). g′(θ) = − sin(θ)−k cos(θ), thus g′(θ) = 0
for θ = θ0 = π + arctan(−k). We have g(θ0) = −

√
1 + k2. The behaviour of

g is summarized in the following table.

0 θ0 π
g′(θ) −k − 0 + k

1 −1
g ց ր

−
√

1 + k2

A. Case H < 1/2 (Figure 14). There are three sub-cases:

A1. k <
√

(1/2H)2 − 1. f ′ and f are defined on (0, π), u is an entire graph.
f takes boundary value +∞ at 0 and π.

A2. k =
√

(1/2H)2 − 1. f ′ and f are defined on (0, θ0) and (θ0, π). f takes
boundary value +∞ at 0 and π, limθ0

− f = +∞ and limθ0
+ f = −∞.
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A3. k >
√

(1/2H)2 − 1. There are θ1 and θ2 with 0 < θ1 < θ0 < θ2 < π
such that f ′ and f are defined on (0, θ1) and (θ2, π). f takes finite

boundary value at θ1 and θ2, +∞ at 0 and π,
df

dν
(θ1) = +∞ and

df

dν
(θ2) = −∞.

0 π 0 π 0 πθ0 θ2

k <
√

1/(2H)2 − 1 k =
√

1/(2H)2 − 1 k >
√

1/(2H)2 − 1

θ1

Figure 14: H < 1/2 case

B. Case H = 1/2 (Figure 15). There are two subcases:

B1. k = 0. f ′ is defined on (0, π) by f ′ = − cos(θ)

sin2(θ)
. Hence f is defined on

(0, π) by f =
1

sin(θ)
+ K: f takes boundary value +∞ at 0 and π.

B2. k > 0. There is θ1 ∈ (0, θ0) such that f ′ and f are defined on (0, θ1).

f takes finite boundary value at θ1,
df

dν
(θ1) = +∞ and boundary value

+∞ at 0.

C. Case H > 1/2 (Figure 15). There are θ1 and θ2 with 0 < θ1 < θ2 < θ0

such that f ′ and f are defined on (θ1, θ2). f takes finite boundary value at

θ1 and θ2,
df

dν
(θ1) = +∞ and

df

dν
(θ2) = +∞
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0 π 0 π 0 πθ1 θ1 θ2

H = 1/2, k = 0 H = 1/2, k > 0 H > 1/2

Figure 15: H = 1/2 and H > 1/2 cases
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Université Paris-Est,
Laboratoire d’Analyse et Mathématiques Appliquées, UMR 8050
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