N

N

The Dirichlet problem for the minimal surface equation
-with possible infinite boundary data- over domains in a
Riemannian surface
Laurent Mazet, M. Magdalena Rodriguez, Harold Rosenberg

» To cite this version:

Laurent Mazet, M. Magdalena Rodriguez, Harold Rosenberg. The Dirichlet problem for the minimal
surface equation -with possible infinite boundary data- over domains in a Riemannian surface. Pro-
ceedings of the London Mathematical Society, 2011, 102 (6), pp.985-1023. 10.1112/plms/pdq032 .
hal-00284936

HAL Id: hal-00284936
https://hal.science/hal-00284936
Submitted on 16 Dec 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00284936
https://hal.archives-ouvertes.fr

The Dirichlet problem for the minimal surface
equation -with possible infinite boundary data-
over domains in a Riemannian surface

Laurent Mazet, M. Magdalena Rodriguez*and Harold Rosenberg
June 2, 2008

1 Introduction

In [8], Jenkins and Serrin considered bounded domains D C R? with 9D
composed of straight line segments and convex arcs. They found necessary
and sufficient conditions on the lengths of the sides of inscribed polygons,
which guarantee the existence of a minimal graph over D, taking certain
prescribed values (in R U {#00}) on the components of 0D

Perhaps the simplest example is D a triangle and the boundary data is
zero on two sides and 400 on the third side. The conditions of Jenkins-
Serrin reduce to the triangle inequality here and the solutions exists. It was
discovered by Scherk in 1835.

This also works on a parallelogram with sides of equal length. One pre-
scribes +00 on opposite sides and —oo on the other two sides. This solution
was also found by Scherk.

The theorem of Jenkins and Serrin also applies to some non-convex do-
mains. They only require 0D to be composed of a finite number of convex
arcs, together with their endpoints.

*Research partially supported a CNRS grant and a MEC/FEDER grant no. MTM2007-
61775. The second author would like to thanks L’Institut de Mathématiques de Jussieu
(UMR 7586) for its hospitality during the preparation of this manuscript.



In a very interesting paper [17], Joel Spruck solved the Dirichlet problem
for the constant mean curvature H equation over bounded domains D C R?,
with 0D composed of circle arcs of curvature +2H, together with convex arcs
of curvature larger than 2H. The boundary data now is oo on the circle
arcs and prescribed continuous data on the convex arcs. He gave necessary
and sufficient conditions on the perimeter, and area, of inscribed polygons
that solve the Dirichlet problem.

In recent years there has been much activity on this Dirichlet problem
over domains D contained in a Riemannian surface M [14, 18]. When M
is the hyperbolic plane H?, there are non-compact domains for which this
problem has been solved, and interesting applications have been obtained
(see for example [3, 6, 11]

In this paper we will extend the solution of this Dirichlet problem to gen-
eral domains. In the case of a Riemannian surface M, we consider non-convex
domains (see Section 3). For M = H? we study non-compact domains.

Our techniques for doing this in H? are new (and apply to domains in
arbitrary M). Previously one found a solution to the Dirichlet problem by
taking limits of monotone sequences of solutions whose boundary data con-
verges to the prescribed data. A basic tool to make this work is the maximum
principle for solutions: if u and v are solutions and v < v on 9D, then u < v
on D. However, there are domains for which the maximum principle fails
(we discuss this in Section 4.3.2). In order to solve the Dirichlet problem
in the absence of a maximum principle we use the idea of divergence lines
introduced by Laurent Mazet in his thesis [9]. This enables us to obtain
convergent subsequences of non-necessarily monotone sequences.

This lack of a general maximum principle implies that one no longer has
uniqueness (up to an additive constant, in the case of infinite boundary data)
for the solutions. In section 4.3, we obtain uniqueness theorems for certain
domains and we give examples where this fails.

2 Preliminaries

From now on, M will denote a Riemannian surface. In the following, div, V
and | - | are defined with respect to the metric on M. Let {2 be a domain in

M and u : Q — R be a smooth function. We define W,, = /1 + |Vul|?. The



graph of such a smooth function u that satisfies

Vu
div{—=— 1] =0
iy (W> |

is a minimal surface in Ml x R; referred to as a minimal graph. In the following
we will denote X, = VVV—Z.

The next results have been proven by Jenkins and Serrin [8] for M = R?,
by Nelli and Rosenberg [11] when M = H?, and by Pinheiro [14] in the general
setting. In fact, these results were proven for bounded and geodesically
convex domains in [14], although their proofs remain valid in a more general

setting.

Theorem 2.1 (Compactness theorem). Let {u,} be a uniformly bounded
sequence of minimal graphs in a bounded domain 2 C M. Then, there exists
a subsequence of {u,} converging on compact subsets of 2 to a minimal graph
u on 2.

Theorem 2.2 (Monotone convergence theorem). Let {u,} be an increasing
sequence of minimal graphs on a domain 2 C M. There exists an open set
U C Q (called the convergence set) such that {u,} converges uniformly on
compact subsets of U and diverges uniformly to +0o0 on compact subsets of
V =Q—U (divergence set). Moreover, if {u,} is bounded at a point p € €,
then the convergence set U is non-empty (it contains a neighborhood of p).

Now we recall some results which allow us to describe the divergence set
V associated to a monotone sequence of minimal graphs.

Lemma 2.3 (Straight line lemma). Let Q C M be a domain, C C 0 a
convex compact arc, and u € C°(Q U C) a minimal graph on Q. Denote by

C(C) the (open) convex hull of C'.

(1) If u is bounded above on C' and C' is strictly convez, then u is bounded
above on K N$), for every compact set K C C(C).

(i1) If u diverges to +00 or —oo as we approach C within €, then C is a
geodesic arc.



Definition 2.4. Let u be a minimal graph on a domain 2 C M and assume
that 0S) is arcwise smooth. When C' is an arc in ) and v is a unit normal
to C' in M we define the flux of u across C' for such choice of v by

RAC) = [ (Xuv)ds

where ds is the arc length of C. Since the vector field X, is bounded and has
vanishing divergence, the flux is also defined across a curve I' C 02, in that
case, v is chosen to be the outer normal to OS).

In the paper, when a flux is computed across a curve C', the curve C will
be always seen as part of the boundary of a subdomain. The normal v will
then be chosen as the outer normal to the subdomain.

Lemma 2.5. Let u be a minimal graph on a domain 2 C M.
(i) For every compact bounded domain ' C Q, we have F,(0)) = 0.

(i1) Let C' be a piecewise smooth interior curve or a convex curve in OS2
where u extends continuously and takes finite values. Then |F,(C)| <

C1.

(iii) Let T C 0N2 be a geodesic arc such that u diverges to 400 (resp —oo) as
one approaches T within Q. Then F,(T) = |T| (resp. F,(T) = —|T]).

Remark 2.6. From Lemma 2.5 and the triangle inequality, we deduce that,
if u: Q) — R is a minimal graph and Ty, Ty C 02 are two geodesics where u
diverges to +o0o as we approach them, then Ty, Ty cannot meet at a strictly
convez corner (strictly convex with respect to 2).

The last statement in Lemma 2.5 admits the following generalization.

Lemma 2.7. For each n € N, let u, be a minimal graph on a fized domain
Q C M which extends continuously to €, and let T be a geodesic arc in OS).

(i) If {u,} diverges uniformly to +o0o on compact sets of T while remaining
uniformly bounded on compact sets of 2, then F, (T) — |T).

(i1) If {u,} diverges uniformly to +oc on compact sets of Q while remaining
uniformly bounded on compact sets of T, then F, (T) — —|T).



The following result is adapted to the situation of the next section. The
boundary of a domain €2 is finitely piecewise smooth and locally convex if it
is composed of a finite number of open smooth arcs which are convex towards
), together with their endpoints. These endpoints are called the vertices of
Q.

Theorem 2.8 (Divergence set theorem). Let Q@ C M be a bounded domain
with finitely piecewise smooth and locally convex boundary. Let {u,} be an
increasing (resp. decreasing) sequence of minimal graphs on ). For every
open smooth arc C' C 0S), we assume that, for every n, u, extend continuously
on C' and either u,|c converges to a continuous function or u,|c / +00
(resp. u,|C' "\, —o0). Let V be the divergence set associated to {uy}

1. The boundary of V consists of a finite set of non-intersecting interior
geodesic chords in §) joining two vertices of 9S), together with geodesics

i 2.

2. A component of V cannot only consist of an isolated point nor an in-
terior chord.

3. No two interior chords in 0V can have a common endpoint at a convex
corner of V.

Theorem 2.9 (Maximum principle for bounded domains). Let @ C M be
a bounded domain, and E C 082 a finite set of points. Suppose that OQ\E
consists of smooth arcs Cy, and let uy,us be minimal graphs on €2 which
extend continuously to each Cy. If uy < uy on OQ\FE, then u; < uy on €.

Theorem 2.10 (Boundary values lemma). Let Q@ C M be a domain and let
C' be a compact conver arc in 0). Suppose {u,} is a sequence of minimal
graphs on ) converging uniformly on compact subsets of ) to a minimal graph
u: Q — R. Assume each u, is continuous in QU C and {u,|c} converges
uniformly to a function f on C. Then u is continuous in QUC and ulc = f.

3 A general Jenkins-Serrin theorem on M x R

Let 2 C M be a bounded domain whose boundary consists of a finite number
of open geodesic arcs Ay, -+, Ag,, B1,--+ , B, and a finite number of open



convex arcs C1, -+, Cg, (convex towards 2), together with their endpoints.
We mark the A; edges by 400, the B; edges by —oo, and assign arbitrary
continuous data f; on the arcs C;.

Definition 3.1. We define a solution for the Dirichlet problem on ) as a
minimal graph v :  — R which assumes the above prescribed boundary
values on 0f2.

Our aim in this section is to solve this Dirichlet problem on 2. We
assume that no two A; edges and no two B; edges meet at a convex corner
(see Remark 2.6). When  is geodesically convex, this was done in [14];
in general we need another condition on the 0€2. We assume the following
technical condition is satisfied:

(C1) If {C;}; = 0, then neither U¥ A; nor UM B; is a connected
subset of 0f€2.

We will say that a domain ) as above is a Scherk domain. We notice
that the hypothesis (C1) implies that k; > 2 and ko > 2 when {C;}; = 0.
We remark that (C1) is always satisfied when M = R? H?.

Condition (C1) is not necessary for the existence of a solution to the
Dirichlet problem on € (see Remark 3.5) but we need to assume this for our
proof.

Claim 3.2. In particular, condition (C1) holds when there exists a component
[ of OQ and a strongly geodesically convert domain Q' C M containing
such that 0¥ =T.

Proof. Suppose {C;}; = ). Since I is the boundary of Q' and ' is geodesi-
cally convex, we can rename the A;, B; edges so that ' = A; or I' = B; or
I'=AUBU---UA,U By (cyclically ordered). The first two cases are not
allowed: in fact, in that cases A; or By would be closed and two points on it
would be joined by two geodesic arcs in I' C V.

In the third case, we have k > 2. If £ = 1, the common endpoints of A;
and By are joined by two geodesic arcs, A; and By, in € which is impossible.
Thus £ > 2 and (C1) holds. O

LA set D C M is said to be strongly geodesically conver when, for every p.q € D, there
exists a unique length-minimizing geodesic arc v in M joining p, ¢ and v C D; moreover,
v is the only geodesic arc in D joining p, q.



A polygonal domain P is said to be inscribed in 2 when P C € and its
vertices are drawn from the set of endpoints of the A;, B;, C; edges. Given
a polygonal domain P inscribed in €2, we denote by ~ the perimeter of 0P,
and by « (resp. ) the total length of the edges A; (resp. B;) lying in OP.

Theorem 3.3. Let Q2 be a Scherk domain. If the family {C;}; is non-empty,
there exists a solution to the Dirichlet problem on Q if and only if

200 < vy and 28 <~ (1)

for every polygonal domain P inscribed in ). Moreover, such a solution is
unique, if it exists.

When {C;}; is empty, there is a solution to the Dirichlet problem for Q
if and only if « =  when P = Q, and inequalities in (1) hold for all other
polygonal domains inscribed in 2. Such a solution is unique up to an additive
constant, if it exists.

Remark 3.4.

1. The Scherk domain 2 need not be convex, even when there are no A;
and B; edges. There are no conditions in the latter case; the solution
need not be continuous at the vertices.

2. Theorem 3.3 corresponds to Theorem 4 in [8], in the case M = R?.

3. Theorem 3.3 has been proven, when §2 is a geodesically conver domain,
by Nelli and Rosenberg [11] (in the case Ml = H? ) and by Pinheiro [14].

Proof. The uniqueness part in Theorem 3.3 can be proven exactly as in [14].
Let us now prove the conditions of Theorem 3.3 are necessary for existence.
Suppose there is a minimal graph u solving the Dirichlet problem. When
{C;}i =0 and P = Q, using Lemma 2.5 we have

=>4l =20 Fu(A) = =22 Fu(Bi) = >, |Bil = 8,
as we wanted to prove. In the other case, again by Lemma 2.5, we obtain:
® > acop FulAi) + X g cop Fu(Bi) + Fu(OP — U;A; — U B;) = 0.

® > acop FulAi) =2 4. cop lAil = a
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o ZBicap FU<Bz) = - ZBicaP |Bz| = —0.
o |[F(0P - Uid; —UiBj)| <y —a—f.

From all this, |a — | <v—a — [, so 2a < v and 23 < 7, as desired.

Finally, let us prove the conditions are sufficient. We distinguish the fol-
lowing cases:

* First case: Suppose that the families {4;};, {B;}; are both empty.
In this case, Theorem 3.3 is proven, exactly as in [8] for M = R? by means
of the Perron process (see [5, 8]), using the fact that the solution to the
Dirichlet problem exists for small geodesic disks [14] and a standard barrier
argument (a barrier exists at every convex boundary point, see [14]).

* Second case: Suppose {B;}; = () and each f; is bounded below.
Using the previous step, there exists, for every n € N, a unique minimal
graph u, : {2 — R such that:

Up =N , on the A; edges.
u, = min{n, f;} , on the C; edges.

From the maximum principle for bounded domains (Theorem 2.9), we deduce
that {u,} is a non-decreasing sequence. Thus Lemma 2.3 and Theorem 2.8
assure that, if it is non-empty, the divergence set V of {u,,} consists of a finite
number of polygonal domains inscribed in 2. Assume that V is connected
(otherwise, we will similarly argue on each component of V). By Lemma 2.5,
the flux of u,, along 0V vanishes; this is,

> Fu(A)+ F, 0V — UA;) =0.

A;COV

On the other hand, Lemma 2.7 says that F, (0V — U;A;) — —(y — a) as
n — 400. Since Y, o [Fu, (4i)| < a, we obtain 2a —+ > 0, which contra-
dicts (1). Hence V = 0, and {u,} converges uniformly on compact sets of {2
to a minimal graph u :  — R. The desired boundary conditions for u are
obtained from standard barrier arguments.



Theorem 3.3 can be proven analogously when {A4;}; is empty and each f;
is bounded above.
* Third case: Suppose {C;}; # 0.
By the previous step, there exist (unique) minimal graphs u™, u ™, u, : @ — R
with the following boundary values:

ut =400 , u =0 and u, =n ,on the A; edges,
ut =0 , u~ =—00 and wu, =-n ,on the B; edges,
ut=fr u =f" and w,=f;, ,ontheC;edges,

where f;" = max{0, f;}, fi = min{0, f;} and f;, denotes the function f;
truncated above and below by n and —n, respectively. By Theorem 2.9,
u” < wu, <ut, for every n. Using the compactness theorem (Theorem 2.1)
and a diagonal process we can extract a subsequence of {u, } which converges
on compact sets of {2 to a minimal graph u. The desired boundary conditions
for u are obtained from standard barrier arguments.

x Fourth case: Suppose {C;}; = 0.
From the first case, we know there exists for each n € N a minimal graph
v, - 2 — R such that

v, =n ,on the A; edges.
v, =0 , on the B; edges.

And the maximum principle implies that 0 < v, < n. For every ¢ € (0,n),
we define

E.={peD|vp)>c}, F.={pe€D|uvp) <c},

and denote by E! (resp. F') the component of E. (resp. F.) whose closure
contains the edge A; (resp. B;). From the maximum principle for bounded
domains, we can deduce E. = U;E! and F, = U;F".

Condition (C1) ensures that the set F, (resp. E.) is disconnected for
c=c¢ (resp. ¢ =n —¢), with € > 0 small enough. On the other hand, F, is
connected when ¢ =n — ¢ for € > 0 small enough, so we can define

pr, = inf{c € (0,n) | the set F. is connected},

and u, = v, — .



In order to prove that a subsequence of {u,} converges, let us consider
the auxiliary functions

ut = max{u; }, v~ =minf{u; },
(2 (2
where u;",u; : 0 — R are the unique minimal graphs given by
uf =400 ,on Uy Ay u; = —00 ,on Uy By
uf =0, on (U;Bj) U4, up =0, on (U;4;) U B

(such functions u;, u; exist thanks to the second case studied previously).

Observe that, by definition of u,, both FE, ,F), are disconnected. In
particular, for every iy, there exists a i such that ELln N Effn = (), and we
obtain, applying the maximum principle,

0<u,

<

i1 i1 .
El—Ln Eun

Similarly, for every ji, there exists a j, such that F ;ﬁ N F: !{i = (), and

Wil gy < Unlpp <0
From this it is not very difficult to prove that v~ < w, < u*. Hence, the
compactness theorem ensures that a subsequence of {u,, } converges uniformly
on compact subsets of {2 to a minimal graph u. Let us check that u satisfies
the desired boundary conditions.

Suppose that, after passing to a subsequence, {u,} converges to some
lhoo < 400. Hence, u = —pu on each B; and u diverges to +0o0 when we
approach A; within €2. From Lemma 2.5, we get

2 FulAi) + 32 Fu(Bi) = Fu(092) = 0,
2 Fu(A) =a and  [32 Fu(Bi)| <7,

which contradicts the assumption o = 3. Thus the whole sequence {u,}
diverges to +00. Analogously, we can prove that n — u, — 400 as n — 400,
and Theorem 3.3 is proven. O

Remark 3.5. The following example shows condition (C1) is not necessary:
Consider a hemisphere Qy C S? and a geodesic triangle Ty C Qq. By Theo-
rem 3.3, there exists a minimal graph on Qo — Ty with boundary data 0 on

10



Figure 1: Q = S§* — (T3 U Ty) does not satisfies the condition (C1) when
8T1 :A1UA2UA3 and 8T2 231UBQU83

0Qy and +o0o on Ty (up to its vertices). Considering the 7~ rotation about
00, we get a minimal graph defined on the sphere with two geodesic triangles
Ty, Ty removed which has boundary data +o0o on the edges of OT} and —oo
on the edges of 0T, see Figure 1.

Before ending this section, let us give a result which is the converse of
statement (4¢7) in Lemma 2.5.

Lemma 3.6. Let u be a minimal graph on a domain Q C M2. Let T C 02
be a geodesic arc such that F,(T) = |T| (resp. F,(T) = —|T|). Then u takes
on T the boundary value +oo (resp —oo).

Proof. Let us consider p € T', and €' be the set of points in 2 at distance less
than § from p (& is chosen very small), Q' is a half-disk. Let 7" be T'Nn oY,
we have F,(T") = |T'| and the other part of 02 is strictly convex. From
Theorem 3.3, there exists on {2 a minimal graph v with u = v on 9Q'\T"
and v = +00 on T”. The lemma is proved if we show that u = v.

If the lemma is not true, we can assume that {u < v — ¢} is nonempty;
where € is chosen to be a regular value of v — u. Let O denote {u < v —e}.
Let C be the connected component of the complement of O which has 9\ T"

11



in its boundary and we consider O" the complement of C: we have O C O’
and 00" C 0O UT'. Let q be a point in 00’ N Q. For u > 0, let O'(u) be
the set of point O" at distance larger than p from 7”. Let ¢; and g3 be the
endpoints of the connected component of 9O’(p) NOO’ which contains ¢. Let
p; be the projection of ¢; on T”. Let 6(,u) be the domain bounded by the
segments [q1, p1], [p1,p2] C 17, [pa, ¢2] and the boundary component of O(u)
between ¢, and ¢;. On this last component I'(x) the vector X, — X, points
outside O(y). Since F,(00(u)) = 0 = F,(00(u)), we have:

0</ <Xu—XU,I/>:—/ <Xu—XU,y>—/ (Xy — Xy, v)
I'(w) [p1,91]U[p2,g2] [p1,p2]
§4ﬂ_/ <Xu_Xv7V>
[p1,p2]

By hypothesis on u and v and Lemma 2.5—(ii7), the last term vanishes;
moreover the integral on I'(u) increases as p goes to 0 (see Lemma 2 in [2]).
Thus we have a contradiction and u = v. O

4 A particular case: M = H?

In the rest of the paper we study the Dirichlet problem for unbounded do-
mains in HZ.

Collin and Rosenberg [3] have extended Theorems 2.8 and 2.9 to some un-
bounded domains. More precisely, they consider simply connected domains
Q) C H? whose boundary consists of finitely many ideal geodesics and finitely
many complete convex arcs (convex towards €2) together with their endpoints
at infinity, €2 satisfying the following assumption:

(C-R) If C C 909 is a convex arc with endpoint p € 0, H?,
then the other arc v of 92 having p as an endpoint is asymptotic
to C at p; i.e., if {z,} is a sequence in v converging to p, then
distyz (2, C) — 0 (see Figure 2).

They solve the Dirichlet problem for such domains. The same results without
assuming € is simply connected can be obtained from Theorem 3.3, following
Collin and Rosenberg’s ideas. Our aim is to weaken the hypotheses on €2, in
particular the (C-R) hypothesis. Also we will allow  to have arcs in 0, H?
in its closure.

12



Figure 2: A domain 2 C H? satisfying condition (C-R).

4.1 Minimal graphs over unbounded domains
4.1.1 First examples

Let p be a point in 9, H?. We consider the half-plane model for the hyperbolic
plane, H? = {(z,y) € R? | y > 0} with metric ( , ) = y%go, where g is the
Euclidean metric and assume that p is the point of coordinates (0,0). For
(¢,6) € Rx (0, 7) we consider the point ¢ = (e? cosf, e?sinf) € RxR* = H?.
We will call (¢,60) the polar coordinates of ¢ centered at p. In these new
coordinates, the hyperbolic metric becomes sinlg e(dgb? +d6?); the coordinates
(¢,0) are conformal.

We notice that there are several polar coordinates centered at p i.e. given
a point ¢ € H? there exists one hyperbolic isometry fixing p such that the
polar coordinates centered at p of ¢ becomes (0,7/2). The curves {¢ =
constant} are geodesics. The curve {0 = m/2} is also a geodesic of H? and,
for any 6y € (0,7), the curve {# = 6y} is equidistant to this geodesic; we

denote by
w/2 A6
/90 sin
the distance between the geodesic {6 = 7/2} and its equidistant {6 = 6,}.

A minimal graph u which takes constant values on the equidistant curves
to the geodesic {6 = 7/2} can be written u(¢,0) = f(6), where f satisfies

d90 = (2)

13



the following differential equation (see Appendix A):

4 f
df 1+sin?0|f"?

=0

Thus, by integrating this equation with f(0) = 0, we get minimal surfaces
that were first obtained by Sa Earp [15] and Abresch (see Appendix A).

Lemma 4.1. Let 0y € (0,7/2]. There is a minimal graph hg, defined on the
domain Qg, = {0 < 0 < Oy} which takes constant values on the equidistant
curves to {0 = w/2}, have boundary data 0 on the boundary arc {0 = 0} and

dh
% — o0 on {6 = 6y} (v is the outer unit normal to 9, ). When

v
0o < /2, hg, takes a constant finite value on {0 = Oy} and hy /o diverges to
+00 on the geodesic {0 = 7/2}

satisfies

In the half-plane model, the minimal graph h,, is defined on R* x R%

by
2 1 .2

hajal,y) = In VL TY 3)
Then if © is a domain bounded by a geodesic and an arc in 9,,H?, Lemma
4.1 gives a minimal graph h over {2 with value 0 on the arc in d,,H? and
h = +o00 on the geodesic. We notice that +h + M is a minimal graph over €2
with value M on the arc in d,,JH? and oo on the geodesic. These minimal
graphs are examples of solutions to a Dirichlet problem that can be recovered
by the work of Collin and Rosenberg in [3].

In the following, we want to generalize such examples. The above surfaces
will be used as barriers to study boundary values and uniqueness. As above,
the domains Q we shall study have arcs in 9, H? as boundary; thus we shall
denote by 9 the boundary of  in H? and by 0, the boundary of  in the
compactified space H2Ud,,H?; Q° will denote the closure of € in H2 U §.,H2.

4.1.2 Convergence of sequences of minimal graphs

In this section, we solve the Dirichlet problem in a more general setting, where
a maximum principle is not necessarily satisfied (see Section 4.3). We cannot
then apply the method developed by Jenkins and Serrin to solve the Dirichlet

14



problem on (2, since we cannot assure the monotonicity of the constructed
graphs u, in the third step of the proof (see the third case “{C;} # 0 in the
proof of Theorem 3.3). We now study the convergence of a (non necessarily
monotone) sequence of minimal graphs on .

Let © C H? be a domain whose boundary 9, is piecewise smooth
(possibly with some arcs at 9,,H?). Given a sequence {u,, } of minimal graphs
on Q, we define the convergence domain of the sequence {u,} as

B={peQ|{|Vu,(p)|} is bounded},
and the divergence set of {u,} as
D=Q-5.

We remark that, in Theorem 2.2, we have already defined a notion of conver-
gence and divergence set for monotone sequences. In the following, we only
use these new definitions.

The following lemma gives us a local description of the convergence do-
main B and the divergence set D that justifies their names. G(u,) will denote
the graph of u,, and N,(p) the downward pointing normal vector to G(u,)
at the point (p,u,(p)); i.e. N, = (X, W_—;) For writting this, we use a
vertical translation to identify the tangent space T(H? x R) with TH? x R.
In fact, in the following, we often use vertical translations to identify the
tangent spaces.

Lemma 4.2.

1. Given p € B, there exists a subsequence of {u, — u,(p)} converging
uniformly to a minimal graph in a neighborhood of p in Q. The size
of the neighborhood depends only on the distance from p to 02 and
an upper-bound for {|Vu,(p)|}. Also, B open follows from curvature
estimates.

2. If p € D, there exists a compact geodesic arc L,(0) C Q of length
20 centered at p, 6 > 0 only depends on distyz(p,dN2), such that, af-
ter passing to a subsequence, {N,(q)} converges to a horizontal vector
orthogonal to L,(9) at every point g € L,(0).
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Proof. Fix p € , and define v, = u,, — u,(p). We denote by G(v,) the
graph of v,. Observe that, for any ¢ € €2, the downward pointing normal
vector to G(v,) at @ = (q,v,(q)) coincides with N, (q), and that both the
convergence and divergence sets associated to {v,} and {u,} coincide. The
distance from P = (p,0) to the boundary of G(v,) is bigger than or equal to
d = distyz(p, 02). Hence we deduce from Schoen’s curvature estimates [16]
that there exists § > 0 depending on d such that a neighborhood of P = (p, 0)
in G(v,) is a graph of uniformly bounded height and slope over the disk
D,(0) C TpG(v,) of radius § centered at the origin of TpG(v,) (see [13],
Lemma 4.1.1, for more details). By graph here we mean a graph in geodesic
coordinates, orthogonal to D, (4). We call G, (p, d) such a graph.

Suppose p € B. Since {|Vu,(p)|} is uniformly bounded, a subsequence of
{N,(p)} converges to a non-horizontal vector, so the tangent planes TpG(v,,)
converge to a non-vertical plane II, and the disks D,,(4) converge to a disk
D(0) C II of radius . From standard arguments (see [13], Theorem 4.1.1)
we deduce that a subsequence of {G,(p,d)} converges to a minimal graph
G(p,0) over D(J). Hence there exists a disk D(p, g) C Q of radius 6 € (0, J]
such that {v,] D(p,S)} is uniformly bounded. After passing to a subsequence,

{vnlD(p,s)} converges uniformly on compact subsets of D(p,d) to a minimal
(vertical) graph. This proves 1.

Now assume p € D. Since {|Vu,(p)|} is unbounded, we can take a
subsequence of {u,} so that |Vu,(p)| — +oo and {N,(p)} converges to a
horizontal vector. In particular, the tangent planes Tp(G(v,)) converge to
a vertical plane II, and a subsequence of {G,,(p,d)} converges to a minimal
graph G(p,d) over a disk D(0) C II of radius J centered at P. The graph
G(p,9) is tangent to IT at P. The following argument follows the ideas in [7],
Claim 1: If G(p,d0) ¢ II, then G(p,d) N1I consists of k > 2 smooth curves
meeting transversally at P. In particular, there are parts of G(p,d) on both
sides of II. Thus there are points in G(p,d) where the normal vector points
up and points where the normal points down. But this is impossible, since
G(p,0) is the limit of vertical graphs. Therefore, G(p,d) C II.

We call L,(8) the geodesic G(p,d) N (H* x {0}), whose length is 26. We
can deduce that the tangent planes of G(v,) at (q,v,(q)) converge to II, for
every q € L,(d) (for precise details, see [9, 10]), which completes the proof of
Lemma 4.2. ]

The next lemma shows D = U;crL;, where each L; is a component of the
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intersection of a ideal geodesic in H? with Q. The geodesics L; are called
divergence lines.

Lemma 4.3. Given p € D, there exists a geodesic L € () joining points in
Do) (possibly at 0., H?) which passes through p and such that, after passing
to a subsequence, {N,|L} converges to a horizontal vector orthogonal to L
(in particular, L C D). In fact, L is the geodesic containing L,(0).

Proof. Let L, = L,(6) be the geodesic arc given in Lemma 4.2-2, and L be
the geodesic in 2 joining points in J€2 which contains L,. For every ¢, we
denote by [p, q] C L the closed geodesic arc in L joining p, q. Define

A= {q cr ‘ there exists a subsequence of {u,} such that } .

Ny|jpq becomes horizontal and orthogonal to L

Clearly, p € A so A # (). Let us prove A is open in L. Take ¢ € A, and denote
by {us@m} its associated subsequence given in the definition of A. Since
A C D, Lemma 4.2-2 gives us a geodesic arc L, through ¢ such that, passing
to a subsequence, Ny(n)|r, becomes horizontal and orthogonal to L,. The
vector Ny, (q) converges to a horizontal vector orthogonal simultaneously
to L and L,, from which we deduce that L, C L, and so L, C A.

Finally, we prove A is a closed set, which finishes Lemma 4.3. Let {g,,}
be a sequence of points in A such that ¢, — ¢ € L. Let us prove that
q € A. For each m, there exists a subsequence of {u,} such that N,|jq.
becomes horizontal and orthogonal to L. A diagonal argument allows us
to take a common subsequence of {u,} (also denoted by {u,}) such that
Nyl ip.gm) becomes horizontal and orthogonal to L, for every m. For every
m, there is a geodesic arc L,,, C L centered at g, satisfying Lemma 4.2-2
whose length depends only on distyz(¢mn,082). Hence, ¢ € L, for any m
large enough, and so q € A. O

Proposition 4.4. Suppose the divergence set of {u,} is a countable set of
lines. Then there exists a subsequence of {u,} (denoted as the original se-
quence) such that:

1. The divergence set D of {u,} is composed of a countable number of
divergence lines, pairwise disjoint.

2. For any component Q' of B = Q —D and any p € ', {u, — un(p)}
converges uniformly on compact sets of ' to a minimal graph over €Y.
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Proof. Suppose L, is a divergence line of {u,, }. Lemma 4.2 assures that, pass-
ing to a subsequence, {N,,(¢)} converges to a horizontal vector orthogonal to
Ly at q, for each ¢ € Ly. Observe that the divergence set associated to such a
subsequence (denoted again by {u,}) is contained in the divergence set of the
original sequence. In particular, the divergence set for such a subsequence,
denoted by D, contains a countable number of divergence lines.

Suppose there exists a divergence line Ly C D, Ly # L;. Passing to a sub-
sequence, we obtain that {N,,(¢)} converges to a horizontal vector orthogonal
to Lo, for each ¢ € Ly. In particular, L; N Ly = (), since if there exists some
q € Ly N Ly then N, (q) would converge to a horizontal vector orthogonal to
both L, Ly simultaneously, a contradiction. The “new” divergence set D is
then a countable set of divergence lines containing L, and Lo, with Ly # Lo.

Continuing the above argument, we obtain with a diagonal process a sub-
sequence of {u,} (also denoted by {u, }) whose divergence set D is composed
of a countable number of pairwise disjoint divergence lines L;.

Now consider a countable set of points {p;}; dense in B, the convergence
domain associated to the subsequence obtained in the previous argument.
Using Lemma 4.2-7 and a diagonal argument, we obtain a subsequence of
{u,} such that {u, —u,(p)} converges uniformly on compact sets of )’ to a
minimal graph, for every component Q' of B and every p € €. This finishes
the proof of Proposition 4.4. O]

Remark 4.5. In Proposition 4.4 we can remove the hypothesis D is a count-
able set of divergence lines, and we obtain that, after passing to a subsequence,
D is composed of pairwise disjoint divergence lines and, up to a vertical trans-
lation, we have uniform convergence on compact sets of each component of
the convergence domain B. The proof of this fact is more involved and will
be included in [}].

We will only use Proposition 4.4 in the case the divergence set D is com-
posed of a finite number of divergence lines.

Let {u,} be a subsequence given by Proposition 4.4. We consider 2 a
connected component of B. Its boundary is composed of subarcs of €2 and
divergence lines. Let us understand the limit u of {u, —u,(p)} in Q' (p € ).
Let T be a subarc of 0’ included in a divergence line. From the convergence
of {N,,} along T, F,, (T) converges to +|T|. Since |X,,| is bounded by 1,
this implies that F,(7') = £|T'|. Then by Lemma 3.6, u takes value +00 on
T. In fact we have a stronger result.
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Lemma 4.6. Let {u,} be a sequence of minimal graphs on Q). We assume
that {u,} converges to a minimal graph u on a connected subdomain Q' of
Q. Let T be a subarc in 0SY included in a divergence line for the sequence
{u,} such that X,, — v along T with v the outgoing normal to . Then if
p €Y and g € T we have

lim wu,(q) — un(p) = +o0

n—-+00

Proof. Since X, — von T, F,, (T) converges to |T|. Thus u takes the value
400 on T. Let p and ¢ be as in the lemma and consider the disk model for
H? assuming that ¢ is at the origin, 7" is a subarc of {x = 0} and v points to
the half-plane {x > 0}. Let us prove:

ou,,

There is € > 0 such that
ox

>0on{—e<z<0,y=0} for large n. (%)

9]
Since u = +o00 on T there is € > 0 such that a_u >1lon{—e<z<0,y=0}
x

du,
8—U$>Oon{—e<

x < —n,y = 0} for large n. If (x) is not true, considering a subsequence if

%(qn) = 0. Observe

The convergence u,, — wu implies : for every 0 < n < ¢,

necessary, there is ¢, in {—e¢ < z < 0,y = 0} with
that it must be ¢, — ¢.

If the sequence {|Vu,(q,)|} is bounded, |Vu,| is uniformly bounded in a
uniform disk around ¢,. Since ¢, — ¢, the sequence {|Vu,(q)|} is bounded
which is false since ¢ lies on a divergence line. Hence, passing to a subse-
quence, we can assume that |Vu,(g,)| — +o0o. Let D! be the d-geodesical

disk centered at (g,,0) in the graph of u,, — u,(g,) (¢ is fixed small enough

ou,,
with respect to the distance from ¢ to 0f2). Since 3

(gn) = 0 we can prove
x

as in Lemma 4.2 that the sequence {D!} converges to the vertical disk in
{y = 0} x R centered at (q,0) of radius 6. Let D? be the d-geodesical disk
centered at (¢,0) in the graph of u,, — u,(q). Since T' is part of a divergence
line, {D2} converges to the vertical disk in {z = 0} x R centered at (g, 0)
or radius §. Because of both convergences, for large n, D! and D? intersect
transversally. But this is impossible, since their normal vectors at a point
depends only on Vu,.

Assertion (%) is then proved. Let ¢; be the point of coordinates (—t,0).
Since u takes the value +oo at ¢ we can make u(q;) — u(p) as large as we

19



want by taking ¢ small . Besides, for large n, (x) gives u,(q) — u,(p) >
un(q:) — un(p). Since u,, — u, we get u,(q) — u,(p) > u(q;) —u(p) — 1. This
proves the lemma. O

Remark 4.7. Let L be a divergence line and suppose there exist two compo-
nents Q1,Qy of B such that L C 0€);, i = 1,2. Consider points py € )y, pa €
Q. Passing to a subsequence, {u, —u,(p;)} converges uniformly on compact
sets of ; to a minimal graph u; : Q; — R. Assume F, (T) = |T| for each
bounded arc T C L, when L is oriented as 0. Then F,,(T) = —|T|, when
L is oriented as 0. We deduce from Lemma 4.6 that {(u, — un(p1))|}
diverges to +00 and {(u, —u,(p2))|r} diverges to —oo. In particular, we can
deduce that {u, — u,(p1)} diverges uniformly on compact sets of Qg to +o0.

Now, we are going to exclude the existence of some divergence lines under
additional constraints. In particular, if there exists minimal graphs w™, w™
defined on a neighborhood U C Q of a point p € 90 such that w= < u, < wt
for every n, then a divergence line cannot arrive at p. We will state conditions
for which such barriers exist.

Proposition 4.8. Let {u,} be the subsequence given by Proposition 4.J.

1. Let C' C 0552 be a smooth arc where each u, extends continuously
and suppose {u,|c} converges to a continuous function f. Then a
divergence line L; cannot finish at an interior point of C'.

2. For every mn, suppose there exists M, > 0 such that |u,| < M,, and
let T C 092 be a bounded geodesic arc where u, extends continuously
and uy|r = M, or —M,,. Then a divergence line cannot finish at an
interior point of T'.

Proof. Let C' C 0,82 be an arc as in item 1. Suppose C' is either an arc at
D5 H? or a strictly convex arc (with respect to Q). Let p € C and C” be a
neighborhood of p in C such that C” C C. Consider the geodesic I'(C") C H?
joining the endpoints of C”, and define the domain A C H? bounded by
C"UT(C"). For C" small enough, we can assume A C €.

Define M = maxc |f|. For n big enough and C’ small enough, |u,| <
M +1 on (', for every n. Consider w™,w™ : A — R minimal graphs with
boundary values

wt=M+1 ,on w-=—-M-—1 ,on(C’
wh =400 ,onI'(C) w~ = —00 ,on I'(C")



(they exist by Lemma 4.1 and Theorem 3.3, depending on the case). By
the general maximum principle, w™ < u,, < w™ for every n. Therefore, the
Compactness Theorem says A C B, and so no divergence line finishes at p.

Now suppose that C' is geodesic and u,|c = ¢ € R for every n. We can
assume without loss of generality ¢ = 0. By reflecting the graph surface
of u,, about C'; we obtain a minimal surface > containing C', whose normal
vector along C' is orthogonal to C'. If there exists a divergence line L with
an endpoint at p € C, then we conclude N, (p) converges to a horizontal
vector orthogonal to L. But this is impossible, since such a vector must be
orthogonal to C'. Hence, no divergence line finishes at C'

Finally, suppose C' is geodesic and there exists a divergence line L with
endpoint p € C. Fix ¢ > 0. Since {u,|c} converges to a continuous function
f, there exists a small neighborhood C" C C of p such that |u,(q)— f(p)| < e,
for every ¢ € C”" and n large enough. Consider a neighborhood U € QU C of
p containing C’, and define v,, : Y — R as the minimal graph with boundary

values
v, = f(p) ,inC’
Up =U, ,indU—C"

(it exists by Theorem 3.3). The general maximum principle for bounded
domains assures
Up — € <V, < Uy + €. (4)

Next we prove that LNU is a divergence line for {v,}, conveniently choosing
e and U. Fix a point ¢ € L NU. From the proof of Lemma 4.2, we deduce
there exists a neighborhood of (¢,0) in the graph G(u,, — u,(q)) converging
to the disk Dy (q,0) C L x R of radius § centered at (g,0). Taking ¢ < §/2,
we conclude using (4) that a neighborhood of the point (¢, v,(q) — u,(g)) in
G(v, — uy(q)) converges to Dy (q,0), and L NU is a divergence line for {v,}
(see [9], Proposition 1.4.8, for a detailed proof). But we know from the above
argument this is not possible, as v, is constant on C’. This finishes item 1.
Now, consider T as in the hypothesis of 2, and let p € T. Define v, =
U, — uy(p) for every n. Clearly, v,|r = 0 for every n. Then we obtain
from item 1 that a divergence line for {v,} cannot finish at 7. Since the
divergence lines associated to {u,} coincide with those of {v,}, we have
proved Proposition 4.8. O]

21



Figure 3: An ideal Scherk domain.

4.1.3 Solving the Jenkins-Serrin problem on unbounded domains

Let Q C H? be a domain whose boundary 0,9 consists of a finite number
of geodesic arcs A;, B;, a finite number of convex arcs C; (convex towards §2)
and a finite number of open arcs D; at 0, H?, together with their endpoints,
which are called the vertices of Q (see Figure 3). We mark the A; edges by
+00, the B; edges by —oo, and assign arbitrary continuous data f;, g; on
the arcs C;, D;, respectively. Assume that no two A; edges and no two B;
edges meet at a convex corner. We will call such a domain €2 an ¢deal Scherk
domain.

A polygonal domain P is said to be inscribed in © if P C € and its
vertices are among the endpoints of the arcs A;, B;,C; and D;; we notice
that a vertex may be in d,,H? and an edge may be one of the A; or B; (see
Figure 4).

For each ideal vertex p; of Q at 9, H?, we consider a horocycle H; at p;.
Assume H; is small enough so that it does not intersect bounded edges of 92
and H;NH; = ) for every i # j. Given a polygonal domain P inscribed in 2,
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Figure 4: An inscribed polygonal domain in 2

we denote by I'(P) the part of OP outside the horocycles, and (see Figure 4)

7=I(P).  a=3]IANDP)  and  F=3[BNI(P)

Theorem 4.9. If there is at least one edge C; or D; in 055), then a solution
to the Dirichlet problem on ) exists if and only if the horocycles H; can be
chosen so that

200 < 7y and 28 <~ (5)

for every polygonal domain P inscribed in €.

Remark 4.10. If these conditions hold for some choice of horocycles, then
they also holds for all smaller horocycles.

Proof. Given a vertex p; € 0,H? of Q, we consider a sequence of nested
horocycles {H, ,} converging to p;. Assume H;, N H;, =0, for every i # j.
Denote by H,;, the horodisk bounded by H;,. Given an inscribed polygonal
domain P C €, we call P, the domain bounded by OP — U;H,;,, together
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with geodesic arcs contained in P N (U;H; ) joining points in 0P N (U;H; ).
Define

Yo = 0P = UHinl, =Y |AiNOP.,  Bu=) |B;NIPy.

Observe that both sequences {2a, — 7, } and {203, — 7, } are monotonically
decreasing.

Let us first prove the conditions are necessary in Theorem 4.9. Assume
there exists a solution u to the Dirichlet problem on €2, and let P C €
be an inscribed polygon. Since either {C;} # 0 or {D;} # (), there exists
a curve n C OP which is not an A; or B; edge. Let 7 C n be a fixed
bounded arc. Lemma 2.5 assures F,,(0P,) =0, >, F,,(4; N OP,) = v, and
|Fy (0P, \ (Ui A; UM))| < v — ay — |77]. Thus we obtain

(079 S’yn_an_ |77|+|Fu(77)|+5m

where ¢,, = |0P, —0P|. This is, 2a, — v, < €, — (|17] — |Fu(7)]). Analogously,

200 = < & — (11l = [Fu(@)))-

Since |F, ()| < || (again by Lemma 2.5) and ¢, converges to zero as n goes
to 400, then g, < (|| — F,(7)) for n big enough. Therefore, condition (5) is
satisfied for P and the horocycles H; ,, for n large enough.

Finally, observe there are a finite number of inscribed polygonal domains
P in Q (there are a finite number of vertices of €2). Thus we can choose
H; = H,, for n large so that (5) is satisfied for any inscribed polygonal do-
main P C (2.

Let us now prove the conditions are sufficient. We choose H;; = H;.
Thus we have 2a,, < v, and 23, < 7, for every n.

We now construct domains €2,, converging to €. For any vertex p; € 0., H?
of 2, we consider a sequence of nested ideal geodesics I';,, converging to p;.
By nested we mean that, if A;, is the component of HQ\FM containing p;
at its ideal boundary, then A;, 11 C A;,. Assume I';,, N T, = 0, for every
1 # 7, and define

Aip=A \UAypn, Bin=DBi \UAy, and C;,=C;\UAp,.
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Figure 5: Construction of the domain (2,

For r > 0 big enough, the annulus bounded by 0,,H? and the circle Syz (0, )
of radius r (in the hyperbolic metric) centered at the origin of the Poincaré
disk, does not intersect the bounded components of 92. Consider a monotone
increasing sequence of radii {r,} converging to +oco. For 7, big enough, we
can assume Sy (0, 7,) intersects every geodesic I'y,, twice, and define by D, ,,
the component of Sy2 (0, r)\UgAy ,, converging to D;. We can naturally assign
the values g; on each D, ,,. Finally, let us call €2,, the domain bounded by the
edges A, Bin,Cin, D;,, and the corresponding geodesic arcs ngn C Iin,
together with their endpoints.

Theorem 3.3 assures, for each m € N, the existence of a unique minimal
graph u : €, — R with boundary values

up, =m , on the A;, edges.
up, = —m , on the B;,, edges.
up, = fim ,on the C;,, edges.
Uy, = Gim , on the D, edges.
up =0 , on the geodesic arcs an

where f; ., (resp. ¢; ) denotes the function f; (resp. g;) truncated above and
below by m and —m, respectively. By the maximum principle for bounded
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domains, —m < wu!, < m, for every n. Then we can extract, by using
the compactness theorem and a diagonal argument, a subsequence of {u” },,
converging uniformly on compact subsets of {2 to a minimal graph u,, : 2 —
[0,m] with boundary data

U, =m ,on the A; edges.
Uy, = —m , on the B; edges.
U = fim , on the C; edges.
Um = Gim O the D; edges.

Such boundary data are obtained from a standard barrier argument, using
as barriers the ones described in [3].

We are going to prove that a subsequence of {u,,} converges to a solution
to the Dirichlet problem on €2, proving Theorem 4.9. We know from Propo-
sition 4.8 that divergence lines for {u,,} can only arrive at vertices of Q. In
particular, there exists a finite number of divergence lines, and so B # ().

Passing to a subsequence, we can assume {u,} satisfies Proposition 4.4.
Now suppose by contradiction that B # §2; i.e., suppose there exists a diver-
gence line L C D. We then deduce from Remark 4.7 there exists a component
P C B such that {u,} diverges uniformly on compact sets of P, say to +oo
(the case —oo follows similarly). Take a point p € P. Then {u, — u,(p)}
converges uniformly on compact subsets of P to a minimal graph u : P — R.
Observe that u diverges to —oo as we approach any edge in 9PN (92 — U; A;)
within P. We then get P is a polygonal domain and F,,(7') = —|T'| for every
bounded arc T C 9P N (092 — U; A4;).

Claim 4.11. We can choose the polygonal domain P C B so that F,(T) =
—|T| for any bounded geodesic arc T C OP — U;A;.

Assume Claim 4.11 is true and define P, as at the beginning of the proof.
Thus F, (0P, — U;A; — (0P, — OP)) = —|0P,, — U;A; — (0P, — OP)|. By
Lemma 2.5,

S>. F,(A; N OP,) + F,(OP, — OP)
+ EL (0P, — UiA; — (9P, — OP)) =0,

1> Fu(A;NOP,) + Fu (0P, — OP)| <y, + €4,
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where ¢, = |0P,, — 0P|, which converges to zero as n — +o00. Hence,
Tn — Qp — Ep §&n+5n-

Thus we obtain —2¢, < 2, — v, < 209 — 74, for every n. Since g, — 0
as n — 400, we obtain a contradiction to the first condition in (5). (If we
suppose there exists a component P C B such that {u,} diverges uniformly
to —oo on compact sets of P, we similarly achieve a contradiction using that
26 — 1 < 0). Hence there are no divergence lines for {u,}, and so B = Q.

Applying a flux argument as above, we obtain that {u,} converges uni-
formly on compact sets of {2 to a minimal graph u : 2 — R. Finally, using
barrier functions as in [3] or those defined in Lemma 4.1 for the D, edges,
we deduce that u takes the desired boundary values, and this proves Theo-
rem 4.9.

So it only remains to prove Claim 4.11. Note we must only prove there
exists a component P of B such that {u,} diverges to +oc uniformly on com-
pact sets of P and F,(T") = —|T'| for any bounded geodesic arc T contained
in a divergence line in JP. Observe that, since B # (2 is assumed, every
component of B contains at least one divergence line in its boundary.

We know there exists a component U, C B which is an inscribed polygonal
domain and such that {u,} diverges to +oo uniformly on compact sets of
Uy. Tf Uy satisfies Claim 4.11, we have finished. Otherwise, there exists a
divergence line Ly C 0Uy such that F, (Lo) — |Lo| with the orientation
induced by 0Uy. Let U; be the component of B different from U, containing
Ly in its boundary. Hence F,, (L) — —|Lo| when Ly is oriented as olU;. We
deduce from Remark 4.7 that {u,} diverges to 400 uniformly on compact
sets of U;.

If U, satisfies the conditions of Claim 4.11, we are done. Otherwise,
there exists another divergence line Ly C dU, such that F,, (L) — |L4]
when L, is oriented as oU;. We deduce from Lemma 4.6 that, if pg € Uy,
then {u, — u,(po)} diverges to 400 uniformly on compact sets of U; and
(up, — un(po))r, — +o0. In particular, L; cannot be in 0l because then
F,,(Ly) — —|Ly|, with the orientation in L; induced by 0Uy, in contradiction
with (w, —u,(po))r, — +00. Then there exists a component Uy of B different
from Uy, U; containing L; in its boundary.

Since there are a finite number of components of B, we eventually obtain
a component U of B satisfying Claim 4.11. This completes the proof of
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Theorem 4.9. []

Theorem 4.12. Suppose that both families {C;}; and {D;}; are empty.
Then, there exists a solution to the Dirichlet problem on € if and only if
we can choose the horocycles H; so that ay = (1 when P =€), and

200 < My and 201 <m

for all others polygonal domain P inscribed in Q2. Moreover, the solution is
unique up to translation, if it exists.

Proof. Note that «,, — (3, does not depend on n.
The proof of this theorem follows exactly as in the fourth case of the proof
of Theorem 3.3. We must only clarify some points:

1. Now it is not straightforward to obtain E, = U;E! and F. = U;F7. A
detailed proof can be found in [3].

2. Once we have the minimal graph u : {2 — R obtained as the limit of a
subsequence of {u,}, we must verify it satisfies the desired boundary
conditions; this is, we must prove that both sequences {u,} and {n —
Uy} diverge as n — +00.

Suppose i, — oo < +00 as n — +00. Hence, u = —p, on each B; edge
and u diverges to +00 when we approach A; within ). From Lemma 2.5, we
get:

o > Fu(Ain) + 22 Fu(Bin) + Z” Fu@in) =0,

o > Fu(Ai,) = ay,

e > F.(Bi1) < [, so there exists 0 > 0 such that ), F,(B;1) </ — 6.
Then F,(B;n) = Fu(Bi1) + Fu(Biyn — Bix) < B, — 0, for every n.

® > Fu(Fin) < &, where g, =3, ; Fin]

Hence «,, — 3, < ¢, — ¢, for every n. Since ¢, — 0 as n — 400, we obtain
a, — [, < 0 for n large enough, a contradiction. Analogously, we obtain
n—p, — +00 as n — 400. The Uniqueness part follows from Theorem 4.13,
and Theorem 4.12 is proved. O
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Figure 6: The shadowed region is one of the domains considered in Section 4.2

4.2 A minimal graph in H? x R with non-zero flux

Let 2 C H? be an unbounded domain whose boundary consists of two com-
ponents:

e ['.; = an outer component composed of consecutive open ideal geodesics
Ay, By, -+, Ay, By, sharing their endpoints at infinity.

e [';,x = an interior component consisting of open convex (convex towards
Q) arcs C4, - -+, Cy,, together with their endpoints.

Take a domain € as above satisfying (5) for every inscribed polygonal
domain P and such that a; > (; when P = ). For example, consider a
small deformation (as in Figure 6) of a domain € whose inner boundary is
composed of convex arcs together with their endpoints, and its outer bound-
ary consists of an ideal polygonal curve with vertices on the 2k-roots of 1 (in
the picture, k = 4).

By Theorem 4.9, there exists a minimal graph u : {2 — R which takes
boundary values +o0o on the A; edges, —oo on the B; edges, and 0 on the C;
edges. Let I' C ) be a curve homologous to I'y,;. Hence,

FuT) = 3 FuAin) + 3 Ful(Bin) + 3 Fulliz)
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= Op — ﬁn + ZFu(Fi,n)7

where a,, =) . |A; | and 3, = ), |Bi |- Since a,, — 3, does not depend on
n, we obtain

|FuT) = o0+ Bi] <) |FuTin) <D [Tinl.
Finally, we know that >, |I';,| — 0, so F,,(I') = oy — 81 > 0.

4.3 The uniqueness problem in H? x R

In this section we study the uniqueness of solutions constructed in Theorems
4.9 and 4.12. In the first subsection, we give a maximum principle for so-
lutions of the Dirichlet problem under some constraints. In the second, we
construct a counterexample to a general uniqueness result.

4.3.1 Maximum principle

Maximum principles for unbounded domains in H? are already known in spe-
cial cases. For example, the proof of Collin and Rosenberg for the maximum
principle in [3] admits the following generalization.

Theorem 4.13 ([3]). Let Q C H? be a domain (not necessarily simply con-
nected) whose boundary is composed of a finite number of convex arcs together
with their endpoints, possibly at infinity. Assume the following condition (C-
R) holds. Consider a domain O C  and two minimal graphs uy,us on O
which extend continuously to 0. If uy < ug on 00, then uy < ug in O.

The aim of this section is to prove that we can weaken the hypothesis
on the asymptotic behaviour of €2 when some constraints are satisfied by the
boundary data. Before stating our result, we need to introduce some defini-
tions. We notice that some notations for domains we consider are different
from the ones in Subsection 4.1.3.

We consider domains 0 C H? whose boundary 0,2 is composed of a
finite number of open arcs C; in H? and arcs D; in 0,,H? together with
their endpoints (the C; are not supposed to be convex). The endpoints of
the arcs C; and D; are called vertices of ) and those in 9,,H? are called
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ideal vertices of €). Let p be an ideal vertex of €2 and I'y and I'y be two
adjacent boundary arcs at p. Let (¢, ) be polar coordinates centered at p.
Consider a parametrization of I';, 7; : [0,1] — {¢ < 0}, with 7;(0) = p and
7i(1) € {¢ = 0}. We denote the polar coordinates of the parametrization by
7i(t) = (¢;(t),0;(t)) and assume that 6, (1) < 05(1).

Definition 4.14. We say that €2 has necks near p if

hgrelll?f d(q,Ts) = hflrell%lf d(q,T1) =0
a—p q—p

and the domain § is called admissible if, for every ideal vertex p of 2, we
have one of the following situations:

type 1 ) has necks near p or

type 2 lirtrLiOHf O5(t) > 0 and lir? sup 0,(t) <.

The limits of the second type do not depend on the choice of polar coor-
dinates. We notice that, if all C; are convex arcs (as in section 4.1.3), every
ideal vertex is of second type i.e. 2 is admissible. The hypothesis type 2
means that the adjacent arcs do not arrives “tangentially” to 0., H? on the
same side of p. As in Figure 7, consider an ideal vertex p such that, near p,
Q) is the domain between to horocycles p. The distance between I'; and I's is
constant so p is not a type 1 vertex. Besides we have lim; .o 65(t) = 0, thus
p is not a type 2 vertex. This is the kind of situation that we avoid by our
definition.

Let p be an ideal vertex of an admissible domain 2. A priori, this point
is the endpoint of 2n arcs I'; in 0,2 (see Figure 8). As above, let 7; : [0, 1] —
{0 <0} C H2U,H2, ~;(t) = (¢(t), 0:(t)), be a parametrization of I';, with
7:(0) = p and 7;(1) € {¢ = 0}. We assume that 6;(1) < 0;(1) if i < j. Thus
QN {¢ < 0} is included in the n connected components of {¢ < 0}\(U;I;)
between I'ox_1 and 'y, for &k = 1,--- ., n. When u is a minimal graph on {2
the study of u on the part between 'y, _; and I'y depends only on the values
of uwon I'y;_1, Ty and the other boundary arcs of QN {¢ < 0} between 'y,
and I'gx11. Thus the study on each part will be done separately; so we can
assume that each ideal vertex is the endpoint of only two arcs in 0,.€).

Let u be a minimal graph on an admissible domain 2. We say that u is
admissible or an admissible solution if
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Iy

Iy

p

Figure 7: An ideal vertex which is neither type 1 nor type 2

e y extends continuously to U; D,

e u tends to 400 on A(u) C 092 with A(u) is a finite union of open
subarcs of U;C;,

e u tends to —oo on B(u) C 02 with B(u) is a finite union of open
subarcs of U;C; and

e u extends continuously to U;C;\ A(u) U B(u).

We remark that each connected component of A(u) and B(u) is a geodesic arc
(see Theorem 10.4 in [12] for the Euclidean case and Lemma 2.3). Also, we do
not say anything about the values of u at the vertices of €2 and the endpoints
of A(u) and B(w). Thus, in the following, the hypotheses on the boundary
values of an admissible solution u will be only made where it is well defined
i.e. U;D;, A(u), B(u) and U;C;\A(u) U B(u). As an example, in Theorem
4.15, we shall write us < u; on 0,2, this means that, A(ug) C A(uy),
B(uy) € B(ug) and (U;D;) | J(U;Ci\ A(ug) U B(uy) is non empty and uy <
uy on it (on A(up)\A(ug) and B(ug)\B(uq) the inequality is automatically
satisfied). When (U; D;) | J(U;C;\ A(uz2) U B(uy) is empty then u; and uy are
solutions of the Dirichlet problem studied in Theorem 4.12 and we already
know that u; — uy is constant so no new theorem is needed. Let us now state
our generalization of Theorem 4.13.
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Iy

Iy
Ty

I
p

Figure 8: An ideal vertex with more than two adjacent boundary arcs

Theorem 4.15 (General maximum principle). Let Q C H? be an admissible
domain and u; and uy be two admissible solutions. We assume that us < uy
on 08, Also we assume that the behaviour near each ideal vertex p € O H?>
1s one of the following:

type 1 ) has necks near p,

type 2-i liminf,u; + & > limsup,uy (for every ¢ > 0) along both boundary
components with p as endpoint,

type 2-ii if A C A(ug) C A(uy) (resp. B C B(uy) C B(ug)) is a geodesic
arc with p as endpoint and T" is the other boundary arc in 0,82 with
endpoint p, liminf, u; + ¢ > limsup, uy (for every e > 0) along T".

Then we have uy < uy in €.

Let us make some comments on the hypotheses of the theorem. First the
hypothesis (C-R) made by Collin and Rosenberg in Theorem 4.13 implies
that, near each ideal vertex, (2 has necks. Thus Theorem 4.15 generalizes
Theorem 4.13. We notice that, when a vertex p is the endpoint of two
geodesic arcs (for example, one in A(uy) and the other in B(u;)), Q2 has
necks near p. Moreover, the hypothesis liminf, u; + ¢ > limsup, u, along a
boundary component which has p as endpoint means that we are in one of
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the following three cases:

lim inf u; = 400 and lim sup uy < +00, (6)
p P
liminfu; > —oo0 and limsup uy = —o0, (7)
p P
— 00 < limsup uy < liminfu; < 4o00. (8)
» )

in the third case, the boundary data for u; and uy “stay close” so it is the
more complicated case. Hence the proof will be written in this case; small
changes suffice to treat the first two cases. We remark that our theorem does
not deal with the case lim, u; = lim, uy = +o0.

The proof of Theorem 4.15 is long and needs some preliminary results
that may have their own interest.

Let Q be a domain in H?, we say that Q has a finite number of point-ends
if there exist py, -+, pn € O H? and (¢;, ;) polar coordinates centered at p;
such that:

for every m < 0 and i, Q NU;{¢; > m} is compact and QN {¢; < m} # (.

The p; are the point-ends (we do not assume anything about the connect-
edness of QN {¢p; < m}). We say the point-end p; is in a corridor if there
exists a € (0,7/2) and m < 0 such that:

QnN{pi<m} C{a<b,<m—a}

We notice that these definitions do not depend on the choice of (¢, ;).

Let Q C H? be an admissible domain and u; and uy be two admissible
solutions on 2. We assume that u; > wus on 0,.82. Let € be positive with
O = {uy; < us—e} nonempty. Since u; > usp on the D;, O has a finite number
of point-ends that are among the ideal vertices of (2. With this setting, we
have a first result which follows the ideas of Collin and Krust in [2].

Proposition 4.16. Let Q C H?, uy, us admissible solutions on €, € > 0
and O be as above. The subset O is assumed to be nonempty and, for each
point-end p, we assume that either p is in a corridor or €0 has necks near p.
Then the function u; — us is not bounded below.

34



Proof. First, we can assume that ¢ is a regular value of uy —u; and so 00N
is smooth. Let us assume that the proposition is not satisfied i.e. there exists
M > 0 such that uy —uy < M.

Let K be a domain in H? with smooth boundary such that QN K is
compact. We notice that 00N (U;D;) = 0 and 00N (U;C;) C A(ug) U B(uy).
For 0 > 0 small, we denote by Ny the closed §-neighborhood of A(ug) U B(uy)
and define:

O(K,6) = (ON K)\Ns
We notice that 0O(K, ) is piecewise smooth and is included in Q. This
boundary can be decomposed in three parts:

e 0,(K,d) =00(K,6) N OO on which us — u; = ¢,
o 0y(K,0) = 00(K,0) NONs,
o 03(K,0) =00(K,d) N (0K\0O).

~— 0K, 0)

~— (K, 5)

Figure 9: The boundary parts of O(K, J)

Let us define u = uy —uy — ¢, X = X,,, — X, and v the outgoing normal
from O(K,0). Let us prove that:

/ WX, )
02(K,0)
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Since / uw(X,v)| <M |(X,v)|, it suffices to prove
02(K,0) 02(K,0)
Claim 4.17. we have:
lim (X, v)|=0
=0 J oy (K.,5)

The connected components of A(ug) U B(u;) are geodesic arcs. In such
a component, for § > 0, a subarc is composed of points at a distance larger
than ( from the endpoints. We denote by I(3) the union of all these subarcs.
Now, in Ny, some points are at distance § from I(3) (we denote this part
J1(0,3)) and the other points are at distance § from A(uy) U B(uq)\I(3) (we
denote this part J(d,3)). We notice that the length of Jy(d, 5) is bounded
and

lim (( (8, 3)) = 2no83

where ng is the number of endpoints of A(uy) U B(uy) in H?. We have:

/ |<X,u>|=/ |<X,u>|+/ (X, )
82(K.9) J1(8,8)N00(K.,9) J2(8,8)N00(K.,0)

< | X | 4+ 2¢(J2(0, 3))

/Jl (6,8)N00(K,5)

As § goes to 0, max, 5 g)nao(k.s) | X | tends to 0 and £(.J; (5, 3) N 0O(K,0)) is
bounded (since QN K is compact). Hence for every small p > 0, we can take
(£ and ¢ small enough such that:

Ry
02 (K, 5)
Claim 4.17 is proved.

Also we have (see Lemma 1 in [2] for the first inequality).

J[omes | wo= [ wxs [ s [
O(K.5) 90(K.5) 01(K.5) 82(K.5) 95 (K.5)
:/ u(X,V>+/ w(X, )
02(K,9) 03(K,0)
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We notice that |X|? > 0 and [ 5 ul(X, v)| < 2M{(05(K,0)) < 2ML(05(K., 0)).
By (9), taking 6 — 0 in the above inequality, we get

// X[ < / w(X, ) (10)
O(K,0) 93(K,0)

Let p1,---,p, be the point-ends of O; they are numbered such that
P1,- -+ ,pr are in a corridor and §2 has necks near pgyq1,---,p,. For each
i we consider polar coordinates (¢;,0;) centered at p;, chosen such that the
hyperbolic half-planes {¢; < 0} do not intersect. Let o« > 0 be such that, for
every i € {1,--- ,k}, ON{¢; <0} C {a >0; > 7 —a} with a > 0.

Let ¢ and 1 be negative and p > 0. Since €2 has necks near each p; with
i > k+1, thereis in QN {¢; < 1} a geodesic I'; of length less than p joining
the two adjacent arcs at p;. Let K be the compact part of €2 delimited by
the geodesic {¢; = ¢} for i < k and the geodesic T'; for i > k + 1. Besides
we denote

Op = O\ ((O{@ <U( U 1o w}))

i=k+1

From (10), we obtain:

//OM'X'Q //KO|X|2 /a )u<X,u>

k
<M | X|+2M(n—k)u
On{¢i=9¢}

Thus letting p going to 0, ¢ going to —oo and denoting by O, the subset
Op.—oo and Iy = U5, O N {¢; = ¢} a part of the boundary, we get

/I s f 1 (11)

Let us denote by n(¢) the integral in the right-hand term. By Schwartz’s
Lemma, we obtain:

2(9) < ((1,) / X2 < Cla) / X2
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where C(a) = k [T Sir‘%). Thus f1¢ | X2 > n?(¢)/C(a) and, in (11), this

(0%
gives:

O nA(t)
1o + /¢ Eiag < Muo) (12)

with po > 0. Let ¢ be the function defined on I = (—(M?C(«))/ 0, 0] by :
M 1 t

w () MC(a)

This function ¢ satisfies ((0) = po/M and ' = —(*/(MC(«)). Thus for ¢ €

I'we have ((¢) < n(¢). But n(¢) < 20(1,) < 2C(a) and limy—,_ (r2¢(a))/u0 C(E) =
+00. We have a contradiction. ]

We have a first lemma that allows us to bound admissible solutions.

Lemma 4.18. Let Q) be an admissible domain in H2. Let u be an admissible

solution with B(u) = 0 and assume there exists m € R such that u > m on
0s0§2. Then u is bounded below in €.

Proof. There are only a finite number of points where such a lower-bound is
unknown: the vertices of {2 and the endpoints of arcs in A(u). We notice that
there are only a finite number of such points. When an endpoint of A(u) or
a vertex of ) is in H2, a lower-bound is given by the maximum principle for
bounded domains. So let us consider an ideal vertex p. Let (¢, ) be polar
coordinates centered at p and consider ' = QN {¢ < 0}. Let m’ < m be
such that u > m' on QN {¢ = 0}; let us prove that u > m’ in Q'.

Take t < 0 and consider the minimal graph w; given by Lemma 4.1 on
the domain {¢ > ¢} which takes the value —oco on {¢ = t} and m’ on the
other boundary arc. We know that w; < m’ on {¢ > t}. By the maximum
principle for bounded domain, w; < won Q'N{¢ > t}. Ast — —oo, wy — m’;
hence m/ < wu on V. O

In the proof of Theorem 4.15, type 2 ideal vertices are the hardest to deal
with. Thus we need to be more precise for a bound near such a vertex. In the
following lemma, we use the minimal graph defined in Lemma 4.1 to control
a minimal graph on one side of a type 2 ideal vertex.
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Lemma 4.19. For every 0 < 6 < 7/2, there is a continuous increasing
function Hp : [0,0) — R, with Hy(0) = 0 such that the following is true.

Let Q be an admissible domain in H? and p an ideal vertex of Q. We
consider polar coordinates (¢, 0) centered at p. For i = 1,2, let

L. 01 —{o<0r
' t — (¢i(t), 0:(1))

be parametrizations of the two adjacent arcs in 05§ with p as endpoint; we
assume lim; ov;(t) = p vi(1) € {¢ = 0} and 0,(1) < O2(1). Let O =
liminf, .o 05(t); we assume , > 0.

Let u be an admissible solution on 2 such that w > m in v1((0,1]). Then

for every 8y and @ with 0 < 0y < 0 < 5, there exists ¢g < 0 such that :
u>m — Hg(6y) on QN {p < ¢o,0 < by}

Proof. Let us consider (¢,6) polar coordinates at a point in O -H? and 0 €
(0,7/2]. On Q5 = {(0,¢) € H?0 < 0}, we consider the minimal graph

h
hg(¢,0) = hg(0) given by Lemma 4.1 with hg = 0 on {# = 0} and % = 400
v

along {§ = 0}, where v is the outward pointing normal vector. For < 0,
we define:
0o , -

Hp(00) = hg(0o + 7(0 — bo)) = max hy
{0<0<00+4 (0—00)}

We remark that 6, < 0y + %O(é— 0o) < 0 when 0 < 6y < 0. Hj is a continuous
increasing function with Hyz(0) = 0.

Let Q, u, (¢,0) be as in the lemma. Let § be less than ,; by changing ¢,
we can assume that () > 0 for t € (0,1]. Let s be negative, we consider the
geodesic By joining the points with polar coordinates (s,0) and (0,0) and the
arc Dy in O,,H? N {¢ < 0} joining both points. Let Cy be the equidistant to
B which is at distance dj (see (2)) and is in the half-plane delimited by Bj
and Dj (see Figure 10). We denote by O, the domain bounded by Cy and Dj
(O, is included in @ < 6). On O,, we consider k, the minimal graph given by
Lemma 4.1 with £, = 0 on D, and

S

_ ov
on Os. Since 6 < 0y(t) for every t, the boundary of O; N Q is composed

of subarcs of s and subarcs of 7. Hence, by the maximum principle for

= 400 on Cs. We notice that ks > 0
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(=00,0) (s,0) D, (0,0)

Figure 10: Oy is the shadowed domain

bounded domains, u > m — ks on QN O,. Let s go to —oo, ks converges to

the solution k_., on O_s with h_oo =0 on D_,, and ———= = 400 on C_,

v
given by ;emma 4.1. Moreover, we have m — k_,, < u on Q2N O_,. Fix
0 < 6y < 0. Because of the definition of Hp, there is ¢g such that

k—oo < Hg(eo) on {¢ < Qbo,e < Qo}
which concludes the lemma. ]

Actually, this Lemma says that if a solution is bounded below on one
of the two boundary components with p as endpoint, then the solution is
bounded below in some “sectorial” neighborhood of this boundary compo-
nent.

Now we have the following result

Proposition 4.20. Let 2 be an admissible domain and u an admissible
solution. Let p € 0¥ be a type 2 ideal vertex of 2. We assume there exists
m € R such that uw > m near p on 0S). Then, for everye >0, u > m — ¢ in
a neighborhood of p in €.

Proof. Let (¢,0) be polar coordinates centered at p. We assume that u > m
on dQ N {¢ < 0}. Let h be the minimal graph over {¢ < 0} given by
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Lemma 4.1 with boundary values h = —oo on {¢ = 0} and h = m on the
other boundary arc . For every € > 0, we have h > m — ¢ on a neighborhood
of p, so it suffices to prove that h < u on QN {¢ < 0}.

If {u < h} is nonempty, consider € > 0 a regular value of h —u such that
{u < h—¢e} # 0. The only possible point-end of {u < h — e} is p. Let us
prove that p is in a corridor. Let v; = (¢;, 0;) be parametrizations defined on
(0, 1] of both boundary arcs adjacent at p in {¢ < 0} with lim,_o7:(t) = p,
d1(1) = ¢o(1) = 0 and 6;(1) < O2(1). Since p is of type 2, liminf, . O5(t) > 0.
Let 0 < 0 < liminf,_q 05(t), Hy be defined by Lemma 4.19 and 6’ € (0, 6) such
that Hy(0') < e. Lemma 4.19 gives ¢’ < 0 such that u > m— Hg(0') > m—¢
on QN{¢ < ¢',0 < @'}. Applying Lemma 4.19 also on the other side of p, we
obtain ¢y < 0 and 0y > 0 such that u > m—e in {¢p < ¢ }N{sin(f) < sin(hy)}.
Since h < m in {¢ < 0}, we have {u < h —e} N ({¢ < ¢o} N {sin(d) <
sin(fp)}) = 0. Thus the end is in a corridor. Theorem 4.16 now implies that
u is not bounded below near p, that contradicts Lemma 4.18 O]

We can now give the proof of the general maximum principle (Theo-
rem 4.15). We recall that the proof is written in the case (8).

Proof of Theorem 4.15. Let 0, u; and uy be as in the theorem and assume
that us < wuq is not true in the whole €2, so we can choose ¢ > 0 such that
{u; < ug — €} is nonempty. Since u; > ug — ¢ on the arcs D;, the point-
ends of {u; < uy — €} are among the ideal vertices of 2. In particular,
{u; < uy — ¢} has a finite number of point-ends. Let us prove that each
point-end associated to a type 2 vertex of €2 is in a corridor.

Let p be a point-end which is a type 2-1 vertex of €2. Let I'y and I'y
denote the two components of 0,.£2 with p as endpoint and consider polar
coordinates (¢, 0) centered at p. There is ¢ such that

wp > liminfu; —e/4 and wuy <limsupus +e/4 on Iy N {p < ¢o}

zel; zel’;
T—p T—p

Using Lemma 4.19 as in the proof of Lemma 4.20, there exist ¢; < ¢y and
0, € (0,7/2) such that
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up > limrinful —e/2on QN{d < ¢1,0 <61}
rely
T—p

us < limsupus +¢/2 on QN{d < ¢1,0 < 61}

zely
Tr—p

Uy Zlimlinful—s/Q on QN{p < ¢,0 > — 01}
xzela
T—p

Uy §lim%nfu2+€/2 on QN{p < ¢1,0 >7m—0,}
rela

T—p
Thus on QN {¢p < ¢y1,0 < 0}, we have

up — ug > liminfu; — /2 — (limsupug + £/2) > —¢
zely el
T—p T—p

In QN{¢p < ¢1,0 > m— 61}, we also have u; —uy > —e. So p is in a corridor.

In the case the point-end p of {u; < us — e} is a type 2-ii vertex of 2, we
can choose polar coordinates (¢, ) centered at p such that the geodesic arc
Aisin {§ = 7/2} and ' € {0 < 7/2} . As above, we prove that there exist
¢1 and 07 > 0 such that u; —uy > —ein QN {p < ¢1,0 < 6,}. So, pisina
corridor.

Therefore, we have proved that either the point-ends of {u; < ug—e} are
in corridors or €2 has necks near them. Thus Proposition 4.16 assures u; — us
is not bounded below.

Let p be an ideal vertex of ) of type 2-i. By Lemma 4.18, there are m;
and my in R such that u; > m; and us < ms in a neighborhood of p , so
Uy — Uy > my — my in a neighborhood of p. Since the number of type 2-i
vertices is finite, there is m < 0 such that u; — uy > m in neighborhood of
type 2-i vertices. Moreover m can be chosen to be a regular value for u; — us.
So let us denote the nonempty set

O = {u; —us <m}.

In fact the value of m is not already fixed : in the following, we shall need
to decrease m a finite number of times (these changes are only linked to the
geometry of the domain).
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We notice that 90 N (U;D;) = @ and 90 N (U;C;) € B(uy) U A(uz). O
has a finite number of point-ends which correspond to ideal vertices of type
1 or 2-ii. Let us them denote by py,--- ,p, and by (¢;, ;) polar coordinates

centered at p;. As in the proof of Proposition 4.16, for 6 > 0 small, we denote
by Njs the closed d-neighborhood of B(u;) U A(us) and we define:

O(¢,9) = O\ (N5 U(Ui{cbi < ¢}))

Its boundary 00(¢,d) C Q is piecewise smooth and is composed of three
parts:

e 01(¢,0) = 00(p,0) N IO, where uy — u; = —m,
i 82(¢7 5) = 80(¢7 5) N 6]\75,
) )

) = 90(0,0) N (Ui{di = $}\00).
= X, — Xy, and v the outgoing normal to dO(¢, ). We have:

O:/ (X,l/>:/ <X7y>+/ (X,l/>+/ (X,v)
90(4,6) 91(9,9) 92(¢,9) 93(¢,9)

We notice that along 91(¢,d), Vus — Vuy points into O so X points to O.
Hence (X, v) is negative on J;(¢,0) (see Lemma 2 in [2]). Besides, we have
| X| < 2 and the length of 03(¢,6) is uniformly bounded for fixed ¢ since
either the point-ends of O are in corridors or 2 has necks at them. Thus,
with K = N;{¢; > ¢}, Claim 4.17 implies that, letting ¢ goes to 0, we obtain:

o= [ s [ )
81 (¢70) 83(¢v0)

0<—/ <X,I/>:/ (X,v)
al((b»o) 83(¢70)

We can decomposed 05(¢,0) in a finite number of parts v1(¢), -, 7.(¢):
7i(@) is the part of 95(¢,0) in {¢; = ¢}. Thus we have:

We call

n

- /f>1<¢,o> o= z_; /%(¢>) )

The left-hand term is positive and increases as ¢ \, —oo. Thus we get
a contradiction and Theorem 4.15 is proved once we have established the
following claim:
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Claim 4.21. For every i, we have

limsup/ (X,v) <0
Yi(®)

p——o0

First we suppose p; is a type 1 vertex. Let ¢y < 0 be fixed. Since p; is
a type 1 vertex, for each p > 0 there is a geodesic arc I' C QN {¢ < ¢p} of
length less than p. I' separates QN {¢ < ¢o} into a non compact component
and a compact part Qr. Let ¢; < ¢y be such that I' € {¢ > ¢1}. As above
we can compute the flux of X along the boundary of O N Qr and we get:

0— / (X0} = / (X, ')+ / (X0} — / (X, )
a(0NQr) 01(¢1,0)NQr onr vi(¢0)

with ¢/ the outgoing normal from O N Qp. The sign of the last term comes
from the fact that v/ = —v along 7;(¢). As above, X points to O N Qr along
01(¢1,0) N Qr, thus f81(¢1,0)ﬁﬂp<X’ V') <0 and

/ (X, ) = / (X, ) + / (X, /') < 20(T) < 20
~i(®0) 01(¢1,0)NQr onr

The above inequality occurs for every p > 0. Then f% ( ¢0)<X ,v) <0 and the
claim is proved when p; is a type 1 vertex of €.

Let us now suppose p; is a type 2-ii vertex of ). We choose the polar
coordinates centered p; such that the geodesic arc A is in {# = 7/2} and
the arc T is in {0 < 7/2}. We fix ¢g < 0. Let G : [0,1] — H?* U 9, H?
be a parametrization of I', in polar coordinates G(t) = (¢(t),0(t)) for t > 0
with ¢(1) = ¢g. Since p; is an endpoint of I', lim;_ ¢(f) = —o0. Let 0, be
limsup,_,,0(t). If 6, = 7/2, we have liminf, ,od(G(t), A) = 0 as in type 1
vertices and we can apply the above proof.

We then assume 6., < m/2. Let us consider § € (A, 7/2). By changing
b0, we can assume that 0(t) < 0 for every t € (0,1].

Let us define u$® = liminf,er ui(x) and u3°® = limsupger us(x). From
T—=p T—p

Lemma 4.19 and Proposition 4.20, there are ¢ < ¢o and ™ > 1 such that
up >u —1on QN{p <o} and ug <u®+mon QN{p < ¢,0 < 0}. Thus
on QN{p < 0 <0}, up —uy > u® —1—u® —m > —1—m. So, if m is
chosen less than —1 —m, we have (O N {¢p < ¢}) C {0 <0 < 7/2}.
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We can change the polar coordinate ¢ to have ¢ = 0. Let ; be the do-
main bounded by the geodesic joining p; to the point p_ of polar coordinates
(a,7) (a < 0) and the equidistant to this geodesic which is at distance dy__
(see (2)) such that QN # 0. Here, a is chosen such that Q; C {¢ < 0} (see
Figure 11). By Lemma 4.1, there exists the minimal graph h; define d on €
with value +o00 on the geodesic boundary component and value u® — 1 on
the equidistant. Let {25 be the domain delimited by the geodesic joining p; to
the point p, of polar coordinates (a,0) and the arc in 9,,H? joining p; to py
(i.e. in polar coordinates, (—o0,a) x {0}). On £y, we consider the minimal
graph ho with value +o00 on the geodesic boundary component and u35° 4 1
on the arc in 0,,H?. As in the proof of Lemma 4.19, we ca deduce hy < u;
il’lQﬂQl and U9 S h/2 ODQQQQ. Hence U — Uz Z hl—hg IHQﬂglﬁQQ
so let us bound h; — hy below in 2; N Q.

First, because of the definition of Q;, there is ¢y such that O N {¢ <

do} C{o < o, 0 <0< m/2} C Q.

o0
uy — ,1,;

A {0 =0}
{0 =06}
T
91
Yoo 7
100
Qy L
p- Dbi uy® +1 D+

Figure 11: The domains €; and 5 in H?

To make some computations, we use other coordinates : we consider
H? = R x R* with the classical hyperbolic metric such that p is the infinity,
p+ = (1,0) and p_ = (—1,0). We have Q C R% x R% near p, O = {(z,y) €
(—1,400) x R |y > tan(fs)(z 4+ 1)} and Qy = (1,+00) x R%. In fact, the
points of polar coordinates (¢,6) becomes (z,y) = e~(*=?(cos(#), sin(d)).

45



The functions h; and hsy have the following expressions (see (3)):

2
y y
h =1 1 — o _ ]
1(z,y) =In \/+(x+1) + Con + S

2
Y y
=1 1 5 +1
ha(z,y) = In \/+(x_1) | T+

where ¢y is a constant which depends only on ..
With a; = y/(x + 1) and as = y/(x — 1) this gives:

V1t+ai+a
hl(x7y)_h2<x7y) =1In (ﬁ) _CGOO+UC1>O_1—USO_1
2 2
Vital+a
>In| tY——| —cp. — 2
N (\/1+a%+a2 oo

We have ag/a; = (+1)/(x — 1) thus on {x > 2}, 1 < as/a; < 3. So, on

{z > 2}:

1 J1+ad+a

X — <1

37 /1+ai+ay
and hy(z,y) — he(z,y) > —In3 —cp, —2 on {z > 2} N (2 NQy). Thus if m
is chosen to be less than —In3 — ¢y, — 2, we have:

(ON{¢<¢o}) c{0<z<2}
Then limy_,_o £(7i(¢)) = 0. This gives Claim 4.21 since :

/ (X,0)
vi(4))

This completes the proof of Theorem 4.15. O]

< 20(7i(¢)) —— 0

$——o0

This maximum principle gives immediately a lower-bound result and a
uniqueness result:

Corollary 4.22. Let Q) be an admissible domain and u an admissible solu-

tion. We assume there exists m € R such that u > m on 082. Then u>m
n €.
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Corollary 4.23. Let Q C H? be an admissible domain and u, and us be two
admissible solutions. We assume that u; = uy on 05§). Besides we assume
that the behaviour near each ideal vertex p € O, H? is one of the following.

type 1 ) has necks near p;

type 2-1 we have lim, u; = lim, uy exists and is finite along both boundary com-
ponents with p as endpoint;

type 2-ii if A C A(ur)(= A(ug)) (resp. B C B(uy)(= B(uz))) is a geodesic arc
with p as endpoint and I is the other boundary arc with endpoint p that
bounds Q0 near p, we have lim,u; = lim, uy exists and is finite along I’
and .

Then we have uy; = ug in €.

4.3.2 A counterexample

In this section, we construct a counterexample to a general maximum prin-
ciple. To be more precise we have the following result:

Proposition 4.24. There is a continuous function on O, H? minus two
points that admits several minimal extensions to H?2.

We remark that any such function admits a minimal extension to H? by
Theorem 4.12. The idea to construct several extensions comes from Collin’s
construction in [1].

In the following, we shall work in the disk model for H?. Let us fix o in
(m/4,7/2), we denote z, = €' the points in d,H?. Let us consider the ideal
rectangle R, with the points z,, —Z, —2, and Z, as vertices. This domain is
symmetric with respect to the geodesics {Rez = 0} and {Im z = 0}. We can
extend the domain R, by reflection along the ”vertical” geodesics (z4,Za)
and (—Z,, —z,) and their images by these reflections. We obtain a domain
A, which is invariant under the translation ¢ along the geodesic {Imz = 0}
defined by t(—Z;) = z,. We then denote by py the point —z, and by ¢o the
point —Z; for n € Z, we define p, and ¢, by p, = t"(po) and ¢, = t"(qo)
(see Figure 12).

We have a first lemma.

Lemma 4.25. There exists a family of minimal graph wy over A, such that
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e w, takes on the geodesics (py, pry1) and (qx, qr+1) the value 400 if k is
even and —oo s k is odd,

e wy = kA on the geodesic (pg,qx),

e the graph of wy is invariant by the translation of H? x R defined by
(p,2) = (t(p), = +22).

Proof. Since a € (m/4,m7/2), the rectangle R, satisfies the hypotheses of
Theorem 4.9. So, for every A € R, we can construct a minimal graph w,
on R, with boundary data +oco on (pg,p1) and (qo,q1), 0 on (po,qo) and
A on (p1,q1). Since wy is constant on (po,qo) and (p1,q;), we can extend
the definition of wy to A, by Schwartz reflection. The properties of w, are
deduced easily from its contruction. O

Let H be a horocycle at a vertex p, of A,, we then define p, = H N
(Pn_1,pn) and pt = H N (py, ppe1); in the same way we define ¢, and ¢

Let D, be the domain bounded by the geodesics (po, o) and (p1, ¢1) and
the arcs in 0,oH? joining py to p; and ¢ to ¢;. We have a second lemma.

Lemma 4.26. Let us consider at each verter of R., po,p1,q0 and qi, a
horocycle (they are assumed to be disjoint). Let us fir € > 0. Then there
exist m > 0 and 8 € (a,7/2) such that the following is true. Let u be
a minimal graph over D, which is continuous up to 0. D, minus the four
vertices with:

e u =m on the boundary subarcs of O H? joining €’ to —e= and —e™®
to e,

e u<m on duxD,,

e u <0 on (py,q) and (p1,q1)-
Then:

[ canzmah-c [ )= e -
o P1]

g a7 ]

with v the outgoing normal from R, and [ps,py] denotes the segment in the
geodesic (po,p1) joining pg to py .
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Proof. If the lemma is false, for every n € N, there is a minimal graph wu,, on
D,, continuous up to ds D, minus the four vertices with:

e u, = n on the boundary arcs joining e’» to —e~"" and —e'r to e~ n
where (3, = a + 1/n,

e u < non O0xDy,,

e u <0 on (py,q) and (p1,q1),

o[ <) —cor [ (N < e -

lag ar]

We recall that wg is defined over R, with wy = 0 on (po,qo) and (p1,q1)
and wy = +oo on (pg,p1) and (qo,q1). Thus by the maximum principle
(Theorem 4.15), for every n € N, u,, < wy: the sequence u, is bounded
above on R,. Let h, be the minimal graph over the domain in D,\R,
bounded by the geodesic (—e*, e~%n) and the arc in 9,,H? joining —e»
to e~ with boundary value —oo on the geodesic and n on the subarc of
05 H?. By the maximum principle, for every n € N, u,, > h,,. Since 3, — a,
u, — 400 on the domain bounded by the geodesic (pg,p1) and the arc in
OsH? joining po to p;. This implies that:

[ ) — (i)
[ngpl]

In the same way we prove that:
[ ) — tlai )
laq a7 ]

This a contradiction and the lemma is proved. O
We can now prove Proposition 4.24.

Proof. For every n € N, we denote by €2,, the domain bounded by the geodesic
(po, q0) and (py, ¢,,) and the arcs in ,,H? joining pg to p, and g to ¢y, finally
we define Qo = U, 8, (2 is a half-plane). Let o be the endpoint of the
geodesic {y = 0} in the ideal boundary of Q.. In the following we define a
continuous function f on 0y \{o} which admits two minimal extensions
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in Q.; we shall have f = 0 on (pg,qo) thus, by Schwartz reflection, the
definition will extend to H? and the proposition will be proved.

For every n € N, we choose H(p,) a horocycle centered at p,. By sym-
metry with respect to the geodesic {y = 0} we define H(g,) a horocycle
centered at g,. Let p? and ¢° be the intersections of the geodesic (p,,qy)
with H(p,) and H(g,). We also define h(p,)(resp. h(g,)) as the arc of H(p,)
(resp. H(gq,)) between p and p; (resp. ¢, and ¢}) (see Figure 12).

Figure 12:

Let us consider w = w; and w’ = w_; where w4, are defined by Lemma 4.25.
On QuNDg,, w>w and w =0 =w" on (pg, qp), thus X, — X,, points out of
2s. This implies that we can choose suitable H(p;) and a positive sequence
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(ek)ken such that:

0< et S () + o hla) < 5 [ (X = X)) =

k>0 k>0 k>0 [p§45]

with v the out-going normal from 2.

For every k, Lemma 4.26 associates to e, and H(pg), H(pg+1), H(qr) and
H(qy41) two real numbers my, > 0 and i, € («, 7/2). Let I be the image by
t* of the arcs in 0, D, joining €% to —e™ and —e™* to e~ and J, the
image by t* of the others arcs in 0., Dy N OxH2.

Let us define on 08 \{0} a continuous function f which satisfies

o f=(—=Dkmp+ (k+1))on I,
o |fl<myp+(k+1)on Jy,

e f=0on (po,q)-

For every n € N, we define on €2, the minimal graph w, and wu/ with
boundary value u,, = u), = f on 0x 00 N 0xf2, and u,, = +00 and u,, = —o0
on (pn,qn), these minimal graphs exist because of Theorem 4.9. By the
maximum principle (Theorem 4.15), we have u,, > ], and {u,} (resp. {u]})
is a decreasing sequence (resp. increasing sequence). Hence they converge
to minimal graphs u and u' on €, with f as boundary value. Let us prove
that u # u'.

To do this, let us introduce some comparison functions; first we need some
new domains : for every n > 0 we define

B, = ( U t2k:+1(R_a>> U ( U tQk(D_a)>

0<2k+1<n 0<2k<n
B;:< U W(Rj)) u( U t%“(D_a))
0<2k<n 0<2k+1<n

On B,,, we define the minimal graph v,, with boundary values —oo on (py, pri1)U
(G, qer1) if k <mn and k odd, n+ 1 on (p,11,¢ns1) and f on the remainder
of 0 By,. On B!, we define the minimal graph v/, with boundary value +oo
on (P, Pr+1) YU (G, qer1) if £ < m and k even, —(n + 1) on (pn+1, ¢ns1) and
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f on the remainder of 0., B],. We notice that these minimal graphs exist :
Theorem 4.9 can be applied because of the existence of w.

On 9A, N B,, we have v, < w. Thus by Theorem 4.15, v, < w in
A, N B,. Hence, for every 0 < k < n, v, < k on (pg,qr). Let us fix k an
even integer less than n; we have v, < k+ 1 on (pg, qx) U (Pr+1, er1) and
vp, = f = mp + (k+ 1) on I, thus by Lemma 4.26 applied to t*(D,) we
obtain:

/[p (Ko} > U0F o)) — e (13)

+ —
% Pri1)

[ ) = af ) - = (1)
(4 dr 1]
With v the outgoing normal from A,. When £ is odd, we have

/ - (Xy,,v) = _g([pl::r’p;-s-l]) / (Xy,,v) = —€([q,j,q,;+1]) (15)
[Py proy 1)

[qk 7QJ€_+1}

Let T, be the closed curve in B, composed of the geodesic arcs [p,qd],
D Paq) for 0 <k < n, [p0,1,¢0,] and [g, ¢;,4] for 0 < k < n and the
arcs of horocycles h(px) N B, and h(g;) N B, for 0 < k < n + 1. By Stokes
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theorem [, ((X,, — Xy),v) = 0 with v the outgoing normal, so we have :
0= [ (X0, = X))
— [ X [ (X - X))
[pg-ag) [

9L+1’q2+1}
+Z (/ <(Xvn_Xw)aV>+/ <(Xvn_Xw)7V>>
k=0 \’ [Py piii] [0 1)

! nz:i </h<pk>m3n (o = X))+ /h<qk>mBn - V>>

since X, — X,, points out of B,, along (pni1, ¢ni1)

z/ (X0, — Xu)o0)
[p3.49]

* kzzo ( /mgﬂ]“Xvn — Xu),v) + /[q MH]«XUW — X,,), y>>

k even

2l

k odd
n+1

= > (26(h(pr)) + 26(h(qr)))

k=0
because of (13),(14) and (15)

(%, — X)) + |

4 1)

<(Xvn - Xw)? V>)

+ -
k Py

> [ (= X)) = 3 20— 23 () + Hh(ar)

k even

Thus since X,, — X,, points out of €, along (po, qo):

n n+1
0< / (Xo, = Xu)v) <20 Y e+ > Uhlpr) + (h(qr)) | < 2e
[p§,40] =0 k=0

Now, on 0B, we have u, > v,. So, by Theorem 4.15, u,, > v, on B,,.
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This implies that X,, — X,,, points out B, along (po, qo) and

/ <Xun,u>s/ <Xvn,u>s/ (Xoov) | + 22
[ .p) [4.p) [a8.p8

0

Thus for the limit u, we have:

/ (X, v) < / (Xw,v) | +2¢
[43.p8] [43.p]

Working with «,, v/, and w’ on B], in the same way we prove that :

/ <Xu,,y>z/ (X0 | — 22
[40.P] [a9.p8

0

Thus:

/ <(Xu’ - Xu)a”) > (/ <(Xw/ - Xw),l/>> —4e >0
[49.p] (a9}

This implies that X, # X,/ on [g0, pb] and u # «' on Q. O

A CMC graphs in H?xR invariant under trans-
lations

In this section, we give a description of constant mean curvature (cmc) H
surfaces which are invariant under translations along a horizontal geodesic.

Let us fix a geodesic I in H? and consider (¢, 6) polar coordinates at an
endpoint of ' such that I' = {# = w/2}. The translations along I" are given
by ¢ — ¢ + constant.

Actually, we study cmec graphs which gives a local description of trans-
lation invariant surfaces; on such a graph, we choose the upward pointing
normal. Let u be a function defined on € C H?, the graph of u has constant
mean curvature H if u satisfies

Vu

div (W) = div (X,) = 2H (16)
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In the following we assume H > 0 i.e. the mean curvature vector is upward
pointing. Let u be a cmc graph invariant by the translations along I'. Then
u can be written as u(¢,0) = f(0). We have Vu = Sil’l2(9)f/(6’)%. Let
90,91 S (0,71') with 6y < 6; and ¢0,¢1 € R with ¢0 < ¢1. Using (16), the

Divergence Theorem gives us:

/ (X, v) = 2H Area ([do, é1] X [60, 01])
([¢0,$1]x[00,61])

Then
o1 / 1 / é1 o 1
o LS00 £(00)F e (14 sin?(6) f1(60)° o S7(0)
Thus u is a cme H graph if and only if f satisfies:
d f 2H
il = —
do 1 4 sin?0 2 sin“(0)
Hence f’ satisfies:
/ = —2Hcot(0) + A (17)

\/1+sin? 6|

We notice that changing ¢ by m — 6 replaces A by —A; thus, in the

following we assume A > 0.
A
Case H = 0 (Figure 13). We have [’ = . Thus there are
1 — AZsin?(0)

three subcases:

1. A< 1. f"and f are defined on (0,7), u is an entire graph. Moreover
f takes finite boundary value at 0 and 7.

2. A=1. f"is defined on (0,7/2) by f" = 1/cos(#). Then f is defined
on (0,7/2) and takes a finite boundary value at 0 and diverges to +oo
at /2.

3. A>1. f and f are defined on (0,6;), with #; = arcsin(1/A). f takes
finite boundary values at 0 and #; and d—(91) = +o00.
v
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H=0, A<1 H=0, A=1 H=0, A>1

T
0 T 0 /2 T 0 01 ™

Figure 13: H = 0 case

Let us now study the case H > 0. Equation (17) can be written:

sin(0) f' = —2H (cos(0) — ksin(0))

where 2Hk = A (k > 0). Then f’ is defined when | cos(f)—ksin(0)| < 1/(2H)
by

—2Hg(6
71(6) = - 210
sin(0)y/1 — 4H?¢?(0)
We define g(0) = cos(0) — ksin(f). ¢'(0) = —sin(0) — k cos(6), thus ¢'(#) =0
for § = 0y = m + arctan(—k). We have g(6p) = —v/1 + k2. The behaviour of
g is summarized in the following table.

0 90 ™
g | -k — 0 + k
1 -1
g N\ /
VIR

A. Case H < 1/2 (Figure 14). There are three sub-cases:

Al. k< +/(1/2H)?> — 1. f" and f are defined on (0, 7), u is an entire graph.

f takes boundary value +oo at 0 and 7.

A2, k=/(1/2H)? — 1. f" and f are defined on (0,6y) and (6, 7). f takes

boundary value +oo at 0 and 7, limy - f = 400 and lim, + f = —o0.
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A3. k> +/(1/2H)?> — 1. There are 6; and 6, with 0 < 61 < 0y < Oy < 7
such that f" and f are defined on (0,6,) and (0, 7). [ takes finite

boundary value at #; and 6y, +00 at 0 and , (1) = +oo and

a
dv

v

((92) = —OQ.

k<+/1/2H?—1 k=/1/2H)? -1 k>+/1/2H?—1

Figure 14: H < 1/2 case

B. Case H = 1/2 (Figure 15). There are two subcases:

cos(0)
sin?(0)
+ K: f takes boundary value +o0o at 0 and 7.

Bl. k£ =0. f"is defined on (0,7) by f' =

. Hence f is defined on

(077-() by f -

1
sin(6)
B2. k > 0. There is 6; € (0,6y) such that f' and f are defined on (0, 6;).

f takes finite boundary value at 6y, d—(01) = +o0 and boundary value
v
+o00 at 0.

C. Case H > 1/2 (Figure 15). There are 6; and 0y with 0 < 6; < 05 < 6
such that f" and f are defined on (0, 6,). f takes finite boundary value at

d d
0, and 65, d—];(el) = 400 and d—‘i(@g) = 400
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H=1/2, k=0 H=1/2, k>0 H>1/2

Figure 15: H =1/2 and H > 1/2 cases
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