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We introduce a smoothed version of the quasi maximum likelihood estimator (QMLE) in order to fit heteroschedastic time series with possibly vanishing conditional variance. We apply this procedure to a finite-order autoregressive process with linear ARCH errors. We prove both the almost sure consiistency and the asymptotic normality of our estimator. This estimator is more robust that QMLE with the same type of assumptions. A numerical study confirms the qualities of our procedure.

Introduction

In order to study the behaviour of financial time series such as asset returns or exchange rates, a considerable work has been done to study ARCH models introduced by [START_REF] Engle | Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[END_REF] [START_REF] Engle | Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[END_REF]. From empirical observations of time series, [START_REF] Black | Studies in stock price volatility changes[END_REF] [START_REF] Black | Studies in stock price volatility changes[END_REF] called the leverage effect a tendency for the conditional variance to be negatively correlated with the past returns. Another property is a slow decay of the autocorrelations of the squares called long memory, see Doukhan et al. [START_REF] Doukhan | Theory and Applications of Long-range Dependence[END_REF]. LARCH(∞) (Linear ARCH(∞)) models introduced in Giraitis et al. (2000) [START_REF] Giraitis | A model for long memory conditional heteroscedasticity[END_REF] and (2004) [START_REF] Giraitis | LARCH, Leverage, and Long Memory[END_REF] take in account these two properties; they are defined from an equation:

X t = ξ t a 0 + j≥1 a j X t-j (1) 
for an independent and identically distributed (i.i.d) sequence (ξ t ) with Eξ 0 = 0 and Eξ 2 0 = 1. Long memory properties of the model are addressed by [START_REF] Giraitis | A model for long memory conditional heteroscedasticity[END_REF] [START_REF] Giraitis | A model for long memory conditional heteroscedasticity[END_REF] whereas the leverage property is studied in Giraitis et al. (2004) [START_REF] Giraitis | LARCH, Leverage, and Long Memory[END_REF]. The model [START_REF] Bardet | Asymptotic normality of the quasi maximum likelihood estimator for multidimensional causal processes[END_REF] specializes to the asymmetric ARCH model of [START_REF] Engle | Stock volatility and the crash of 87[END_REF] [START_REF] Engle | Stock volatility and the crash of 87[END_REF]. The conditional variance of models [START_REF] Bardet | Asymptotic normality of the quasi maximum likelihood estimator for multidimensional causal processes[END_REF] writes as the square of a linear combination of the past values:

V t = a 0 + j≥1 a j X t-j 2
A short memory version of (1) is LARCH(p), here a j = 0 for j > p hence:

X t = ξ t a 0 + p j=1 a j X t-j (2) 
Then the model ( 2) is a special case of a more general model introduced in Sentena (1995) [START_REF] Sentana | Quadratic ARCH models[END_REF]; here the conditional variance writes as a quadratic form:

V t = a 0 + p j=1 a j X t-j + p j=1 p k=1 b j,k X t-j X t-k (3) 
If this quadratic form is nonnegative this is possible to exhibit assumptions ensuring V t ≥ 0; a solution (X t ) with this conditional variance writes X t = ξ t V t for iid inputs ξ t . Giraitis et al. (2000) [START_REF] Giraitis | A model for long memory conditional heteroscedasticity[END_REF] prove a necessary and sufficient condition for the existence and the uniqueness of a square integrable and strictly stationary solution of the equation [START_REF] Bardet | Asymptotic normality of the quasi maximum likelihood estimator for multidimensional causal processes[END_REF]. Sufficient conditions for the existence of higher moments is also provided, moreover [START_REF] Giraitis | LARCH, Leverage, and Long Memory[END_REF] [START_REF] Giraitis | LARCH, Leverage, and Long Memory[END_REF] explicit sufficient conditions for the leverage property.

The model [START_REF] Bardet | Asymptotic normality of the quasi maximum likelihood estimator for multidimensional causal processes[END_REF] is generalized in [START_REF] Giraitis | ARCH-type bilinear models with double long memory[END_REF] [START_REF] Giraitis | ARCH-type bilinear models with double long memory[END_REF] to a bilinear model which exhibits long memory both in conditional mean and in conditional variance:

X t = α + j≥1 α j X t-j + ξ t a 0 + j≥1 a j X t-j (4) 
In the short memory case, [START_REF] Francq | A class of stochastic unit-root bilinear processes. Mixing properties and unit-root test[END_REF] [START_REF] Francq | A class of stochastic unit-root bilinear processes. Mixing properties and unit-root test[END_REF] study existence and uniqueness of a strictly stationary solution of equation (2) (not necessarily square integrable).

A main statistical problem is to estimate the parameter θ = (a 0 , . . . , a p ) of the model [START_REF] Black | Studies in stock price volatility changes[END_REF]. A classical estimation procedure is the Gaussian Quasi Maximum Likelihood Estimation (QMLE). Under conditions, the QMLE is shown to be consistent and asymptotically normal. But a crucial condition in its application is the existence of a real number h > 0 such that V 0 (θ) ≥ h a.s. For the model [START_REF] Black | Studies in stock price volatility changes[END_REF], the conditional variance V 0 is, in general, not bounded away from 0 and the quasi likelihood becomes numerically intractable. Because the QMLE cannot be used for the model ( 2), we propose a smoothed version of the QMLE which is more robust then the classical QMLE and applies with the same kind of assumptions. We apply this procedure to an AR process with LARCH errors.

The paper is organized as follows. Section 2 recalls the properties of the model [START_REF] Black | Studies in stock price volatility changes[END_REF]. The next Section 3 introduces our model and mand motivates the introduction of our smoothed QMLE. Section 4 addresses its asymptotic propertiesfor our model. In Section 5, we discuss the behaviour of its asymptotic variance when the smoothing parameter tends to 0. Section 6 is dedicated to a numerical illustration. The proofs are postponed to the last section of the paper.

2 Some general results about LARCH models.

The first results about existence of LARCH models were given in the general case of equation [START_REF] Bardet | Asymptotic normality of the quasi maximum likelihood estimator for multidimensional causal processes[END_REF]. The condition ∞ j=1 a 2 j < 1 is necessary and sufficient for the existence of a square integrable and nonanticipative solution (see Theorem 2.1 in [START_REF] Giraitis | LARCH, Leverage, and Long Memory[END_REF] [START_REF] Giraitis | LARCH, Leverage, and Long Memory[END_REF]). Those authors prove that the unique solution of equation ( 1) is defined from the Volterra expansion:

X t = a 0 ξ t 1 + k≥1 j 1 ,...,j k ≥1 a j 1 • • • a j k ξ t-j 1 • • • ξ t-(j 1 +•••+j k ) (5) 
Those authors also give a sufficient condition for the existence of the fourth moments in the general case of model ( 1):

µ 4 ∞ j=1 a 4 j + 4 |µ 3 | ∞ j=1 |a j | 3 + 6 ∞ j=1 a 2 j < 1 (6) 
where µ i = Eξ i 0 for 1 ≤ i ≤ 4 (here µ 2 = 1). Mention that

µ 1/4 4 ∞ j=1 |a j | < 1 (7)
ensures the existence of the fourth moment for the solution (5) (see [START_REF] Doukhan | Vector valued ARCH infinity processes[END_REF] [START_REF] Doukhan | Vector valued ARCH infinity processes[END_REF]), hence the condition (6) is perhaps not sharp. Although condition ( 6) is less restrictive with respect to the decay of the sequence (a j ) j≥1 , condition [START_REF] Engle | Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[END_REF] can obviously be better, e.g. if a j = 0, j ≥ 2.

From now on we fix an integer p ≥ 1 and we only consider eqn. [START_REF] Black | Studies in stock price volatility changes[END_REF]. Then, existence and uniqueness of a strictly stationary solution of (2) holds under the less restrictive condition p j=1 a 2 j < 1, is pointed in Francq et al. (2008) [START_REF] Francq | A class of stochastic unit-root bilinear processes. Mixing properties and unit-root test[END_REF]. Denote

A t = a 1:p-1 ξ t a p ξ t I p-1 0 p-1 , where a 1:p-1 = (a 1 , . . . , a p-1 )
and

I k is the k × k identity matrix. If p = 1 then A t = a 1 ξ t . Let A = (A t ) t
and γ (A) the top-Lyapunov exponent of the sequence A: 

γ (A) = lim t→∞ 1 t log A t • • • A 1

Model specification and smoothed QMLE

We consider for p, q ∈ N * the model

Y t = b 0,1 Y t-1 + • • • + b 0,q Y t-q + X t , (9) 
X t = ξ t   a 0,0 + p j=1 a 0,j X t-j   , t ∈ Z (10) 
with ξ an i.i.d sequence such that Eξ 0 = 0, Eξ 2 0 = 1. By convention, q = 0 means that the process Y is a pure LARCH model given by [START_REF] Francq | A class of stochastic unit-root bilinear processes. Mixing properties and unit-root test[END_REF]; note that for p = 0 the model is an AR(q) process. In the sequel, when we consider a solution of equation ( 9) or [START_REF] Francq | A class of stochastic unit-root bilinear processes. Mixing properties and unit-root test[END_REF], it is always assumed that this solution is stationary, ergodic and non anticipative. We denote θ 0 = (b 0,1 , . . . , b 0,q , a 0,0 , . . . , a 0,p ), and for θ = (b 1 , . . . , b q , a 0 , . . . , a p ) ∈ R p+q+1 and t ∈ Z:

m t (θ) = q j=1 b j Y t-j , V t (θ) = σ 2 t (θ) = a 0 + p j=1 a j (Y t-j -m t-j (θ)) 2 .
Setting F t = σ (Y t-1 , Y t-2 , . . .) for t ∈ Z, we have:

m t (θ 0 ) = E Y t F t-1 , V t (θ 0 ) = Var Y t F t-1 .
By stationarity, we can always suppose that the data Y n , Y n-1 , . . . , Y -(p+q)+1 are available. Usually, the QMLE is defined by:

θn = arg min θ∈Θ Q n (θ), Q n (θ) = 1 n n t=1 (Y t -m t (θ)) 2 V t (θ) + ln V t (θ). (11) 
Although we will not prove any result about the consistency or the inconsistency of the QMLE for the model [START_REF] Francq | Maximum Likelihood Estimation of Pure GARCH and ARMA-GARCH Processes[END_REF], it seems very difficult to compute this estimator because of the intractable form of the function θ → Q n (θ) (see figure 1 for which q = 0, p = 1, a 0 = 1; the data are generated with a 1 = 0.5 and ξ 0 ∼ N (0, 1)). The roughness of the function θ → Q n (θ) is due to the small values of the function θ → V t (θ); this gives infinite values for Q n . In some cases, even the conditional variance V 0 (θ 0 ) is not bounded away from zero as shows the following Lemma: Lemma 1 Suppose that for the model [START_REF] Francq | A class of stochastic unit-root bilinear processes. Mixing properties and unit-root test[END_REF] the input ξ 0 admits a density with support R and a 0,0 = 0. If j 0 = min{j/a 0,j = 0} exists, then the conditional variance V 0 (θ 0 ) may be unbounded away from zero.

One also can note that even if the conditonal variance is not bounded away from zero, it does not vanish if ξ 0 is atomless: Lemma 2 Suppose that for model [START_REF] Francq | A class of stochastic unit-root bilinear processes. Mixing properties and unit-root test[END_REF], the law of ξ 0 is atomless, then P (σ 0 (θ 0 ) = 0) = 0.

We define here a new contrast working also will small values of the conditional variance. Suppose just for a moment (even this is not true) that (Y t ) is a ARCH process with a conditional variance bounded away from zero; if ξ 0 ∼ N (0, 1) then -1/2(Q n + ln 2π) is well defined and is the exact conditional log-likelihood of the random vector (Y 1 , . . . , Y n ). For nonGaussian inputs, ξ 0 , this is not true anymore but the function

Q : θ → E (Y 0 -m 0 (θ)) 2 V 0 (θ 0 ) + ln(V 0 (θ)) (12) 
is still a good contrast since θ 0 is the unique minimum of Q, provided the following identification condition holds:

(m 0 (θ), V 0 (θ)) = (m 0 (θ 0 ), V 0 (θ 0 )) ⇒ θ = θ 0 .
In fact, Q can be used as a contrast for the estimation of a parameter of the mean and/or the variance of a conditional law W 0 /U 0 , for some stationary ergodic process

{(U t , W t )/t ∈ Z}; in our case U t = Y t-1 , . . . , Y t-(p+q) and W t = Y t . Set now U t = Y t-1 , . . . , Y t-(p+q) and W t = Y t + η t , for t ∈ Z,
where (η t ) t denotes an i.i.d sequence, independent of the process (Y t ), with Eη 0 = 0 and Var (η 0 ) = h for some real number h > 0. Then we have

E (W t /U t ) = m t (θ 0 ), Var (W t /U t ) = V t (θ 0 ) + h,
and the contrast Q becomes Q h (θ) = E (W 0 -m 0 (θ)) 2 V 0 (θ) + h + ln(V 0 (θ) + h) .
We obtain from independence,

Q h (θ) = E (Y 0 -m 0 (θ)) 2 + h V 0 (θ) + h + ln(V 0 (θ) + h) .
The number h > 0 avoids the problem of small possible values for the variance in ( 12): it will be called the smoothing parameter. If the data Y n , Y n-1 , . . . , Y -(p+q)+1 are available, we define the following estimator:

θn,h = arg min θ∈Θ Q n,h (θ), (13) 
Q n,h (θ) = 1 n n t=1 q t,h (θ), ( 14 
)
q t,h (θ) = (Y t -m t (θ)) 2 + h V t (θ) + h + ln (V t (θ) + h) . (15) 
Observe that θn,0 is the classical QMLE. For h > 0 and n ∈ N * , Q n,h has a more tractable expression that Q n,0 . The asymptotic properties of the estimator θn,h , called smoothed QMLE, will be derived below.

Asymptotics of smoothed QMLE for AR-LARCH models

QMLE is very popular for conditionally heteroscedastic time series. Its asymptotic properties were first established by [START_REF] Weiss | Asymptotic theory for ARCH models: estimation and testing[END_REF] [START_REF] Weiss | Asymptotic theory for ARCH models: estimation and testing[END_REF] for ARCH models. General results for the consistency of this method are proved in Jeantheau (1998) [START_REF] Jeantheau | Strong consistency of estimators for multivariate ARCH models[END_REF]. Both its consistency and its asymptotic normality are precised by [START_REF] Mikosch | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF] [START_REF] Mikosch | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF] who set a nice theoretical framework for the univariate case. For multivariate time series we defer the reader to [START_REF] Bardet | Asymptotic normality of the quasi maximum likelihood estimator for multidimensional causal processes[END_REF] [START_REF] Bardet | Asymptotic normality of the quasi maximum likelihood estimator for multidimensional causal processes[END_REF]. For GARCH models, mention among others the works of Lee and Hansen (1994) [START_REF] Lee | Asymptotic theory for the GARCH(1,1) quasi-maximum likelihood estimator[END_REF], Lumsdaine (1996) [START_REF] Lumsdaine | Consistency and asymptotic normality of the quasi-maximum likelihood estimator in IGARCH(1,1) and covariance stationary GARCH(1,1) models[END_REF], Berkes, Horváth and Kokoszka (2003) [START_REF] Berkes | GARCH processes: structure and estimation[END_REF] and Francq and Zakoïan (2004) [START_REF] Francq | Maximum Likelihood Estimation of Pure GARCH and ARMA-GARCH Processes[END_REF]. As we will see, asymptotics properties of the smoothed QMLE can be obtained using the same arguments as for the classical QMLE.

Let us introduce some assumptions:

(A1): γ(A(θ 0 )) < 0.
(A2): The roots of the polynomial P defined by P (z) = 1 -q j=1 b 0,j z j are outside the unit disk.

(A3): θ 0 ∈ Θ, a compact set such as for all θ ∈ Θ, the first component a 0 of θ is strictly positive.

(A4):

The support of the law of ξ t admits more than 2 points.

(A5): θ 0 belongs to the interior Θ • of Θ.

(A6): EX 4 0 < ∞.
The top-Lyapounov exponent γ(A(θ 0 )) is defined for the LARCH part only, as in [START_REF] Engle | Stock volatility and the crash of 87[END_REF]. Assumptions (A1) and (A2) ensure existence and uniqueness of the AR-LARCH process [START_REF] Francq | Maximum Likelihood Estimation of Pure GARCH and ARMA-GARCH Processes[END_REF]. The two following results are devoted respectively to a.s. consistency and to the central limit behaviour of the smoothed QMLE.

Theorem 1 Under assumptions (A1) -(A4) the smoothed QMLE is consistent for each value of h > 0:

lim n→∞ θn,h = θ 0 , a.s.
Theorem 2 If (A1)-(A6) hold true, the smoothed QMLE is asymptotically normal for each value of h > 0:

√ n θn,h -θ 0 D → n→∞ N 0, N -1 h M h N -1 h .
where

N h = N (1) h + N (2) h , M h = M (1) h + M (2) h + M (3) h , N (1) h 
= 2E ∇m 0 (θ 0 )∇m 0 (θ 0 ) V 0 (θ 0 ) + h , N (2) 
h = E ∇V 0 (θ 0 )∇V 0 (θ 0 ) (V 0 (θ 0 ) + h) 2 , M (1) h 
= 4E V 0 (θ 0 )∇m 0 (θ 0 )∇m 0 (θ 0 ) (V 0 (θ 0 ) + h) 2 , M (2) 
h = (µ 4 -1)E V 0 (θ 0 ) 2 ∇V 0 (θ 0 )∇V 0 (θ 0 ) (V 0 (θ 0 ) + h) 4 , M (3) 
h = 2µ 3 E V 0 (θ 0 )σ 0 (θ 0 ) (V 0 (θ 0 ) + h) 3 ∇m 0 (θ 0 )∇V 0 (θ 0 ) + ∇V 0 (θ 0 )∇m 0 (θ 0 ) .
Remark. If q = 0 then Y is a pure LARCH model [START_REF] Francq | A class of stochastic unit-root bilinear processes. Mixing properties and unit-root test[END_REF] and we obtain the consistency and the asymptotic normality of the smoothed QMLE as above.

Its asymptotic variance writes as

N (2) h -1 M (2) h N (2) h -1 .

Choice of the smoothing parameter h

We aim here at precising the asymptotic variance of the smoothed QMLE.

Although we have proved the asymptotic properties of the smoothed QMLE only for the AR-LARCH model ( 9) the following study applies to more general heteroschedastic time series

X t = m θ (X t-1 , . . . , X t-q ) + σ θ (X t-1 , . . . , X t-(p+q) )ξ t
however, for such models, as in Bardet and Wintenberger (2008), the problem would be to check identifiability conditions. We denote by • the Euclidean norm for a vector or a matrix. For simplicity we write m (resp. V ) instead of m 0 (θ 0 ) (resp. V 0 (θ 0 )) and ∇m, ∇V for the gradient vectors. Using the notations in Theorem 2 we denote v h = N -1 h M h N -1 h the asymptotic variance of the smoothed QMLE (see Theorem 2). Unexpected results appear by plotting the asymptotic variance of the smoothed QMLE for small values of h. Suppose that we want to estimate the parameter a of the model: X t = ξ t (1 + aX t-1 ) where ξ 0 ∼ N (0, 1). Then the asymptotic variance of the smoothed QMLE denoted by v h (a) seems to verify lim h→0 v h (a) = 0 for a large subset of parameters (see figure 2).

To study the behaviour of the asymptotic variance we set A B, the relation of order between symmetric positive definite matrices such that x Ax ≤ x Bx if for each x ∈ R d , here A and B ∈ M d (R). We will use the notation

A ≺ B if x Ax < x Bx for all x ∈ R d \ {0}.
In the following Lemma we discuss the qualitative behaviour of h → v h . Even if we were not able to check monotonicity of this function (with the order ), we shall precise the behaviour of the asymptotic variance at the origin: here v = lim h→0 + v h = inf h>0 v h is either degenerated or has the same form that the asymptotic variance of the classical QMLE. The behaviour of the asymptotic variance near h = 0 is related to the condition:

C : E ∇m 2 V 1 V =0 + E ∇V 2 V 2 1 V =0 < ∞.
Of course if q = 0 then the condition C reduces to

E ∇V 2 V 2 1 V =0 < ∞.
One can remark that when ξ 0 ∼ N (0, 1), by lemma 2 we have V = 0 a.s and condition C ensures the existence of the conditional Fisher information.

Lemma 3 Let the assumptions of Theorem 2 hold. We suppose that either q = 0, or q = 0 but (µ 3 , µ 4 ) = (0, 3) (i.e ξ 0 has the same four first moments that a standard Gaussian). Then:

1. v = lim h→0 + v h exists, and v v h , for h > 0.

2. v is non degenerated if and only if condition C holds. In this case, v = (µ 4 -1)N -1 where:

N = 2E ∇m∇m V 1 V =0 + E ∇V ∇V V 2 1 V =0
Remarks. a. Condition C holds if there exists m > 0 with:

V 0 (θ 0 ) ≥ m > 0 a.s. (16) 
This is the case for example if ξ 0 has a uniform distribution on [-√ 3, √ 3] and a = p j=1 |a 0,j | < 1 2 √

3 . Indeed we have V 0 (θ 0 ) = a 2 0,0 (1 + σ 0 ) 2 where σ 0 (θ 0 ) = k≥1 j 1 ,...,j k ∈{1,...,p}

a 0,j 1 • • • a 0,j k ξ -j 1 • • • ξ -(j 1 +...+j k ) . Note that | σ 0 (θ 0 )| ≤ a √ 3 1-a √ 3 < 1 and m = a 2 0,0 1 -a √ 3 1-a √ 3 
2 is a convenient value for [START_REF] Lumsdaine | Consistency and asymptotic normality of the quasi-maximum likelihood estimator in IGARCH(1,1) and covariance stationary GARCH(1,1) models[END_REF] to hold. Condition ( 16) is a classical assumption to get the asymptotic properties of the classical QMLE, but for model [START_REF] Francq | Maximum Likelihood Estimation of Pure GARCH and ARMA-GARCH Processes[END_REF], this kind of restriction seems unrealistic.

b. From point 2 in Lemma 3, if the condition C does not hold, then no asymptotically efficient estimator with √ n-rate can be exhibited. This is the case if:

EV 0 (θ 0 ) -1 1 V 0 (θ 0 ) =0 = ∞. (17) 
Condition ( 17) is related to the behaviour of V 0 (θ 0 ) around 0. The following (artificial) example shows that this condition may hold. Suppose that b 0,j = 0, j = 1, . . . , q and p = 1, a 0,0 = 1, a 0,1 = 0.5, P(ξ 0 = 1) = P(ξ 0 = -1) = α and P(ξ

0 = 0) = 1 -2α for α ∈ [1/4, 1/2).
Then Eξ 0 = 0 and from [START_REF] Engle | Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[END_REF], EX 4 0 < ∞ and we may assume Eξ 2 0 = 1, for this we write X t = ξ t / Eξ 2 0 Eξ 2 0 + 0.5 E(ξ 2 0 ) X t-1 . From (5) the chaotic expansion of the solution writes:

X t = ξ t + j≥1 2 -j ξ t • • • ξ t-j Let n ∈ N * and suppose that ξ t = -1, ξ t-1 = • • • = ξ t-n = 1 and ξ t-(n+1) = 0, then: X t = -2(1 -2 -(n+1) )
and thus 2n+2) . We now deduce:

V t+1 (θ 0 ) = 2 -(
E 1 V t+1 (θ 0 ) =0 V t+1 (θ 0 ) ≥ n≥1 2 2n+2 P V t+1 (θ 0 ) = 2 -(2n+2) ≥ n≥1 2 2n+2 P ξ t = -1, ξ t-1 = • • • = ξ t-n = 1, ξ t-(n+1) = 0 = (1 -2α) n≥1 α n+1 2 2n+2 = ∞
This example shows that the condition (17) may happen to hold. Now figure 2 seems to prove that the model LARCH(1) also exhibits this condition for ξ 0 ∼ N (0, 1) but no formal proof is given here.

c. It is clear that both the QMLE and the smoothed QMLE apply for classical ARCH models because their conditional variance is bounded away from zero. Then under the assumptions of lemma 3 the point 2. of the Lemma shows that the QMLE is more efficient than the smoothed QMLE.

Numerical illustration

We illustrate the behaviour of the smoothed QMLE with an example. Our goal here is to see if h → 0 gives best estimators as suggested by the Lemma 3. We set p = q = 1 and we consider Gaussian errors. We recall that asymptotic normality of the smoothed QMLE requires

EY 4 0 < ∞ (Theorem 2); moreover EX 4 0 < ∞ ⇒ EY 4 0 < ∞.
The following Lemma gives a necessary and sufficient condition for the existence of the fourth moment of the solution of

X t = ξ t (a 0,0 + a 0,1 X t-1 ) (18) 
if Eξ 3 0 = 0.

Lemma 4 Suppose that Eξ 3 0 = 0 then there exists a stationary solution of equation ( 18) with EX 4 0 < ∞ if and only if a 4 1 Eξ 4 0 < 1. In this case this solution is the unique stationary solution of equation [START_REF] Sentana | Quadratic ARCH models[END_REF].

Remarks.

• If ξ 0 ∼ N (0, 1) is a standard normal random variable the condition a 4 0,1 Eξ 4 0 < 1 writes |a 0,1 | < 3 -1/4 ≈ 0.7598 • • • .

• If ξ 0 follows the uniform distribution law on the interval [-

√ 3, √ 3] this condition writes |a 0,1 | < (5/9) 1/4 ≈ 0.8633 • • • . Thus if |a 0,1 | > 1/ √ 3 ≈ 0.5774 • • • , the process X is not bounded.
For the simulation study we have computed 500 smoothed QML estimators for sample sizes n = 100 and n = 1000 and for the smoothing parameters h = 0.5, 0.1 and 0.001. The value of the parameter is θ 0 = (0.5, 1.6, -0.7).

An expected problem is the irregularity of the function Q n,h when h is small. This holds even for very large values of n. As an example we plot a 1 → Q n,h (a 1 ) in figure 3 for the model:

X t = ξ t (1 + 0.5X t-1 ) , ξ 0 ∼ N (0, 1).
Then, to avoid optimization problems, we first compute the estimators for h = 0.5 ; after this, using those values to initialize the procedure, we start with an optimization procedure for h = 0.1, 0.001. We see from figure 5 that the mean square errors decrease as soon as h decreases. However if h is small, fitting to a Gaussian distribution is not very good for n = 100 (figure 4 and figure 6) but a large sample size n = 1000 corrects this problem. Hence the choice of the value of h = h n (depending on the sample size n) seems crucial. This problem is beyond the scope of this paper because we did not exhibit a balance of terms explaining this phenomenon as this is usual e.g. for non-parametric estimation. 

Proofs

Proof of Lemma 1

Let A = {(z 1 , . . . , z p ) ∈ R p /a 0,0 + p j=1 a 0,j z j = 0} and for t ∈ Z, Z t = (X t-1 , . . . , X t-p ). Set p j=j 0 +1 = 0 if j 0 = p. Then since a 0,0 = 0, X t ≡ 0 is not a solution of the equation [START_REF] Francq | A class of stochastic unit-root bilinear processes. Mixing properties and unit-root test[END_REF] thus P (Z t ∈ A) > 0. Moreover for z ∈ A the support of the conditional law L(X -j 0 /Z -j 0 = z) is the whole set R which is in contradiction with the existence of a number m > 0 such that

V 0 (θ 0 ) =   a 0,0 + a j 0 X -j 0 + p j=j 0 +1 a j X -j   2 ≥ m, a.s.

Proof of Lemma 2

For simplicity, we denote σ t instead of σ t (θ 0 ). The result is obvious if a 0,j = 0, j = 1, . . . , p since in this case σ 0 = a 0,0 = 0. Now let j 0 ≥ 1 be the first index such that a 0,j 0 = 0. Let α = P(σ 0 = 0). We prove by induction that:

∀n ∈ N, P (A n ) = α (19)
where for n ∈ N, A n = n l=0 {σ -lj 0 = 0}. This will conclude the proof.

Indeed setting n → ∞, we deduce that P ∞ l=0 {σ -lj 0 = 0} = α and from the ergodicity of the process (σ -lj 0 ) l∈N we derive that α ∈ {0, 1}. However α = 1 implies by definition σ 0 = X 0 = 0 a.s which is impossible if a 0,0 = 0: hence α = 0. We now prove [START_REF] Straumann | Estimation in Conditionally Heteroscedastic Time Series Models[END_REF]. The definition of α implies the result for n = 0. Suppose that P(A n ) = α and let us prove that P(A n+1 ) = α. Then it is enough to prove P A n ∩ {σ -(n+1)j 0 = 0} = 0 or:

P σ -nj 0 = 0, σ -(n+1)j 0 = 0 = P (σ 0 = 0, σ -j 0 = 0) = 0. ( 20 
)
Now σ 0 = 0 ⇔ X -j 0 = ξ -j 0 σ -j 0 = M , with M = -p j=j 0 +1 a 0,j X -j /a 0,j 0 (by convention p j=p+1 = 0). If µ is the law of the vector (σ -j 0 , M ), we get using independence:

P (σ 0 = 0, σ -j 0 = 0) = P(aξ -j 0 = b, a = 0)µ(da, db).
Since P(ξ 0 = x) = 0, ∀x ∈ R, we have etablished [START_REF] Weiss | Asymptotic theory for ARCH models: estimation and testing[END_REF], and ( 19) follows by induction.

Proof of Theorem 1

We first prove the following Lemma, useful to show that the parameter θ 0 is identifiable in the model [START_REF] Francq | Maximum Likelihood Estimation of Pure GARCH and ARMA-GARCH Processes[END_REF]. Here Y is a model satisfying [START_REF] Francq | Maximum Likelihood Estimation of Pure GARCH and ARMA-GARCH Processes[END_REF] and note that F t = σ (X t-j /j ∈ N) = σ (Y t-j /j ∈ N) for t ∈ Z.

Lemma 5 We suppose that (A3) holds. Let U 1 and U 2 be two random variables measurable w.r.t F -1 and (α j ) 0≤j≤p and (β j ) 0≤j≤p be real numbers such that β 0 = 0. Then

1. (X 0 -U 1 ) × U 2 = 0 a.s ⇒ U 2 × σ 0 (θ 0 ) = 0 a.s and U 1 × U 2 = 0 a.s. 2. P ((X 0 -U 1 ) × (X 0 -U 2 ) = 0) < 1. 3. P σ 0 (θ 0 ) β + p j=1 β j X -j = 0 < 1.
4. α 0 + p j=1 α j X -j × β 0 + p j=1 β j X -j = 0, a.s implies α j = 0, for all j = 0, . . . , p.

Proof.

Here (X

0 -U 1 ) U 2 = 0 a.s ⇒ U 2 σ 0 (θ 0 )ξ 0 = U 1 U 2 . Since ξ 0 is not a constant and it is independent of (U 2 σ 0 (θ 0 ), U 1 U 2 ) we have U 2 σ 0 (θ 0 ) = 0 a.s., thus obviously U 1 U 2 = 0 a.s. 2. If (X 0 -U 1 ) (X 0 -U 2 ) = 0 a.s then σ 2 0 (θ 0 )ξ 2 0 + σ 0 (θ 0 ) (-U 1 -U 2 ) ξ 0 = -U 1 U 2 a
.s Since a 0,0 = 0, we have X = 0 a.s. Then there exists a realization of X -1 , X -2 , . . . such that σ 0 (θ 0 ) = 0. For such a realization the support of the conditional law ξ 0 /X -1 , X -2 , . . . (by independence this is also the law of ξ 0 ) contains only two values. This yields a contradiction with (A3) and the result follows.

3. We suppose

σ 0 (θ 0 ) β 0 + p j=1 β j X -j = 0, a.s (21) 
We set β j = 0 for j ≥ p + 1. Suppose that l = inf{i ≥ 1/a 0,i = 0} exists. We will show by induction that for all i ∈ N:

σ -il (θ 0 ) β 0 + j≥il+1 β j X -j = 0, a.s. 
From (21), the result holds for i = 0. Suppose that for i ∈ N:

σ -il (θ 0 ) β 0 + j≥il+1 β j X -j = 0 a.s.
Then successive applications of point 1) lead to

σ -il (θ 0 ) β 0 + j≥(i+1)l
β j X -j = 0, a.s. Now as σ -il (θ 0 ) = a 0,0 + p j=l a 0,j X -il-j and a 0,l = 0 we deduce from point 2) that β (i+1)l = 0. Moreover a new application of point 1) leads to σ -(i+1)l (θ 0 ) β + j≥(i+1)l+1 β j X -j = 0 a.s. Hence the result follows by induction. Now if i is large enough:

σ -il (θ 0 )β 0 = 0 a.s.
Since β 0 = 0 this implies σ -il (θ 0 ) = 0 a.s. We have obtained a contradiction since X cannot equals 0 when a 0,0 = 0. If now l does not exist, we have X = a 0,0 ξ and equation (21) becomes a 0,0 β 0 + j≥1 β j a 0,0 ξ -j = 0 (a.s). Taking expectations this equality leads to β 0 = 0 and we thus exhibit a contradiction. We have shown that relation (21) is not possible and the result follows.

4. Setting α j = β j = 0 if j ≥ p + 1 we suppose α 0 + j≥1 α j X -j × β 0 + j≥1 β j X -j = 0 (a.s.) An application of point 2) implies α 1 × β 1 = 0. Moreover an application of point 1) gives

α 0 + j≥2 α j X -j × β 0 + j≥2 β j X -j = 0
Then by an induction argument, it is obvious that for i ≥ 1, we will obtain α i β i = 0 and

α 0 + j≥i α j X -j × β 0 + j≥i β j X -j = 0 a.s. (22) 
With i → ∞ we thus derive α 0 β 0 = 0, hence α 0 = 0. Suppose that there exists some i ∈ N * such that α i = 0. Then β i = 0 and applying point 1) to equality (22) we get

σ -i (θ 0 ) β 0 + j≥i+1 β j X -j a.s.
We obtain a contradiction using the stationarity and the point 3) considered with β j+i instead of β j , j ≥ 1. Hence α i = α 0 = 0, for all i ≥ 1 and the result follows.

From the previous Lemma we deduce the identification condition:

Lemma 6 If (A3) holds then (m 0 (θ), V 0 (θ)) = (m 0 (θ 0 ), V 0 (θ 0 )) a.s ⇒ θ = θ 0
Proof. The equality m 0 (θ) = m 0 (θ 0 ) writes as:

q j=1 (b j -b 0,j )Y t-j = 0 a.s.
If there exists j ∈ {1, . . . , q} such that b j = b 0,j , then there exists j ∈ {1, . . . , q} such that X t-j = ξ t-j σ t-j (θ 0 ) ∈ F t-j-1 . Using the same argument as in the proof of point 1. in Lemma 5, we obtain σ t-j (θ 0 ) = 0 a.s. Then X = 0 a.s and this is a contradiction with a 0,0 = 0. We deduce that b j = b 0,j , ∀j ∈ {1, . . . , q}.

Assume that equality V 0 (θ) = V 0 (θ 0 ) a.s holds, then as m 0 (θ) = m 0 (θ 0 ) a.s ⇒ m -j (θ) = m -j (θ 0 ), j = 1, . . . , p a.s, we obtain using equation ( 9):

a 0 + a 0,0 + p j=1
(a j + a 0,j ) X -j a 0a 0,0 + p j=1 (a ja 0,j ) X -j = 0 a.s

As a 0 + a 0,0 > 0 we obtain a 0 = a 0,0 by using point 4) in Lemma ( 5), and a j = a 0,j for all j = 1, . . . , p. Thus θ = θ 0 . Now we prove theorem 1. The proof follows the proof of theorem 2.1 in Jeantheau [START_REF] Jeantheau | Strong consistency of estimators for multivariate ARCH models[END_REF] who proved the consistency of the QMLE for general multivariate ARCH models (see theorem 2.1 of that paper). As in [START_REF] Jeantheau | Strong consistency of estimators for multivariate ARCH models[END_REF] we use the following Theorem which is a staightforward generalisation of Theorem 1.12 in Pfanzagl (1969) for i.i.d data.

Theorem 3 Let (Y t ) t∈Z be a strictly stationary and ergodic process, θ a parameter in Θ a compact of R d , and for n ∈ N * , Q n be a contrast such that

Q n (θ) = 1 n n t=1 f (Y t , . . . , Y t-p ; θ)
where f is a measurable function with real values and continuous in θ. Suppose that 1) E inf θ∈Θ f (Y 0 , . . . , Y -p ; θ) > -∞.

2) θ → Ef (Y 0 , . . . , Y -p ; θ) has a unique finite minimum at θ 0 , The minimum contrast estimator θn associated to Q n is thus strongly consistent: lim n→∞ θn = θ 0 a.s.

We apply Theorem 3 setting f (Y 0 , . . . , Y -p ; θ) = q 0,h (θ). Obviously f is continuous in θ.

• Since inf θ∈Θ f (Y 0 , . . . , Y -p ; θ) ≥ ln h, assumption 1) of Theorem 3 holds for the AR-LARCH process Y .

• We next prove that assumption 2) holds. We first prove that Q h (θ 0 ) = Eq 0,h (θ 0 ) ∈ R (from the last point we know that Q h (θ 0 ) is well defined and ∈ R ∪ {∞}. From (A1), Francq and Zakoïan [START_REF] Francq | A class of stochastic unit-root bilinear processes. Mixing properties and unit-root test[END_REF] prove that E |X 0 | s < ∞ for some s ∈ (0, 1] (see the proof of Theorem 4.2 in [START_REF] Francq | A class of stochastic unit-root bilinear processes. Mixing properties and unit-root test[END_REF]). hence:

Q h (θ 0 ) = 1 + 1 s E ln (V 0 (θ 0 ) + h) s ≤ 1 + h s s + EV 0 (θ 0 ) s < ∞.
Now we prove that for θ ∈ Θ, Q h (θ) ≥ Q h (θ 0 ) and the equality holds only when θ = θ 0 . For θ ∈ Θ, we have:

E (Y 0 -m 0 (θ)) 2 + h V 0 (θ) + h = E (Aξ 0 + B) 2 + C ,
where A = (V 0 (θ)+h) -1/2 σ 0 (θ 0 ), B = (V 0 (θ)+h) -1/2 (m 0 (θ 0 )-m 0 (θ)) and C = (V 0 (θ) + h) -1 h. If µ is the law of the vector (A, B, C), then we obtain using independence properties:

E (Aξ 0 + B) 2 + C = E (aξ 0 + b) 2 + c µ(da, db, dc) = E A 2 + B 2 + C ,
As for the proof of Lemma 6 we obtain µ 1 = . . . = µ q = 0. Hence equality c ∇V 0 (θ 0 ) = 0 rewrites:

σ 0 (θ 0 ) λ 0 + d j=1 λ j X -j = 0 a.s.
As a 0,0 = 0 an application of point 4) of Lemma 5 implies λ j = 0, j = 0, . . . , p. We have shown that c = 0. For the proof of theorem 2, the following moment conditions will be used:

Lemma 8 If EX 4 0 < ∞ then E ∇q 0,h (θ 0 ) 2 < ∞, E sup θ∈Θ ∇ 2 q 0,h (θ) < ∞.
Proof. We first notice that

∇q 0,h (θ) = -2(Y 0 -m 0 (θ))∇m 0 (θ) V 0 (θ) + h + ∇V 0 (θ) V 0 (θ) -(Y 0 -m 0 (θ)) 2 (V 0 (θ) + h) 2 (23) 
∇ 2 q 0,h (θ) = 2 V 0 (θ) + h ∇m 0 (θ)∇m 0 (θ) - 2(Y 0 -m 0 (θ)) V 0 (θ) + h ∇ 2 m 0 (θ) + 2(Y 0 -m 0 (θ) (V 0 (θ) + h) 2 ∇m 0 (θ)∇V 0 (θ) + ∇V 0 (θ)∇m 0 (θ) + V 0 (θ) -(Y 0 -m 0 (θ)) 2 (V 0 (θ) + h) 2 ∇ 2 V 0 (θ) + h -V 0 (θ) + 2(Y 0 -m 0 (θ)) 2 (V 0 (θ) + h) 3 ∇V 0 (θ)∇V 0 (θ)
As Θ is bounded since it is compact, the expressions of σ 0 and m 0 for model 9 entails the existence of a real K > 0 such that:

sup θ∈Θ |m 0 (θ)| + ∇m 0 (θ) + |σ 0 (θ)| + ∇σ 0 (θ) + ∇ 2 σ 0 (θ) ≤ U, (24) 
with U = K 1 + p+q j=1 |Y -j | . Moreover for model ( 9), ∇ 2 m 0 = 0.

• For ∇q 0,h , we have:

∇q 0,h (θ 0 ) = -2X 0 ∇m 0 (θ 0 ) V 0 (θ 0 ) + h + ∇V 0 (θ 0 )(1 -ξ 2 0 ) 2 V 0 (θ 0 ) (V 0 (θ 0 ) + h) 2 .
Then,

∇q 0,h (θ 0 ) 2 ≤ 4X 2 0 U 2 (V 0 (θ 0 ) + h) 2 + V 0 (θ 0 ) 3 U 2 (1 -ξ 2 0 ) 2 (V 0 (θ 0 ) + h) 4
This leads to:

E ∇q 0,h (θ 0 ) 2 ≤ 3 + µ 4 h EU 2 . As EX 4 0 < ∞ ⇒ EY 4 0 < ∞ ⇒ EU 2 < ∞, we obtain E ∇q 0,h (θ 0 ) 2 < ∞.
• For the second assertion, using the definition of U and the inequality 1 V 0 (θ)+h ≤ 1 h , we see that the fourth first term in the expression of ∇ 2 q 0,h (θ) can be bounded uniformly with respect to θ by polynomials of degree four in the variables |Y 0 | , |Y -1 | , . . . , Y -(p+q) . For the last term it is also the case since:

h -V 0 (θ) + 2(Y 0 -m 0 (θ)) 2 (V 0 (θ) + h) 3 ∇V 0 (θ) 2 ≤ h + U 2 + 2(|Y 0 | + U ) 2 (V 0 (θ) + h) 3 4V 0 (θ)U 2 ≤ h + U 2 + 2(|Y 0 | + U ) 2 h 2 4U 2 .
The result follows thus from EY 4 0 < ∞.

We now turn to the proof of Theorem 2. Since θ ∈ Θ • , a Taylor expansion yields:

0 = ∇Q n,h ( θn,h ) = ∇Q n,h (θ 0 ) + M n • ( θn,h -θ 0 ), with M n (i, j) = ∂ 2 Q n,h (γ i )/∂θ i ∂θ j , and θn,h -γ i ≤ θn,h -θ 0 , for i = 1, . . . , p + q + 1. Hence, - √ n∇Q n,h (θ 0 ) = √ n M n • ( θn,h -θ 0 ) (25) 
For each (θ, t) ∈ Θ×Z, ∇ 2 q t,h (θ) is a measurable function of Y t , . . . , Y t-(p+q) , thus we infer that ∇ 2 q t,h t is a stationary ergodic and C(Θ, R p+q+1 × R p+q+1 )-valued sequence. According to Lemma 8, sup θ∈Θ ∇ 2 q 0,h (θ) is an integrable random variable, hence from Theorem 4:

sup θ∈Θ ∇ 2 Q n,h (θ) -E∇ 2 q 0,h (θ) → n→∞ 0.
From θn,h → n→∞ θ 0 (a.s.) we thus conclude

M n → n→∞ N h = E∇ 2 q 0,h (θ 0 ), a.s. (26) 
Moreover N h is non-singular; indeed using expression (23), we have

N h = 2E ∇m 0 (θ 0 )∇m 0 (θ 0 ) V 0 (θ 0 ) + h + E ∇V 0 (θ 0 )∇V 0 (θ 0 ) (V 0 (θ 0 ) + h) 2 ,
and from Lemma 7 this matrix is positive-definite. Now,

√ n ∇Q n,h (θ 0 ) = 1 √ n n t=1
∇q n,h (θ 0 ), with E F t-1 ∇q 0 (θ 0 ) = 0.

Since from Lemma 8, E ∇q 0,h (θ 0 ) 2 < ∞, (∇q t,h (θ 0 )) t is an ergodic stationary F t -martingale difference sequence with finite variance and from Theorem 23.1, page 206 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF],

1 √ n n t=1 ∇q t,h (θ 0 ) D → N (0, M h ), with M h = Var ∇q 0,h (θ 0 ). Thus we infer √ n( θn,h -θ 0 ) → n→∞ N (0, N -1 h M h N -1 h )
Then the result follows from the expression of M h which is easy to derive from the expression of ∇q 0,h (23) .

Proof of Lemma 3

We use the expression of v h given in Theorem 2. We will only prove the Lemma if q = 0 and (µ 3 , µ 4 ) = (0, 3). The case q = 0 is omitted since its proof follows from straightforward modifications. If (µ 3 , µ 4 ) = (0, 3) we first remark that M h 2N h and we have the following bound:

v h 2N -1 h ( 27 
)
We now prove the Lemma.

1. If y, z ∈ R d and h, k > 0 we have:

√ 2 y N (1) 
k z = 2 √ 2 E (m/y) × (m/z) V + k ≤ 2 √ 2 E 1/2 (m/y) 2 (V + h) (V + k) 2 × E 1/2 (m/z) 2 V + h
With analogous arguments we also have:

√ 2 y N (2) 
k z ≤ √ 2 E 1/2 (V /y) 2 (V + h) 2 (V + k) 4 × E 1/2 (V /z) 2 (V + h) 2
Now using from the inequality (ac + bd) 2 ≤ (a 2 + b 2 )(c 2 + d 2 ):

2 y N k z 2 ≤ y M k,h y × z N h z,
where M k,h = 4E ∇m∇m (V +h) (V +k) 2 + 2E ∇V ∇V (V +h) 2 (V +k) 4 . Now if z = N -1 h x and y = N -1 k x, we get:

2x N h x ≤ x N -1 k M k,h N -1 k x.
Since lim h→0 M k,h = M k , we obtain using (27): lim sup h→0 +

x v h x ≤ 2 lim sup

h→0 + x N -1 h x ≤ x v k x. (28) 
We deduce that lim sup

h→0 + x v h x ≤ lim inf k→0 + x v k .
The last inequality is obviously an equality and we conclude that for x ∈ R p+q+1 , lim h→0 x v h x exists and belongs to R + . By polarization lim h→0 x v h y exists for all x, y ∈ R p+q+1 . Then one can define v = lim h→0 + v h . From (28), we deduce v v k if k > 0.

2. Suppose first that C holds. Then from the dominated convergence theorem we prove that lim h→0 M h = 2 lim h→0 N h = 2N.

From Lemma 7 this limit is nondegenerated. The expression of v in this case follows now from the continuity of the application A → A -1 . Now, suppose that C does not hold. We need to prove that v is degenerated. From the previous points, v v h 2N -1 h for h > 0. Let λ h be the smallest eigenvalue of the matrix N -1 h , then for each h > 0:

0 ≤ inf x =1
x vx ≤ inf

x =1

2x N -1 h x ≤ 2λ h .

To prove that v is degenerated this is enough to show that lim h→0 + λ h = 0. As λ h = 1/ρ(N h ) where ρ(N h ) denotes the spectral radius of the matrix N h we need to show that lim h→0 + ρ(N h ) = ∞ or equivalently that lim h→0 + p+q+1 i=1

N h (i, i) = ∞. But p+q+1 i=1 N h (i, i) = 2E m 2 (V + h) -1 + E V 2 (V + h) -2
and with monotone convergence:

lim h→0 + 2E m 2 V + h + E V 2 (V + h) 2 = 2E m 2 V 1 V =0 + E Y 2 V 2 1 V =0 = ∞.
Hence we conclude that v is degenerated.

Proof of Lemma 4

If a 4 0,1 Eξ 4 0 < 1 then a 2 0,1 < 1 and from Theorem 2.1 in [START_REF] Giraitis | A model for long memory conditional heteroscedasticity[END_REF] there exists a unique stationary solution of equation [START_REF] Sentana | Quadratic ARCH models[END_REF]. The fourth moment of this solution exists from [START_REF] Engle | Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[END_REF]. If now there exists a stationary solution of equation [START_REF] Sentana | Quadratic ARCH models[END_REF] such that EX 4 0 < ∞. As EX 4 0 = Eξ 4 0 E a 4 0,0 + a 4 0,1 X 4 0 + 6a 2 0,0 a 2 0,1 X 2 0 + 4a 0,0 a 3 0,1 X 3 0 + 4a 3 0,0 a 0,1 X 0 , since Eξ 3 0 = 0 implies EX 3 0 = 0 we get:

EX 4 0 = Eξ 4 0 E a 4 0,0 + a 4 0,1 X 4 0 + 6a 2 0,0 a 2 0,1 X 2 0 .

Hence 1a 4 0,0 Eξ 4 0 EX 4 0 = Eξ 4 0 a 4 0,0 + 6a 2 0,0 a 2 0,1 EX 2 0 and a 4 0,1 Eξ 4 0 < 1.
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 1 Figure 1: a 1 → Q 500 (θ).
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 2 Figure 2: (h, a) → v h (a).
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 3 Figure 3: Q n,h , n = 20000, h = 0.5 or h = 0.001.
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 45 Figure 4: Normal Q-Q plots for the errors b1b 0,1 .
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 6 Figure 6: Normal Q-Q plots for the errors â1a 0,1 .

  Theorem 3.1 in[START_REF] Francq | A class of stochastic unit-root bilinear processes. Mixing properties and unit-root test[END_REF] [START_REF] Francq | A class of stochastic unit-root bilinear processes. Mixing properties and unit-root test[END_REF] asserts that equation (2) admits a strictly stationary solution if and only if ) writes explicitly |a 1 | < e -E log|ξ 0 | . As pointed in[START_REF] Francq | A class of stochastic unit-root bilinear processes. Mixing properties and unit-root test[END_REF], if ξ 0 ∼ N (0, 1) this writes |a 1 | < 1.88736. In comparison the condition for the existence of a second moment writes |a 1 | < 1 and the one for the fourth moment |a 1 | < 0.7598 • • • (see section 3).

	γ (A) < 0.	(8)
	Under this condition, the strictly stationary solution is unique, nonantici-
	pative and ergodic.	
	If p = 1 condition (8	

and we have proved that

We obtain:

From Lemma 6, we get θ = θ 0 which proves that assumption 2) of Theorem 3 holds.

Then the consistency of the smoothed QMLE follows from Theorem 3.

Proof of Theorem 2

We use very classical arguments, the approach of Straumann [START_REF] Straumann | Estimation in Conditionally Heteroscedastic Time Series Models[END_REF] allows to derive an uniform law of the large numbers namely we will use:

Theorem 4 (Straumann (2006), Theorem 2.2.1, [START_REF] Straumann | Estimation in Conditionally Heteroscedastic Time Series Models[END_REF]) Let (v t ) t∈Z be a stationary ergodic sequence with values in C K, R k , the space of real continuous functions on a compact K ⊂ R d . Assume E sup θ∈K v 0 (θ) < ∞ then:

Before we prove Theorem 2 we need the two following lemmas:

Lemma 7 Suppose that A3 holds and let c ∈ R p+q+1 such that c ∇m 0 (θ 0 ) = c ∇V 0 (θ 0 ) = 0 a.s. Then c = 0.

Proof. We compute ∂m 0 /∂b j (θ 0 ) = Y -j for j = 1, . . . , p, ∂V 0 /∂a 0 (θ 0 ) = 2σ 0 (θ 0 ) and ∂V 0 /∂a j (θ 0 ) = 2X -j σ 0 (θ 0 ) for j = 1, . . . , p. Suppose that there exists c = (µ 1 , . . . , µ q , λ 0 , . . . , λ p ) ∈ R p+q+1 such that, c ∇m 0 (θ 0 ) = c ∇V 0 (θ 0 ) = 0, a.s.

Then we obtain: q j=1 µ j Y -j = 0, a.s.