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A new smoothed quasi maximum likelihood

estimator for autoregressive process with LARCH

errors.

Lionel Truquet

Abstract

We introduce a smoothed version of the quasi maximum likelihood
estimator (QMLE) in order to fit heteroschedastic time series with
possibly vanishing conditional variance. We apply this procedure to a
finite-order autoregressive process with linear ARCH errors. We prove
both the almost sure consiistency and the asymptotic normality of our
estimator. This estimator is more robust that QMLE with the same
type of assumptions. A numerical study confirms the qualities of our
procedure.

Primary AMS keyword: 62M10 Inference for time series

Keywords: 62F12: Asymptotic properties of estimators. 60G10: Stationary pro-

cesses

1 Introduction

In order to study the behaviour of financial time series such as asset returns
or exchange rates, a considerable work has been done to study ARCH models
introduced by Engle (1982) [7]. From empirical observations of time series,
Black (1976) [2] called the leverage effect a tendency for the conditional
variance to be negatively correlated with the past returns. Another property
is a slow decay of the autocorrelations of the squares called long memory,
see Doukhan et al. [5]. LARCH(∞) (Linear ARCH(∞)) models introduced
in Giraitis et al. (2000) [12] and (2004) [13] take in account these two
properties; they are defined from an equation:

Xt = ξt

(
a0 +

∑

j≥1

ajXt−j

)
(1)

for an independent and identically distributed (i.i.d) sequence (ξt) with
Eξ0 = 0 and Eξ2

0 = 1. Long memory properties of the model are addressed
by Giraitis et al. (2000) [12] whereas the leverage property is studied in Gi-
raitis et al. (2004) [13]. The model (1) specializes to the asymmetric ARCH
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model of Engle (1990) [8]. The conditional variance of models (1) writes as
the square of a linear combination of the past values:

Vt =
(
a0 +

∑

j≥1

ajXt−j

)2

A short memory version of (1) is LARCH(p), here aj = 0 for j > p hence:

Xt = ξt

(
a0 +

p∑

j=1

ajXt−j

)
(2)

Then the model (2) is a special case of a more general model introduced
in Sentena (1995) [18]; here the conditional variance writes as a quadratic
form:

Vt = a0 +

p∑

j=1

ajXt−j +

p∑

j=1

p∑

k=1

bj,kXt−jXt−k (3)

If this quadratic form is nonnegative this is possible to exhibit assump-
tions ensuring Vt ≥ 0; a solution (Xt) with this conditional variance writes
Xt = ξtVt for iid inputs ξt. Giraitis et al. (2000) [12] prove a necessary
and sufficient condition for the existence and the uniqueness of a square
integrable and strictly stationary solution of the equation (1). Sufficient
conditions for the existence of higher moments is also provided, moreover
Giraitis et al. (2004) [13] explicit sufficient conditions for the leverage prop-
erty.
The model (1) is generalized in Giraitis and Surgailis (2002) [14] to a bi-
linear model which exhibits long memory both in conditional mean and in
conditional variance:

Xt = α +
∑

j≥1

αjXt−j + ξt

(
a0 +

∑

j≥1

ajXt−j

)
(4)

In the short memory case, Francq et al. (2008) [10] study existence and
uniqueness of a strictly stationary solution of equation (2) (not necessarily
square integrable).
A main statistical problem is to estimate the parameter θ = (a0, . . . , ap)
of the model (2). A classical estimation procedure is the Gaussian Quasi
Maximum Likelihood Estimation (QMLE). Under conditions, the QMLE is
shown to be consistent and asymptotically normal. But a crucial condition
in its application is the existence of a real number h > 0 such that V0(θ) ≥ h
a.s. For the model (2), the conditional variance V0 is, in general, not bounded
away from 0 and the quasi likelihood becomes numerically intractable. Be-
cause the QMLE cannot be used for the model (2), we propose a smoothed
version of the QMLE which is more robust then the classical QMLE and
applies with the same kind of assumptions. We apply this procedure to an
AR process with LARCH errors.
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The paper is organized as follows. Section 2 recalls the properties of the
model (2). The next Section 3 introduces our model and mand motivates
the introduction of our smoothed QMLE. Section 4 addresses its asymp-
totic propertiesfor our model. In Section 5, we discuss the behaviour of its
asymptotic variance when the smoothing parameter tends to 0. Section 6 is
dedicated to a numerical illustration. The proofs are postponed to the last
section of the paper.

2 Some general results about LARCH models.

The first results about existence of LARCH models were given in the general
case of equation (1). The condition

∑∞
j=1 a2

j < 1 is necessary and sufficient
for the existence of a square integrable and nonanticipative solution (see
Theorem 2.1 in Giraitis et al. (2004) [13]). Those authors prove that the
unique solution of equation (1) is defined from the Volterra expansion:

Xt = a0ξt

(
1 +

∑

k≥1

∑

j1,...,jk≥1

aj1 · · · ajk
ξt−j1 · · · ξt−(j1+···+jk)

)
(5)

Those authors also give a sufficient condition for the existence of the fourth
moments in the general case of model (1):

µ4

∞∑

j=1

a4
j + 4 |µ3|

∞∑

j=1

|aj|3 + 6

∞∑

j=1

a2
j < 1 (6)

where µi = Eξi
0 for 1 ≤ i ≤ 4 (here µ2 = 1). Mention that

µ
1/4
4

∞∑

j=1

|aj| < 1 (7)

ensures the existence of the fourth moment for the solution (5) (see Doukhan
et al. (2006) [6]), hence the condition (6) is perhaps not sharp. Although
condition (6) is less restrictive with respect to the decay of the sequence
(aj)j≥1, condition (7) can obviously be better, e.g. if aj = 0, j ≥ 2.

From now on we fix an integer p ≥ 1 and we only consider eqn. (2). Then,
existence and uniqueness of a strictly stationary solution of (2) holds under
the less restrictive condition

∑p
j=1 a2

j < 1, is pointed in Francq et al. (2008)
[10]. Denote

At =

(
a1:p−1ξt apξt

Ip−1 0p−1

)
, where a1:p−1 = (a1, . . . , ap−1)

and Ik is the k × k identity matrix. If p = 1 then At = a1ξt. Let A = (At)t
and γ (A) the top-Lyapunov exponent of the sequence A:

γ (A) = lim
t→∞

1

t
log ‖At · · ·A1‖
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Theorem 3.1 in Francq et al. (2008) [10] asserts that equation (2) admits a
strictly stationary solution if and only if

γ (A) < 0. (8)

Under this condition, the strictly stationary solution is unique, nonantici-
pative and ergodic.
If p = 1 condition (8) writes explicitly |a1| < e−E log|ξ0|. As pointed in [10],
if ξ0 ∼ N (0, 1) this writes |a1| < 1.88736. In comparison the condition for
the existence of a second moment writes |a1| < 1 and the one for the fourth
moment |a1| < 0.7598 · · · (see section 3).

3 Model specification and smoothed QMLE

We consider for p, q ∈ N
∗ the model

Yt = b0,1Yt−1 + · · · + b0,qYt−q + Xt, (9)

Xt = ξt


a0,0 +

p∑

j=1

a0,jXt−j


 , t ∈ Z (10)

with ξ an i.i.d sequence such that Eξ0 = 0, Eξ2
0 = 1. By convention, q = 0

means that the process Y is a pure LARCH model given by (10); note that
for p = 0 the model is an AR(q) process.
In the sequel, when we consider a solution of equation (9) or (10), it is always
assumed that this solution is stationary, ergodic and non anticipative. We
denote

θ0 = (b0,1, . . . , b0,q, a0,0, . . . , a0,p),

and for θ = (b1, . . . , bq, a0, . . . , ap) ∈ R
p+q+1 and t ∈ Z:

mt(θ) =

q∑

j=1

bjYt−j,

Vt(θ) = σ2
t (θ) =

(
a0 +

p∑

j=1

aj (Yt−j − mt−j(θ))
)2

.

Setting Ft = σ (Yt−1, Yt−2, . . .) for t ∈ Z, we have:

mt(θ0) = E
(
Yt

/
Ft−1

)
, Vt(θ0) = Var

(
Yt

/
Ft−1

)
.

By stationarity, we can always suppose that the data Yn, Yn−1, . . . , Y−(p+q)+1

are available. Usually, the QMLE is defined by:

θ̂n = arg min
θ∈Θ

Qn(θ),
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Qn(θ) =
1

n

n∑

t=1

(Yt − mt(θ))2

Vt(θ)
+ lnVt(θ). (11)

Although we will not prove any result about the consistency or the incon-
sistency of the QMLE for the model (9), it seems very difficult to compute
this estimator because of the intractable form of the function θ 7→ Qn(θ)
(see figure 1 for which q = 0, p = 1, a0 = 1; the data are generated with
a1 = 0.5 and ξ0 ∼ N (0, 1)). The roughness of the function θ 7→ Qn(θ) is
due to the small values of the function θ 7→ Vt(θ); this gives infinite values
for Qn.

0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58
0

10

20

30

40

50

60

70

Figure 1: a1 7→ Q500(θ).

In some cases, even the conditional variance V0(θ0) is not bounded away
from zero as shows the following Lemma:

Lemma 1 Suppose that for the model (10) the input ξ0 admits a density
with support R and a0,0 6= 0. If j0 = min{j/a0,j 6= 0} exists, then the
conditional variance V0(θ0) may be unbounded away from zero.

One also can note that even if the conditonal variance is not bounded away
from zero, it does not vanish if ξ0 is atomless:

Lemma 2 Suppose that for model (10), the law of ξ0 is atomless, then
P (σ0(θ0) = 0) = 0.

We define here a new contrast working also will small values of the condi-
tional variance. Suppose just for a moment (even this is not true) that (Yt)
is a ARCH process with a conditional variance bounded away from zero; if
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ξ0 ∼ N (0, 1) then −1/2(Qn + ln 2π) is well defined and is the exact con-
ditional log-likelihood of the random vector (Y1, . . . , Yn). For nonGaussian
inputs, ξ0, this is not true anymore but the function

Q : θ 7→ E

(
(Y0 − m0(θ))2

V0(θ0)
+ ln(V0(θ))

)
(12)

is still a good contrast since θ0 is the unique minimum of Q, provided the
following identification condition holds:

(m0(θ), V0(θ)) = (m0(θ0), V0(θ0)) ⇒ θ = θ0.

In fact, Q can be used as a contrast for the estimation of a parameter of the
mean and/or the variance of a conditional law W0/U0, for some stationary
ergodic process {(Ut,Wt)/t ∈ Z}; in our case Ut =

(
Yt−1, . . . , Yt−(p+q)

)
and

Wt = Yt.
Set now Ut =

(
Yt−1, . . . , Yt−(p+q)

)
and Wt = Yt + ηt, for t ∈ Z, where (ηt)t

denotes an i.i.d sequence, independent of the process (Yt), with Eη0 = 0 and
Var (η0) = h for some real number h > 0. Then we have

E (Wt/Ut) = mt(θ0), Var (Wt/Ut) = Vt(θ0) + h,

and the contrast Q becomes

Qh(θ) = E

(
(W0 − m0(θ))2

V0(θ) + h
+ ln(V0(θ) + h)

)
.

We obtain from independence,

Qh(θ) = E

(
(Y0 − m0(θ))2 + h

V0(θ) + h
+ ln(V0(θ) + h)

)
.

The number h > 0 avoids the problem of small possible values for the
variance in (12): it will be called the smoothing parameter. If the data
Yn, Yn−1, . . . , Y−(p+q)+1 are available, we define the following estimator:

θ̂n,h = arg min
θ∈Θ

Qn,h(θ), (13)

Qn,h(θ) =
1

n

n∑

t=1

qt,h(θ), (14)

qt,h(θ) =
(Yt − mt(θ))2 + h

Vt(θ) + h
+ ln (Vt(θ) + h) . (15)

Observe that θ̂n,0 is the classical QMLE. For h > 0 and n ∈ N
∗, Qn,h has

a more tractable expression that Qn,0. The asymptotic properties of the

estimator θ̂n,h, called smoothed QMLE, will be derived below.
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4 Asymptotics of smoothed QMLE for AR-LARCH

models

QMLE is very popular for conditionally heteroscedastic time series. Its
asymptotic properties were first established by Weiss (1986) [20] for ARCH
models. General results for the consistency of this method are proved in
Jeantheau (1998) [11]. Both its consistency and its asymptotic normality
are precised by Mikosch and Straumann (2006) [17] who set a nice theoretical
framework for the univariate case. For multivariate time series we defer the
reader to Bardet and Wintenberger (2007) [1]. For GARCH models, mention
among others the works of Lee and Hansen (1994) [15], Lumsdaine (1996)
[16], Berkes, Horváth and Kokoszka (2003) [3] and Francq and Zaköıan
(2004) [9]. As we will see, asymptotics properties of the smoothed QMLE
can be obtained using the same arguments as for the classical QMLE.
Let us introduce some assumptions:

(A1): γ(A(θ0)) < 0.

(A2): The roots of the polynomial P defined by P (z) = 1 −∑q
j=1 b0,jz

j

are outside the unit disk.

(A3): θ0 ∈ Θ, a compact set such as for all θ ∈ Θ, the first component
a0 of θ is strictly positive.

(A4): The support of the law of ξt admits more than 2 points.

(A5): θ0 belongs to the interior Θ◦ of Θ.

(A6): EX4
0 < ∞.

The top-Lyapounov exponent γ(A(θ0)) is defined for the LARCH part only,
as in (8). Assumptions (A1) and (A2) ensure existence and uniqueness of
the AR-LARCH process (9). The two following results are devoted respec-
tively to a.s. consistency and to the central limit behaviour of the smoothed
QMLE.

Theorem 1 Under assumptions (A1) − (A4) the smoothed QMLE is con-
sistent for each value of h > 0:

lim
n→∞

θ̂n,h = θ0, a.s.

Theorem 2 If (A1)-(A6) hold true, the smoothed QMLE is asymptotically
normal for each value of h > 0:

√
n
(
θ̂n,h − θ0

) D→n→∞ N
(
0, N−1

h MhN−1
h

)
.
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where

Nh = N
(1)
h + N

(2)
h , Mh = M

(1)
h + M

(2)
h + M

(3)
h ,

N
(1)
h = 2E

(∇m0(θ0)∇m0(θ0)
′

V0(θ0) + h

)
, N

(2)
h = E

(∇V0(θ0)∇V0(θ0)
′

(V0(θ0) + h)2

)
,

M
(1)
h = 4E

(
V0(θ0)∇m0(θ0)∇m0(θ0)

′

(V0(θ0) + h)2

)
,

M
(2)
h = (µ4 − 1)E

(
V0(θ0)

2∇V0(θ0)∇V0(θ0)
′

(V0(θ0) + h)4

)
,

M
(3)
h = 2µ3E

(
V0(θ0)σ0(θ0)

(V0(θ0) + h)3
(
∇m0(θ0)∇V0(θ0)

′ + ∇V0(θ0)∇m0(θ0)
′)
)

.

Remark. If q = 0 then Y is a pure LARCH model (10) and we obtain the
consistency and the asymptotic normality of the smoothed QMLE as above.

Its asymptotic variance writes as
(
N

(2)
h

)−1
M

(2)
h

(
N

(2)
h

)−1
.

5 Choice of the smoothing parameter h

We aim here at precising the asymptotic variance of the smoothed QMLE.
Although we have proved the asymptotic properties of the smoothed QMLE
only for the AR-LARCH model (9) the following study applies to more
general heteroschedastic time series

Xt = mθ(Xt−1, . . . , Xt−q) + σθ(Xt−1, . . . , Xt−(p+q))ξt

however, for such models, as in Bardet and Wintenberger (2008), the prob-
lem would be to check identifiability conditions. We denote by ‖·‖ the
Euclidean norm for a vector or a matrix. For simplicity we write m (resp.
V ) instead of m0(θ0) (resp. V0(θ0)) and ∇m,∇V for the gradient vectors.
Using the notations in Theorem 2 we denote vh = N−1

h MhN−1
h the asymp-

totic variance of the smoothed QMLE (see Theorem 2).
Unexpected results appear by plotting the asymptotic variance of the smo-
othed QMLE for small values of h. Suppose that we want to estimate the
parameter a of the model: Xt = ξt (1 + aXt−1) where ξ0 ∼ N (0, 1). Then
the asymptotic variance of the smoothed QMLE denoted by vh(a) seems to
verify limh→0 vh(a) = 0 for a large subset of parameters (see figure 2).

To study the behaviour of the asymptotic variance we set A � B, the relation
of order between symmetric positive definite matrices such that x′Ax ≤ x′Bx
if for each x ∈ R

d, here A and B ∈ Md(R). We will use the notation A ≺ B
if x′Ax < x′Bx for all x ∈ R

d \ {0}.
In the following Lemma we discuss the qualitative behaviour of h 7→ vh.
Even if we were not able to check monotonicity of this function (with the
order �), we shall precise the behaviour of the asymptotic variance at the

8



origin: here v = limh→0+ vh = infh>0 vh is either degenerated or has the
same form that the asymptotic variance of the classical QMLE.

0
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0.08
0.1

0.12

−1

−0.5

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

value of hvalue of parameter a

Figure 2: (h, a) 7→ vh(a).

The behaviour of the asymptotic variance near h = 0 is related to the
condition:

C : E

(
‖∇m‖2

V
1V 6=0

)
+ E

(
‖∇V ‖2

V 2
1V 6=0

)
< ∞.

Of course if q = 0 then the condition C reduces to

E

(
‖∇V ‖2

V 2
1V 6=0

)
< ∞.

One can remark that when ξ0 ∼ N (0, 1), by lemma 2 we have V 6= 0 a.s and
condition C ensures the existence of the conditional Fisher information.

Lemma 3 Let the assumptions of Theorem 2 hold. We suppose that either
q = 0, or q 6= 0 but (µ3, µ4) = (0, 3) (i.e ξ0 has the same four first moments
that a standard Gaussian). Then:

1. v = limh→0+ vh exists, and v � vh, for h > 0.

2. v is non degenerated if and only if condition C holds. In this case,
v = (µ4 − 1)N−1 where:

N = 2E

(∇m∇m′

V
1V 6=0

)
+ E

(∇V ∇V ′

V 2
1V 6=0

)
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Remarks. a. Condition C holds if there exists m > 0 with:

V0(θ0) ≥ m > 0 a.s. (16)

This is the case for example if ξ0 has a uniform distribution on [−
√

3,
√

3]
and a =

∑p
j=1 |a0,j| < 1

2
√

3
. Indeed we have V0(θ0) = a2

0,0 (1 + σ̃0)
2 where

σ̃0(θ0) =
∑

k≥1

∑

j1,...,jk∈{1,...,p}
a0,j1 · · · a0,jk

ξ−j1 · · · ξ−(j1+...+jk).

Note that |σ̃0(θ0)| ≤ a
√

3
1−a

√
3

< 1 and m = a2
0,0

(
1 − a

√
3

1−a
√

3

)2
is a convenient

value for (16) to hold. Condition (16) is a classical assumption to get the
asymptotic properties of the classical QMLE, but for model (9), this kind
of restriction seems unrealistic.

b. From point 2 in Lemma 3, if the condition C does not hold, then no
asymptotically efficient estimator with

√
n-rate can be exhibited. This is

the case if:
EV0(θ0)

−11V0(θ0)6=0 = ∞. (17)

Condition (17) is related to the behaviour of V0(θ0) around 0. The following
(artificial) example shows that this condition may hold.
Suppose that b0,j = 0, j = 1, . . . , q and p = 1, a0,0 = 1, a0,1 = 0.5, P(ξ0 =
1) = P(ξ0 = −1) = α and P(ξ0 = 0) = 1 − 2α for α ∈ [1/4, 1/2).
Then Eξ0 = 0 and from (7), EX4

0 < ∞ and we may assume Eξ2
0 = 1, for this

we write Xt = ξt/
√

Eξ2
0

(√
Eξ2

0 + 0.5
√

E(ξ2
0)Xt−1

)
. From (5) the chaotic

expansion of the solution writes:

Xt = ξt +
∑

j≥1

2−jξt · · · ξt−j

Let n ∈ N
∗ and suppose that ξt = −1, ξt−1 = · · · = ξt−n = 1 and ξt−(n+1) =

0, then:
Xt = −2(1 − 2−(n+1))

and thus Vt+1(θ0) = 2−(2n+2). We now deduce:

E
1Vt+1(θ0)6=0

Vt+1(θ0)
≥

∑

n≥1

22n+2
P

(
Vt+1(θ0) = 2−(2n+2)

)

≥
∑

n≥1

22n+2
P
(
ξt = −1, ξt−1 = · · · = ξt−n = 1, ξt−(n+1) = 0

)

= (1 − 2α)
∑

n≥1

αn+122n+2

= ∞

10



This example shows that the condition (17) may happen to hold. Now figure
2 seems to prove that the model LARCH(1) also exhibits this condition for
ξ0 ∼ N (0, 1) but no formal proof is given here.

c. It is clear that both the QMLE and the smoothed QMLE apply for
classical ARCH models because their conditional variance is bounded away
from zero. Then under the assumptions of lemma 3 the point 2. of the
Lemma shows that the QMLE is more efficient than the smoothed QMLE.

6 Numerical illustration

We illustrate the behaviour of the smoothed QMLE with an example. Our
goal here is to see if h → 0 gives best estimators as suggested by the Lemma
3. We set p = q = 1 and we consider Gaussian errors. We recall that
asymptotic normality of the smoothed QMLE requires EY 4

0 < ∞ (Theorem
2); moreover EX4

0 < ∞ ⇒ EY 4
0 < ∞. The following Lemma gives a neces-

sary and sufficient condition for the existence of the fourth moment of the
solution of

Xt = ξt (a0,0 + a0,1Xt−1) (18)

if Eξ3
0 = 0.

Lemma 4 Suppose that Eξ3
0 = 0 then there exists a stationary solution of

equation (18) with EX4
0 < ∞ if and only if a4

1Eξ4
0 < 1. In this case this

solution is the unique stationary solution of equation (18).

Remarks.

• If ξ0 ∼ N (0, 1) is a standard normal random variable the condition
a4

0,1Eξ4
0 < 1 writes |a0,1| < 3−1/4 ≈ 0.7598 · · · .

• If ξ0 follows the uniform distribution law on the interval [−
√

3,
√

3]
this condition writes |a0,1| < (5/9)1/4 ≈ 0.8633 · · · . Thus if |a0,1| >
1/
√

3 ≈ 0.5774 · · · , the process X is not bounded.

For the simulation study we have computed 500 smoothed QML estimators
for sample sizes n = 100 and n = 1000 and for the smoothing parameters
h = 0.5, 0.1 and 0.001. The value of the parameter is θ0 = (0.5, 1.6,−0.7).
An expected problem is the irregularity of the function Qn,h when h is
small. This holds even for very large values of n. As an example we plot
a1 7→ Qn,h(a1) in figure 3 for the model:

Xt = ξt (1 + 0.5Xt−1) , ξ0 ∼ N (0, 1).

Then, to avoid optimization problems, we first compute the estimators for
h = 0.5 ; after this, using those values to initialize the procedure, we start

11



with an optimization procedure for h = 0.1, 0.001. We see from figure 5
that the mean square errors decrease as soon as h decreases. However if h is
small, fitting to a Gaussian distribution is not very good for n = 100 (figure
4 and figure 6) but a large sample size n = 1000 corrects this problem.
Hence the choice of the value of h = hn (depending on the sample size n)
seems crucial. This problem is beyond the scope of this paper because we
did not exhibit a balance of terms explaining this phenomenon as this is
usual e.g. for non-parametric estimation.
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Figure 3: Qn,h, n = 20000, h = 0.5 or h = 0.001.
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Figure 4: Normal Q-Q plots for the errors b̂1 − b0,1.

Estimators Sample size S. QML
h = 0.5 0.1 0.001

b̂1 n = 100 1.9 1.1 0.9

â0 n = 100 16.3 14.7 13.9

â1 n = 100 8 5.8 5.1

b̂1 n = 1000 0.1 0.1 0

â0 n = 1000 1.7 1.5 1.4

â1 n = 1000 0.6 0.4 0.3

Figure 5: Mean square errors for the three estimators (×10−3).
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Figure 6: Normal Q-Q plots for the errors â1 − a0,1.

7 Proofs

7.1 Proof of Lemma 1

Let A = {(z1, . . . , zp) ∈ R
p/a0,0 +

∑p
j=1 a0,jzj 6= 0} and for t ∈ Z, Zt =

(Xt−1, . . . , Xt−p). Set
∑p

j=j0+1 = 0 if j0 = p. Then since a0,0 6= 0, Xt ≡ 0
is not a solution of the equation (10) thus P (Zt ∈ A) > 0. Moreover for
z ∈ A the support of the conditional law L(X−j0/Z−j0 = z) is the whole set
R which is in contradiction with the existence of a number m > 0 such that

V0(θ0) =


a0,0 + aj0X−j0 +

p∑

j=j0+1

ajX−j




2

≥ m, a.s. �

7.2 Proof of Lemma 2

For simplicity, we denote σt instead of σt(θ0). The result is obvious if a0,j =
0, j = 1, . . . , p since in this case σ0 = a0,0 6= 0.
Now let j0 ≥ 1 be the first index such that a0,j0 6= 0. Let α = P(σ0 = 0).
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We prove by induction that:

∀n ∈ N, P (An) = α (19)

where for n ∈ N, An =

n⋂

l=0

{σ−lj0 = 0}. This will conclude the proof.

Indeed setting n → ∞, we deduce that P

(∞⋂

l=0

{σ−lj0 = 0}
)

= α and from

the ergodicity of the process (σ−lj0)l∈N we derive that α ∈ {0, 1}. However
α = 1 implies by definition σ0 = X0 = 0 a.s which is impossible if a0,0 6= 0:
hence α = 0.
We now prove (19). The definition of α implies the result for n = 0. Suppose
that P(An) = α and let us prove that P(An+1) = α. Then it is enough to
prove P

(
An ∩ {σ−(n+1)j0 6= 0}

)
= 0 or:

P
(
σ−nj0 = 0, σ−(n+1)j0 6= 0

)
= P (σ0 = 0, σ−j0 6= 0) = 0. (20)

Now σ0 = 0 ⇔ X−j0 = ξ−j0σ−j0 = M , with M = −
(∑p

j=j0+1 a0,jX−j

)
/a0,j0

(by convention
∑p

j=p+1 = 0). If µ is the law of the vector (σ−j0 ,M), we get
using independence:

P (σ0 = 0, σ−j0 6= 0) =

∫
P(aξ−j0 = b, a 6= 0)µ(da, db).

Since P(ξ0 = x) = 0, ∀x ∈ R, we have etablished (20), and (19) follows by
induction. �

7.3 Proof of Theorem 1

We first prove the following Lemma, useful to show that the parameter θ0

is identifiable in the model (9).
Here Y is a model satisfying (9) and note that Ft = σ (Xt−j/j ∈ N) =
σ (Yt−j/j ∈ N) for t ∈ Z.

Lemma 5 We suppose that (A3) holds. Let U1 and U2 be two random
variables measurable w.r.t F−1 and (αj)0≤j≤p and (βj)0≤j≤p be real numbers
such that β0 6= 0. Then

1. (X0 − U1) × U2 = 0 a.s ⇒ U2 × σ0(θ0) = 0 a.s and U1 × U2 = 0 a.s.

2. P ((X0 − U1) × (X0 − U2) = 0) < 1.

3. P

(
σ0(θ0)

(
β +

∑p
j=1 βjX−j

)
= 0
)

< 1.

4.
(
α0 +

∑p
j=1 αjX−j

)
×
(
β0 +

∑p
j=1 βjX−j

)
= 0, a.s implies αj = 0,

for all j = 0, . . . , p.
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Proof.

1. Here (X0 − U1) U2 = 0 a.s ⇒ U2σ0(θ0)ξ0 = U1U2. Since ξ0 is not a
constant and it is independent of (U2σ0(θ0), U1U2) we have U2σ0(θ0) =
0 a.s., thus obviously U1U2 = 0 a.s.

2. If (X0 − U1) (X0 − U2) = 0 a.s then

σ2
0(θ0)ξ

2
0 + σ0(θ0) (−U1 − U2) ξ0 = −U1U2 a.s

Since a0,0 6= 0, we have X 6= 0 a.s. Then there exists a realization of
X−1, X−2, . . . such that σ0(θ0) 6= 0. For such a realization the support
of the conditional law ξ0/X−1, X−2, . . . (by independence this is also
the law of ξ0) contains only two values. This yields a contradiction
with (A3) and the result follows.

3. We suppose

σ0(θ0)
(
β0 +

p∑

j=1

βjX−j

)
= 0, a.s (21)

We set βj = 0 for j ≥ p + 1. Suppose that l = inf{i ≥ 1/a0,i 6= 0}
exists. We will show by induction that for all i ∈ N:

σ−il(θ0)
(
β0 +

∑

j≥il+1

βjX−j

)
= 0, a.s.

From (21), the result holds for i = 0. Suppose that for i ∈ N:

σ−il(θ0)
(
β0 +

∑

j≥il+1

βjX−j

)
= 0 a.s .

Then successive applications of point 1) lead to

σ−il(θ0)
(
β0 +

∑

j≥(i+1)l

βjX−j

)
= 0, a.s.

Now as σ−il(θ0) = a0,0 +
∑p

j=l a0,jX−il−j and a0,l 6= 0 we deduce
from point 2) that β(i+1)l = 0. Moreover a new application of point

1) leads to σ−(i+1)l(θ0)
(
β +

∑
j≥(i+1)l+1 βjX−j

)
= 0 a.s. Hence the

result follows by induction.
Now if i is large enough:

σ−il(θ0)β0 = 0 a.s.

Since β0 6= 0 this implies σ−il(θ0) = 0 a.s. We have obtained a contra-
diction since X cannot equals 0 when a0,0 6= 0.
If now l does not exist, we have X = a0,0ξ and equation (21) becomes

a0,0

(
β0 +

∑
j≥1 βja0,0ξ−j

)
= 0 (a.s). Taking expectations this equal-

ity leads to β0 = 0 and we thus exhibit a contradiction.
We have shown that relation (21) is not possible and the result follows.
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4. Setting αj = βj = 0 if j ≥ p + 1 we suppose(
α0 +

∑
j≥1 αjX−j

)
×
(
β0 +

∑
j≥1 βjX−j

)
= 0 (a.s.) An application

of point 2) implies α1 × β1 = 0. Moreover an application of point 1)
gives (

α0 +
∑

j≥2

αjX−j

)
×
(
β0 +

∑

j≥2

βjX−j

)
= 0

Then by an induction argument, it is obvious that for i ≥ 1, we will
obtain αiβi = 0 and

(
α0 +

∑

j≥i

αjX−j

)
×
(
β0 +

∑

j≥i

βjX−j

)
= 0 a.s. (22)

With i → ∞ we thus derive α0β0 = 0, hence α0 = 0. Suppose that
there exists some i ∈ N

∗ such that αi 6= 0. Then βi = 0 and applying
point 1) to equality (22) we get

σ−i(θ0)
(
β0 +

∑

j≥i+1

βjX−j

)
a.s.

We obtain a contradiction using the stationarity and the point 3) con-
sidered with βj+i instead of βj , j ≥ 1. Hence αi = α0 = 0, for all i ≥ 1
and the result follows. �

From the previous Lemma we deduce the identification condition:

Lemma 6 If (A3) holds then

(m0(θ), V0(θ)) = (m0(θ0), V0(θ0)) a.s ⇒ θ = θ0

Proof. The equality m0(θ) = m0(θ0) writes as:

q∑

j=1

(bj − b0,j)Yt−j = 0 a.s.

If there exists j ∈ {1, . . . , q} such that bj 6= b0,j, then there exists j ∈
{1, . . . , q} such that Xt−j = ξt−jσt−j(θ0) ∈ Ft−j−1. Using the same argu-
ment as in the proof of point 1. in Lemma 5, we obtain σt−j(θ0) = 0 a.s.
Then X = 0 a.s and this is a contradiction with a0,0 6= 0. We deduce that
bj = b0,j, ∀j ∈ {1, . . . , q}.
Assume that equality V0(θ) = V0(θ0) a.s holds, then as

m0(θ) = m0(θ0) a.s ⇒ m−j(θ) = m−j(θ0), j = 1, . . . , p a.s,

we obtain using equation (9):

(
a0 +a0,0 +

p∑

j=1

(aj + a0,j) X−j

)(
a0 −a0,0 +

p∑

j=1

(aj − a0,j) X−j

)
= 0 a.s
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As a0 + a0,0 > 0 we obtain a0 = a0,0 by using point 4) in Lemma (5), and
aj = a0,j for all j = 1, . . . , p. Thus θ = θ0. �

Now we prove theorem 1. The proof follows the proof of theorem 2.1 in
Jeantheau [11] who proved the consistency of the QMLE for general mul-
tivariate ARCH models (see theorem 2.1 of that paper). As in [11] we use
the following Theorem which is a staightforward generalisation of Theorem
1.12 in Pfanzagl (1969) for i.i.d data.

Theorem 3 Let (Yt)t∈Z be a strictly stationary and ergodic process, θ a
parameter in Θ a compact of R

d, and for n ∈ N
∗, Qn be a contrast such that

Qn(θ) =
1

n

n∑

t=1

f (Yt, . . . , Yt−p; θ)

where f is a measurable function with real values and continuous in θ. Sup-
pose that
1) E infθ∈Θ f (Y0, . . . , Y−p; θ) > −∞.
2) θ 7→ Ef (Y0, . . . , Y−p; θ) has a unique finite minimum at θ0,

The minimum contrast estimator θ̂n associated to Qn is thus strongly con-
sistent: limn→∞ θ̂n = θ0 a.s.

We apply Theorem 3 setting f (Y0, . . . , Y−p; θ) = q0,h(θ). Obviously f is
continuous in θ.

• Since infθ∈Θ f (Y0, . . . , Y−p; θ) ≥ lnh, assumption 1) of Theorem 3
holds for the AR-LARCH process Y .

• We next prove that assumption 2) holds. We first prove that Qh(θ0) =
Eq0,h(θ0) ∈ R (from the last point we know that Qh(θ0) is well defined
and ∈ R ∪ {∞}. From (A1), Francq and Zaköıan [10] prove that
E |X0|s < ∞ for some s ∈ (0, 1] (see the proof of Theorem 4.2 in [10]).
hence:

Qh(θ0) = 1 +
1

s
E ln (V0(θ0) + h)s ≤ 1 +

hs

s
+ EV0(θ0)

s < ∞.

Now we prove that for θ ∈ Θ, Qh(θ) ≥ Qh(θ0) and the equality holds
only when θ = θ0.
For θ ∈ Θ, we have:

E

(
(Y0 − m0(θ))2 + h

V0(θ) + h

)
= E

(
(Aξ0 + B)2 + C

)
,

where A = (V0(θ)+h)−1/2σ0(θ0), B = (V0(θ)+h)−1/2(m0(θ0)−m0(θ))
and C = (V0(θ) + h)−1h. If µ is the law of the vector (A,B,C), then
we obtain using independence properties:

E
(
(Aξ0 + B)2 + C

)
=

∫
E
(
(aξ0 + b)2 + c

)
µ(da, db, dc) = E

(
A2 + B2 + C

)
,
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and we have proved that

Qh(θ) = E

(
(m0(θ) − m0(θ0))

2 + h

V0(θ) + h
+ ln(V0(θ) + h)

)
.

We obtain:

Qh(θ) − Qh(θ0) = E
V0(θ0) + h

V0(θ) + h
− ln

V0(θ0) + h

V0(θ) + h
− 1

Since
(
x − lnx ≥ 1, ∀x > 0

)
and

(
x − lnx = 1 ⇔ x = 1

)
we derive

Qh(θ0) ≤ Qh(θ) and:

Qh(θ) = Qh(θ0) ⇒ m0(θ) = m0(θ0), V0(θ) = V0(θ0) a.s

From Lemma 6, we get θ = θ0 which proves that assumption 2) of
Theorem 3 holds.

Then the consistency of the smoothed QMLE follows from Theorem 3. �

7.4 Proof of Theorem 2

We use very classical arguments, the approach of Straumann [19] allows to
derive an uniform law of the large numbers namely we will use:

Theorem 4 (Straumann (2006), Theorem 2.2.1, [19]) Let (vt)t∈Z be
a stationary ergodic sequence with values in C

(
K, Rk

)
, the space of real

continuous functions on a compact K ⊂ R
d. Assume E supθ∈K ‖v0(θ)‖ < ∞

then:

lim
n→∞

sup
θ∈Θ

∣∣∣∣∣
1

n

n∑

t=1

vt(θ) − Ev0(θ)

∣∣∣∣∣ = 0, a.s

Before we prove Theorem 2 we need the two following lemmas:

Lemma 7 Suppose that A3 holds and let c ∈ R
p+q+1 such that c′∇m0(θ0) =

c′∇V0(θ0) = 0 a.s. Then c = 0.

Proof. We compute ∂m0/∂bj(θ0) = Y−j for j = 1, . . . , p, ∂V0/∂a0(θ0) =
2σ0(θ0) and ∂V0/∂aj(θ0) = 2X−jσ0(θ0) for j = 1, . . . , p. Suppose that there
exists c = (µ1, . . . , µq, λ0, . . . , λp) ∈ R

p+q+1 such that,

c′∇m0(θ0) = c′∇V0(θ0) = 0, a.s.

Then we obtain:
q∑

j=1

µjY−j = 0, a.s.
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As for the proof of Lemma 6 we obtain µ1 = . . . = µq = 0.
Hence equality c′∇V0(θ0) = 0 rewrites:

σ0(θ0)
(
λ0 +

d∑

j=1

λjX−j

)
= 0 a.s.

As a0,0 6= 0 an application of point 4) of Lemma 5 implies λj = 0, j =
0, . . . , p. We have shown that c = 0. �

For the proof of theorem 2, the following moment conditions will be used:

Lemma 8 If EX4
0 < ∞ then E ‖∇q0,h(θ0)‖2 < ∞, E sup

θ∈Θ

∥∥∇2q0,h(θ)
∥∥ < ∞.

Proof. We first notice that

∇q0,h(θ) =
−2(Y0 − m0(θ))∇m0(θ)

V0(θ) + h
+

∇V0(θ)
(
V0(θ) − (Y0 − m0(θ))2

)

(V0(θ) + h)2
(23)

∇2q0,h(θ) =
2

V0(θ) + h
∇m0(θ)∇m0(θ)′

− 2(Y0 − m0(θ))

V0(θ) + h
∇2m0(θ)

+
2(Y0 − m0(θ)

(V0(θ) + h)2
(
∇m0(θ)∇V0(θ)′ + ∇V0(θ)∇m0(θ)′

)

+
V0(θ) − (Y0 − m0(θ))2

(V0(θ) + h)2
∇2V0(θ)

+
h − V0(θ) + 2(Y0 − m0(θ))2

(V0(θ) + h)3
∇V0(θ)∇V0(θ)′

As Θ is bounded since it is compact, the expressions of σ0 and m0 for model
9 entails the existence of a real K > 0 such that:

sup
θ∈Θ

(
|m0(θ)| + ‖∇m0(θ)‖ + |σ0(θ)| + ‖∇σ0(θ)‖ +

∥∥∇2σ0(θ)
∥∥) ≤ U, (24)

with U = K
(
1 +

∑p+q
j=1 |Y−j|

)
. Moreover for model (9), ∇2m0 = 0.

• For ∇q0,h, we have:

∇q0,h(θ0) =
−2X0∇m0(θ0)

V0(θ0) + h
+

∇V0(θ0)(1 − ξ2
0)

2V0(θ0)

(V0(θ0) + h)2
.

Then,

‖∇q0,h(θ0)‖2 ≤ 4X2
0U2

(V0(θ0) + h)2
+

V0(θ0)
3U2(1 − ξ2

0)
2

(V0(θ0) + h)4
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This leads to:

E ‖∇q0,h(θ0)‖2 ≤ 3 + µ4

h
EU2.

As EX4
0 < ∞ ⇒ EY 4

0 < ∞ ⇒ EU2 < ∞, we obtain E ‖∇q0,h(θ0)‖2 <
∞.

• For the second assertion, using the definition of U and the inequality
1

V0(θ)+h ≤ 1
h , we see that the fourth first term in the expression of

∇2q0,h(θ) can be bounded uniformly with respect to θ by polynomials
of degree four in the variables |Y0| , |Y−1| , . . . ,

∣∣Y−(p+q)

∣∣. For the last
term it is also the case since:

∣∣h − V0(θ) + 2(Y0 − m0(θ))2
∣∣

(V0(θ) + h)3
‖∇V0(θ)‖2

≤ h + U2 + 2(|Y0| + U)2

(V0(θ) + h)3
4V0(θ)U2

≤ h + U2 + 2(|Y0| + U)2

h2
4U2.

The result follows thus from EY 4
0 < ∞. �

We now turn to the proof of Theorem 2. Since θ ∈ Θ◦, a Taylor expansion
yields:

0 = ∇Qn,h(θ̂n,h) = ∇Qn,h(θ0) + M̃n · (θ̂n,h − θ0),

with M̃n(i, j) = ∂2Qn,h(γi)/∂θi∂θj, and
∥∥∥θ̂n,h − γi

∥∥∥ ≤
∥∥∥θ̂n,h − θ0

∥∥∥ , for i =

1, . . . , p + q + 1.
Hence,

−√
n∇Qn,h(θ0) =

√
n M̃n · (θ̂n,h − θ0) (25)

For each (θ, t) ∈ Θ×Z, ∇2qt,h(θ) is a measurable function of Yt, . . . , Yt−(p+q),
thus we infer that

(
∇2qt,h

)
t

is a stationary ergodic and C(Θ, Rp+q+1 ×
R

p+q+1)-valued sequence. According to Lemma 8, sup
θ∈Θ

∥∥∇2q0,h(θ)
∥∥ is an

integrable random variable, hence from Theorem 4:

sup
θ∈Θ

∥∥∇2Qn,h(θ) − E∇2q0,h(θ)
∥∥→n→∞ 0.

From θ̂n,h →n→∞ θ0 (a.s.) we thus conclude

M̃n →n→∞ Nh = E∇2q0,h(θ0), a.s. (26)

Moreover Nh is non-singular; indeed using expression (23), we have

Nh = 2E
∇m0(θ0)∇m0(θ0)

′

V0(θ0) + h
+ E

∇V0(θ0)∇V0(θ0)
′

(V0(θ0) + h)2
,
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and from Lemma 7 this matrix is positive-definite. Now,

√
n ∇Qn,h(θ0) =

1√
n

n∑

t=1

∇qn,h(θ0), with EFt−1
∇q0(θ0) = 0.

Since from Lemma 8, E ‖∇q0,h(θ0)‖2 < ∞, (∇qt,h(θ0))t is an ergodic station-
ary Ft-martingale difference sequence with finite variance and from Theorem
23.1, page 206 in [4],

1√
n

n∑

t=1

∇qt,h(θ0)
D→ N (0,Mh), with Mh = Var∇q0,h(θ0).

Thus we infer

√
n(θ̂n,h − θ0) →n→∞ N (0, N−1

h MhN−1
h )

Then the result follows from the expression of Mh which is easy to derive
from the expression of ∇q0,h (23) . �

7.5 Proof of Lemma 3

We use the expression of vh given in Theorem 2. We will only prove the
Lemma if q 6= 0 and (µ3, µ4) = (0, 3). The case q = 0 is omitted since its
proof follows from straightforward modifications.
If (µ3, µ4) = (0, 3) we first remark that Mh � 2Nh and we have the following
bound:

vh � 2N−1
h (27)

We now prove the Lemma.

1. If y, z ∈ R
d and h, k > 0 we have:

√
2 y′N (1)

k z = 2
√

2 E
(m/y) × (m/z)

V + k

≤ 2
√

2 E
1/2

(
(m/y)2(V + h)

(V + k)2

)
× E

1/2

(
(m/z)2

V + h

)

With analogous arguments we also have:

√
2 y′N (2)

k z ≤
√

2 E
1/2

(
(V/y)2(V + h)2

(V + k)4

)
× E

1/2

(
(V/z)2

(V + h)2

)

Now using from the inequality (ac + bd)2 ≤ (a2 + b2)(c2 + d2):

2
(
y′Nkz

)2 ≤ y′Mk,hy × z′Nhz,
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where Mk,h = 4E
∇m∇m′(V +h)

(V +k)2
+ 2E

∇V ∇V ′(V +h)2

(V +k)4
.

Now if z = N−1
h x and y = N−1

k x, we get:

2x′Nhx ≤ x′N−1
k Mk,hN−1

k x.

Since limh→0 Mk,h = Mk, we obtain using (27):

lim sup
h→0+

x′vhx ≤ 2 lim sup
h→0+

x′N−1
h x ≤ x′vkx. (28)

We deduce that
lim sup
h→0+

x′vhx ≤ lim inf
k→0+

x′vk.

The last inequality is obviously an equality and we conclude that for
x ∈ R

p+q+1, limh→0 x′vhx exists and belongs to R
+. By polarization

limh→0 x′vhy exists for all x, y ∈ R
p+q+1. Then one can define v =

limh→0+ vh. From (28), we deduce v � vk if k > 0.

2. Suppose first that C holds. Then from the dominated convergence
theorem we prove that

lim
h→0

Mh = 2 lim
h→0

Nh = 2N.

From Lemma 7 this limit is nondegenerated. The expression of v in
this case follows now from the continuity of the application A 7→ A−1.
Now, suppose that C does not hold. We need to prove that v is degen-
erated. From the previous points, v � vh � 2N−1

h for h > 0. Let λh

be the smallest eigenvalue of the matrix N−1
h , then for each h > 0:

0 ≤ inf
‖x‖=1

x′vx ≤ inf
‖x‖=1

2x′N−1
h x ≤ 2λh.

To prove that v is degenerated this is enough to show that limh→0+ λh =
0. As λh = 1/ρ(Nh) where ρ(Nh) denotes the spectral radius of the
matrix Nh we need to show that limh→0+ ρ(Nh) = ∞ or equivalently
that limh→0+

∑p+q+1
i=1 Nh(i, i) = ∞. But

p+q+1∑

i=1

Nh(i, i) = 2E‖m‖2(V + h)−1 + E‖V ‖2(V + h)−2

and with monotone convergence:

lim
h→0+

2E
‖m‖2

V + h
+ E

‖V ‖2

(V + h)2
= 2E

‖m‖2

V
1V 6=0 + E

‖Y ‖2

V 2
1V 6=0 = ∞.

Hence we conclude that v is degenerated. �
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7.6 Proof of Lemma 4

If a4
0,1Eξ4

0 < 1 then a2
0,1 < 1 and from Theorem 2.1 in [12] there exists

a unique stationary solution of equation (18). The fourth moment of this
solution exists from (7).
If now there exists a stationary solution of equation (18) such that EX 4

0 < ∞.
As

EX4
0 = Eξ4

0E
(
a4

0,0 + a4
0,1X

4
0 + 6a2

0,0a
2
0,1X

2
0 + 4a0,0a

3
0,1X

3
0 + 4a3

0,0a0,1X0

)
,

since Eξ3
0 = 0 implies EX3

0 = 0 we get:

EX4
0 = Eξ4

0E
(
a4

0,0 + a4
0,1X

4
0 + 6a2

0,0a
2
0,1X

2
0

)
.

Hence
(
1 − a4

0,0Eξ4
0

)
EX4

0 = Eξ4
0

(
a4

0,0 + 6a2
0,0a

2
0,1EX2

0

)
and a4

0,1Eξ4
0 < 1. �
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