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Abstract. - We report on zero field cooled magnetization relaxation experiments on a concen-
trated frozen ferrofluid exhibiting a low temperature superspin glass transition. With a method
initially developed for spin glasses, we investigate the field dependence of the relaxations that take
place after different aging times. We extract the typical number of correlated spins involved in the
aging dynamics. This brings important insights into the dynamical correlation length and its time
growth. Our results, consistent with expressions obtained for spin glasses, extend the generality
of these behaviours to the class of superspin glasses. Since the typical flipping time is much larger
for superspins than for atomic spins, our experiments probe a time regime much closer to that of
numerical simulations.

Introduction. – The microscopic mechanisms which
are at the origin of the dramatic slowing down observed
at the glass transition in a variety of complex systems,
such as structural glasses or frustrated and random mag-
nets, remain poorly understood [1]. Nevertheless, recent
developments [2] relate these slow dynamics to the coop-
erative nature of the dynamical processes: for a particle
(or a spin) to move, a part of its neighborhood must be
engaged in this motion. The particle dynamics in glasses
is then heterogeneous both in time and space, leading to
anomalous dynamical fluctuations. The intensity of dy-
namical fluctuations gives an access to the size of these
dynamically correlated domains.
Several theoretical and experimental works have been car-
ried out on the dynamical fluctuations in structural glass
formers and spin glasses [3]. Relevant physical quantities
are four-point correlators [4–9] or their volume integrals
χ4, the - so called - dynamical susceptibility. Experimen-
tal results on structural glasses, although being scarce,
begin to draw a universal picture [10, 11], independent of
the details of a considered system: as the glass transition
is approached, the number of correlated particles increases
but remains modest, around 5 to 10 particles.

Another interesting question concerns the connexion be-
tween structural glasses (with annealed, i.e. self induced,
disorder) and spin glasses (with quenched disorder). In a
recent paper [12], Coniglio and coworkers show that in
the case of quenched disorder, the dynamical suscepti-
bility grows with lag time and reaches a plateau, whose
height increases with decreasing T. The deduced dynam-
ical correlation length is diverging at low temperature,
in the same way as the static non-linear susceptibility.
This behaviour is characteristic of a static phase transi-
tion. On the contrary, for annealed disordered systems,
the authors of [12] obtain a peaked dynamical susceptibil-
ity, that equals zero at large times. This fact is related to
the transient nature of dynamical heterogeneities in this
class of systems.
Lastly, being out of thermodynamical equilibrium, the dy-
namics of glassy systems evolves throughout time. The dy-
namics becomes slower and slower with elapsed time: the
system ages. A challenging question in this field is to relate
aging to the growth of a correlation length ξ(tw). However,
the time invariance breaking complicates the task of exper-
imentalist to extract this time-dependent dynamical cor-
relation length and therefore, no data is available - to our
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knowledge - in structural glass formers. In the case of spin
glasses, alternative experimental methods have been em-
ployed to extract a correlation length, which indeed grows
as the system ages [13, 14]. From the theoretical point of
view, several developments have been achieved to study
this growing lenghtscale associated to aging [6, 15]. Re-
cently, Jaubert and coworkers computed local four-point
correlators in a 3D Edwards-Anderson spin glass model,
at T ∼ 0.7Tg [15]. The deduced correlation length, of the
order of a few lattice spacings, is increasing with the wait-
ing time tw (and diverge in the asymptotic limit), follow-
ing a power law behaviour ξ(tw) ∼ taw, with an exponent
a ∼ 0.1, in agreement with previous numerical works [4–9].

In the present work, we deal with a peculiar system,
namely strongly interacting magnetic nanoparticle disper-
sions. Each nanocolloid bears a permanent magnetic mo-
ment and these systems can thus undergo two distinct
kinds of glass transition, considering either structural or
magnetic degrees of freedom. The first type of glass
transition takes place at ambient temperature in concen-
trated ferrofluids, and is governed by the volume frac-
tion. At high concentrations, a disordered colloidal solid
of nanoparticles is observed (annealed disorder). The dy-
namical properties of this colloidal glass (and more pre-
cisely, their heterogeneous nature) are reported [16, 17].
The second type of glass transition, on which we will focus
here, occurs at low temperature, when the carrier liquid
of a repulsive colloidal dispersion is frozen in zero mag-
netic field (quenched disorder). Magnetic nanoparticles
are thus blocked in a solid matrix, randomly distributed
and orientated, with each particle being magnetically uni-
axial [18]. The only remaining degrees of freedom are the
magnetic moment orientations, guided by (i) the individ-
ual magnetic anisotropy and (ii) dipolar interaction among
magnetic moments, which becomes important at low tem-
perature and sufficiently high volume fraction. Due to the
disorder of the nanoparticle positions and magnetic axes
orientations, the sign and the strength of the dipolar in-
teractions are random. At low temperature, a transition
towards a frustrated state of randomly interacting giant
spins is observed, with slow dynamics and aging. These
observed similarities with spin glasses [19–27] are at the
origin of the term ‘superspin glasses’ which is now used to
describe such materials [28].
Our present aim concerns this superspin glass transition
and more precisely the extraction of a growing number of
correlated superspins as the system ages. We also com-
pare our results with experimental as well as numerical
results obtained for spin glasses. The paper is organized
as follows. In a first section, we present the analytical
method, already employed in spin glasses, to extract the
typical number of correlated superspins. We then describe
the sample and the experimental procedure used in this
study. The results are shown in a following section and
are finally discussed.

Analytical and experimental methods. – For
spin glasses an indirect method relying on the use of mag-
netic field change experiments has been successfully used
to estimate the number of spins participating in the slow
cooperative aging dynamics [13,14,29,30]. Here, we mea-
sure the relaxation of the Zero Field Cooled Magnetization
for various field amplitudes (ZFCM method). The main
idea behind this method is as follows. After a quench in
H = 0 down to a temperature Tm in the spin glass phase
(the first stage of a typical ZFCM relaxation experiment)
spin glass correlations slowly develop among spins. Dur-
ing the waiting time tw (counted as soon as the tempera-
ture Tm is stable) the system is exploring its metastable
configurations in search for an equilibrium state. The typ-
ical free energy barrier B(tw) that can be overcome after
tw involves the cooperative flip of a number of correlated
spins Ns(tw) which is increasing with the age tw. If a
magnetic field H is applied at time tw (second stage of a
ZFCM relaxation experiment, defines t = 0) the Zeeman
energy, EZ(H), which results from the coupling of the
Ns(tw) spins to the field, is expected to depend on Ns and
reduces the typical barrier B(tw) to B(tw) − EZ(H). For
vanishing EZ(H) (i.e. small H) one can expect (e.g. in
the framework of Bouchaud trap models [31]) a maximum
in the relaxation rate S = dM/dlog t at a characteristic
time t ∼ tw. In the presence of non negligible EZ(H) one
expects a shift of the position of this maximum to shorter
times t. This shift can be described as a reduction of the
true age of the system tw to an effective age teff

w (H) :

teff
w (H) = τ0exp

[

B(tw) − EZ(H, Ns(tw))

kBT

]

(1)

or equivalently with tw = τ0e
B(tw)
kB T

teff
w (H) = twexp

[

−
EZ(H, Ns(tw))

kBT

]

(2)

where τ0 is a microscopic flipping time, of the order of
10−12 s in the case of spin glasses. For magnetic nanopar-
ticles, it is usually taken of the order of 10−9 s, but at low
temperature, the effect of the anisotropy barrier may be
to increase it by several orders of magnitude.
According to this scenario, ZFCM relaxation measure-
ments performed at Tm in the glassy phase with probing
fields, H , of increasing intensities give access to the Zee-
man energy EZ(H, Ns(tw)). The Zeeman energy is

EZ (H, Ns(tw)) = M (H, Ns(tw)) .H (3)

M being the magnetization of the set of Ns (super-)spins.
The explicit dependence of M on Ns is not completely
obvious for a disordered system. For a small number of
Ising spins Ns in a random configuration, the magnetiza-

tion is proportional to the typical fluctuation N
1/2
s , and is

independent of the field:

EZ = N1/2
s µH (4)
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where µ stands for the magnetic moment of 1 (super-)spin
in the compound.
On the other hand, at the macroscopic scale, the mag-
netization is an extensive quantity, proportional to the
number of (super-)spins, and (to first order) proportional
to the field via the susceptibility χFC of 1 (super-)spin:

EZ = NsχFCH2 (5)

This quadratic dependence has been found to better fit
to the results for Heisenberg spins [7]. We confront below
our data to both (quadratic or linear) scenarii.

From the H dependence of EZ one can thus extract
the typical number of correlated spins participating in a
spin glass dynamics. Ns can then be used to estimate a
dynamical correlation length, with the simplest approxi-
mation being Ns ∼ ξ3, as assumed in [13,14]. However, in
numerical simulations [4–9], 4-point correlation functions
can be directly determined. It is found that the equilib-
rium correlation function involves a power law prefactor
1/rα, suggesting that the spins which flip coherently
constitute a ”backbone” of fractal dimension d − α. The
calculated values of α are ∼ 0.5 for Ising spins [4, 8] and
∼ 1 for Heisenberg spins [5], hence yielding Ns ∼ ξ2−2.5.
Clearly, in the present experiments without the knowledge
of the effective dimension of the spin backbone, only Ns

can be determined. The precise values that we can infer
for the dynamical correlation length ξ depends on the
backbone dimension.

The sample used here is a chemically synthesized con-
centrated ionic ferrofluid [32], based on maghemite γ −

Fe2O3 nanoparticles dispersed in glycerin. The nanopar-
ticle surface is negatively charged, the dispersion being
thus electrostatically stabilized. Each nanoparticle bears
a permanent magnetic moment µ ∼ 104µB. The particles
are slightly polydisperse in size with a diameter following
a lognormal law with median diameter d0 = 8.6 nm and
polydispersity σ = 0.23 (estimated from a size weighted
Langevin fit of M(H) measurements at room tempera-
ture). The nanoparticle volume fraction Φ is determined
to 15%. The physico-chemical control of the dispersion
(ionic strength, osmotic pressure, etc.) allows a fine tun-
ing of the electrostatic repulsions (in regard to the dipolar
interaction), leading to well dispersed nanoparticles, with-
out the presence of large aggregates or chains.This sample
is similar to a previously studied water based frozen fer-
rofluid [26] but with a lower volume fraction.

The measurements reported here are performed with
a commerical CryogenicLtd S600 and QuantumDesign
MPMS SQUID magnetometers. Prior to the measure-
ments, the sample (mass ≈ 2 mg) is inserted in a glass
capillary (diameter = 1 mm). The sample is introduced
in the SQUID and cooled without the presence of any mag-
netic field, assuring a disordered orientational distribution
of the nanoparticle anistropy axes. Note also, that all the
results presented here are done at temperature below the

fusion point of glycerin, assuring that the nanoparticle ori-
entations are blocked in a rigid matrix.
In order to first characterize our sample and evidence the
low temperature superspin glass transition of the concen-
trated frozen ferrofluid, Field Cooled (FC), Zero Field
Cooled (ZFC) dc susceptibilities as well as real and imag-
inary parts of ac susceptibility at frequencies in the range
0.08 - 800 Hz are measured as a function of tempera-
ture. Then, to access the dynamical correlation length,
we perform ZFCM relaxation experiments at a tempera-
ture Tm = 0.7 Tg for probing fields of increasing intensities
in the range [0 - 8.5 Oe]. Note that in references [13,14,30],
a TRM protocol was used, which is the mirror procedure
of ZFCM (the magnetic field is applied during tw, then
turned off; the magnetization relaxation is recorded).
But, as noted in [33], the field-cooled state of frozen su-
perparamagnetic nanoparticles is strongly out of equilib-
rium, inducing possible aging-like effects even for non-
interacting nanoparticles. We have therefore preferred to
use a ZFCM procedure, in which the sample is cooled in
zero field. This choice does not affect the argument on the
Zeeman energy, presented above.

Results. –

dc and ac susceptibilities. Figure 1 shows the Field
Cooled (FC) and Zero Field Cooled (ZFC) susceptibilities
χFC and χZFC as well as the real part, χ′, and imagi-
nary part, χ′′, of the ac susceptibility at various ω, in the
0.08 - 800 Hz range as a function of temperature. In each
case, a 1 Oe probing field is used. While at high tempera-
ture χFC , χZFC and χ′ exhibit a typical paramagnetic-like
Curie Weiss behaviour, χ′′ being essentially zero, a transi-
tion towards a disordered and frustrated state is observed
below Tg = 67 K at which χZFC displays a cusp and be-
low which χFC becomes nearly temperature independent.
Looking at the ac susceptibility we observed that both χ′

and χ′′ exhibit peaks (at slightly different temperatures
as expected from Kramers-Krönig relations) which shift
towards higher temperatures with increasing pulsation ω.
In order to discriminate between simple superparamag-
netic blocking and a true superspin glass transition [34]
we analyze the ω-shift of the position of χ′ peak using

both an Arrhenius law, 1
ω = τ0e

Ea
kBTg(ω) , and a critical law,

1
ω = τ0(

Tg(ω)
Tg

− 1)−zν .

We find here that the Ahrrenius analysis leads to unphys-
ical parameters (τ0 ∼ 10−17s) whereas the critical analy-
sis can reproduce our observations with reasonable values
: zν ≈ 7, τ0 ≈ 5.10−6 s. The rather long time scale
obtained for τ0 is likely to be related to the individual
slowing down of the superspin flip, due to the individual
anisotropy barriers of the nanoparticles. Indeed, for super-

spins the more pertinent individual time is τ0 ∼ τ̄0e
Ea

kBT ,
where τ̄0 is a typical microscopic attempt time. Refer-
ring to data from [18], obtained with similar nanoparti-
cles, the anisotropy energy of an individual nanoparticle
is Ea/kB=2x300 K, and therefore their flipping time at the
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Fig. 1: Field Cooled, Zero Field Cooled and real and imagi-
nary parts of resp. dc and ac susceptibilities as a function of
temperature.

temperature Tg=67 K and with an attempt time τ̄0 ∼ 10−9

s is of the order of the microsecond. This order of magni-
tude is in good agreement with our experimental results.
From this first magnetic characterization of our frozen fer-
rofluid sample, and more precisely from the critical slow-
ing down reported near Tg, the transition towards a disor-
dered state observed at low temperature is very likely to
be ascribed to a superspin glass transition.

ZFCM relaxations. In order to illustrate what hap-
pens to the ZFCM relaxation when the intensity of the
probing field H is increased, we have respectively plotted
in Figure 2 and Figure 3 the time dependence of the mag-
netization M , normalized by its Field Cooled value MFC ,
and the corresponding relaxation rate d ZFCM/d log(t),
recorded at Tm = 0.7 Tg for a fixed waiting time tw =
18000 s. The probing field was varied in the range 1 -
8.5 Oe. For a weak field (1 Oe) a peak of the relaxation
rate in Figure 3 is clearly observed at t ∼ tw, whereas
an increase in the field intensity yields a shift of the peak
position towards reduced times t ∼ teff

w (H).
Extracting the various teff

w (H) for different tw and us-
ing the expression of the Zeeman energy −EZ/kBT =
ln(teff

w /tw) we are able to plot on Figure 4 EZ(H, Ns(tw))
as a function of H2 for the different tw, in tw=3000 - 24000
sec range. As the temperature equilibration time, after
the quench down to 0.7Tg, is of the order of 200 seconds,
no accurate data is obtained below tw = 3000 s. In the
probed range of tw, we observe that our data in superspin
glass correspond better to a quadradic dependence of EZ

in H (this behaviour is explicited in the inset of Figure 4).
In order to extract the typical number of correlated spins
participating in the dynamics at time tw we performed
linear fits of the data to H2 and extracted the slopes. The
FC susceptibility per superspin, χFC , of Equation 5 is ex-

Fig. 2: ZFCM relaxations M(t, tw = 18000s, H) normalized by
the Field Cooled magnetisation MF C . Experiments are per-
formed at Tm = 0.7Tg and here recorded at fixed tw = 18000 s
and increasing probing field H . The initial time t = 0 is de-
fined by the switching on of the magnetic field. A vertical shift
(multiplicative coefficient) has been performed for sake of clar-
ity. Full lines are 4th order polynom fits of the data, in order
to extract the relaxation rate, dM/dlog t, presented Fig. 3

Fig. 3: Relaxation rate dM/dlog t associated with ZFCM relax-
ation performed at Tm = 0.7Tg recorded at fixed tw = 18000 s
and increasing probing field H . A vertical shift (multiplicative
coefficient) has been performed for sake of clarity.

tracted from the DC value (open circles) of Figure 1, and
from the sample concentration and volume.

The typical number of correlated spins Ns(tw) found is
plotted as a function of tw in Figure 5. As can be seen,
Ns (or equivalently ξ) grows with increasing tw. The Ns

values found for our frozen ferrofluid, are rather small
(∼ 102), compared to typical values obtained for spin
glasses (∼ 104

− 106). As discussed above, the dynam-
ical correlation length ξ (normalized to the interparticle
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Fig. 4: Zeeman energies estimated from ZFCM relaxations vs.
field squared for various waiting times in the range [3 ksec -
24ksec]. Inset : logarithmic representation: ln(EZ/kBT ) as
a function of ln(H/1Oe). Dotted lines with slopes 1 and 2
are added to support the quadratic H field dependence of the
Zeeman energy.

distance ξ0) is related to Ns via

ξ

ξ0
∼ N

1
d−α
s (6)

where d−α stands for the effective dimension of the groups
of spins flipping coherently. Whatever the precise value of
d − α (between 2 and 3, as indicated by numerical simu-
lations [4–9]), the corresponding values of ξ remain in the
order of 5-10 ξ0.

Fig. 5: Number of correlated superspins as a function of the
waiting time. The solid line is a power law fit of the data.

Discussion. – So far, we have been able to apply
to the case of a superspin glass the method proposed in

[13, 14, 30] to extract a dynamical correlation length in
spin glasses. However, the typical number of correlated
superspins is smaller than that obtained in spin glasses
[13, 14] by 2-3 orders of magnitude. Indeed in [13] it was
shown that, by simply considering d − α = 3, the results
from several Heisenberg-like atomic spin glasses could be
well approximated by

ξ

ξ0
∼

(

tw
τ0

)
1

zeff

(7)

where τ0 is an individual time and 1/zeff is an effective
dynamical exponent found to be ∼ 0.15T/Tg. This ex-
pression can be seen as an extrapolation below Tg of the
dynamic scaling hypothesis, with zeff (Tg) being the usual
dynamic exponent z. Further experiments on an Ising spin
glass [14] have shown that this simple power law behaviour
must be modified to a more general expression, while it can
be seen in Fig.5 that our superspin results are already well
reproduced by the simple power law Eq.7.

In this expression we see that ξ depends on tw through
the ratio tw/τ0. However, if τ0 ∼ 10−12 s for individual
spins in a spin glass, in superspin glasses, the pertinent

individual time given by τ0 ∼ τ̄0e
Ea

kBT is several orders of
magnitude larger than τ̄0, up to microseconds. Hence, it
is clear that we probe a much shorter aging regime of ξ
growth in a superspin glass than in an atomic spin glass.
This is likely to be the main reason why we observe such
small values of ξ in our frozen ferrofluid sample.

Remarkably, in this regime of smaller numbers of corre-
lated superspins, the growth of the dynamical correlation
length follows a power law, with an exponent 1/zeff =
0.13 ± 0.015, which is in good agreement with the value
0.15T/Tg = 0.105 obtained for Heisenberg-like spin glasses
[13]. The anisotropy barriers in our nanoparticles are not
very large (flipping time τ0 of the order of hundreds of mi-
croseconds in the temperature range of the relaxations),
and it is therefore plausible to consider that both super-
spin experiments and spin glasses simulations explore simi-
lar effective aging regimes, tw/τ0. Indeed, in Monte Carlo
numerical simulations of spin glasses [6–9], the waiting
times are usually of 105

− 106 Monte Carlo Steps (MCS)
with an attempt time of 1 MCS. Thus, MC simulations
explore a comparable short aging regime.
However, the numerical results for Ising spins [4, 6–9] fol-
low a power law behaviour, similar to Eq 7, whereas a
deviation from such behaviour is found in the Heisenberg
case [5]. On the contrary, in experiments, the power law
is observed in Heisenberg-like spin glasses, but significant
deviations are observed for Ising cases [14]. The present
discrepancy between experiments (in real time) and nu-
merical simulations (in their own distinct time regime) is
not yet clearly understood [35].

The typical number of correlated superspins, reached
in a superspin glass during the experimental timescale, is
much smaller than in the case of an atomic spin glass. As
noted in [14, 29, 37] for spin glasses, the number of corre-
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lated spins involved in the dynamics must be large enough
for such complex phenomena as “rejuvenation and mem-
ory effects” to occur. This is because these phenomena
involve a hierarchy of embedded active length scales. Our
results therefore provide a very plausible explanation of
the difficulty to observe clear rejuvenation and memory
effects in superspin glasses [14,36–38], as already proposed
in [39]

Conclusion. – In this paper, we have reported the
results of ZFCM relaxation experiments performed in the
superspin glass phase of a concentrated frozen ferrofluid
with the anisotropy axis of each nanoparticle randomly
orientated. The situation with orientated anisotropy axis
will be explored in a forthcoming paper. With the aim
of extracting the dynamical correlation length and its age
dependence in the superspin glass phase, we used probing
fields of increasing intensities and analyzed our data fol-
lowing a method successfully applied to spin glasses. Our
results show that the typical number of superspins par-
ticipating in the slow out-of-equilibrium dynamics (and
hence the correlation length) in a superspin glass follows
the same growth law but its value is much smaller than in
a spin glass. This difference is likely to be attributed to
the much longer individual time, τ0, required for a super-
spin flip compared to a single spin flip. Consequently,
our experiments on a superspin glass allow to probe a
much shorter aging regime, tw/τ0, of ξ growth than exper-
iments performed on spin glasses. Numerical simulations
of spin glasses adapted to superspin glasses (with magnetic
dipole-dipole interactions) appear thus as a promising tool
to understand strongly interacting nanoparticle systems.
They would in addition give new insights in the general
problem of the collective behaviour of randomly located
dipoles.
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