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Using an approximation by a set-valued dynamical system, this paper studies a class of non Markovian and non homogeneous stochastic processes on a finite state space. It provides an unified approach to simulated annealing type processes. It permits to study new models of vertex reinforced random walks and new models of learning in games including Markovian fictitious play.

Introduction

Let E be a finite set called the state space, M = M(E) the set of Markov matrices over E, and Σ a compact convex subset of an Euclidean space called the observation space. The set Σ will be equipped with the distance induced by the Euclidean norm • on the observation space. Let (Ω, F , P) be a probability space equipped with an increasing sequence of sub σ-fields {F n , n ∈ N} : F n ⊂ F n+1 ⊂ F .

Our main object of interest is a discrete time random process (X, M, V ) = ((X n , M n , V n )) defined on (Ω, F , P) taking values in E × M(E) × Σ such that:

(i) (X, M, V ) is adapted (to {F n , n ∈ N}), meaning that (X n , M n , V n ) is
F n -measurable for each n.

(ii) For all y ∈ E P(X n+1 = y|F n ) = M n (X n , y).

(

) 1 
We refer to X n (respectively V n ) as the state (respectively, the observation) variable at time n; and to the sequence (M n ) as the strategy. We let

v n = 1 n n i=1 V i
denote the empirical average up to time n of the sequence of observations. A well studied situation is when

M n = K(v n ) (2) 
where K maps continuously probability vectors to irreducible Markov matrices and

V n+1 = H(X n+1 , v n )
for some map H : E × Σ → Σ. In such a case (X n ) is called a "Markov chain controlled" by (v n ) and the behavior of (v n ) can be analyzed through the

ODE v = -v + x π(v)(x)H(x, v) (3) 
where π(v) is the invariant probability of K(v). This approach to controlled Markov chains goes back to the work of [START_REF] Métivier | Théorèmes de convergence presque sure pour une classe d'algorithmes stochastiques à pas décroissant[END_REF] (see also the books Benveniste, [START_REF] Benveniste | Stochastic Approximation and Adaptive Algorithms[END_REF], [START_REF] Duflo | Algorithmes Stochastiques[END_REF]) strongly influenced by the pioneered works of [START_REF] Ljung | Analysis of recursive stochastic algorithms[END_REF], Kushner and Clark (1978) on the ODE's method. It has been used in [START_REF] Benaïm | Vertex Reinforced Random Walks and a Conjecture of Pemantle[END_REF] for analyzing certain vertex reinforced random walks on finite graphs.

The main purpose of this paper is to investigate the long term behavior of (v n ) under less stringent assumptions than [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF]. In particular we are interested in situations where:

(a) M n may depend on other (non-observable or hidden) variables than v n and;

(b) The closure of {M n : n ≥ 0} may contain degenerate (i.e non irreducible) Markov matrices.

Situation (a) typically occurs in game theory where players may have only partial information on the actions played by their opponents, and (b) is motivated by stochastic optimization algorithms.

Relying on a recent paper by [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF] it will be shown that under certain assumptions (involving estimates on the log-Sobolev and spectral gap constants of (M n )) the asymptotic behavior can be described in term of a certain set-valued deterministic dynamical system that generalizes the ODE [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF]. Applications to non-homogeneous Markov chains, vertex reinforced random walks and learning processes in game theory will be given.

Outline of contents

The organization of the paper is as follows. Section 2 states the notation, hypotheses and the main result. Our main assumption (Hypothesis 2.1) is somewhat abstract and more tractable conditions (expressed in term of spectral gaps and log-Sobolev constants) are given in section 3. Section 4 is devoted to examples and applications. The proof of the main result is postponed to section 5.

Notation, hypotheses and main results

A probability vector (or measure) over E is a map µ : E → R + such that x µ(x) = 1, and a Markov matrix is a map M :

E × E → R + , such that ∀x ∈ E, y M(x, y) = 1.
We let ∆ = ∆(E) denote the space of probability vectors over E and M = M(E) denote the set of Markov matrices on E.

Given a function f : E → R and µ ∈ ∆ we use the notation

µf = x µ(x)f (x).
A Markov matrix M on E acts on functions f and measures µ according to the formulas

Mf (x) = y M(x, y)f (y), µM(y) = x µ(x)M(x, y).
We let M n denote the Markov matrix obtained by matrix multiplication.

Equivalently

M n f = M(M n-1 f ) for n ≥ 1, with the convention that M 0 f = f.
Points x, y ∈ E are said to be related if there exist i, j ≥ 0 (depending on x and y) such that M i (x, y) > 0 and M j (y, x) > 0. An equivalence class for this relation is called a recurrent class. The Markov matrix M on E is said indecomposable if it has a unique recurrent class (possibly periodic) and is said irreducible if this recurrent class is E.

By standard results, indecomposability of M implies that M possesses a unique invariant probability measure π characterized by the relation πM = π. Moreover, the generator L = -I + M has kernel R1 and its restriction to {f : πf = 0} is an isomorphism. It then follows that -L admits a pseudo "inverse" Q characterized by Q1 = 0, and

Q(I -M) = (I -M)Q = I -Π;
where Π ∈ M denote the matrix defined by Π(x, y) = π(y). To shorten notation we also call Q the pseudo inverse of M. Given a vector f and a matrix N, we set |f | = max |f (x)| and |N| = max x,y |N(x, y)|.

Our main assumption is the following: Hypothesis 2.1 The matrices (M n ) are indecomposable and their pseudo inverses (Q n ) and invariant probabilities (π n ) satisfy almost surely

(i) lim n→∞ |Q n | 2 log(n) n = 0, (ii) lim n→∞ |Q n+1 -Q n | = 0, (iii) lim n→∞ |π n+1 -π n | = 0.
The verification of hypothesis 2.1 is the subject of section 3 where sufficient and more tractable conditions will be detailed.

Let Vn : E → Σ be an F n -measurable map defined by

Vn (x) = E(V n+1 1 X n+1 =x |F n ) M n (X n , x)
for M n (X n , x) = 0. In addition to hypothesis 2.1 we assume that Hypothesis 2.2

lim n→∞ M n+1 Q n+1 ( Vn+1 -Vn ) = 0
almost surely.

Remark 2.3

Here are some sufficient conditions ensuring hypothesis 2.2.

(i) Assume that x → Vn+1 (x) -Vn (x) is a constant map. Then hypothesis 2.2 holds since Q n 1 = 0. This will be used in section 4.

(ii) More generally, let T Σ be the affine hull of Σ (the smallest affine space containing Σ). Assume that for all n ∈ N there exists a vector A n ∈ T Σ and a map B n :

E → T Σ such that (a) For all x ∈ E, Vn+1 (x) -Vn (x) = A n + B n (x) (b) lim sup n→∞ |B n | n log(n) < ∞, almost surely. Then |M n+1 Q n+1 (( Vn+1 -Vn ))| = |M n+1 Q n+1 B n | ≤ |Q n+1 ||B n | → 0 almost surely by hypothesis 2.1.
(iii) Assume that M n (x, y) = π n (y). Then M n+1 Q n+1 = 0 so that hypothesis 2.2 holds.

Adapted set-valued dynamical systems

The purpose of this section is to introduce certain differential inclusions on Σ that will prove to be useful for analyzing the long term behavior of (v n ).

Recall that we let π n denote the invariant probability of M n . Let

θ n = π n Vn = x π n (x) Vn (x). (4) 
We let C n ⊂ Σ × Σ denote the topological support of the law of (v n , θ n ). That is the smallest closed set F ⊂ Σ × Σ such that

P((v n , θ n ) ∈ F ) = 1.
Let clos{C n } denote the set of all possible limit points z = lim z n k with

z n k ∈ C n k and n k → ∞. It is easily seen that clos{C n } is a nonempty compact subset of Σ × Σ. A nonempty set G ⊂ Σ × Σ is called a graph (or a bundle) over Σ, if the projection p : G → Σ, (u, v) → u is onto. A graph G over Σ defines a set-valued function mapping each point u ∈ Σ to a set G(u) = {v ∈ Σ : (u, v) ∈ G}. Definition 2.4 A set C ⊂ Σ × Σ is said to be adapted to {(v n , θ n )} (or simply adapted) if (i) C is a closed graph over Σ.
(ii) For all u ∈ Σ, C(u) is a nonempty convex set.

(iii) clos{C n } ⊂ C.
To an adapted set C we associate the differential inclusion

v ∈ -v + C(v). (5) 
A solution to ( 5) is an absolutely continuous mapping v : R → Σ verifying v(t) + v(t) ∈ C(v(t)) for almost every t. A set A ⊂ Σ is said to be invariant if for all x ∈ A there exists a solution x to (5) with x(0) = x and such that x(R) ⊂ A.

Given a set A ⊂ Σ and (x, y) ∈ A 2 we write x ֒→ A y if for every ε > 0 and T > 0 there exists an integer n ∈ N, solutions x 1 , . . . x n to (5) and real numbers t 1 , t 2 , . . . , t n greater than T such that

(a) x i ([0, t i ]) ⊂ A, (b) x i (t i ) -x i+1 (0) ≤ ε for all i = 1, . . . , n -1, (c) x 1 (0) -x ≤ ε and x n (t n ) -y ≤ ε.
Definition 2.5 A set A ⊂ Σ is said to be internally chain transitive provided A is compact and x ֒→ A y for all x, y ∈ A.

It is not hard to verify (see e.g Benaïm, Hofbauer and Sorin (2005) Lemma 3.5) that an internally chain transitive set is invariant.

The limit set of (v n ) is the set L = L((v n )) consisting of all points p = lim v n k for some sequence n k → ∞. The next theorem 2.6 is the main result of the paper. Its proof heavily relies on Benaïm, Hofbauer and Sorin (2005) and is given in section 5.

Theorem 2.6 Assume that hypotheses 2.1 and 2.2 hold. Let C be an adapted graph. Then the limit set of (v n ) is an internally chain transitive set for the differential inclusion v ∈ -v + C(v).

Background : How to use Theorem 2.6

The notion of "internally chain transitive set" was introduced by Benaïm and Hirsch (1996) in order to analyze the long term behavior of certain perturbations of flows and has been recently extended to multivalued dynamical systems by [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF]. We refer the reader to this paper for more details, examples and properties. For convenience this section briefly reviews a few useful properties of internally chain transitive sets. The differential inclusion (5) induces a set-valued dynamical system {Φ t } t∈R defined by

Φ t (x) = {x(t) : x is a solution to (5) with x(0) = x ∈ Σ}.
A non empty compact set A is an attracting set if there exists a neighborhood U of A and a function t from (0, ε 0 ) to R + with ε 0 > 0 such that Φ t (U) ⊂ A ε for all ε < ε 0 and t ≥ t(ε), where A ε stands for the ε-neighborhood of A. If additionally A is invariant, then A is an attractor.

Given an attracting set (resp. attractor) A, its basin of attraction is the set

B(A) = {x ∈ Σ : ∃t ≥ 0, Φ t (x) ∈ U}.
When B(A) = Σ, A is a globally attracting set (resp. a global attractor). Given a closed invariant set S, the induced dynamical system Φ S on S is defined by

Φ S t (x) = {x(t) :
x is a solution to (5) with x(0) = x and x(R) ⊂ S}.

An invariant set S is attractor free if there exists no proper subset A of S which is an attractor for Φ S .

Throughout the remainder of this section we let L denote an internally chain transitive set (for instance the limit set L = L(v n )). Properties of L will then be obtained through the next result [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF] 

(i) Φ t (U) ⊂ U for all t ≥ 0, (ii) V -1 (0) = Λ, (iii) V is continuous and for all x ∈ U \Λ, y ∈ Φ t (x) and t > 0, V (y) < V (x).
Then Λ contains an attractor whose basin contains U.

The map V introduced in this proposition is called a strong Lyapounov function associated to Λ.

Let now Λ be a subset of Σ and

U ⊂ Σ an open neighborhood of Λ. A continuous function V : U → R is called a Lyapunov function for Λ ⊂ Σ if V (y) < V (x) for all x ∈ U \ Λ, y ∈ Φ t (x), t > 0; and V (y) ≤ V (x) for all x ∈ Λ, y ∈ Φ t (x) and t ≥ 0.
Proposition 2.9 (Lyapounov) Suppose V : U → R is a Lyapunov function for Λ and L ⊂ U. Assume that V (Λ) has an empty interior. Then L ⊂ Λ and the restriction of V to L is constant.

Verification of hypothesis 2.1

This section is devoted to the verification of Hypothesis 2.1. The results given here will be used in section 4 to analyze specific situations. This proposition is a direct consequence of the next lemma. Lemma 3.2 Let T M(E) be the space of matrices K = K(x, y) such that y K(x, y) = 0. The map Q : M ind (E) → T M(E) which associates to M its pseudo inverse and the map Π : M ind (E) → ∆ which associates to M its invariant measure are smooth maps.

Estimates based on compactness

Proof : Set M ∈ M ind (E). The invariant probability of M, Π(M), is solution to φ(M, π) = 0 where φ : M ind (E) × ∆ → T ∆, is the smooth map defined by φ(M, µ) = µ(I -M), with T ∆ = {µ : E → R : x µ(x) = 0}. For all ν ∈ T ∆, ∂φ ∂µ (M, µ).ν = ν(I -M).
Hence, by uniqueness of the invariant probability measure, ∂φ ∂µ (M, µ) has kernel {0} and the fact that Π is smooth follows from the implicit function theorem.

We denote by Π(M) ∈ M(E) the matrix defined by Π(M)(x, y) = Π(M)(y). The pseudo inverse of M is solution to ψ(M, Q) = 0 where ψ :

M ind (E) × T M(E) → T M(E), is the smooth map defined by ψ(M, Q) = Q(I -M) -(I -Π(M)). For all A ∈ T M(E) ∂ψ ∂Q (M, Q).A = A(I -M).
Hence, by uniqueness of the invariant probability measure, ∂ψ ∂Q (M, Q) has kernel {0} and the fact that Q depends smoothly on M follows from the implicit function theorem. QED

Let K be a continuous mapping from Γ a compact set into M(E) such that K(w) is indecomposable for all w ∈ Γ. Assume (w n ) is a sequence of Γ-valued random variables such that M n = K(w n ). If in addition lim n→∞ (M n+1 - M n ) = 0, then proposition 3.1 applies.

Estimates based on log-Sobolev and spectral gap constants

Propositions 3.3 and 3.4 below can be used to verify hypothesis 2.1 when the sequence (M n ) is not bounded away from M ind (E). The strategy is then to verify assertions (ii) and (iii) of proposition 3.3 and to use the estimates given by proposition 3.4 to verify assertion (i).

Proposition 3.3 Suppose that the matrices (M n ) are indecomposable and that their pseudo inverse (Q n ) and invariant probabilities (π n ) satisfy amost surely

(i) lim n→∞ |Q n | 2 log(n) n = 0, (ii) lim sup n→∞ |M n+1 -M n | n log(n) < ∞ (iii) lim sup n→∞ |π n+1 -π n | n log(n) < ∞.
Then hypothesis 2.1 holds.

Proof : The proof amounts to show that hypothesis 2.1 (ii) holds. Set

L n = M n -I and Π n = Π(M n ). Using the characterization of Q n one has Q n+1 (L n+1 -L n ) + (Q n+1 -Q n )L n = Π n+1 -Π n .
Hence,

Q n+1 (L n+1 -L n )Q n + (Q n+1 -Q n )L n Q n = (Π n+1 -Π n )Q n .
That is (using

Q n Π n = Q n Π n+1 = 0 and L n Q n = Π n -I) Q n+1 (M n+1 -M n )Q n + (Q n -Q n+1 ) = (Π n+1 -Π n )Q n .
Therefore

|Q n -Q n+1 | ≤ c(|Q n+1 ||Q n ||M n+1 -M n | + |π n+1 -π n ||Q n |),
for some constant c > 0 and conditions (i), (ii), (iii) imply hypothesis 2.1 (ii). QED Let M irr (E) denote the open set of irreducible Markov matrices. Let M ∈ M irr (E) with invariant probability π and let f : E → R. The variance, entropy and energy of f are respectively defined as

var(f ) = π(f 2 ) -(πf ) 2 L(f ) = x f (x) 2 log f (x) 2 πf 2 π(x) E(f ) = 1 2 x,y (f (y) -f (x)) 2 M(x, y)π(x).
The spectral gap and log-Sobolev constants of M are then defined to be

λ = min E(f ) var(f ) : var(f ) = 0 α = min E(f ) L(f ) : L(f ) = 0 .
The following estimates follows from the quantitative results for finite Markov chains as given in Saloff-Coste (1997) theorems.

Proposition 3.4 Let M ∈ M irr (E) with invariant probability π log-Sobolev constant α and spectral gap λ. For all (x, y) ∈ E the following estimates hold:

(i) |Q(x, y)| ≤ π(y) π(x) 1 λ (ii) |Q(x, y)| ≤ 1 α log + log 1 π(x) + e λ
where log + (t) = max(0, log(t)).

In particular

|Q| ≤ 1 α log + log 1 π * + e 2 and |Q| ≤ 1 λ log + log 1 π * log((1 -π * )/π * ) 1 -2π * ) + e .
Proof : Let L = -I + M and let {P t } be the continuous time semi-group P t = e tL . Then Q can be written as

Q(x, y) = ∞ 0 (P t (x, y) -π(y))dt.
The first assertion then easily follows from the estimate

|P t (x, y) -π(y)| ≤ π(y) π(x) e -λt
whose proof can be found in Saloff-Coste (1997, Corollary 2.1.5).

We now pass to the second assertion. If π(x) ≥ e -2 the inequality to be proved follows from inequality (i). Hence we assume that π(x) < e -2 , and we follow the line of the proof of Theorem 2.2.5 in Saloff-Coste (1997). For q ≥ 1, we let ||.|| q denotes the norm in l q (π). We let P * t denote the adjoint of P t in l 2 (π), and p t (x, y) = p * t (y, x) = P t (x, y)/π(y). Let g x denote the function given by g x (y) = 0 for x = y and g x (x) = 1/π(x). Then

|P t (x, y) -π(y)| ≤ ||p t (x, .) -1|| 2 = ||(P * t -π)g x || 2
Therefore 

|P t+s (x, y) -π(y)| ≤ ||p t+s (x, .) -1|| 2 ≤ ||P * t -π|| 2→2 ||P * s g x || 2 ≤ e -
|P t+s (x, y) -π(y)| ≤ e -λt π(x) -1/q(s) . Hence |Q(x, y)| ≤ 2s + 1 λ π(x) -1/q(s) . For s = 1 2α log + (log( 1 π(x)
)) this gives the desired result. The uniform bounds on |Q| follow from the rough estimates

1 -2π * log((1 -π * )/π * ) λ ≤ α ≤ λ/2
given in Saloff-Coste (1997, Lemma 2.2.2 and Corollary 2.2.10) QED

Some applications

In sections 4.1 and 4.2, we are interested in the long term behavior of the empirical occupation measure of the process. We then let Σ = ∆, V n = δ Xn and

v n = 1 n n i=1 δ X i .
Hence, Vn (x) = δ x and θ n = π n .

Markov chains

Let (M n ) be a deterministic (or F 0 measurable) sequence of Markov matrices over E. A non homogeneous Markov chain with transition matrices (M n ) is an adapted process (X n ) on E verifying (1).

Proposition 4.1 Let L((π n )) ⊂ ∆ denote the limit set of (π n ) and let conv[L((π n ))] denote its convex hull. Suppose that hypothesis 2.1 holds. Then L((v n )) ⊂ conv[L((π n ))] with probability one.

Proof : 

The set C = ∆ × conv[L((π n ))] is adapted to (v n , π n ). The induced differential equation v ∈ -v + conv[L((π n ))]

Markov chains with rare transitions

Among the well studied chains that motivate our analysis are the chains with rare transitions. Let M 0 be an irreducible Markov matrix over E, reversible with respect to a reference probability π 0 . That is π 0 (x)M 0 (x, y) = π 0 (y)M 0 (y, x).

We sometimes call such an M 0 , an exploration matrix since it provides a way to explore the state space.

Let W : E × E → R, be a map and (β n ) a sequence of positive numbers. Set M n (x, y) = M(β n , x, y)

where

M(β, x, y) =    M 0 (x, y)ψ[exp(-βW (x, y))] if x = y, 1 -y =x M(β, x, y) if x = y, and 
ψ(u) = min(1, u) (7) 
or

ψ(u) = u 1 + u .
In particular, let U : E → R be a map, and let

W (x, y) = U(y) -U(x), (8) 
then (M n ) are the transition matrices of the so-called Metropolis-Hasting (β n = β) or simulated annealing (β n → ∞) algorithm [START_REF] Hajek | Cooling schedules for optimal annealing[END_REF], [START_REF] Holley | Simulated Annealing via Sobolev Inequalities[END_REF], [START_REF] Miclo | Recuit simulé sans potentiel sur un ensemble fini[END_REF]).

Consider the Markov chain with rare transitions [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF] where W is given by [START_REF] Benaïm | Self-interacting diffusions II: Convergence in Law[END_REF]. For x, y ∈ E a path γ from x to y is a sequence of points x 0 = x, x 1 , . . . x n = y such that M 0 (x i , x i+1 ) > 0. We let Γ x,y denote the set of all paths from x to y. The elevation from x to y is defined as Elev(x, y) = min{max{U(z) : z ∈ γ} : γ ∈ Γ x,y } and the energy barrier as

U # = max{Elev(x, y) -U(x) -U(y) + minU : x ∈ E, y ∈ E} (9) 
Proposition 4.4 Consider the Markov chain with rare transitions (6) with W given by [START_REF] Benaïm | Self-interacting diffusions II: Convergence in Law[END_REF]. Assume that β n = β(n) where β : R + → R + is differentiable and verify

0 ≤ β(t) ≤ A t for some A < 1/2U # . Then v n → π where π(x) ∝ π 0 (x)1 ArgminU (x).
Proof : Our first goal is to verify hypothesis 2.1. Let λ(β) denote the spectral gap of M(β, •, •). It follows from Theorem 2.1 in [START_REF] Holley | Simulated Annealing via Sobolev Inequalities[END_REF]

) that lim β→∞ log(λ(β)) β = -U # . ( 10 
)
The invariant probability measure of M(β, •, •) is the Gibbs measure

π β (x) ∝ exp(-βU(x))π 0 (x). ( 11 
)
Since

β n ≤ β 1 + A log(n)
, by application of the last inequality of Proposition 3.4, one gets that hypothesis 2.1 (i) holds.

For x = y ∂M(β, x, y) ∂β = -M 0 (x, y)W (x, y)ψ ′ (exp(-βW (x, y)) exp(-βW (x, y)).

Using the fact that |ψ ′ (t)t| ≤ 1, one gets that

∂M(β, x, y) ∂β ≤ c
for some c > 0. Hence by the mean value theorem

|M n+1 -M n | ≤ c|β n+1 -β n | ≤ (Ac)/n.
This proves assertion (ii) of proposition 3.3. The proof of assertion (iii) is similar since

∂π β (x) ∂β = |π β (x)(U(x) - y π β (y)U(y))| ≤ 2||U||.
This concludes the verification of hypothesis 2.1.

Here π n (x) ∝ exp(-β n U(x))π 0 (x) so that π n → π. The result follows from Proposition 4.1. QED Remark 4.5 For general W, it is always possible to define a quasipotential U (defined in term of W and M 0 ) and an energy barrier U # (in general not given by ( 9)) such that both equations ( 10) and ( 11) hold. We refer the reader to [START_REF] Miclo | Recuit simulé sans potentiel sur un ensemble fini[END_REF] for more details and proofs. With this quasi-potential and barrier Proposition 4.4 holds.

Vertex reinforced random walks

Vertex-reinforced random walks (VRRW) were first introduced by [START_REF] Pemantle | Random processes with reinforcement[END_REF][START_REF] Pemantle | Vertex Reinforced Random Walk[END_REF].

Suppose F n = σ(X 1 , . . . , X n ). A general VRRW on E is defined by

M n (x, y) = K n (x, y, v n )
where for each integer n and v ∈ ∆, K n (•, •, v) is a deterministic Markov matrix over E, which specifies the rule of the reinforcement.

The following result was proved in [START_REF] Benaïm | Vertex Reinforced Random Walks and a Conjecture of Pemantle[END_REF].

Proposition 4.6 Assume that there exists a [0, 1]-valued sequence ǫ n converging to 0 at infinity such that K n (x, y, v) = K(x, y, ǫ n , v), that the map

(ǫ, v) → K(•, •, ǫ, v) is continuous on [0, 1] × ∆ and that K(•, •, ǫ, v) is inde- composable for each (ǫ, v) ∈ [0, 1]×∆. Let π(v)
denote the invariant measure of K(x, y, 0, v). Then the limit set of (v n ) is almost surely an internally chain transitive set of the differential equation

v = -v + π(v). ( 12 
)
Proof : This follows from Proposition 3.1 and Theorem 2.6. QED

Linear reinforcement

The original VRRW as defined by [START_REF] Pemantle | Random processes with reinforcement[END_REF][START_REF] Pemantle | Vertex Reinforced Random Walk[END_REF] corresponds to a linear reinforcement:

M n (x, y) ∝ U(x, y) 1 + n i=1 1 X i =y ,
where U is a matrix with nonnegative entries.

We will here assume that U has positive entries. Then, for each n, M n is irreducible. With the notation of the previous paragraph,

M n (x, y) = K(x, y, 1/n, v n ), ( 13 
)
where for (ǫ, v)

∈ [0, 1] × ∆, K(x, y, ǫ, v) ∝ U(x, y) [ǫ + v(y)] . (14) 
The mapping (ǫ, v)

→ K(•, •, ǫ, v) is continuous on [0, 1] × ∆.
On a finite graph, this process was first analyzed by Pemantle (1992) for symmetric positive matrices (U(x, y) = U(y, x) > 0) and later by [START_REF] Benaïm | Vertex Reinforced Random Walks and a Conjecture of Pemantle[END_REF] for general positive matrices using proposition 4.6. As an example of what can be proved is the following result first due to Pemantle (1992) Proposition 4.7 Suppose U(x, y) = U(y, x) > 0. Then the limit set of (v n ) is a compact connected subset of the critical set of the map

v → U(v, v) = x,y U(x, y)v(x)v(y).
Proof : This follows from the fact that v → U(v, v) is a strict lyapounov function of [START_REF] Brown | Iterative solution of games by fictitious play[END_REF] whose critical points are the zeroes of [START_REF] Brown | Iterative solution of games by fictitious play[END_REF]. QED When the matrix U has zero entries, K(x, y, 0, v) may no longer be indecomposable for some v ∈ ∂∆ and proposition 4.6 cannot be applied. This makes the analysis of VRRW with linear reinforcement much more difficult. Beautiful results on Z and Z d have been obtained by [START_REF] Pemantle | Vertex-reinforced random walk on Z has finite range[END_REF], [START_REF] Volkov | Vertex-reinforced random walks on arbitrary graphs[END_REF] and Tarres (2004). We refer the reader to Pemantle (2007) for a survey and further references.

Non homogeneous linear reinforcement

Let (a n ) be a positive sequence and denote r n = n i=1 a i . We will assume that lim n→∞ r n+1 rn = 1. Consider the VRRW corresponding to:

M n (x, y) ∝ U(x, y) 1 + n i=1 a i 1 X i =y ,
where U is a matrix with positive entries. Equivalently,

M n (x, y) = K(x, y, ǫ n , w n ) with K(x, y, ǫ, w) ∝ U(x, y) [ǫ + w(y)] , (15) 
ǫ n = 1/r n and w n = 1 rn n i=1 a i δ X i . Using proposition 3.1, it is not hard to check that hypothesis 2.1 and hypothesis 2.2 (with V i = δ X i ) are satisfied, so that theorem 2.6 applies.

Since δ X

i = v i + (i -1)(v i -v i-1
), using the convention r 0 = v 0 = 0,

w n = 1 r n n i=1 (r i -r i-1 )v i + 1 r n n i=1 (i -1)(v i -v i-1 )a i = v n + 1 r n n-1 i=1 r i (v i -v i+1 ) + 1 r n n-1 i=1 ia i+1 (v i+1 -v i ) = v n - 1 r n n i=1 (r i -ia i+1 )(v i+1 -v i ). Since |v i+1 -v i | ≤ 2/i, |w n -v n | ≤ 2 r n n i=1 r i i -a i+1 .
Consider now the two following classes of sequences (a i ):

(i) a i = a(i) where a is a nondecreasing continuous function such that for all positive s ∈]0, 1], lim t→∞ a(ts)

a(t) = 1. (ii) a i = a(i)
where a is a decreasing continuous function such that for all positive s ∈]0, 1], lim t→∞ a(ts) a(t) = 1, and there exists b

: [0, 1] → R + measurable such that 1 0 b(s)ds < ∞ and for all (s, t) ∈]0, 1] × R + , 0 ≤ a(ts) a(t) -1 ≤ b(s).
For example a i = (log(i + 1)) α satisfies (i) for α ≥ 0 and (ii) for α < 0.

Lemma 4.8 Assume (i) or (ii) holds, then lim n→∞ |w nv n | = 0.

Proof : Note that it suffices to prove that

r i i -a i+1 = o(a i ). Assume first(i) holds. Then 0 ≤ a i+1 - r i i ≤ a i a i+1 a i -1 + 1 0 1 - a (is) a(i) ds 
= o(a i ).

Assume now (ii) holds. Then

0 ≤ r i i -a i+1 ≤ a i 1 - a i+1 a i + 1 0 a(is) a(i) -1 ds = o(a i )
by dominated convergence theorem. QED Let π(ǫ, v) denote the invariant probability of K(x, y, ǫ, v) and π(v) = π(0, v). The map (ǫ, v) → π(ǫ, v) is uniformly continuous. Then the previous lemma implies that when (i) or (ii) holds, since π n = π(ǫ n , w n ), lim n→∞ |π nπ(v n )| = 0. This last property with theorem 2.6 implies the Theorem 4.9 Assume that (i) or (ii) holds, then the limit set of (v n ) is almost surely an internally chain transitive set of the differential equation

v = -v + π(v). (16) 
Note that proposition 4.7 also holds for sequences (a i ) satisfying (i) or (ii).

Exponential reinforcement

Let U : E × E → R be a map. For x ∈ E and v ∈ ∆, set

U(x, v) = y∈E U(x, y)v(y), W (x, y, v) = U(y, v) -U(x, v), K(β, x, y, v) =    M 0 (x, y)ψ[exp(-βW (x, y, v))] if x = y, 1 -y =x K(β, x, y, v) if x = y, and 
K n (x, y, v) = K(β n , x, y, v), (17) 
Here M 0 is an exploration matrix, (β n ) n is a positive sequence and ψ is given by [START_REF] Benaïm | Self-interacting diffusions[END_REF]. When β n = β, such a VRRW can be seen as a discrete time version of the self-interacting diffusions on compact manifolds that have been thoroughly analyzed by [START_REF] Benaïm | Self-interacting diffusions[END_REF], [START_REF] Benaïm | Self-interacting diffusions II: Convergence in Law[END_REF], 2005[START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF]. When β n = A log(n), the VRRW can be seen as a discrete time version of the self-interacting diffusions on compact manifolds studied by Raimond (2006).

Let U # (•, y) be the energy barrier as defined by equation ( 9) of the map x → U(x, y) Theorem 4.10 Consider the VRRW with exponential reinforcement defined by [START_REF] Hofbauer | On the global convergence of stochastic fictious play[END_REF]. Assume that β n = β(n) where β : R + → R + is differentiable and verify

0 ≤ β(t) ≤ A t for some A < 1/2 max{U # (•, y) : y ∈ E}. Let C(v) = ∆(ArgminU(•, v))
denote the set of probabilities supported by ArgminU(•, v). Then the limit set of (v n ) is an internally chain transitive set of

v ∈ -v + C(v).
Proof : This is an application of Theorem 2.6. The verification of hypothesis 2.1 is similar to the one given in proposition 4.4. Details are left to reader.

It is easily seen that C is a closed-valued set with convex values. For v ∈ ∆, let

π n [v](x) ∝ π 0 (x) exp(-β n U(x, v)) and π[v](x) ∝ π 0 (x)1 ArgminU (•,v) (x).
The invariant probability of

K n is π n [v n ] and lim n→∞ π n [v](x) = π[v](x).
This proves that C is adapted to (v n , π n [v n ]) and the result follows from Theorem 2.6. QED and let

H(v) = 1 2 U(v, v)
We claim that H is a lyapouvov function of the differential inclusion [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF]. Let t → v(t) be a solution to (5) then, for almost all t ≥ 0

d dt H(v(t)) = 1 2 [U( v(t), v(t)) + U(v(t), v(t)] = U( v(t), v(t)) = U( v(t) + v(t), v(t)) -U(v(t), v(t)) = min x U(x, v(t)) -U(v(t), v(t)),
where we have used the symmetry of U, the fact that v + v ∈ C(v) and the definition of C(v). Since t → H(v(t)) is locally Lipchitz, it is nondecreasing.

Markovian fictitious play

For x ∈ E 1 and v 2 ∈ ∆(E 2 ) set U 1 (x, v 2 ) = z∈F U 1 (x, z)v 2 (z). Let v 2 n = 1 n n i=1 δ Y i .
A well studied strategy known as "fictitious play" consists for player 1 to play at time n + 1 an action maximizing

U 1 (•, v 2 n ), that is X n+1 ∈ ArgmaxU 1 (•, v 2 n ). ( 18 
)
This strategy relies on the idea that in absence of information on the next move of his opponent, player 1 assumes that he (the opponent) will play accordingly to the past empirical distribution of his moves. While fictitious play was originally proposed in 1951 by Brown as an algorithm to compute Nash equilibria it has been recently rediscover as a "learning model" [START_REF] Fudenberg | Learning mixed equilibria[END_REF]; Fudenberg and Levine (1998)) and has been extensively studied [START_REF] Monderer | Fictitious play property for games with identical interests[END_REF]; Benaïm and Hirsch (1999); Hofbauer and Sandholm (2002); Benaïm, Hofbauer andSorin (2005, 2006), see also [START_REF] Pemantle | A survey of random processes with reinforcement[END_REF] for an overview and further references).

Fictitious plays requires to solve the maximization problem [START_REF] Holley | Simulated Annealing via Sobolev Inequalities[END_REF] at each stage of the game. If the cardinal of E 1 is too large (or if players have computational limits) such a computation may be problematic. An alternative strategy proposed first in Benaïm, [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF], based on pairwise comparison of payoffs, is as follows: The strategy of player 1 is such that P(X n+1 = y|F n ) = M n (X n , y) with M n the Markov matrix defined by

M n (x, y) =    M 0 (x, y)ψ[exp(-β n W n (x, y))] if x = y, 1 -y =x M n (x, y) if x = y, (19) 
where

W n (x, y) = U 1 (x, v 2 n ) -U 1 (y, v 2 
n ), M 0 is an exploration matrix, ψ is given by ( 7) and β n is an increasing positive sequence. Such a strategy will be called a Markovian fictitious play strategy.

Adopting the view point of player 1, we choose, as an observation space,

Σ = ∆(E 1 ) × ∆(E 2 )
and as an observation variable

V n = (δ Xn , δ Yn ).
Hence (v n ) is the empirical frequency of the actions played up to time n, and

Vn (x) = (δ x , ν n ), where ν n = E(δ Y n+1 |F n ).
We let U 1,# (y) denote the energy barrier, as defined by ( 9), of the map x → U 1 (x, y). Theorem 4.14 Assume that player 1 plays a Markovian fictitious play strategy as given by [START_REF] Kushner | Stochastic Approximation for Constrained and Unconstrained Systems[END_REF]. Assume that

β n = β(n) where β is differentiable, lim t→∞ β(t) = ∞ and verify 0 ≤ β(t) ≤ A t for some A < 1/2 max{U 1,# (y) : y ∈ E 2 }. For v = (v 1 , v 2 ) ∈ ∆(E 1 ) × ∆(E 2 ) let C 1 (v 2 ) = ∆(ArgmaxU 1 (•, v 2 )) and C(v) = C 1 (v 2 ) × ∆(E 2 )
Then the limit set of (v n ) is an internally chain transitive set of v ∈ -v + C(v).

Proof : This is still an application of Theorem 2.6. The verification of hypothesis 2.1 is similar to the one given in proposition 4.4. Let

π n [v 2 ](x) ∝ π 0 (x) exp(β n U 1 (x, v 2 ))
and π[v 2 ](x) ∝ π 0 (x)1 Argmax(U 1 (•,v 2 )) (x).

(ii) F has nonempty compact convex values, meaning that F (x) is a nonempty compact convex subset of R m for all x ∈ R m .

(iii) There exists c > 0 such that for all x ∈ R m The following proposition follows from the results of Benaïm, Hofbauer and Sorin (2005).

Proposition 5.1 Let (x n ) and (U n ) be discrete time processes living in R m and (γ n ) a sequence of nonnegative numbers. Let (F n ) be a sequence of setvalued maps and let F be a standard set valued-map. Assume that By hypothesis 2.1, this goes to zero a.s. when n → ∞. Finally, since 

(i) x n+1 -x n -γ n+1 U n+1 ∈ γ n+1 F n (x n ) (ii) 
For n + 1 ≤ k ≤ m(τ n + T ), k-1 j=n ǫ 3 j = 1 n M n Q n Vn (X n ) - 1 k M k Q k Vk (X k ),
M n Q n = Q n + Π n -I ǫ 5 n = 1 n + 1 (Q n+1 -Q n ) Vn (X n+1 ) + (Π n+1 -Π n ) Vn .

  , Lemma 3.5, Proposition 3.20 and Theorem 3.23): Proposition 2.7 (i) The set L is non-empty, compact, invariant and attractor free. (ii) If A is an attracting set with B(A) ∩ L = ∅, then L ⊂ A. Some useful properties of attracting sets or attractors are the two following (Benaïm, Hofbauer and Sorin (2005), Propositions 3.25 and 3.27). Proposition 2.8 Let Λ ⊂ Σ be compact with a bounded open neighborhood U and V : U → [0, ∞[. Assume the following conditions:

  Let M ind (E) denote the open set of indecomposable Markov matrices. Proposition 3.1 Suppose that the sequence (M n ) lies in a compact subset of M ind (E) and verifies lim n→∞ (M n+1 -M n ) = 0. Then hypothesis 2.1 holds.

Corollary 4 .

 4 11 (symmetric interaction) Assume that hypotheses of Theorem 4.10 hold and assume furthermore thatU is symmetric (i.e U(x, y) = U(y, x)). Then (v n ) converges almost surely to a connected component of the set {v ∈ ∆ : v ∈ C(v)}. Proof : For u, v ∈ ∆ set U(u, v) =x,y U(x, y)u(x)v(y)

  sup z∈F (x) z ≤ c(1 + x )where • denotes any norm on R m . Given a standard set-valued map F, setF δ (u) = {w ∈ R m : ∃v ∈ R m : d(u, v) ≤ δ, d(w, F (v)) ≤ δ}.

γ 2 c

 2 i+1 U i+1 : k = n + 1, . . . , m(τ n + T ) ) = sup{k ≥ 0 : t ≥ τ k } (21) (iv) sup n x n = M < ∞,Therefore, by Doob's convergence theorem for L 2 martingales, lim n→∞ ǫ 0 n (T ) = 0 a.s.The sequence (ǫ1 n ) is a martingale difference with ||ǫ 1 n+1 || ≤ R|Q n |/(n+1).Thus by a classical application of exponential martingale inequality (inequality[START_REF] Holley | Simulated Annealing via Sobolev Inequalities[END_REF] in Benaïm (1999)) we have for all positive α,P(ǫ 1 n (T ) ≥ α) ≤ c exp -α m(τn+T ) i=n (R 2 |Q i | 2 /i 2 )for some positive constant c. By hypothesis 2.1, for any ǫ > 0 and n large enough (note that (n -1)e T ≤ m(τ n + T ) ≤ ne T )m(τn+T ) i=n (R 2 |Q i | 2 /i 2 ) ≤ m(τn+T ) ) ≥ α)) < ∞and lim n→∞ ǫ 1 n+1 = 0 a.s. by Borel-Cantelli Lemma. For n + 1 ≤ k ≤ m(τ n + T ),

ǫ 3 n

 3 (T ) → 0 a.s. as n → ∞ by hypothesis 2.1. The term ǫ 4 n (T ) is dominated by(T + 1) sup i≥n sup x |M i+1 Q i+1 ( Vi+1 -Vi )(x)|which converges a.s. towards 0 as n → ∞ by hypothesis 2.2.

Hence ǫ 5 n

 5 (T ) ≤ R(T + 1) sup i≥n (|Q i+1 -Q i | + |π i+1π i |) → 0a.s. by hypothesis 2.1. This completes the proof of (iii). QED

  λt ||P * s || k→2 ||g x || k for any k ≥ 1. where we have used the fact that ||P * t -π|| 2→2 ≤ e -λt . Let q be the Hölder conjugate of k. Then ||P * s || k→2 = ||P s || 2→q . Now choose q(s) = 1 + e 2αs . By hypercontractivity (see Theorem 2.2.4 in Saloff-Coste (1997)), ||P s || 2→q(s) ≤ 1 so that

  Suppose that the sequence (M n ) lies in a compact subset of M ind (E) and verifies M n+1 -M n → 0. Then conclusion of proposition 4.1 holds.

	has a unique global attractor
	conv[L((π n ))]. Hence, by Theorem 2.6 and Proposition 2.7, (ii), L((v n )) ⊂
	conv[L((π n ))]. QED
	Corollary 4.2

Proof : Follows from proposition 4.1 and proposition 3.1. QED Corollary 4.3 Assume that M n → M ∈ M ind (E). Then v n → π the invariant probability of M.
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If now t → H(v(t)) is constant over a time interval, then v(t) ∈ C(v(t)) over this time interval. This proves that H is a Lyapounov function for Λ = {v ∈ ∆ : v ∈ C(v)}. The result now follows from Proposition 2.9 (compare to [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF], Theorem 5.5) provided we show that H(Λ) has empty interior.

Let v ∈ Λ ∩ int(∆). Since the mapping x → U(x, v) is constant, for all for all w ∈ ∆, U(w, v) = U(v, v). Therefore H(v) = U(w, v) for all w ∈ ∆. It follows that H restricted to Λ ∩ int(∆) is a constant map. The same reasonning applies to prove that H restricted to each face of ∆ is a constant map. We thus have proved that H(Λ) takes finitely many values. QED Remark 4.12 Corollary 4.11 still holds true under the weaker assumption that the map v → U(x, v) is smooth and convex in v.

Corollary 4.13 Assume that U is symmetric and nonnegative and that

Games

Consider a two-players game. We let E 1 (respectively E 2 ) denote the finite set of actions available to player 1 (respectively player 2) and

denote the payoff function of the game. If player 1 and player 2 choose respectively the actions x ∈ E 1 and y ∈ E 2 , then player 1 gets U 1 (x, y) and player 2 gets U 2 (x, y).

Let ((X n , Y n )) denote the sequence of plays. In noncooperative game theory we assume that ((X n , Y n )) is adapted to some filtration (F n ) and that at the beginning of round n + 1, players have no information on the action to be played by their opponents: for all (x, y) ∈ E 1 × E 2 and n ∈ N

it follows that C is an adapted graph. QED Much more can be said under the assumption that both players adopt a Markovian fictitious play strategy:

n (Y n , y), with M 1 n and M 2 n the Markov matrices defined by (with i ∈ {1, 2})

where

M i 0 is an exploration matrix, ψ is given by ( 7) and β i n is an increasing positive sequence.

Let

as an observation space, and

as the observation variable. Hence Vn (x, y) = (δ x , δ y , U(x, y)).

Theorem 4.15 Assume that both players adopt a Markovian fictitious play strategy. Assume that for i ∈ {1, 2},

where C 1 (v 2 ) is like in Theorem 4.14 and C 2 (v 1 ) is analogously defined for player 2. Then the limit set of (v n ) is an internally chain transitive set of 

and (U 1 (X n , Y n )) converges almost surely to the value of the game

Proof : This follows from theorem 2.6, proposition 2.7 (ii) and the fact that the set

is a global attractor of the differential inclusion, as proved in full generality by [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF]. QED Corollary 4.17 (Potential games) Suppose that U 2 = U 1 . Then under the assumption of Theorem 4.15, (v 1 n , v 2 n ) converges almost surely to a connected subset of the set of Nash equilibria

on which U 1 is constant, and (U 1 (X n , Y n )) converges almost surely towards this constant.

Proof : Follows from theorem 2.6, proposition 2.9, and the fact that U 1 = U 2 is a Lyapounov function of the differential inclusion. The proof of this later point is given in (Benaïm Hofbauer and Sorin, 2005, Theorem 5.5). It is similar to the proof Corollary 4.11. QED

A remark on hypothesis 2.2

We give here a simple example showing the necessity of hypothesis 2.2.

Consider the zero sum game where

Suppose player 1 adopts the strategy given by

for some 0 < ǫ < 1. Then π n = π with π(0) = π(1) = 1/2 and

regardless of the strategy played by 2. Suppose now that player 2 plays Y n+1 = X n for all n ≥ 1. For ǫ = 1/2 hypothesis 2.2 is not verified and the prediction given by (a wrong application of) theorem 2.6 fails since

Proof of Theorem 2.6

Let F denote a set-valued function mapping each point x ∈ R m to a set F (x) ⊂ R m . We call F a standard set valued-map provided it verifies the three following conditions:

(v) For all δ > 0 there exists n 0 such that

for all n ≥ n 0 .

Then the limit set of (x n ) is an attractor free set of the dynamics induced by F.

Remark 5.2 This proposition is purely deterministic. If the (x n ), (U n ) are random processes, the assumptions have to be understood almost surely. With the notation of the preceding sections, write

where

Hence, conditions (i), (ii) and (iv) of the previous proposition are satisfied with F n (u) = -u + C n (u) and γ n = 1 n . Condition (v) follows from the next lemma. Then for all δ > 0 there exists n 0 such that

for all n ≥ n 0 and u ∈ p(C n ).

Proof : Let Γ n = p(C n ). Assume to the contrary that there exist sequences

To conclude the proof of theorem 2.6 it remains to verify condition (iii) of proposition 5.1. Lemma 5.5 Under hypothesis 2.1 and 2.2, the sequence (U n ) defined by [START_REF] Miclo | Recuit simulé sans potentiel sur un ensemble fini[END_REF] verifies hypothesis (iii) of proposition 5.1.

and

where the last equality follows from the definition of Q n . Now, write ǫ n+1 = 4 i=1 ǫ i n+1 , where

For i = 0, . . . , 5, let Since Σ is compact there exists a finite constant R such that

The sequence (ǫ 0 n ) is a martingale difference with