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LIMIT THEOREMS FOR SAMPLE EIGENVALUES IN A

GENERALIZED SPIKED POPULATION MODEL

ZHIDONG BAI AND JIAN-FENG YAO

Abstract. In the spiked population model introduced by Johnstone

[10], the population covariance matrix has all its eigenvalues equal to

unit except for a few fixed eigenvalues (spikes). The question is to

quantify the effect of the perturbation caused by the spike eigenvalues.

Baik and Silverstein [6] establishes the almost sure limits of the extreme

sample eigenvalues associated to the spike eigenvalues when the popu-

lation and the sample sizes become large. In a recent work [5], we have

provided the limiting distributions for these extreme sample eigenvalues.

In this paper, we extend this theory to a generalized spiked population

model where the base population covariance matrix is arbitrary, instead

of the identity matrix as in Johnstone’s case. New mathematical tools

are introduced for establishing the almost sure convergence of the sample

eigenvalues generated by the spikes.

1. Introduction

Let (Tp) be a sequence of p × p non-random and nonnegative definite

Hermitian matrices and let (wij), i, j ≥ 1 be a doubly infinite array of i.i.d.

complex-valued random variables satisfying

E(w11) = 0, E(|w11|2) = 1, E(|w11|4) <∞.
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Write Zn = (wij)1≤i≤p,1≤j≤n, the upper-left p × n bloc, where p = p(n) is

related to n such that when n → ∞, p/n → y > 0. Then the matrix Sn =

1
nT

1/2
p ZnZ

∗
nT

1/2
p can be considered as the sample covariance matrix of an

i.i.d. sample (x1, . . . ,xn) of p-dimensional observation vectors xj = T
1/2
p uj

where uj = (wij)1≤i≤p denotes the j-th column of Zn. Throughout the

paper, A1/2 stands for any Hermitian square root of an nonnegative definite

(n.n.d.) Hermitian matrix A.

Assume that the empirical spectral distribution (ESD) of Tp converges

weakly to a nonrandom probability distribution H on [0,∞). It is then

well-known that the ESD of Sn converges to a nonrandom limiting spectral

distribution (LSD) G [11, 13].

Let λn,1 ≥ · · · ≥ λn,p be the set of sample eigenvalues, i.e. the eigenvalues

of the sample covariance matrix Sn. The so-called null case corresponds

to the situation Tp ≡ Ip, so that, assuming y ≤ 1, the LSD G reduces

to the Marčenko-Pastur law with support ΓG = [ay, by] where ay = (1 −
√
y)2 and by = (1 +

√
y)2. Furthermore, the extreme sample eigenvalues

λn,1 and λn,p almost surely tend to by and ay, respectively, and the sample

eigenvalues (λn,j) fill completely the interval [ay, by]. However, as pointed

out by Johnstone [10], many empirical data sets demonstrate a significant

deviation from this null case since some of sample extreme eigenvalues are

well separated from an inner bulk interval. As a way for possible explanation

of such phenomenon, Johnstone proposes a spiked population model where

all eigenvalues of Tp are unit except a fixed and relatively small number

among them (spikes). In other words, the population eigenvalues {βn,j} of

Tp are

α1, . . . , α1︸ ︷︷ ︸
n1

, . . . , αK , . . . , αK︸ ︷︷ ︸
nK

, 1, . . . , 1︸ ︷︷ ︸
p−M

,

where M is fixed as well as the multiplicity numbers (nk) which satisfy

n1 + · · ·+nK = M . Clearly, this spiked population model can be viewed as

a finite-rank perturbation of the null case.

Obviously, the LSD G of Sn is not affected by this small perturbation,

still equals to the Marčenko-Pastur law. However, the asymptotic behavior
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of the extreme eigenvalues of Sn is significantly different from the null case.

The fluctuation of the largest eigenvalue λn,1 in case of complex Gaussian

variables has been recently studied in Baik et al. [7]. These authors prove

a transition phenomenon: the weak limit as well as the scaling of λn,1 is

different according to its location with respect to a critical value 1 +
√
y. In

Baik and Silverstein [6], the authors consider the spiked population model

with general random variables: complex or real and not necessarily Gauss-

ian. For the almost sure limits of the extreme sample eigenvalues, they also

find that these limits depend on the critical values 1+
√
y for largest sample

eigenvalues, and on 1 − √
y for smallest ones. For example, if there are m

eigenvalues in the population covariance matrix larger than 1+
√
y, then the

m largest sample eigenvalues λn,1, . . . , λn,m will converge to a limit above

the right edge by of the limiting Marčenko-Pastur law, see §4.1 for more de-

tails. In a recent work Bai and Yao [5], considering general random matrices

as in [6], we have established central limit theorems for these extreme sam-

ple eigenvalues generated by spike eigenvalues which are outside the critical

interval [1 −√
y, 1 +

√
y].

The spiked population model has also an extension to other random matri-

ces ensembles through the general concept of small-rank perturbations. The

goal is again to examine the effect caused on the sample extreme eigenvalues

by such perturbations. In a series of recent papers [12, 9, 8], these authors

establish several results in this vein for ensembles of formMn = Wn+n−1/2V

where Wn is a standard Wigner matrix and V a small-rank matrix.

The present work is motivated by a generalization of Johnstone’s spike

population model defined as follows. The population covariance matrix Tp

posses two sets of eigenvalues: a small number of them, say (αk), called

generalized spikes, are well separated - in a sense to be defined later-, from

a base set (βn,i). In other words, the spectrum of Tp reads as

α1, . . . , α1︸ ︷︷ ︸
n1

, . . . , αK , . . . , αK︸ ︷︷ ︸
nK

, βn,1, . . . , βn,p−M .
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Therefore, this scheme can be viewed as a finite-rank perturbation of a

general population covariance matrix with eigenvalues {βn,j}.
The empirical distributions generated by the eigenvalues (βn,i) will be

assumed to have a limit distribution H. Note that H is also the LSD of

Tp since the perturbation is of finite rank. Analogous to Johnstone’s spiked

population model, the LSD G of the sample covariance matrix Sn is still not

affected by the spikes. The aim of this work is to identify the effect caused

by the spikes (αk) on a particular subset of sample eigenvalues. The results

obtained here extend those of [6, 5] to the present generalized scheme.

The remaining sections of the paper are organized as following. §2 gives

the precise definition of the generalized spiked population model. Next, we

use §3 to recall several useful results on the convergence of the E.S.D. from

general sample covariance matrices. In §4, we examine the strong point-wise

convergence of sample eigenvalues associated to spikes. We then establish

CLT for these sample eigenvalues in §5 using the methodology developed in

[5]. Preliminary lemmas and their proofs are gathered in the last section.

2. Generalized spiked population model

In a generalized spiked population model, the population covariance ma-

trix Tp takes the form

Tp =


Σ 0

0 Vp


 ,

where Σ and Vp are nonnegative and nonrandom Hermitian matrices of

dimension M×M and p′×p′, respectively, where p′ = p−M . The submatrix

Σ has K eigenvalues α1 > · · · > αK > 0 of respective multiplicity (nk), and

Vp has p′ eigenvalues βn,1 ≥ · · · ≥ βn,p′ .

Throughout the paper, we assume that the following assumptions hold.

(a) wij , i, j = 1, 2, ... are i.i.d. complex random variables with Ew11 = 0,

E|w11|2 = 1, and E|w11|4 <∞.

(b) n = n(p) with yn = p′/n → y > 0 as n→ ∞.
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(c) The sequence of ESD Hn of (Tp), i.e. generated by the population

eigenvalues {αk, βn,j}, weakly converges to a probability distribution

H as n→ ∞.

(d) The sequence (‖Tp‖) of spectral norms of (Tp) is bounded.

For any measure µ on R, we denote by Γµ the support of µ, a close set.

Definition 2.1. An eigenvalue α of the matrix Σ is called a generalized

spike eigenvalue if α /∈ ΓH .

To avoid confusion between spikes and non-spike eigenvalues, we further

assume that

(e) max
1≤j≤p′

d(βnj ,ΓH) = εn → 0,

where d(x,A) denotes the distance of a point x to a set A. Note that there

is a positive constant δ such that d(αk,ΓH) > δ, for all k ≤ K.

The above definition for generalized spikes is consistent with Johnstone’s

original one of (ordinary) spikes, since in that case we have Hn ≡ H = δ{1}

and α /∈ ΓH simply means α 6= 1.

Let us decompose the observation vectors xj = T
1/2
p uj , j = 1, . . . , n,

where uj = (wij)1≤i≤p by blocs,

xj =


ξj

ηj


 , with ξj = Σ1/2(wij)1≤i≤M , ηj = V 1/2

p (wij)M<i≤p.

Note that both sequences {ξ1, . . . , ξn} and {η1, . . . ,ηn} are i.i.d. sequences.

We also denote the coordinates of ξ1 by ξ1 = (ξ(1), . . . , ξ(M))T .

Similarly, the sample covariance matrix Sn = 1
nT

1/2
p ZnZ

∗
nT

1/2
p is decom-

posed as

Sn =


S11 S12

S21 S22


 =


X1X

∗
1 X1X

∗
2

X2X
∗
1 X2X

∗
2


 ,

with

X1 =
1√
n

(ξ1, · · · , ξn)M×n =
1√
n

ξ1:n, X2 =
1√
n

(η1, · · · ,ηn)p′×n =
1√
n

η1:n .

Throughout the paper and for any Hermitian matrix A, we order its

eigenvalues in an descending order as λA
1 ≥ λA

2 ≥ · · · . By definition, the
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sample eigenvalues {λSn

j , 1 ≤ j ≤ p} are solutions to the equation

(2.1) 0 = |λI − Sn| = |λI − S22| |λI −Kn(λ)| ,

with a random sesquilinear form

(2.2) Kn(λ) = S11 + S12(λI − S22)
−1S21.

Note that the factorization (2.1) holds for any λ /∈ spec(S22). This identity

will play a central role in our analysis.

3. Known results on the spectrum of large sample covariance

matrices

3.1. Marčenko-Pastur distributions. In this section y is an arbitrary

positive constant and H an arbitrary probability measure on R
+. Define on

the set

C
+ := {z ∈ C : ℑ(z) > 0 } ,

the map

(3.1) g(s) = gy,H(s) = −1

s
+ y

∫
t

1 + ts
dH(t) , s ∈ C

+.

It is well-known ([4, Chap. 5]) that g is a one-to-one map from C
+ onto

itself, and the inverse map m = g−1 corresponds to the Stieltjies transform

of a probability measure Fy,H on [0,∞). Throughout the paper and with

a small abuse of language, we refer Fy,H as the Marčenko-Pastur (M.P.)

distribution with indexes (y,H).

This family of distributions arises naturally as follows. Consider a com-

panion matrix Sn = 1
nZ

∗
nTpZn of the sample covariance matrix Sn. The

spectra of Sn and Sn are identical except |n−p| zeros. It is then well-known

([11],[4, Chap. 5]) that under Conditions (a)-(d), the E.S.D. of Sn converges

to the M.P. distribution Fy,H . The terminology is slightly ambiguous since

the classical M.P. distribution refers to the limit of the E.S.D. of Sn when

Tp = Ip.

Note that we shall always extend a function h defined on C
+ to the real

axis R by taking the limits limε→0+
h(x + iε) for real x’s whenever these
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limits exist. For α /∈ ΓH and α 6= 0 define

(3.2) ψ(α) = ψy,H(α) := g(−1/α) = α+ yα

∫
t

α− t
dH(t) .

Note that even though this formula could be extended to α = 0 when 0 /∈ ΓH ,

as we will see below that α is related to the −1/m where m is a Stieltjies

transform, so that there is no much meaning for α = 0. Therefore, the point

0 will always be excluded from the domain of definition of ψ.

Analytical properties of Fy,H can be derived from the fundamental equa-

tion (3.2). The following lemma, due to Silverstein and Choi [14], character-

izes the close relationship between the supports of the generating measure

H and the generated M.P. distribution Fy,H .

Lemma 3.1. If λ /∈ ΓFy,H
, then m(λ) 6= 0 and α = −1/m(λ) satisfies

(i) α /∈ ΓH and α 6= 0 (so that ψ(α) is well-defined);

(ii) ψ′(α) > 0.

Conversely, if α satisfies (i)-(ii), then λ = ψ(α) /∈ ΓFy,H
.

It is then possible to determine the support of Fy,H by looking at intervals

where ψ′ > 0. As an example, Figure 1 displays the function ψ for the M.P.

distribution with indexes y = 0.3 and H the uniform distribution on the set

{1, 4, 10}. The function ψ is strictly increasing on the following intervals:

(−∞, 0), (0, 0.63), (1.40, 2.57) and (13.19, ∞). According to Lemma 3.1,

we get

ΓFy,H
∩ R

∗ = (0, 0.32) ∪ (1.37, 1.67) ∪ (18.00, ∞).

Hence, taking into account that 0 belongs to the support of Fy,H , we have

ΓFy,H
= {0} ∪ [0.32, 1.37] ∪ [1.67, 18.00].

We refer to Bai and Silverstein [3] for a complete account of analytical

properties of the family of M.P. distributions {Fy,H} and the maps {ψy,H}.
In particular, the following conclusions will be useful:

• when restricted to Γc
Fy,H

, ψy,H has a well-defined inverse function

ψ−1
y,H : Γc

Fy,H
→ Γc

H which is strictly increasing;
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• the family {Fy,H} is continuous in its index parameters (y,H) in a

wide sense. For example, {ψy,H} tends to the identity function as

y → 0.

3.2. Exact separation of sample eigenvalues. We need first quote two

results of Bai and Silverstein [2, 3] on exact separation of sample eigenval-

ues. Recall the ESD’s (Hn) of (Tp), yn = p/n, and let {Fyn,Hn} be the

sequence of associated M.P. distributions. One should not confuse the M.P.

distribution {Fyn,Hn} with the E.S.D. of Sn although both converge to the

M.P. distribution Fy,H as n→ ∞.

Proposition 3.1. Assume hold Conditions (a)-(d) and the following

(f) The interval [a, b] with a > 0 lies in an open interval (c, d) outside

the support of Fyn,Hn for all large n.

Then

P ( no eigenvalue of Sn appears in [a, b] for all large n ) = 1.

Roughly speaking, Proposition 3.1 states that a gap in the spectra of the

Fyn,Hn ’s is also a gap in the spectrum of Sn for large n. Moreover, under

Condition (f), we know by Lemma 3.1, that for large n,

ψ−1
yn,Hn

{[a, b]} ⊂ ψ−1
yn,Hn

{(c, d)} ⊂ Γc
Hn

.

By continuity of Fyn,Hn in its indexes, it follows that we have for large n

ψ−1{[a, b]} = ψ−1
y,H{[a, b]} ⊂ Γc

Hn
.

In other words, it holds almost surely and for large n that, ψ−1{[a, b]} con-

tains no eigenvalue of Tp. Let for these n, the integer in ≥ 0 be such that

(3.3) Tp has exactly in eigenvalues larger than ψ−1(b) .

Proposition 3.2. Assume Conditions (a)-(d) and (f) hold. If y[1−H(0)] ≤
1, or y[1−H(0)] > 1 but [a, b] is not contained in [0, x0] where x0 > 0 is the
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smallest value of the support of Fy,H , then with in defined in (3.3) we have

P (λSn

in+1 ≤ a < b ≤ λSn

in
for all large n) = 1.

In other words, under these conditions, it happens eventually that the

numbers of sample eigenvalues {λSn

i } in both sides of [a, b] match exactly the

numbers of populations eigenvalues {αk, βn,j} in both sides of the interval

ψ−1{[a, b]}.

4. Almost sure convergence of sample eigenvalues from

generalized spikes

From (3.2), we have

ψ′(α) = 1 − y

∫
t2

(α− t)2
dH(t) , ψ′′′(α) = −6y

∫
t2

(α− t)4
dH(t) .

Therefore, when α approaches the boundary of the support of H, ψ′(α)

tends to −∞, see also Figure 1. Moreover, ψ′ is concave on any interval

outside ΓH .

As we will see, the asymptotic behavior of the sample eigenvalues gener-

ated by a generalized spike eigenvalue α depends on the sign of ψ′(α).

Definition 4.1. We call a generalized spike eigenvalue α, a distant spike

for the M.P. law Fy,H if ψ′(α) > 0, and a close spike if ψ′(α) ≤ 0.

Recall that ψ depend on the parameters (y,H). When H is fixed, and

since ψ tends to the identity function as y → 0, a close spike for a given

M.P. law Fy,H becomes a distant spike for M.P. law Fy,H for small enough

y.

As an example, different types of spikes are displayed in Figure 2. The

solid curve corresponds to a zoomed view of ψ0.3,H of Figure 1. For F0.3,H ,

the three values α1, α2 and α5 are close spikes; each small enough α (close

to zero), or large enough α (not displayed), or a value between u and v (see

the figure) is a distant spike. Furthermore, as y decreases from 0.3 to 0.02

(dashed curve), α1, α2 and α5 become all distant spikes.
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Throughout this section, for each spike eigenvalue αk, we denote by

νk + 1, . . . , νk + nk the descending ranks of αk among the eigenvalues of

Tp (multiplicities of eigenvalues are counted): in other words, there are νk

eigenvalues of Tp larger than αk and p− νk − nk less.

Theorem 4.1. Assume that the conditions (a)-(e) hold. Let αk be a gen-

eralized spike eigenvalue of multiplicity nk satisfying ψ′(αk) > 0 (distant

spike) with descending ranks νk + 1, · · · , νk + nk. Then, the nk consecutive

sample eigenvalues {λSn

i }, i = νk + 1, . . . , νk + nk converge almost surely to

ψ(αk).

Proof. Recall Figure 2 of the ψ function, for each distant spike αk, there is

an interval (uk, vk) such that

• uk < αk < vk;

• ψ′(uk) = ψ′(vk) = 0;

• ψ′(α) > 0 for all α ∈ (uk, vk).

Here we make the convention that vk = ∞ if ψ′(α) > 0 for all α > αk and

uk = 0 if ψ′(α) > 0 for all α ∈ (0, αk).

Recall that the support of Fyn,Hn is determined by

(4.1)

ψ′
n(α) = ψ′

yn,Hn
(α) = 1 − yn

[
p′

p

∫
t2

(α− t)2
dHv

n(t) +
1

p

K∑

j=1

njα
2
j

(α− αj)2

]
,

where Hv
n = 1

p′
∑

j δβn,j
is the ESD of Vp.

Let ṽk = min(vk, αk−1) if k > 1 and ṽk = vk otherwise. Choose v, v′ and

α′
u, αu such that αk < α′

u < αu < v < v′ < ṽk. By condition (e), all eigen-

values of Tp will keep away from the interval (α′
u, v

′) for all large n. Thus,

ψ′
n(α) → ψ′(α) > 0 uniformly on the interval [α′

u, v
′]. Hence, the interval

(ψ(α′
u), ψ(v′)) will be out of the support of Fyn,Hn for all large n. Conse-

quently, the interval [ψ(αu), ψ(v)] satisfies the conditions of Proposition 3.2

with in = νk. Therefore, by Proposition 3.2, we have




P (λSn

νk+1 ≤ ψ(αu) < ψ(v) ≤ λSn
νk
, for all large n) = 1 if νk > 0;

P (λSn

νk+1 ≤ ψ(αu), for all large n) = 1 otherwise.
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Therefore, it holds almost surely

lim sup
n

λSn

νk+1 ≤ ψ(αu),

and finally, letting αu → αk,

(4.2) lim sup
n

λSn

νk+1 ≤ ψ(αk).

Similarly, one can prove that for any ũk < u < αl < αk,





P (λSn

νk+nk+1 ≤ ψ(u) < ψ(αl) ≤ λSn
νk+nk

, for all large n) = 1 if νk + nk < p,

P (λSn
νk+nk

≥ ψ(αl), for all large n) = 1 otherwise,

where ũk = max(uk, αk+1) if k < K and ũk = uk otherwise.

Consequently,

(4.3) lim inf
n

λSn
νk+nk

≥ ψ(αk).

Thus, we proved that almost surely,

lim
n
λSn

νk+j = ψ(αk), for j = 1, · · · , nk.

The proof of Theorem 4.1 is complete. �

Next we consider close spikes.

Theorem 4.2. Assume that the conditions (a)-(e) hold. Let αk be a gener-

alized spike eigenvalue of multiplicity nk satisfying ψ′(αk) ≤ 0 (close spike)

with descending ranks νk + 1, . . . , νk + nk. Let I be the maximal interval in

Γc
H containing αk.

(i) If I has a sub-interval (uk, vk) on which ψ′ > 0 (then we take this

interval to be maximal), then the nk sample eigenvalues {λSn

j }, j =

νk +1, . . . , νk +nk converge almost surely to the number ψ(w) where

w is one of the endpoints {uk, vk} nearest to αk ;

(ii) If for all α ∈ I, ψ′(α) ≤ 0, then the nk sample eigenvalues {λSn

j },
j = νk +1, . . . , νk +nk converge almost surely to the γ-th quantile of

G, the L.S.D. of Sn, where γ = H(0, αk).
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Proof. The proof refers to the curves of Figure 2.

(i). Suppose αk is a spike eigenvalue satisfying ψ′(αk) ≤ 0 and there is

an interval (uk, vk) ⊂ I on which ψ′ > 0 (αk is like the α1 on the figure).

According to Lemma 3.1, ψ{(uk, vk)} ⊂ Γc
Fy,H

and ψ(uk) is a boundary

point of the support of G, the L.S.D. of Sn. Without loss of generality, we

can assume αk ≤ uk, the argument of the other situation where αk > vk

being similar.

Choose uk < αu < v < ṽ (ṽ = min(vk, αk−1) or vk in accordance with

k > 1 or not) such that (αu, v) ⊂ I, by the argument used in the proof of

Theorem 4.1, one can prove that




P (λSn

νk+1 ≤ ψ(αu) < ψ(v) ≤ λSn
νk
, for all large n) = 1 if νk > 0;

P (λSn

νk+1 ≤ ψ(αu), for all large n) = 1 otherwise.

This proves that almost surely,

lim supλSn

νk+1 ≤ ψ(uk) ≤ lim inf λSn
νk

.

On the other hand, since ψ(uk) is a boundary point of the support of G,

we know that for any ε > 0, almost surely, the number of λSn

i ’s falling into

[ψ(uk) − ε, ψ(uk)] tends to infinity. Therefore,

lim inf λSn

νk+nk+1 ≥ ψ(uk) − ε, a.s..

Since ε is arbitrary, we have finally proved that almost surely,

limλSn

νk+j = ψ(uk), j = 1, · · · , nk.

Thus, the proof of Conclusion (i) of Theorem 4.2 is complete.

Similarly, if the spiked eigenvalue αk is like α2, we can show that the nk

corresponding eigenvalues of Sn goes to ψ(vk).

(ii) If the spiked eigenvalues is like α5, where the gap of support of LSD

disappeared, clearly the corresponding sample eigenvalues λνk+1, . . . , λνk+nk

tend to the γ-th quantile of the LSD of Sn where

γ = 1 − lim
in
νk

= H(0, αk).
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�

4.1. Case of Johnstone’s spiked population model. In the case of

Johnstone’s model, H reduces to the Dirac mass δ1 and the LSD G equals

the Marčenko-Pastur law with ΓG = [ay, by]. Each α > 0, α 6= 1 is then a

spike eigenvalue. The associated function ψ in (3.2) becomes

(4.4) ψ(αk) = αk +
yαk

αk − 1
.

The function ψ has the following properties, see Figure 3:

• its range equals (−∞, ay] ∪ [by,∞) ;

• ψ(1 −√
y) = ay , ψ(1 +

√
y) = by;

• ψ′(α) > 0 ⇔ |α− 1| > √
y.

Therefore, by Theorem 4.1, for any spike eigenvalue satisfying αk > 1 +
√
y

(large enough) or αk < 1 − √
y (small enough), there is a packet of nk

consecutive eigenvalues {λn,j} converging almost surely to ψ(αk) /∈ [ay, by].

In other words, assume there are exactly K1 spikes greater than 1+
√
y and

K2 spikes smaller than 1 −√
y. By Theorems 4.1 and 4.2 we conclude that

(i) the N1 := n1 + . . . + nK1
largest eigenvalues {λSn

j }, j = 1, . . . , N1

tend to their respective limits {ψ(αk)}, k = 1, . . . ,K1 ;

(ii) the immediately following largest eigenvalue λSn

N1+1
tends to the right

edge by;

(iii) the N2 := nK + · · ·+nK−K2+1 smallest sample eigenvalues {λSn

n,p−j},
j = 0, . . . , N2 − 1 tend to their respective limits {ψ(αk)}, k =

K, . . . ,K −K2 + 1 ;

(iv) the immediately following smallest eigenvalue λSn

p−N2
tends to the left

edge ay.

Hence we have recovered the content of Theorem 1.1 of [6].

4.2. An example of generalized spike eigenvalues. Assume that Tp is

diagonal with three base eigenvalues {1, 4, 10}, nearly p/3 times for each of

them, and there are four spike eigenvalues (α1, α2, α3, α4) = (15, 6, 2, 0.5),

with respective multiplicities (nk) = (3, 2, 2, 2). The limiting population-

sample ratio is taken to be y = 0.3. The limiting population spectrum H
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is then the uniform distribution on {1, 4, 10}. The support of the limiting

Marčenko-Pastur distribution F0.3,H contains two intervals [0.32, 1.37] and

[1.67, 18], see §3.1. The ψ-function of (3.2) for the current case is displayed

in Figure 1. For simulation, we use p′ = 600 so that Tp has the following

609 eigenvalues:

15, 15, 15, 10, . . . , 10︸ ︷︷ ︸
200

, 6, 6, 4, . . . , 4︸ ︷︷ ︸
200

, 2, 2, 1, . . . , 1︸ ︷︷ ︸
200

, 0.5, 0.5 .

From the table

spike αk 15 6 2 0.5

multiplicity nk 3 2 2 2

ψ′(αk) + − + −
ψ(αk) 18.65 5.82 1.55 0.29

descending ranks 1, 2, 3 204, 205 406, 407 608, 609

we see that 6 is a close spike for H while the three others are distant ones.

By Theorems 4.1 and 4.2, we know that

• the 7 sample eigenvalues λSn

j with j ∈ {1, 2, 3, 406, 407, 608, 609}
associated to distant spikes tend to 18.65, 1.55 and 0.29, respectively,

which are located outside the support of limiting distribution F0.3,H

(or G);

• the two sample eigenvalues λSn

j with j = 204, 205 associated to the

close spike 6 tend to a limit located inside the support, the γ-th

quantile of the limiting distribution G where γ = H(0, 6) = 2/3.

There facts are illustrated by a simulation sample displayed in Figure 4.

5. CLT for sample eigenvalues from distant generalized spikes

Following Theorem 4.1, to any distant generalized spike eigenvalue αk,

there is a packet of nk consecutive sample eigenvalues {λSn

j : j ∈ Jk}
converging to ψ(αk) /∈ ΓG where Jk are the descending ranks of αk among

the eigenvalues of Tp (counting multiplicities). The aim of this section is to

derive a CLT for nk-dimensional vector

√
n{λSn

j − ψ(αk)} , j ∈ Jk.
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The method follows Bai and Yao [5] which considers Johnstone’s spiked

population model. Consider the random form Kn introduced in (2.2) and

let

(5.1) An = (aij) = An(λ) = X∗
2 (λI −X2X

∗
2 )−1X2, λ /∈ ΓG.

By Lemma 6.2, detailed in §6, we know that n−1trAn, n−1trAnA
∗
n and

n−1
∑n

i=1 a
2
ii converge, almost surely or in probability, to ym1(λ), ym2(λ)

and (y[1 +m1(λ)]/{λ− y[1 +m1(λ)]})2, respectively. Here, the mj(λ) are

some specific transforms of the LSD G (see §6).
Therefore, the random form Kn in (2.2) can be decomposed as follows

Kn(λ) = S11 +X1AnX
∗
1 =

1

n
ξ1:n(I +An)ξ∗1:n

=
1

n
{ξ1:n(I +An)ξ∗1:n − Σtr(I +An)} +

1

n
Σtr(I +An)

=
1√
n
Rn + [1 + ym1(λ)] Σ + oP (

1√
n

),

with

(5.2) Rn = Rn(λ) =
1√
n
{ξ1:n(I +An)ξ∗1:n − Σtr(I +An)} .

In the last derivation, we have used the fact

1

n
tr(I +An) = 1 + ym1(λ) + oP (

1√
n

),

which follows from a CLT for tr(An) [see 1].

For the statement of our result, we first need to find the limit distribution

of the sequence of random matrices {Rn(λ)}. The situation is different for

the real and complex cases. By applications of Propositions 3.1 and 3.2 in

[5], we have for λ /∈ ΓG,

(i) if the variables (wij) are real-valued, the random matrix Rn(λ) con-

verges weakly to a symmetric random matrix R(λ) = (Rij(λ)) with

zero-mean Gaussian entries having an explicitly known covariance

function ;

(ii) if the variables (wij) are complex-valued, the random matrix Rn

converges weakly to a zero-mean Hermitian random matrix R(λ) =
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(Rij(λ)). Moreover, the real and imaginary parts of its upper-

triangular bloc {Rij(λ), 1 ≤ i ≤ j ≤ M} form a 2K-dimensional

Gaussian vector with an explicitly known covariance matrix.

We are in order to introduce our CLT. Let the spectral decomposition of

Σ,

(5.3) Σ = U




α1In1
· · · 0

0
. . . 0

· · · 0 αKInK


U∗ ,

where U is an unitary matrix. Let ψk = ψ(αk) and R(ψk) be the weak

Gaussian limit of the sequence of matrices of random forms [Rn(ψk)]n re-

called above (in both real and complex variables case). Let

(5.4) R̃(ψk) = U∗R(ψk)U .

Theorem 5.3. For each distant generalize spike eigenvalue, the nk-dimensional

real vector

√
n{λSn

j − ψk, j ∈ Jk} ,

converges weakly to the distribution of the nk eigenvalues of the Gaussian

random matrix

1

1 + ym3(ψk)αk
R̃kk(ψk).

where R̃kk(ψk) is the k-th diagonal block of R̃(ψk) corresponding to the in-

dexes {u, v ∈ Jk}.

It is worth noticing that the limiting distribution of such nk packed sample

extreme eigenvalues are generally non Gaussian and asymptotically depen-

dent. Indeed, the limiting distribution of a single sample extreme eigenvalue

λSn

j is Gaussian if and only if the corresponding generalized spike eigenvalue

is simple. We refer the reader to [5] for detailed examples illustrating these

same facts but for Johnstone’s model.
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6. Lemmas

For λ /∈ ΓG, we define

m1(λ) =

∫
x

λ− x
dG(x),

m2(λ) =

∫
x2

(λ− x)2
dG(x) ,

m3(λ) =

∫
x

(λ− x)2
dG(x) .

The following lemma gives the law of large numbers for some useful statistics

of An defined in (5.1). We omit its proof because it is a straightforward

extension of Lemma 6.1 of [5], related to Johnstone’s spiked population

model, to the present generalized spiked population model.

Lemma 6.2. Under the assumptions of Theorem 4.1, for all λ ∈ [a, b], we

have

1

n
trAn

a.s.−→ ym1(λ) ,(6.1)

1

n
trAnA

∗
n

a.s.−→ ym2(λ) ,(6.2)

1

n

n∑

i=1

a2
ii

a.s.−→
(

y[1 +m1(λ)]

λ− y[1 +m1(λ)]

)2

.(6.3)

Lemma 6.3. For all λ ∈ [a, b], Kn(λ) converges almost surely to the con-

stant matrix [1 + ym1(λ)]Σ.

Proof. The random form Kn in (2.2) can be decomposed as follows

Kn(λ) = S11 +X1AnX
∗
1 =

1

n
(ξ1, . . . , ξn)(I +An)(ξ1, . . . , ξn)∗.

Define M be the event that S22 has no eigenvalues in the interval [a′, b′]

which satisfies [a, b] ⊂ (a′, b′) and [a′, b′] ⊂ (c, d). On the event M , the norm

of An is bounded by max{ 1
a−a′ ,

1
b′−b}. By independence, it is easy to show

that

1

n
{(u1, . . . , un)(I +An)(u1, . . . , un)∗IM − [tr(I +An)]IM} a.s.→ 0.

By proposition 3.1, Im → 1, a.s.. Thus

Dn(λ) = oa.s.(1) + +[
1

n
tr(I +An)]ΣIM

a.s.→ (1 + ym1(λ))Σ,(6.4)
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where the last step follows from (6.1). The conclusion follows. �
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2008.

[6] J. Baik and J.W. Silverstein. Eigenvalues of large sample covariance

matrices of spiked population models. J. Multivariate. Anal., 97:1382–

1408, 2006.

[7] J. Baik, G. Ben Arous, and S. Péché. Phase transition of the largest
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Figure 1. The ψ function for the Marčenko-Pastur dis-

tribution F0.3,H with H the uniform distribution on the set

{1, 4, 10}. Blue points indicate intervals where ψ′ > 0. Sin-

gular points of ψ are indicated as vertical lines corresponding

to the support of H. On the left, the support set of F0.3,H

(except the point 0) and its complementary set are indicated

as magenta and blue segments respectively.
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Figure 2. A zoomed view of the ψ functions for the

Marčenko-Pastur distribution F0.3,H (solid curve) and F0.02,H

(dashed curve) with H the uniform distribution on the set

{1, 4, 10}. The three points α1, α2 and α5 are close spikes for

F0.3,H where ψ′
0.3,H ≤ 0. They become all distant spikes for

F0.02,H as ψ′
0.02,H > 0.
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Figure 3. The function α 7→ ψ(α) = α+ yα/(α− 1) which

maps a spike eigenvalue α to the limit of an associated sam-

ple eigenvalue in Johnstone’s spiked population model. Fig-

ure with y = 1
2
; [1 ∓ √

y] = [0.293, 1.707]; [(1 ∓ √
y)2] =

[0.086, 2.914] .
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(a) 609 sample eigenvalues
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(b)  zoomed view  on [5,7]
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Figure 4. An example of p = 609 sample eigenvalues (a),

and two zoomed views (b) and (c) on [5,7] and [0,2] re-

spectively. The limiting distribution of the E.S.D has sup-

port [0.32, 1.37] ∪ [1.67, 18.00]. The 9 sample eigenvalues

{λSn

j , j = 1, 2, 3, 204, 205, 406, 407, 608, 609 } associated to

the spikes are marked with a blue point. Gaussian entries.


