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Abstract

In this paper, we prove some uniform estimates between Lebesgue
and Hardy spaces for operators closely related to the multilinear para-
products on Rd. We are looking for uniformity with respect to pa-
rameters, which allow us to disturb the geometry and the metric on
Rd.
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1 Introduction

The purpose of this article is to prove uniform estimates on paraproducts
and similar multilinear operators. Let us first recall what is a paraproduct.
A n-linear paraproduct Π on Rd is a n-linear operator of the following form :

Π(f1, .., fn)(x) :=

∫ ∞

0

n∏

i=1

πit ∗ fi(x)
dt

t
,

or of the discrete form

Π(f1, .., fn)(x) :=
∑

j∈Z

n∏

i=1

πi2j ∗ fi(x)
dt

t
.
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Here the πit are smooth functions which Fourier transform π̂it are bump
functions adapted to the ball {ξ ∈ Rd, |ξ| ≤ 1} and we assume that there
exists one index i ∈ {1, .., n} such that

∀t > 0, π̂it(0).

In all the sequel, a smooth function φ is said to be “adapted to a set” I ⊂ Rd

if it is supported on this set and satisfies : for all order n ∈ Nd

‖φ(n)‖∞ ≤ |I|−|α|.

Then for such a paraproduct, the classical Calderón-Zygmund theory gives
us that for all exponents 1 < p1, .., pn <∞ such that

0 <
1

p
:=

n∑

i=1

1

pi
< 1,

there exists a constant C = C(pi) such that for all functions fi ∈ S(Rd),

‖Π(f1, .., fn)‖p ≤ C
n∏

i=1

‖fi‖pi
.

These estimates in Lebesgue spaces depend on the functions πit. We would
like to understand how can we modify these functions, keeping uniform es-
timates.

The paraproducts are the first studied class of singular bilinear operators.
Their study began by the works of J.M. Bony in [1] and of R. Coifman and
Y. Meyer in [3, 4, 5], where in particular continuities in Lebesgue spaces are
shown. The first uniform result is the following one (from [6]) :

Theorem 1.1. Let (Mi)1≤i≤n be integers and (πij) j∈Z

1≤i≤n
be smooth functions

such that π̂ij is adapted to the rectangle [−2j+Mi, 2j+Mi]d. Assume that there
exist an integer N and an index i ∈ {1, .., n} such that for all j,

∀η ∈ [−2j+Mi−N , 2j+Mi−N ]d, π̂ij(η) = 0. (1.1)

Then for all exponents 1 < p1, ..., pn ≤ ∞ satisfying

0 <
1

p
:=

1

p1
+ ..+

1

pn
< 1,

there exists a constant C = C(N, pi), which does not depend on (Mi)i such
that

∀fi ∈ S(Rd),

∥∥∥∥∥
∑

j

n∏

i=1

πij ∗ fi

∥∥∥∥∥
p

≤ C
n∏

i=1

‖fi‖pi
.
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About this result, there are two different questions : what is the maximal
range of exponents with uniform estimates ? May we weaken the assumption
(1.1) ?

The second question was solved by C. Muscalu, T. Tao and C. Thiele in
[17], where they prove the stronger result :

Theorem 1.2. Let (Mi)1≤i≤n be integers and πij be smooth functions such

that π̂ij be adapted to the rectangle [−2j+Mi, 2j+Mi]d. Assume that for all j,
there exists an index i ∈ {1, .., n} with

π̂ij(0) = 0. (1.2)

Then for all exponents 1 < p1, ..., pn <∞ satisfying

0 <
1

p
:=

1

p1
+ ..+

1

pn
< 1,

there exists a constant C = C(N, pi), which does not depend on (Mi)i such
that

∀fi ∈ S(Rd),

∥∥∥∥∥
∑

j

n∏

i=1

πij ∗ fi

∥∥∥∥∥
p

≤ C
n∏

i=1

‖fi‖pi
.

It is even shown a little stronger version (a maximal version) than this one.
The assumption (1.2) is much weaker than (1.1). The proof of Theorem 1.2
is a mixture of the proof of Theorem 1.1 and arguments from graph theory.
Such a result was motivated by the paper [18] from the same authors. In
this article, they study some uniform estimates for multilinear operators far
more singular than the paraproducts, closely related to the bilinear Hilbert
transforms. The “classical” time-frequency analysis, to decompose these
kind of operators, uses some information and estimates on operators, which
look like paraproducts. That is why they have first shown in [17] uniform
estimates for paraproducts.

In this paper, we are interested in answering to the first question. Mainly
we want to obtain uniform estimates with infinite exponents and some ex-
ponents lower than 1. In [13], X. Li has shown uniform estimates when
1 < p1, ..., pn < ∞ and p may be lower than one. We would like to ex-
tend his result for some exponent pi < 1 or pi = ∞. The continuities for
this range of exponents have already been proved (for example in [9] by L.
Grafakos and N. Kalton). Here we would like to improve these continuities
with uniform estimates.
A second motivation for the study of paraproducts is this one : we know
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how to decompose a multilinear multiplier, satisfying Hörmander’s condi-
tion, with multilinear paraproducts. A n-linear multiplier T is given by its
symbol σ ∈ S(Rdn), with the formula :

T (f1, .., fn)(x) :=

∫

Rdn

eix.(ξ1+..+ξn)σ(ξ)

n∏

i=1

f̂i(ξi)dξ. (1.3)

The Hörmander condition corresponds to the following assumption :

∀mi ∈ Nd,

∣∣∣∣∣
n∏

i=1

∂mi

ξi
σ(ξ1, .., ξn)

∣∣∣∣∣ ≤
1

(|ξ1| + .. + |ξn|)
|m1|+..|mn|

. (1.4)

Note the appearance of the quantity |ξ1|+ ..+ |ξn|, which corresponds to the
distance d(ξ, 0) in the frequency plane. We are now interested in disturbing
the metric. We would like study the following distance

dλ(ξ, 0) :=
n∑

i=1

|λiξi|,

given by non vanishing reals λi. In fact it is easy to see that our parameters
λi have the same function than the parameters Mi of Theorems 1.1 and
1.2 (we have the relation λi ≃ 2−Mi). So we would like to have uniform
estimates with respect to the new distance dλ. The problem of disturbing
the metric appeared for example in the study of bilinear Hilbert transforms
along polynomial curves ([7]) and was one of the X. Li motivations to study
uniform estimates for paraproducts.

We will also prove the following result :

Theorem 1.3. Let σ be an x-independent symbol such that

∀mi ∈ Nd
∣∣∣∂m1

ξ1
..∂mn

ξn−1
σ(ξ1, .., ξn)

∣∣∣ .
∏n

i=1 |λi|
|mi|

dλ(ξ, 0)|m1|+..+|mn−1|
. (1.5)

Let 0 < pi, p ≤ ∞ exponents satisfying

1

p
=

n∑

i=1

1

pi
.

Let us denote the three disjoint sets (which may be empty) S1, S2 and S3

such that
{1, .., n} = S1 ⊔ S2 ⊔ S3,

with

∀i ∈ S1, pi = 1, ∀i ∈ S2, pi = ∞ and ∀i ∈ S3, pi ∈ {1,∞}c.

Then we know that the multilinear multiplier T defined by (1.3) can be con-
tinuously extended from ⊗n

i=1Fi to G in the three following cases :
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• if 0 < p <∞ with G = Lp, Fi = Hpi for i ∈ S1 ∪ S3 and Fi = L∞
c for

i ∈ S2,

• if 0 < p < ∞ with G = Lp,∞, Fi = L1 for i ∈ S1, Fi = Hpi for i ∈ S3

and Fi = L∞
c for i ∈ S2,

• if p = ∞ (and also for all i ∈ {1, .., n} pi = ∞) with G = BMO and
Fi = L∞

c for all i ∈ {1, ..n}.

In addition we have the two following improvements :
Part 1) : All these continuities are uniformly bounded with respect to the
parameters λi under one of the two following assumptions :

a−) ∀1 ≤ i ≤ n, pi <∞

b−) γ :=
∑

j∈{1,..,n}
|λj |≃max{|λl|, 1≤l≤n}

1

pj
≥

1

2
.

Else the continuity bound depends on the ratio

max{|λk|, 1 ≤ k ≤ n}

min{|λk|, 1 ≤ k ≤ n}
.

Part 2) : We don’t know if the conditions a-) or b-) are sufficient to get
uniform bounds, however we will show that if p < ∞ and γ = 0 then we
cannot have a uniform bound.

In this result we write Lp = Lp(Rd) for the “classical” Lebesgue spaces and
Hp = Hp(Rd) for the Hardy spaces (which is equivalent to the Lebesgue
spaces Lp if 1 < p < ∞) and BMO = BMO(Rd) the space of functions of
“bounded mean oscilaation”. We write L∞

c for the set of bounded compactly
supported functions, equipped with the L∞-norm.

Remark 1.4. Our proof, show that in particular case, we can obtain the
continuity with the whole space L∞ instead of L∞

0 . For convenience and
technical difficulties (see the proof of Corollary 4.11), we prefer to only work
with the space L∞

0 .

Remark 1.5. By Taking λi ≃ 2−Mi, the paraproducts of Theorems 1.1 and
1.2 verify (1.5) uniformly with respect to λ because the symbol is given by

σ(ξ1, .., ξn) =
∑

j

n∏

i=1

ζ̂i,j(ξi).

So Theorem 1.3 improves the uniform estimates of Theorem 1.2 and answer
to the asked question.
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Remark 1.6. By using time-frequency tools such as “tiles” and “trees” as in
[16, 13], it should be possible to prove some uniform “weak type restricted
estimates” in Lp, which are stronger than our continuity in Lp for p < 1.

Remark 1.7. The continuities are already known from the papers [9] and
[10] of L. Grafakos and N. Kalton. In fact our operators are multilinear
Calderón-Zygmund operators and so their continuities are a consequence
of the paper [11] of L. Grafakos and R. Torres. The improvement is the
fact that we can have uniform bounds and we must be careful because the
constants, as multilinear Calderón-Zygmund operators, are not uniformly
bounded. So we will use the ideas of the Calderón-Zygmund theory with a
few improvements.

There is an other interest to study such uniform estimates. The symbols ver-
ifying (1.5) uniformly with respect to λ satisfy the Marcinkiewicz condition :

∀mi ∈ Nd
∣∣∣∂m1

ξ1
..∂mn

ξn−1
σ(ξ1, .., ξn)

∣∣∣ .
n∏

i=1

|ξi|
−|mi|. (1.6)

However, from [9] we know that the condition (1.6) is in general not sufficient
to guarantee continuity, as in the previous Theorem. So our result allows
us to almost describe the “limit case” between (1.4) and (1.5) to get these
continuities.

To prove our Theorem, we will use model operators, which generalize and are
more symmetric than the paraproducts. In the definition of paraproducts,
there has to be one (or more) index i ∈ {1, .., n} such that (1.1) or (1.2) is
satisfied, so there is a lack of symmetry in their definition (see Remark 2.5).

The plan of this paper is the following one. In Section 2, we define nota-
tions and our model operators. We first prove Theorem 1.3 for our model
operators : in the case where all exponents belong to (1,∞) in Section 3
(this part only uses Littlewood-Paley theory) and after for others exponents
in Section 4 (this part uses Carleson measures and an improved Calderon-
Zygmund theory). Then we complete the proof of Theorem 1.3 for general
multipliers in Section 5.

2 Definition of our model operators.

For the rest of this paper, we use the well-known notations : let ζ be a
function on Rd, t 6= 0 be a real and q ∈ Rd be a vector. We set ζt and ζt,q
for the L1-normalized functions defined by

ζt(x) :=
1

|t|d
ζ(t−1x) and ζt,q(x) :=

1

|t|d
ζ(t−1(x− q)).
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We will work with the Hardy spaces on Rd, so let us first recall one of its
definitions.

Definition 2.1. Let Ψ be a smooth function. We define SΨ to be the
continuous or the discrete Littlewood-Paley square function, given by

SΨ(f) :=

(∫
|Ψt ∗ f |

2 dt

t

)1/2

or S∆
Ψ (f) :=

(∑

n∈Z

|Ψ2n ∗ f |2
)1/2

.

We use these functionals to get the following definition of Hardy spaces (See
[8]) :

Definition 2.2. Let Ψ be a non null smooth function whose spectrum is
contained in a corona around 0. For 0 < p <∞, we define the Hardy space
Hp = Hp(Rd) as the set of distributions f ∈ S ′(Rd) satisfying :

‖f‖Hp := ‖SΨ(f)‖p <∞.

From the book [20] we know that for 1 < p < ∞ the Hardy space Hp

corresponds to the Lebesgue space Lp. In addition, we have the choice to
keep a discrete or a continuous square function : the definition of the space
does not depend on it or on the choice of the function Ψ.

We have to control norms in the Schwartz space, so we set for an integer K

cK(ζ) := sup
x∈Rd

(1 + |x|)K sup
α∈Nd

|α|≤K

|∂αx ζ(x)| . (2.1)

Now we define our model operators.

Definition 2.3. Let Ψ be a smooth function on Rd whose spectrum is con-
tained in a corona around 0 and let Φi be smooth functions whose spectrum
is bounded. Let L be a bounded function on Z, λ = (λ1, .., λn) ∈ (R∗)n

and ρ = (ρ1, .., ρn) ∈]0, 1]n be parameters. Then we define the following
operator :

Tρ,λ,L(f1, .., fn)(x) =
∑

k∈Z

L(k)

∫

Rd

Ψ2k(y)

n∏

i=1

[Φi
λi2k ∗ fi](x− ρiλiy)dy.

We also have the continuous version with a bounded function L on R+,
defined by

Uρ,λ,L(f1, .., fn)(x) =

∫ ∞

0

L(t)

∫

Rd

Ψt(y)
n∏

i=1

[Φi
λit

∗ fi](x− ρiλiy)dy
dt

t
.
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It is easy to see that these operators continuously act from S(Rd)⊗n to S(Rd).
In addition, the operator Tρ,λ,L is associated to the following symbol σ :

σ(ξ1, .., ξn) :=
∑

k∈Z

L(k)Ψ̂
(
2k(ρ1λ1ξ1 + .. + ρnλnξn)

) n∏

i=1

Φ̂i(λi2
kξi),

which satisfies (1.5) uniformly on λ.

We want now to make the link with the “classical” paraproducts.

Proposition 2.4. The parameters ρi allow us to get the “classical” para-
products as limit of our previous operators : for all f1, .., fn ∈ S(Rd)

Uρ,λ,L(f1, .., fn)(x)
ρ1=1

ρi→0

−−−→

∫ ∞

0

L(t)[Ψ∗Φ1]λ1t ∗f1(x)

n∏

i=2

[Φi
λit

∗fi](x)
dt

t
. (2.2)

Here the convergence is in the S(Rd) sense.

We do not write the details of this result. With the good assumptions about
the functions fi, it is easy to prove this convergence.

Remark 2.5. Our model operators have a symmetry : the definition is in-
variant by permutations on the n functions, which is not the case for the
“classical” paraproducts. For example in the bilinear case, we want to esti-
mate in L2 the two different paraproducts (for f ∈ L∞ and g ∈ L2) :
∫ ∞

0

[Ψλ1t ∗ f ] [Φλ2t ∗ g]
L(t)

t
dt and

∫ ∞

0

[Φλ1t ∗ f ] [Ψλ2t ∗ g]
L(t)

t
dt,

uniformly on (λ1, λ2) with |λ2| > |λ1|. These two paraproducts are a little
different and so their study ask some different arguments.
That is why we prefer working with our model operators, which own sym-
metry invariance and allow us to get by a limit argument these two kinds of
paraproducts.

Remark 2.6. It is quite easy to show that our model operators satisfy the
assumptions of Theorem 1.3 with uniform bounds with respect to λ and ρ.
We let to the reader the details of this claim.

Before to prove the positive part (part 1) of Theorem 1.3 for our model
operators, we would like to explain the negative claim of this Theorem (part
2) in the bilinear case :

Proposition 2.7. Let ρ1 = ρ2 = 1 be fixed and |λ1| ≪ |λ2| be reals.
There exists operators Uρ,λ,m (also satisfying the assumptions of Theorem
1.3) which cannot be continuous from Lp × L∞ into Lp for 1 < p <∞ with
an uniform bound with respect to λ.
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Proof : Let us choose Φi = ζ a smooth and nonnegative function whose
integral is equal to 1 and set

Uǫ,λ(f, g)(x) :=

∫ ǫ−1

ǫ

∫

Rd

Ψt(y)ζλ1t ∗ f(x− λ1y)ζλ2t ∗ g(x− λ2y)
dydt

t
.

When λ1 tends to 0, we have

∀f ∈ S(Rd), x ∈ Rd lim
λ1→0

ζλ1t ∗ f(x− λ1y) = f(x).

Due to the presence of the ǫ > 0, we have for f, g ∈ S(Rd)

∀x ∈ Rd lim
λ1→0

Uǫ,λ(f, g)(x) = f(x)

∫ ǫ−1

ǫ

∫

Rd

Ψt(y)ζλ2t ∗ g(x− λ2y)
dydt

t
.

We can now take ǫ→ 0 and we get

lim
ǫ→0

∫ ǫ−1

ǫ

∫

Rd

Ψt(y)ζλ2t∗g(x−λ2y)
dydt

t
=

∫ ∞

0

∫

Rd

Ψt(y)ζλ2t∗g(x−λ2y)
dydt

t
.

Then we can choose good functions Ψ and ζ in order to find the linear
Hilbert transform H . With these ones, we conclude

∀x ∈ Rd, lim
ǫ→0

lim
λ1→0

Uǫ,λ(f, g)(x) = f(x)H(g)(x).

So if we have uniform estimates on Uǫ,λ from Lp × L∞ into Lp, by using
Fatou’s lemma, we get :

∀f, g ∈ S(Rd), ‖fH(g)‖p . ‖f‖p‖g‖∞.

Such an estimate implies the boundedness of H on L∞ which is not possible.
So we cannot have uniform estimates for the operators Uǫ,λ. ⊓⊔

After these remarks, we are going to prove Theorem 1.3 for our model op-
erators.

3 The study of Tρ,λ,L with Littlewood-Paley

square functions.

In this section, we obtain the uniform bounds of Theorem 1.3 with the
Hardy spaces when all the exponents pi are finite. As we will see in Section
4, our model operators can be considered as multilinear Calderón-Zygmund
operators. Consequently, with similar arguments to those of L. Grafakos and
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N. Kalton used in [10], we can have boundedness of our operators on the
sets of atoms associated to the considered Hardy spaces. For several years,
many papers (see for example [2, 14, 15]) emphasize the following problem
: how can we extend a linear operator bounded on the set of atoms to the
whole Hardy space ? This abstract question is a really problem and does not
admit a general positive answer. For example there is a counter-example in
[15] for the classical Hardy space.

For this reason, we prefer to describe an other proof, which does not use
the atomic decomposition of Hardy spaces. That is why, we are going to
directly work with the Littlewood-Paley square functions.

For convenience, we deal only with the bilinear case : n = 3. First remember
the definition of our operator : we choose two smooth functions Φ1 and
Φ2 with bounded spectrum and we choose a smooth function Ψ whose the
spectrum is included in a corona around 0. Then we construct the operator

Tρ,λ,L(f, g)(x) :=
∑

k∈Z

L(k)

∫

Rd

Ψ2k(y)[Φ1
λ12k ∗ f ](x− ρ1λ1y)[Φ

2
λ22k ∗ g](x− ρ2λ2y)dy.

To study this last one, we decompose the two functions f and g with the
classical wavelets decomposition :

Lemma 3.1. Let ψ a smooth function such that

c(ψ) :=

∫ ∞

0

∣∣∣ψ̂(tξ)
∣∣∣
2 dt

t

be a nonnegative constant independent with respect to ξ (for example, we
can just assume that the function ψ is odd and radial). Then we have the
decomposition :

f = c(ψ)−1

∫

Rd

∫ ∞

0

〈f, ψt,q〉ψt,q
dtdq

t
. (3.1)

In addition, the integral is absolutely convergent for a function f ∈ S(Rd).

Proof : The result is well-known for f ∈ L2(Rd), it is shown in the book
[8] at the chapter 5.6. When f ∈ S(Rd), integrations by parts give us fast
decay for 〈f, ψt,q〉 and so permit us to prove the absolute convergence. ⊓⊔

From now, we will choose a smooth function ψ which verifies the assumption
of the previous Lemma and whose the spectrum is included in a corona

10



around 0. We decompose also the two functions f and g with the previous
lemma and we have also to study the following quantity :

F (k, u, v, q, s, x) :=

L(k)

∫

Rd

Ψ2k(y)[Φ1
λ12k ∗ ψu,q](x− ρ1λ1y)[Φ

2
λ22k ∗ ψv,s](x− ρ2λ2y)dy.

With the inverse Fourier transform, we get :

F (k, u, v, q, s, x) =

L(k)

∫

R2d

Ψ̂2p(ξ)Φ̂1
λ12k((ξ − α)ρ−1

1 λ−1
1 )ψ̂u,q((ξ − α)ρ−1

1 λ−1
1 )ei(ξ−α)xρ−1

1
λ−1

1

Φ̂2
λ22k(λ

−1
2 ρ−1

2 α)ψ̂v,s(ρ
−1
2 λ−1

2 α)eiαx(ρ2λ2)−1

(ρ1ρ2|λ1λ2|)
−ddαdξ.

Due to the spectral conditions, we have a dependence for the three frequency
parameters :

F (k, u, v, q, s, x) 6= 0 =⇒





max{|ρ1λ1|u
−1, |ρ2λ2|v

−1} ≃ 2−k

or
|ρ1λ1|

−1u ≃ |ρ2λ2|
−1v ≤ 2k

.

In addition the product Φ̂1
λ12kΨ̂u,q is non vanishing only if |λ1|u

−1 . 2−k and
similarly for v. As the coefficients ρi are bounded by 1, we are always in the
first case i.e.

max{|ρ1λ1|u
−1, |ρ2λ2|v

−1} ≃ 2−k.

In addition, we have shown the stronger condition

max{|λ1|u
−1, |λ2|v

−1} ≃ 2−k

uniformly with respect to the parameters ρi ∈]0, 1].

After having study the frequency properties of F (k, u, v, q, s, x), we will re-
member spatial estimates :

Proposition 3.2. We have the following estimate :

Fk,v,s(x) := |Φλ22k ∗ ψv,s(x)| .
inf{2k|λ2|, v}

d

v2d

(
1 +

|x− s|

max{|λ2|2k, v}

)−M

,

for any exponent M as large as we want. This estimate is uniform with
respect to k and λ2.

11



Proof : The proof is essentially written in Appendix K-2 of [8] and we only
give the sketch of the proof.
Let ψ̃ be an other smooth function, whose the spectrum is included in a

corona around 0 and such that
̂̃
ψ = 1 on the spectrum of ψ. We set ζ =

Φλ22k ∗ ψ̃v,s. It is also easy to check that

|ζ(x)| .
1

vd

(
1 +

|x|

max{2k|λ2|, v}

)−M

,

for all exponent M as large as we want. Due to the spectral properties of ψ
and ψ̃, we get :

Fk,v,s(x) = |ζ ∗ ψv,s(x)| .

Then we can directly estimate the convolution product and prove what we
want. ⊓⊔

After this study, we decompose our operator :

Tρ,λ,L(f, g)(x) =
∑

k

∫∫

R2d

∫ ∞

0

∫ ∞

0

〈f, ψu,q〉〈g, ψv,s〉F (k, u, v, q, s, x)
dv

v

du

u
dqds.

We have seen by a spectral analysis that we can restrict this double integral
over u and v on the set

{
(u, v), max{|λ1|u

−1, |λ2|v
−1} ≃ 2−k

}
.

In the study of paraproducts (see paragraph 8.4 of [8]), we decompose the
product as fg = Πf(g) + Πg(f) +D(f, g) where the two paraproducts and
the diagonal terms have different estimates. For the same reasons here we
have to singly study the two following terms : Tρ,λ,L = T 1

ρ,λ,L + T 2
ρ,λ,L with

T 1
ρ,λ,L(f, g)(x) :=
∑

k

∫∫

R2d

∫ ∞

0

∫ ∞

0

〈f, ψu,q〉〈g, ψv,s〉F (k, u, v, q, s, x)1Ak
(u, v)

dvdu

vu
dqds

and

T 2
ρ,λ,L(f, g)(x) :=
∑

k

∫∫

R2d

∫ ∞

0

∫ ∞

0

〈f, ψu,q〉〈g, ψv,s〉F (k, u, v, q, s, x)1Bk
(u, v)

dvdu

vu
dqds.
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We write Ak and Bk for the two sets :

Ak :={
(u, v), max

{
|λ1|u

−1, |λ2|v
−1
}
≃ 2−k and min{u, v} ≤ C−1 max{u, v}

}

and
Bk :=

{
(u, v), max

{
|λ1|u

−1, |λ2|v
−1
}
≃ 2−k and u ≃ v

}
,

where C is a numerical constant, we later choose. Due to this constant, we
can use spectral separation to study T 1

ρ,λ,L with the Littlewood-Paley square
functions for f and g.

Theorem 3.3. For 0 < ρi ≤ 1 and λi ∈ R∗, the operator T 1
ρ,λ,L can been

continuously extended from Hr1×Hr2 to Hr3, if the exponents 0 < r1, r2, r3 <
∞ satisfy the homogeneity condition

1

r1
+

1

r2
=

1

r3
.

In addition we control the continuity bounds, uniformly with respect to λ and
ρ by the quantity

cN (Ψ)cN(Φ1)cN (Φ2)‖L‖∞,

for N a large enough integer.

Proof : To estimate T 1
ρ,λ,L in the Hardy space Hr3, we have to study its

square function : SΨ(T 1
ρ,λ,L(f, g)). We can compute the Fourier transform

and get :

̂F (k, u, v, q, s, .)(ξ) =L(k)

∫

Rd

Ψ̂2k(ξρ1λ1 − (ρ2λ2 − ρ1λ1)α)

ψ̂u,q(ξ − α)Φ̂1
λ12k(ξ − α)Φ̂2

λ22k(α)ψ̂v,s(α)dα. (3.2)

Consequently by writing ξ = (ξ − α) + α, the spectrum of F (k, u, v, q, s, .)
is contained in

1

u
spectrum(ψ) +

1

v
spectrum(ψ) ⊂

{
ξ, |ξ| ≃ max{u−1, v−1}

}
. (3.3)

For the last inclusion, we have used a large enough constant C in the defi-
nition of the set Ak and so

min{u, v} ≪ max{u, v}.

13



By symmetry we may assume u ≤ v and then by choosing a continuous
square function SΨ, we have

SΨ(T 1
ρ,λ,L(f, g))(x) .

(∫ ∞

0

[∑

k∈Z

∫∫

R2d

∫ ∞

0

|〈f, ψu,q〉〈g, ψv,s〉|

|Ψu ∗ F (k, u, v, q, s, .)(x)|1A′
k
(u, v)

dv

v
dqds

]2
du

u

)1/2

,

where A′
k := {(u, v) ∈ Ak, u ≪ v}. We have also to estimate the following

quantity

Q :=

∥∥∥∥∥

(∫ ∞

0

∣∣∣∣∣
∑

k

∫∫

R2d

∫ ∞

0

|〈f, ψu,q〉〈g, ψv,s〉|

|Ψu ∗ F (k, u, v, q, s, .)(x)|1A′
k
(u, v)

dv

v
dqds

∣∣∣∣∣

2
du

u

)1/2
∥∥∥∥∥∥
r3,dx

.

With the notations of Proposition 3.2, we have that for all z ∈ Rd

|F (k, u, v, q, s, z)| ≤ |L(k)|

∫

Rd

|Ψ2k(y)|Fk,u,q(z − λ1ρ1y)Fk,v,s(z − ρ2λ2y)dy.

By using the estimates of Proposition 3.2 and the fast decay of Ψ, we get :

|F (k, u, v, q, s, z)| . ‖L‖∞

∫

Rd

2−dk
(

1 +
|y|

2k

)−M (
1 +

|z − ρ1λ1y − q|

u

)−M

|λ1|
d2ku−2d |λ2|

d2k

v2d

(
1 +

|z − ρ2λ2y − s|

v

)−M

dy.

As the parameters ρi ≤ 1 and (u, v) ∈ A′
k, we obtain with an other exponent :

|F (k, u, v, q, s, z)| . (3.4)

‖L‖∞

(
1 +

|z − s|

v

)−M (
1 +

|z − q|

u

)−M (
|λ1||λ2|2

2k

u2v2

)d
. (3.5)

The exponent M is not always the same, but it always corresponds to an
integer as large as we want. Now by estimating the convolution product, we
get

|Ψu ∗ F (k, u, v, q, s, .)(x)| .

‖L‖∞

(
1 +

|x− s|

v

)−M (
1 +

|x− q|

u

)−M ( |λ1||λ2|2
2k

u2v2

)d
.
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Computing this estimate in the expression of Q, we have

Q . ‖L‖∞

∥∥∥∥∥

∥∥∥∥∥
∑

k∈Z

∫∫

R2d

∫ ∞

0

|〈f, ψu,q〉〈g, ψv,s〉|

(
1 +

|x− s|

v

)−M

(
1 +

|x− q|

u

)−M

1A′
k
(u, v)

(
|λ1||λ2|2

2k

u2v2

)d
dv

v
dqds

∥∥∥∥∥
2,du/u

∥∥∥∥∥∥
r3,dx

.

We change the two variables

x− q

u
→ a and

x− s

v
→ b,

to get

Q .

∥∥∥∥∥

∥∥∥∥∥
∑

k

∫∫

R2d

∫ ∞

0

|〈f, ψu,x−ua〉〈g, ψv,x−vb〉| (1 + |a|)−M (1 + |b|)−M

1A′
k
(u, v)

(
|λ1||λ2|2

2k

uv

)d
dv

v
dadb

∥∥∥∥∥
2,du/u

∥∥∥∥∥∥
r3,dx

.

We write ψz for ψz(y) := ψ(z − y) and ψzt := (ψz)t. With these notations,
we have :

Q .

∥∥∥∥∥

∥∥∥∥∥
∑

k

∫∫

R2d

∫ ∞

0

|ψau ∗ f(x)||ψbv ∗ g(x)| (1 + |a|)−M (1 + |b|)−M

1A′
k
(u, v)

(
|λ1||λ2|2

2k

uv

)d
dv

v
dadb

∥∥∥∥∥
2,du/u

∥∥∥∥∥∥
r3,dx

.

The definition of the set A′
k allows us to have a finite number of choice for

k. Therefore we have

Q .

∥∥∥∥
∥∥∥∥
∫∫

R2d

∫ ∞

0

|ψau ∗ f(x)||ψbv ∗ g(x)| (1 + |a|)−M (1 + |b|)−M

1u≤C−1v

(
|λ1||λ2| inf{|λ1|

−1u, |λ2|
−1v}2

uv

)d
dv

v
dadb

∥∥∥∥∥
2,du/u

∥∥∥∥∥∥
r3,dx

.
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Then we use the Cauchy-Schwarz inequality with

(1) :=

∫ ∞

Cu

(
|λ1||λ2| inf{|λ1|

−1u, |λ2|
−1v}2

uv

)2d
dv

v

.

∫ ∞

Cu

(
inf{|λ1|

−1u, |λ2|
−1v}

max{|λ1|−1u, |λ2|−1v}

)2d
dv

v

.

∫ ∞

|λ2λ
−1

1
|u

(
|λ1|

−1u

|λ2|−1v

)2d
dv

v
+

∫ max{C,|λ2λ
−1

1
|}u

Cu

(
|λ2|

−1v

|λ1|−1u

)2d
dv

v

. 1 +

(
|λ2|

−1

|λ1|−1

)2d [
max{C, |λ2λ

−1
1 |}2d − C2d

]

. 1 +

(
|λ1|

|λ2|

)2d [
|λ2λ

−1
1 |2d − min{C, |λ2λ

−1
1 |}2d

]

. 1 +
[
1 − min{C|λ−1

2 λ1|, 1}
2d
]

. 1,

to finally get

Q .

∥∥∥∥∥

∥∥∥∥
∫∫

R2d

|ψau ∗ f(x)|Sψb(g)(x) (1 + |a|)−M (1 + |b|)−M dadb

∥∥∥∥
2,du/u

∥∥∥∥∥
r3,dx

.

With Minkowski inequality, we may write the last inequality as

Q .

∥∥∥∥
∫∫

R2d

Sψa(f)(x)Sψb(g)(x) (1 + |a|)−M (1 + |b|)−M dadb

∥∥∥∥
r3,dx

. (3.6)

We must have a pointwise estimate on the square functions when r3 < 1,
because of the lack for the triangle inequality in Lr3 . We also use this lemma :

Lemma 3.4. Let ζ be a smooth function satisfying

∀ξ 6= 0,

∫ ∞

0

∣∣∣ζ̂(tξ)
∣∣∣
2 dt

t
= 1. (3.7)

For ψ an other function satisfying (3.7) too, we have the pointwise estimate :
for all r > 0, there exists a constant Cr and an integer N such that

∀f ∈ S(Rd) Sψ(f) ≤ CrcN(ζ)cN(ψ)

(∫ [
M2

r (ζt ∗ f)
]2 dt

t

)1/2

.

Here MHL is the Hardy-Littlewood maximal operator, M2
HL corresponds to

MHL ◦MHL and

M2
r (g) =

(
MHL

2(|g|r)
)1/r

.
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Let assume first this Lemma. By applying it with ψ = ψa and ψ = ψb, we
get :

Q .

∥∥∥∥∥

∫∫

R2d

(1 + |a|)N(1 + |b|)N
(∫ ∞

0

[
M2

r (ζt ∗ f)
]2 dt

t

)1/2

(∫ ∞

0

[
M2

r (ζt ∗ g)
]2 dt

t

)1/2

(1 + |b|)−M (1 + |a|)−M dadb

∥∥∥∥∥
r3

.

Also by choosing a large enough integer M , we have :

Q .

∥∥∥∥∥

(∫ ∞

0

[
M2

r (ζt ∗ f)
]2 dt

t

)1/2(∫ ∞

0

[
M2

r (ζt ∗ g)
]2 dt

t

)1/2
∥∥∥∥∥
r3

.

With Hölder inequality, we obtain :

Q .

∥∥∥∥∥

(∫ ∞

0

[
M2

r (ζt ∗ f)
]2 dt

t

)1/2
∥∥∥∥∥
r1

∥∥∥∥∥

(∫ ∞

0

[
M2

r (ζt ∗ g)
]2 dt

t

)1/2
∥∥∥∥∥
r2

. (3.8)

We study only the first term with r1, the other one is identical. By definition,

∥∥∥∥∥

(∫ ∞

0

[
M2

r (ζt ∗ f)
]2 dt

t

)1/2
∥∥∥∥∥
r1

=

∥∥∥∥∥

(∫ ∞

0

[
M2

HL(|ζt ∗ f |
r)
]2/r dt

t

)r/2∥∥∥∥∥

1/r

r1/r

.

For r small enough such that min{r1/r, 2/r} > 1, the Fefferman-Stein in-
equality (Theorem 4.6.6 of [8]) in L2/r applied to the operator M2

HL gives
us :

∥∥∥∥∥

(∫ ∞

0

[
M2

r (ζt ∗ f)
]2 dt

t

)1/2
∥∥∥∥∥
r1

.

∥∥∥∥∥

(∫ ∞

0

[|ζt ∗ f |
r]2/r

dt

t

)r/2∥∥∥∥∥

1/r

r1/r

.

In other words :
∥∥∥∥∥

(∫ ∞

0

[
M2

r (ζt ∗ f)
]2 dt

t

)1/2
∥∥∥∥∥
r1

. ‖Sζ(f)‖r1 .

By replacing this estimate in (3.8), we obtain the desired result :

Q . ‖f‖Hr1‖g‖Hr2

uniformly with respect to λi 6= 0 and 0 < ρi ≤ 1. ⊓⊔
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We have now to show the Lemma 3.4. This Lemma is “quite classical”, it
permits to understand for example that Definition of Hardy spaces (Defini-
tion 2.2) does not depend on the used function Ψ. It is almost proved in a
discrete version in the book [8], from which we take the notations. We only
give the sketch of the proof.
Proof : We define the maximal operator :

Mb,t(f, ψ) = sup
y∈Rd

|ψt ∗ f(x− y)|

(1 + t−1|y|)b
.

Then it is obvious that

|ψt ∗ f | ≤Mb,t(f, ψ). (3.9)

In the proof of Theorem 6.5.6. of [8], one may choose a function Θ satisfying
(3.7) and such that Θ̂ ≥ 0. Then it is shown that :

Mb,t(f, ψ) .

∫
cN(ψ)cN(Θ) inf{|t− s|, |t− s|−1}Mb,s(f,Θ)

ds

s
.

Consequently with (3.9), we get :

Sψ(f) . cN (ψ)cN(Θ)

(∫
[Mb,s(f,Θ)]2

ds

s

)1/2

. (3.10)

Now Lemma 6.5.3. of [8] with b = n/r gives us,

Mb,t(f,Θ) . Mr(Θt ∗ f).

To substitute the function ζ to the function Θ, we use the spectral condition
and the fact that

Θt ∗ f =

∫ 2

1/2

Θt ∗ ζtu ∗ f
du

u
.

Then with the estimate (6.5.8) of [8] :

|Θt ∗ ζtu ∗ f(x)| . cN(Θ)Mr(ζt ∗ f)(x),

we obtain that

Mb,t(f,Θ) . Mr(Θt ∗ f) . cN(Θ)cN(ζ)MrMr(ζt ∗ f) . cN(ζ)M2
r (ζt ∗ f).

By computing this estimate in (3.10), we get the Lemma. ⊓⊔

To finish the study of Tρ,λ,L, we have to estimate the second operator T 2
ρ,λ,L :
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Theorem 3.5. For 0 < ρi ≤ 1 and λi 6= 0, the operator T 2
ρ,λ,L is continuous

from Hr1 ×Hr2 to Lr3, for all exponents 0 < r1, r2, r3 <∞ satisfying

1

r1
+

1

r2
=

1

r3
.

In addition we may control the continuity bounds, uniformly with respect to
λ and ρ by the quantity

cN (Ψ)cN(ψ)cN(Φ1)cN (Φ2)‖L‖∞,

for N a large enough integer.

Proof : The operator T 2
ρ,λ,L is defined as

T 2
ρ,λ,L(f, g) :=
∑

k∈Z

∫∫

R2d

∫ ∞

0

∫ ∞

0

〈f, ψu,q〉〈g, ψv,s〉F (k, u, v, q, s, x)1Bk
(u, v)

dvdu

vu
dqds,

with
Bk :=

{
(u, v), max{|λ1|u

−1, |λ2|v
−1} ≃ 2−k and u ≃ v

}
.

By using the previous estimate, we have to control

Q :=
∥∥T 2

ρ,λ,L(f, g)
∥∥
r3

.

∥∥∥∥∥
∑

k∈Z

∫∫

R2d

∫ ∞

0

∫ ∞

0

|〈f, ψu,q〉〈g, ψv,s〉|

(
1 +

|x− s|

v

)−M

(
1 +

|x− q|

u

)−M

1Bk
(u, v)

(
|λ1||λ2|2

2k

u2v2

)d
dvdu

uv
dqds

∥∥∥∥∥
r3,dx

.

In this case (3.3) is not satisfied. We compute the same changes of variables
as in the end of the proof for Theorem 3.3. By using Cauchy-Schwarz in-
equality and the definition of the set Bk, we obtain the same estimate as
(3.6) and so we can conclude by the same arguments as before. ⊓⊔

Finally we get the following result :

Theorem 3.6. Let 0 < ρi ≤ 1 and λi 6= 0 be reals, then the operator Tρ,λ,L
is continuous from Hr1 × Hr2 to Lr3 for all exponents 0 < r1, r2, r3 < ∞
satisfying

1

r1
+

1

r2
=

1

r3
.
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In addition we can estimate the continuity bound uniformly with respect to
λ and ρ by the quantity

cN (Ψ)cN(ψ)cN(Φ1)cN (Φ2)‖L‖∞,

for N a large enough integer.

Proof : We have decomposed the operator Tρ,λ,L as

Tρ,λ,L = T 1
ρ,λ,L + T 2

ρ,λ,L.

The embedding Hr3 →֒ Lr3 (see Theorem 2.5 of [21]), Theorems 3.3 and 3.5
allow us to prove the desired result. ⊓⊔

This result proves the first part of Theorem 1.3 : under the assumption 1-)
we have uniform estimates.

In the next section, we are going to prove a similar result for some infi-
nite exponents with the concept of Carleson measure and ideas based on
Calderón-Zygmund theory.

4 The study of Tρ,λ,L with Carleson measures

and Calderón-Zygmund decompositions .

We use ideas of the book [4], where R. Coifman and Y. Meyer have already
studied paraproducts with a Carleson measure. We adapt here their argu-
ments to our model operators. As we have seen in Remark 2.5, our operators
permit us to understand all the “different kinds” of paraproducts. In [4],
the authors studied only one “kind” of paraproducts (which with other and
extra arguments is sufficient to study the other ones).
That is why the use of our model operators seems interesting as we obtain
a (only one) direct proof simultaneously for all the paraproducts.

We will (for convenience) work on the continuous version of them :

Uρ,λ,L(f1, .., fn)(x) :=

∫ ∞

0

L(t)

∫

Rd

Ψt(y)

n∏

i=1

[
Φi
λit

∗ fi
]
(x− ρiλiy)dy

dt

t
,

where L is a bounded measurable function. By symmetry, we can assume
that λn satisfies :

|λn| = max{|λi|, 1 ≤ i ≤ n}. (4.1)

In this case we have the following result :
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Theorem 4.1. Under the assumption (4.1), the operator Uρ,λ,L can be con-
tinuously extended from (L∞)⊗n−1 × L2 to L2. In addition the continuity
bound is controlled by ‖L‖∞ with cM(Ψ) and cM(Φi) (for a large enough
integer M) independently with respect to the parameters ρi ∈]0, 1] and λ.

Proof : By symmetry on the (n− 1) first coordinates, we can assume that

|λ1| := min{|λj|, 1 ≤ j ≤ n− 1}. (4.2)

In [4] (Chap. VI prop 3), the following result (that we call the (∗)-result) is
shown : the operator V is continuous from (L∞)⊗n−1 × L2 to L2, where V
is defined by

V (f1, .., fn)(x) := U(ρ1,0,..,0),λ,L(f1, .., fn)(x)

=

∫ ∞

0

[
Ψρ1λ1t ∗ Φ1

λ1t
∗ f1

]
(x)

n∏

j=2

Φj
λjt

∗ fj(x)
L(t)

t
dt.

The estimate on V is independent on λ and ρ1 due to the assumptions (4.1)
and (4.2). Our idea is also to disturb our coefficients (ρj)2≤j≤n and to bring
them to 0. We temporarily forget in the notation the dependence on ρ, λ
and L, by writing :

Uρ,λ,L(f1, .., fn) = V (f1, .., fn) +
∑

J⊂{2,..,n}
J 6=∅

∫
0≤sj≤ρj

j∈J

Ws,J(f1, ..fn)ds,

where

Ws,J(f1, .., fn)(x) :=

∫ ∞

0

∫

Rd

Ψt(y)Φ
1
λ1t

∗ f1(x+ ρ1λ1y)

n∏

j=2

j∈J

λjy

λjt
.(∇Φj)λjt ∗ fj(x+ sjλjy)ΠJ(x, y, t)

L(t)

t
dydt

with

ΠJ(x, y, t) :=
n∏

j=2

j∈Jc

(Φj)λjt ∗ fj(x+ λjy).

Since V is estimated by the (∗)-result, ρi ≤ 1 and the set of J being finite,
we have only to bound the operators Ws,J . We now decompose the gradient
in the d coordinates :

Ws,J(f1, .., fn)(x) =
∑

l∈{1,..,d}|J|

∫ ∞

0

∫

Rd

Ψt(y)Φ
1
λ1t ∗ f1(x+ ρ1λ1y)

n∏

j=2

j∈J

ylj
t

[
(∂xlj

Φj)λjt ∗ fj
]
(x+ sjλjy)ΠJ(x, y, t)

L(t)

t
dydt.
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By setting

Θl(x) =

[∏

j∈J

xlj

]
Ψ(x),

the function Θl is again a smooth function whose the spectrum is far away
from 0. We have

Ws,J(f1, .., fn−1)(x) =
∑

l

∫ ∞

0

∫

Rd

Θl
t(y)

[
ζ1
λ1t

∗ f1

]
(x+ ρ1λ1y)

∏

j∈J

[
(∂xlj

Φj)λjt ∗ fj
]
(x+ λjsjy)ΠJ(x, y, t)

L(t)

t
dydt.

Now the interest of this operation is that J being not empty there exists an

index j for which ∂̂xlj
Φj(0) = 0 (what is false for the initial function Φj)1.

The (∗)-result for V is based on the following quadratic estimate (due to the
notion of Carleson measure, see [4]) :

‖ [Ψρ1λ1t ∗ f ] (x)
[
ζ2
λ2t

∗ g
]
(x)‖2, dtdx

t
. ‖f‖∞‖g‖2,

uniformly on λ and ρ for 0 < ρi ≤ 1 and 0 < |λ1| ≤ |λ2|. We are going
also to produce the same proof for our operator Ws,J . We have to show a
quadratic estimate : for an index l ∈ {1, .., d}|J | :

(♠)l :=

∥∥∥∥
∫

Rd

Θl
t(y)Φ

1
λ1t

∗ f1(x− ρ1λ1y)

∏

j∈J

(∂xlj
Φj)λjt ∗ fj(x+ λjsjy)

∏

j∈Jc

Φλjt ∗ fj(x+ λjy)dy

∥∥∥∥∥
2, dxdt

t

. ‖fn‖2

n−1∏

i=1

‖fi‖∞. (4.3)

∗ First case : n ∈ J . The convolution operators are bounded on L∞, so we
get :

(♠)l ≤
∏

i6=n

‖fi‖∞

∥∥∥∥
∫

Rd

|Θl
t(y)|

∣∣(∂xln
Φn)λnt ∗ fn(x− λnsny)

∣∣ dy
∥∥∥∥

2, dxdt
t

.

We use Minkowski inequality for the norm in L2(dt/t) and after we can
compute the integral over y. Then with the reminder (1), we get (4.3).

1 In this case, we know from [4] that ‖(∂xlj
Φj)t ∗ f‖

2, dxdt
t

. ‖f‖2
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∗ Second case : n ∈ Jc. We use a Carleson estimate by keeping an other
function fk with k ∈ J (due to J 6= ∅).

(♠)l ≤
∏

i6={n,k}

‖fi‖∞

∥∥∥∥
∫

Rd

|Θl
t(y)|

∣∣Φn
λnt ∗ fn(x− λny)

∣∣

∣∣∣(∂xlk
Φk)λkt ∗ fk(x− λksk)

∣∣∣ dy
∥∥∥∥∥

2, dxdt
t

.

After changing the variable on y, we have :

(♠)l ≤
∏

i6={n,k}

‖fi‖∞

∥∥∥∥
∫

Rd

|Θl(y)|
∣∣Φn

λnt ∗ fn(x− λnty)
∣∣

∣∣∣(∂xlk
Φk)λkt ∗ fk(x− λktsky)

∣∣∣ dy
∥∥∥∥

2, dxdt
t

.

We write Φk,a for Φk(· − a) and also get

(♠)l ≤
∏

i6={n,k}

‖fi‖∞

∥∥∥∥
∫

Rd

|Θl(y)|
∣∣Φn,y

λnt
∗ fn(x)

∣∣
∣∣∣(∂xlk

Φk,sky)λkt ∗ fk(x)
∣∣∣ dy

∥∥∥∥
2, dxdt

t

.

We now use Minkowski inequality on the measure dxdt/t and after the Car-
leson estimate to finally obtain :

(♠)l ≤
∏

i6=n

‖fi‖∞‖fn‖2

∫
|Θl(y)|(1 + |sky|)

2d+2dy.

The function Θl is smooth and 0 ≤ sk ≤ 1, consequently we have shown
(♠)l in this last case. All the estimates are uniform on λ due to |λk| ≤ |λn|.

Hence (4.3) is shown in the two cases. We have now just to copy the proof
of the (∗)-result of [4] by putting the previous quadratic estimate instead of
the Carleson estimate. The details of this part of the proof are left to the
reader. ⊓⊔

As for “classical” Calderón-Zygmund operators, we use a Calderón-Zygmund
decomposition to obtain continuity results with other Lebesgue exponents.
Our multilinear operators are multilinear Calderón-Zygmund operators (as
defined in [11]), however the bounds are not uniformly controlled with re-
spect to λi. By using the main result of [11], we obtain our desired conti-
nuities for Uρ,λ,L with a certain dependence on λ. The rest of this section
is based on an improvement of the “classical” arguments, adapted to our
problem.
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Definition 4.2. A function K defined on Rd×Rd \{(x, x), x ∈ Rd} is called
a “standard kernel of order N” if for all x 6= y

∀α, β ∈ {1, .., d}, |α|, |β| ≤ N
∣∣∂αx ∂βyK(x, y)

∣∣ ≤ Aα,β
1

|x− y|d+|β|+|α|
.

A linear operator T , continuously acting from S(Rd) to S ′(Rd) and satisfying
the integral representation

∀f ∈ C∞
0 , ∀x /∈ supp(f) T (f)(x) =

∫

Rd

K(x, y)f(y)dy,

is said to be associated to the kernel K. Such an operator is called a
”Calderón-Zygmund operator of order N” if it is bounded on L2(Rd) and
associated to a ”standard kernel of order N”.

We have also the well-known following proposition (see for example the book
[8]) :

Proposition 4.3. Let T be a Calderón-Zygmund operator of order N . Then
T admits a continuous extension from Lp to Lp for 1 < p ≤ 2, from L1 to
L1,∞ and from Hp to Lp for d/(N + d) < p ≤ 1. In addition the continuity
bounds only depend on the constants ‖T‖L2→L2 and (A0,β)β.

Remark 4.4. The other constants Aα,β with α 6= 0 are useful to study the
dual operator T ∗ and also to get boundedness for T on Lq with 2 < q <∞.

We will use this proposition for our problem.

Proposition 4.5. Let f1, .., fn−1 be smooth fixed functions (considered in
L∞). Then the operator :

V := fn → Uρ,λ,L(f1, .., fn)

is a Calderón-Zygmund operator at any order. In addition the constants
A(0, β) are uniformly bounded with respect to λ and ρ for 0 < ρi ≤ 1.

Proof : The boundedness on L2 of V is given by Theorem 4.1. We have
only to check the desired estimates on the kernel. Let K be the kernel of V ,
which is given by :

K(x, z) =
∫ ∞

0

∫

Rd

Ψt(y)
n−1∏

j=1

Φj
λjt

∗ fj(x− ρjλjy)Φ
n
λnt(x− ρnλny − z)

L(t)

t
dydt.
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We can differentiate the kernel and directly obtain :

∣∣∂αx∂βzK(x, z)
∣∣ .

1

(mini |λi|)|α|

∫ ∞

0

n−1∏

j=1

‖fj‖∞‖L‖∞

∫

Rd

(
1 +

|y|

t

)−M (
1 +

|x− ρnλny − z|

λnt

)−M

|λnt|
−d−|β| dydt

t|α|+d+1
.

By using ρn−1 ≤ 1, we get :

∣∣∂αx ∂βzK(x, z)
∣∣ .

(
|λn|

mini |λi|

)|α| ∫ ∞

0

(
1

|λn|t

)|β|+|α|(
1 +

|x− z|

λnt

)−M

|λnt|
−d‖L‖∞

dt

t
.

For M a large enough exponent, we can conclude that

∣∣∂αx∂βzK(x, z)
∣∣ .

(
|λn|

mini |λi|

)|α|

|x− z|−d−|α|−|β|‖L‖∞.

We have also the desired estimates on the kernel and for α = 0 the estimates
do not depend on λ. ⊓⊔

With the two previous propositions, we get the following corollary.

Corollary 4.6. The operator Uρ,λ,L is continuous from (L∞)⊗(n−1) × Hp

into Lp for all exponent 0 < p ≤ 2 and from (L∞)⊗(n−1)×L1 into L1,∞. The
continuity bounds are uniformly controlled with respect to 0 < ρi ≤ 1 and λ
satisfying (4.1).

Here we do not know if a similar result for p > 2 is possible.

Now we would like to get continuities with finite exponents instead of infinite
exponents. To do this, we first prove the abstract following result :

Theorem 4.7. Let T be a linear operator, continuously acting from Lp1 to
Lp with 1 < p1 ≤ ∞ and 0 < p ≤ p1. We set r > 0 the exponent defined by

1

p
=

1

p1
+

1

r
.

We assume that T is associated to a kernel K (see definition 4.2) satisfying

∀α, |α| ≤ 1 |∂αzK(x, z)| ≤
1

|x− z|d+|α|
h(x)
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with a function h ∈ Lr,∞. Then T can be continuously extended from Lq1 to
Lq,∞ for all exponents (q1, q) such that

1

q
=

1

q1
+

1

r
and 1 ≤ q1 ≤ p1.

In addition the continuity bounds are controlled by ‖h‖r,∞. By real interpo-
lation, we obtain the strong type (q1, q) when 1 < q1 ≤ p1.

Proof : We follow the “classical proof” for r = ∞ and h = 1Rd . So let f
be a normalized function of Lq : ‖f‖q = 1. We want to show

|{x, |T (f)| > α}| . α−q. (4.4)

We use a Calderón-Zygmund decomposition of the function f at the scale
αq/q1. We have also the following decomposition

f = g + b,

with a “good” function g and a “bad” function b satisfying :

‖g‖q1 . ‖f‖q1 = 1, ‖g‖∞ . αq/q1,

b =
∑

k

bk, supp(bk) ⊂ Qk,

‖bk‖q1 . αq/q1|Qk|
1/q1,

∫
bk = 0,

∑

k

|Qk| . α−q‖f‖q1q1 . α−q and
∑

k

110Qk
. 1.

The (Qk)k is a collection of balls (of Rd), associated to the “bad” function
b. By linearity, we have

|{x, |T (f)| > α}| ≤ |{x, |T (g)| > α/2}| + |{x, |T (b)| > α/2}| .

1−) The case of the function g.
This is the easiest case. We use the continuity of T with the exponents p1

and p to get

|{x, |T (g)| > α/2}| . α−p ‖T (g)‖pp

. α−p‖g‖pp1.

By the assumption on g and the fact that q1 ≤ p1 :

‖g‖p1 . ‖g‖q1/p1q1
‖g‖1−q1/p1

∞ . αq(1−q1/p1)/q1 .
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We also obtain

|{x, |T (g)| > α/2}| . α−pαpq(1−q1/p1)/q1

. α−pαpq(1/q1−1/p1) . α−pαpq(1/q−1/p)

. α−q,

which corresponds to the desired result (4.4).
2−) The case of the function b.
First we have ∣∣∣∣∣

⋃

k

5Qk

∣∣∣∣∣ . α−q.

In order to show (4.4), we can also assume that x ∈ ∩k(5Qk)
c and just

estimate
|{x ∈ ∩k(5Qk)

c, |T (b)| > α/2}| .

Let also x be fixed and use

|T (b)(x)| ≤
∑

k≥0

|T (bk)(x)|.

With the vanishing moment of the function bk, we have :

T (bk)(x) =

∫
K(x, z)bk(z)dz =

∫
[K(x, z) −K(x, ck)] bk(z)dz.

Here we write ck for the center of the cube Qk. As x is far away the support
of bk, the integral representation has really a sense. Then by using the
estimates of the kernel, we have

|K(x, z) −K(x, ck)| . |z − ck|

∫ 1

0

|∇K(x, z + t(ck − z))| dt

. |z − ck|

∫ 1

0

1

|x− ck|d+1
h(x)dt

.
|z − ck|

|x− ck|d+1
h(x).

Therefore

|T (bk)(x)| . h(x)

∫
|Qk|

1/d 1

|x− ck|d+1
bk(z)dz.

With
‖bk‖1 ≤ |Qk|

1−1/q1‖bk‖q1 . |Qk|α
q/q1,

we obtain

|T (bk)(x)| . h(x)|Qk|
1+1/dαq/q1

1

|x− ck|d+1
.

27



By computing the sum over the index k, we finally have

|T (b)(x)| . h(x)αq/q1
∑

k

1
(
1 + |x−ck|

|Qk|1/d

)d+1
.

We find the Marcinkiewicz function associated to the collection (Qk), we
write it M(Qk)k

. So we have

|T (b)(x)| . h(x)αq/q1M(Qk)k
(x).

However the collection (10Qk)k is a bounded covering on the whole space,
so we know (see [19]) that for 1 ≤ q1 < ∞, M(Qk)k

is of weak type (q1, q1).
By using Hölder inequality on the weak Lebesgue spaces, we get

‖T (b)‖q,∞ . ‖h‖r,∞α
q/q1
∥∥M(Qk)k

(x)
∥∥
q1,∞

. | ∪Qk|
1/q1‖h‖r,∞α

q/q1 .

We obtain also the desired estimate :

‖T (b)‖q,∞ . ‖h‖r,∞.

⊓⊔

We now prove a similar result for the Hardy spaces :

Theorem 4.8. Let T be a linear operator, continuously acting from Lp1 to
Lp with 1 < p1 ≤ ∞ and p ≤ p1. We set r > 0 the exponent satisfying

1

p
=

1

p1

+
1

r
.

We assume that T is associated (see Definition 4.2) to a kernel K verifying :

∀α, |α| ≤ N |∂αzK(x, z)| ≤
1

|x− z|d+|α|
h(x)

with a function h ∈ Lr,∞. Then for all exponents (q1, q) such that

1

q
=

1

q1
+

1

r
and

d

N + d
≤ q1 ≤ 1,

there is a constant C such that for all atoms a ∈ Hq1

‖T (a)‖Lq,∞ ≤ C. (4.5)

In addition the continuity bounds are controlled by ‖h‖r,∞. By real interpo-
lation, T can be continuously extended from Hq1 to Lq when d

N+d
< q1 ≤ 1.
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Proof : We use the atomic decomposition of the Hardy spaces Hq1 (See
Theorem 6.6.10 of [8]). Let a be an atom of Hq1, that is meaning there exists
a cube Q such that

supp(a) ⊂ Q, ‖a‖2 ≤ |Q|1/2−1/q1

∀α, |α| ≤ [
d

q1
− d],

∫
xαa(x)dx = 0.

We write [] for the integer part. We want to estimate T (a). Assume first
that x ∈ (5Q)c. By assumption q1 > d(N + d)−1 so Nq1 := [ d

q1
− d] ≤ N − 1.

We have also

T (a)(x) =

∫

Rd

K(x, y)a(y)dy

=

∫

Rd


K(x, y) −

∑

|α|≤Nq1

(y − c(Q))α

α!
∂αyK(x, c(Q))


 a(y)dy,

where c(Q) is the center of the cube Q. We can estimate the difference
between the square brackets by
∣∣∣∣∣∣
K(x, y) −

∑

|α|≤Nq1

(y − c(Q))α

α!
∂αyK(x, c(Q))

∣∣∣∣∣∣

.
∑

|α|=Nq1+1

∥∥∥∥
(y − c(Q))α

α!
∂αyK(x, y)

∥∥∥∥
∞,y∈Q

. |Q|(Nq1+1)/d h(x)

|x− c(Q)|d+Nq1+1
.

We also get

|T (a)(x)| .

∫
|Q|(Nq1+1)/d h(x)

|x− c(Q)|d+Nq1+1
|a(y)|dy

. |Q|(Nq1+1)/d h(x)

|x− c(Q)|d+Nq1+1
|Q|1−1/q1 .

Therefore with the Hölder inequality on the weak Lebesgue spaces Lp,∞ and
by integrating x ∈ (5Q)c, we obtain

‖T (a)‖q,∞,(5Q)c . |Q|(Nq1+1)/d‖h‖r,∞
1

|Q|1−1/q1+(Nq1+1)/d
|Q|1−1/q1

. 1.
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We compute the proof by studying the case x ∈ 5Q with the Hölder inequal-
ity and the Lp-boundedness of T :

‖T (a)‖q,∞,(5Q) . |Q|1/q−1/p ‖T (a)‖p

. |Q|1/q−1/p‖a‖p1 . |Q|1/q−1/p+1/p1−1/2+1/2−1/q1 . 1.

Here we have assumed that p1 ≤ 2. If it is not the case, we have to consider
the Ls-atoms of Hq1 with s ≥ p1 or use first our previous theorem to have
continuities for T with p1 = 1. By consequence, we have shown that T is
bounded on all the atoms of Hq1 into Lq,∞. ⊓⊔

Remark 4.9. Nowadays, it is well known that an operator, which is bounded
on whole the set of atoms, does not always admit a continuous extension to
the whole Hardy space. There is a counterexample for the Hardy space H1

in [15].

We now apply this abstract result to our operator.

Proposition 4.10. Let f1, .., fn−2 be fixed and smooth functions belonging
to S(Rd) ⊂ L∞ and fn be a smooth function belonging to Hq with q ≤ 2 (or
L1). Then the operator

V := fn−1 → Uρ,λ,L(f1, .., fn)

satisfies the assumptions of Theorems 4.7 and 4.8 for p1 = ∞, p = q = r
and h . M∗∗

d/q+1(fn,Φ
n) at any order N . In addition the bounds can be

uniformly controlled with respect to ρ and λ under the condition (4.1). Here
we set M∗∗

b for the following maximal operator :

M∗∗
b (f,Φn)(x) := sup

t>0
sup
y∈Rd

(
1 + t−1|y|

)−b
|Φn

t ∗ f(x− y)| .

Proof : The assumption of the boundedness is given by Corollary 4.6. So
we have just to check the assumption about the kernel K(x, z), which is
given by

K(x, z) =

∫ ∞

0

∫

Rd

Ψt(y)Φ
n−1
λn−1t

(x− ρn−1λn−1y − z)

n−2∏

j=1

Φj
λjt

∗ fj(x− ρjλjy)Φ
n
λnt ∗ fn(x− ρnλny)

L(t)

t
dydt.

We can differentiate the kernel and we obtain

∣∣∂βzK(x, z)
∣∣ .

∫ ∞

0

n−2∏

j=1

‖fj‖∞

∫

Rd

(
1 +

|x− ρn−1λn−1y − z|

λn−1t

)−M

|λn−1t|
−d−|β|

(
1 +

|y|

t

)−2M (
1 +

|y|

t

)−d/q+1

M∗∗
d/q+1(fn,Φ

n)(x)
‖L‖∞dydt

td+1
.
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With the arguments, used in the proof of Proposition 4.3, we can estimate
the integrals. We also get the desired result :

∣∣∂βzK(x, z)
∣∣ .

n−2∏

j=1

‖fj‖∞‖L‖∞M
∗∗
d/q+1(fn,Φ

n)(x)|x− z|−d−|β|,

uniformly with respect to λ. ⊓⊔

Corollary 4.11. The operator Uρ,λ,L can be continuously extended from
(L∞

c )⊗(n−2) ×Hp ×Hq into Ls for all exponents 0 < q ≤ 2 and 0 < p ≤ ∞
such that

1

s
=

1

p
+

1

q
.

In addition if p = 1 or q = 1, we are allowed to substitute the Hardy space
H1 by the Lebesgue space L1 with changing the final space Ls,∞ instead of
Ls. All these continuity bounds are uniform on 0 < ρi ≤ 1 and λ satisfying
(4.1).

Proof : It is a direct consequence of the previous Proposition and the
two previous Theorems. We use the fact the maximal operator M∗∗

d/q+1 is

continuous from Hq to Lq for all exponent 0 < q < ∞ and from L1 to
L1,∞. This claim is proved in Theorem 6.4.4 of [8]. So for f1, .., fn−2 fixed
bounded and compactly supported functions and fn ∈ Hq, we obtain that
the operator

V := fn−1 → Uρ,λ,L(f1, .., fn)

is bounded on all the Hp-atoms into Ls. Now we use that Uρ,λ,L is bounded
from (L2)⊗(n−2) × Hp × Hq into Lt (for the corresponding exponent t, see
Theorem 3.6) and that the functions fi are in L2 (beeing compactly sup-
ported) in order to be able to extend V on the whole Hardy space Hp. This
is a classical argument (see for example the proof of Theorem 6.7.1 in [8]).
We also obtain the continuity of Uρ,λ,L from (L∞

c )⊗(n−2) ×Hp ×Hq into Ls.
We use the same ideas for the space L1 instead of Hp with p = 1. ⊓⊔

By producing the same reasoning over each component and by using inter-
polation results, we can prove Theorem 1.3 for our model operators.

Proof of Theorem 1.3 for the model operators : The case where
S2 = ∅ was shown in Section 3 : Theorem 3.6 (with the discrete equivalent
model) and is a consequence of Theorem 4.7 and Proposition 4.5 for the con-
tinuities in weak Lebesgue spaces. The case where S2 6= ∅ is a consequence
of Theorems 4.1, 4.7, 4.8 and Proposition 4.5. ⊓⊔
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5 Decomposition of multipliers with our model

operators

In this section we will prove how to decompose a multilinear multiplier of
Theorem 1.3 with our model operators. This reduction will also conclude
the proof of this Theorem. The way to decompose a multilinear multiplier
with paraproducts is well known (see for example [4]). We quickly remember
this operation and check that we keep the uniformity with respect to the
important parameter λ.

So let T be an operator of Theorem 1.3. It is also associated to a symbol σ
which satisfies

∀mi ∈ Nd
∣∣∣∂m1

ξ1
..∂mn

ξn−1
σ(ξ1, .., ξn)

∣∣∣ .
∏n

i=1 |λ
|mi|
i |

dλ(ξ, 0)|m1|+..+|mn−1|
. (5.1)

As we have seen in Proposition 2.4, our model operators allow us to get the
paraproducts. So we use the “classical” decomposition of an Hörmander
multiplier with paraproducts. Let us recall it (we use the ideas of [4]).

For any index l ∈ {1, .., n}, we choose a smooth homogeneous function ζl on
(Rd)n supported in the cone :

{
ξ ∈ (Rd)n, |λlξl| ≃ max

j
|λjξj|

}
.

We can choose them in order that

∀ξ ∈ (Rd)n,

n∑

l=1

ζl(ξ) = 1.

Let Ψ be a real and smooth function on Rd whose the spectrum is contained
in a corona around 0 and such that

∀η ∈ Rd \ {0}
∑

k∈Zd

∣∣∣Ψ̂(2kη)
∣∣∣
2

= 1. (5.2)

Let φ be a smooth function on Rd whose the spectrum is bounded and such
that

∀l ∈ {1, .., n}, ∀ξ ∈ supp(ζl) Ψ̂(2kλlξl) 6= 0 =⇒ ∀j 6= l, Φ̂(2kλjξj) = 1.
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We have also a partition of the unity on the whole frequency plane and we
get

T (f1, .., fn)(x) =

∑

k∈Z

n∑

l=1

∫

Rdn

eix.(ξ1+..+ξn)Ψ̂2(2kλlξl)f̂l(ξl)
∏

j 6=l

Φ̂2(2kλjξj)f̂j(ξj)σ(ξ)dξ.

Let us define new symbols

σl,k(ξ) := σ(
ξ1
λ12k

, ..,
ξn
λn2k

)Ψ̂(ξl)
∏

j 6=l

Φ̂(ξj).

Hence the operator T can be written by

T (f1, .., fn)(x) =
∑

k∈Z

n∑

l=1

∫

Rdn

eix.(ξ1+..+ξn)

Ψ̂(2kλlξl)f̂l(ξl)
∏

j 6=l

Φ̂(2pλjξj)f̂j(ξj)σl,k(2
kλ1ξ1, .., 2

kλnξn)dξ.

With the assumption (5.1), we get that

σl,k ∈ L1 and ∆Nσl,k ∈ L1

uniformly with respect to k and l for an integer N as large as we want. So
the symbols σl,k satisfy

σl,k(ξ) =

∫

Rdn

eiξ.u
L(l, k, u)

(1 + |u|2)N
du

with a function L ∈ L∞({1, .., n} × Z × Rdn). Then we have

T (f1, .., fn)(x) =
∑

k∈Z

n∑

l=1

∫∫

R2dn

eix.(ξ1+..+ξn) L(l, k, u)

(1 + |u|2)N

Ψ̂(2kλlξl)f̂l(ξl)
∏

j 6=l

Φ̂(2kλjξj)f̂j(ξj)e
i2−k(λ−1

1
ξ1,..,λ

−1
n ξn).udξdu

=

∫

Rdn

∑

k

n∑

l=1

L(l, k, u)

(1 + |u|2)N

∫

Rdn

eix.(ξ1+..+ξn)

τ̂ul
Ψ(2kλlξl)f̂l(ξl)

∏

j 6=l

τ̂uj
Φ(2kλjξj)f̂j(ξj)dξdu.

33



Here we are writing τy for the translation of the vector y ∈ Rd. We also
obtain

T (f1, .., fn−1)(x) =

∫

Rdn

n∑

l=1

1

(1 + |u|2)N

∑

k∈Z

L(l, k, u)
[
(τul

Ψ)λl2k ∗ fl(x)
]∏

j 6=l

[
(τuj

Φ)2kλj
∗ fj(x)

]
du. (5.3)

For l and u being fixed, we also find “classical” paraproducts.

We now can finish the proof of Theorem 1.3 :

End of the proof of Theorem 1.3 :

We have seen in Proposition 2.4 that the “classical” paraproducts are ob-
tained as limit objects of our models operators when some ρi tends to 0. So
the uniform results of Theorem 1.3, proved for our model operators (at the
end of the previous section), are also satisfied for the paraproducts.
So for each l and u fixed, the operator

(f1, .., fn) →
∑

k∈Z

L(l, k, u)
[
(τul

Ψ)λl2k ∗ fl
]∏

j 6=l

[
(τuj

Φ)2kλj
∗ fj
]

satisfies all the continuities of Theorem 1.3. These continuities are bounded
by a weight (1 + |u|)K for a large enough integer K (uniformly with respect
to λ).
So if the exponent of the final space p is bigger than 1, by using the trian-
gular inequality with an integer N ≫ K, we get the same continuities for
the operator T .
If p < 1 we cannot use the triangular inequality.
∗ If all the exponents are finite (first part with the Littlewood-Paley square
functions) : we exactly use the same proof. The spectral study is identi-
cal due to the fact that the parameters u and l have no importance. With
Lemma 3.4 we can have a pointwise estimates of the different square func-
tions which permit us to obtain the result.
∗ If some exponent are infinite (second part with Carleson measure and
Calderón-Zygmund decomposition), the proof is based on the first continu-
ity from (L∞)n−1 × L2 into L2 (which is satisfied for T by the triangular
inequality) and on estimates about the multilinear kernel (which are again
satisfied for T by the linear correspondance between the kernel and the op-
erator).
In the two cases, the continuities of Theorem 1.3 are proved for T . ⊓⊔

We have also finish the proof of our Theorem 1.3. A question stays open : is
one of our condition a-) or b-) (in Theorem 1.3) necessary to have uniform
estimates ?
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