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†Université Paris 6, Laboratoire de Probabilités et Modèles Aléatoires, CNRS-UMR
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A rough description of Part A of the course

The starting point of the course has been the elementary remark that the
following holds :

E
[

(Et − 1)±
]

= P
(

4N2 ≤ t
)

, (1)

where on the LHS, Et = exp
(

Bt − t
2

)

, for (Bt) a standard Brownian motion,

and N
law
= B1 is the standard Gaussian variable. The identity (1) may follow

from inspection of the Black-Scholes formula, but seemed to deserve further
explanation.

The full course consists in ten notes, the contents of the first five are :
In Note 1, it is shown that a wide extension of (1) holds with Et being

replaced by a continuous local martingaleMt ≥ 0, converging to 0, as t→ ∞,
and with 4N2 being replaced by the last passage time at 1 by M .

This motivates the study, in Note 2, of the law of GK = sup{t,Mt = K}.
In this note, we recover the computation of the laws of the last passage times
for transient diffusions, as obtained by Pitman-Yor in [22], and we extend
these results in a natural manner, when (Mt, t ≥ 0) is only assumed to be a
positive local martingale, converging to 0, as t→ ∞.

In Note 3, a connection is made with some representation of Azéma super-
martingales associated with ends L of previsible random time sets; it turns
out that L = GK is a particular case of such random times; hence, the ob-
tained supermartingales are particular cases of Azéma’s supermartingales.
This Note 3 also leads us to present the progressive enlargement of filtration
formulae in this setup.

In Note 4, the main formula :

P (GK ≤ t|Ft) =

(

1 − Mt

K

)+

, (2)

on which most of our previous discussion has been based is shown to gener-
alize in the form :

E
[

1{GK≤t} (K −M∞)+ |Ft

]

= (K −Mt)
+ , (3)

in the case where (Mt, t ≥ 0) is only assumed to take values in R+, but M∞

is not necessarily equal to 0. We then explain how to obtain a formula for
P (GK ≤ t|Ft).

In Note 5, we integrate the previous results with respect to K, in a similar
manner as one may recover Itô’s formula from Tanaka ’s formula. This note
bears quite some similarity with the paper by Azéma-Yor [1] on local times.
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1 Note 1 : Option Prices as Probabilities

1.1 A first question

One of the pillars of modern mathematical finance has been the computation
(and the understanding !) of the quantities :

E
[

(Et −K)±
]

,

where :

Et = exp

(

Bt −
t

2

)

,

with (Bt) a Brownian motion starting from 0.
In an explicit form1, the Black-Scholes formula writes :

E
[

(Et −K)+] = (1 −K) + E[(K − Et)
+]

(4)

= N
(

− logK√
t

+

√
t

2

)

−KN
(

− logK√
t

−
√
t

2

)

(5)

where :

N (x) =
1√
2π

∫ x

−∞

dy e−y2/2.

Since (Et, t ≥ 0) is a martingale, both (Et −K)+ and (K − Et)
+ are sub-

martingales; hence :

t→ C±(t,K) = E
[

(Et −K)±
]

are increasing functions of t.
They are also continuous, and2 :

i. C+(0, K) = (1 −K)+; C+(∞, K) = 1;

ii. C−(0, K) = (K − 1)+; C−(∞, K) = K.

Consequently :

i
′

. if K ≥ 1, C+(t,K) increases from 0 (for t = 0), to 1 (for t = ∞);

ii
′

. if K ≤ 1, 1
K
C−(t,K) increases from 0 (for t = 0), to 1 (for t = ∞).

1Formula (5) extends easily when we replace Et by exp (σBt + νt), so there is no loss
of generality to take : σ = 1, ν = −1/2.

2That C+(∞, K) = 1 is most easily seen using (4), and the fact that Et →t→∞ 0.
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Therefore, in both cases, C+(•, K), and C−(•, K) are distribution func-
tions of a certain random variable X± taking values in R+.

Can we identify the corresponding distribution?
Or, even better, can we find, in our Brownian (Black-Scholes) framework,

a random variable whose distribution function is C+/−(•, K)?
To motivate the reader’s interest, we assert, right away, taking K = 1,

that there is the formula :

E
[

(Et − 1)+]

= E
[

(Et − 1)−
]

= P
(

4B2
1 ≤ t

)

. (6)

We think of this formula as “an alternative Black-Scholes formula”. Fur-
thermore, formula (6) has been very helpful to answer M.Qian’s question :
given a probability measure µ(dt) on R+, can one compute :

∫ ∞

0

µ(dt)E
[

(Et − 1)±
]

? (7)

Indeed from (6), the previous quantity equals :

E
[

µ(4B2
1)

]

, (8)

where : µ(x) = µ ([x,∞)). For example, if :

µ(dt) = λe−λt dt,

then :
∫ ∞

0

λ dt e−λtE
[

(Et − 1)±
]

=
1√

1 + 8λ
. (9)

Question 1.1. It also seems of interest to ask the following extension of
M.Qian’s question : what is the law of :

E±
µ ≡

∫ ∞

0

µ(dt) (Et − 1)± ,

in particular in the case µ(dt) = λe−λt dt? We may start by computing
moments of this variable E±

µ .

In fact, in July 1997, Prof. Miura asked the second author for the law
of

∫ t

0
ds (Es − 1)+, in order to obtain the price of “Area options”, that is :

E

[

(

∫ t

0
ds (Es − 1)+ −K

)+
]

.

Below, we give a clear probabilistic explanation of formula (6), and even
more generally of the extended alternative Black-Scholes formula :

E
[

(Et −K)±
]

= (1 −K)± +
√
KE

[

1{4B2
1≤t} exp

(

−(logK)2

8B2
1

)]

. (10)
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1.2 A first answer

In fact, the previous question admits a general answer, which does not require
to work within a Brownian framework.

Let (Mt, t ≥ 0) denote a continuous local martingale, defined on (Ω,F ,Ft,P);
we assume that Mt ≥ 0 and Mt → 0 when t→ ∞. Let M+

0 denote the set of
these particular local martingales, we insist that we allow local martingales...

Theorem 1.1. Let GK = sup{t,Mt = K} with the convention sup{∅} = 0.
Then :

(

1 − Mt

K

)+

= P (GK ≤ t|Ft) . (11)

(t maybe replaced by any stopping time T ).
Consequently :

E

[

(

1 − Mt

K

)+
]

= P (GK ≤ t) . (12)

Proof. a) Note that :

(GK ≤ t) =

(

sup
s≥t

Ms ≤ K

)

. (13)

b) From the next lemma, we have conditionally on Ft :

sup
s≥t

Ms
law
=
Mt

U
, (14)

where U is uniform on [0, 1] and independent from Ft. Consequently,

P

(

sup
s≥t

Ms ≤ K|Ft

)

= P

(

Mt

U
< K|Ft

)

=

(

1 − Mt

K

)+

. (15)

Now formula (14) follows from the elementary, but very useful lemma :

Lemma 1.1 (Doob’s maximal identity). If (Nt, t ≥ 0) ∈ M+
0 , then :

sup
t≥0

Nt
law
=
N0

U
, (16)

where U is uniform on [0, 1] and independent from F0.
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Proof. We use Doob’s optional stopping theorem : if Ta = inf{t, Nt = a},
(with the convention inf{∅} = ∞), then, if a > N0 :

E [NTa
|F0] = N0

a P (Ta <∞|F0) = N0,

that is P
(

supt≥0 Nt > a|F0

)

= N0

a
. This yields to the result.

Exercise 1.1. Denote :
E (t,∞) ≡ sup

s≥t
Es.

Prove that the process : (λt ≡ Et/E (t,∞), t ≥ 0) is strictly stationary, with
common law U.
More generally, prove that the process (λ

(p)
t ≡ Et/Ẽ (p)

t , t ≥ 0) is strictly sta-
tionary, where :

Ẽ (p)
t =

(
∫ ∞

t

du exp p
(

Bu −
u

2

)

)1/p

.

Show that :
λ

(p)
t →p→∞ λt.

What is the common law Up of the λ
(p)
t ’s?

1.3 The law of G
(ν)
a

Coming back to our original question in Section 1.1, we observe that formula
(12), in the Brownian framework, gives :

E

[

(

1 − Et

K

)+
]

= P (GK ≤ t) . (17)

Hence, taking K = 1, it suffices to obtain the identity :

G1
law
= 4B2

1 , (18)

to recover formula (6); this identity (18) may be simply obtained by time
inversion, since :

G1 = sup{t, Et = 1} = sup{t, Bt −
t

2
= 0}

hence :

G1
law
=

1

T1/2

law
=

4

T1

law
= 4B2

1 . (19)
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We are now bound to describe the law of G
(ν)
a = sup{t, Bt + νt = a}, for

all a, ν ∈ R. These laws are well-known, thanks again to the stability by
time inversion for Brownian motion : if (Bu) is a Brownian motion, then :

B̂u = uB 1
u
, u > 0

is also a Brownian motion.
As a consequence :

(

T (ν)
a , G(ν)

a

)

law
=

(

1

G
(a)
ν

,
1

T
(a)
ν

)

. (20)

The (separate) laws of T
(ν)
a and G

(ν)
a are (for a > 0, ν ∈ R) :

P
(

T (ν)
a ∈ dt

)

=
dt a√
2πt3

exp

(

−(a− νt)2

2t

)

, (21)

and

P
(

G(ν)
a ∈ dt

)

= |ν| dt√
2πt

exp

(

−(a− νt)2

2t

)

. (22)

We refer to [22] for some further discussion about time inversion.

Exercise 1.2. Give the expression of the joint law of (T
(ν)
a , G

(ν)
a ).

Exercise 1.3. Recover the Black-Scholes formula thanks to the knowledge of
the laws of G

(±1/2)
a .

Exercise 1.4. Establish formula (10).

1.4 Other universal laws

We now come back to the setup of Section 2; we would like to understand
better why a “universal law”, such as the uniform, occurs in the framework
of Theorem 1.1.

Recall that :
Nt = β〈N〉t , t ≥ 0, (23)

where (βu) is a Brownian motion starting from N0.
Since Nt → 0 when t→ ∞, one has :

〈N〉∞ = T0(β). (24)

Now, we see that :
sup
t≥0

Nt = sup
u≤T0(β)

βu. (25)
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Hence, taking for simplicity N0 = 1, we see why the law of supt≥0 Nt is
universal, i.e : it is the law of supu≤T0(β) βu, which, as we have already shown,

is the law of 1
U

.
Now, it may be natural to see whether some other functionals of N , say

F (N), maybe reduced to the corresponding functionals of β, killed at T0(β),
i.e : F (N) = F (β.∧T0(β)). In this case F (N) will have “the universal law” of
F (β.∧T0(β)).

Question 1.2. Characterize the universal functionals F .

To identify at least some such functionals, let us recall the definition of
the local times of N , via the occupation measure :

f →
∫ t

0

d〈N〉s f(Ns), f : R+ → R+,Borel.

which is absolutely continuous with respect to the Lebesgue measure;
indeed :

∫ t

0

d〈N〉s f(Ns) =

∫ ∞

0

dx f(x)Lx
t (N), (26)

where (Lx
t (N); x ≥ 0, t ≥ 0) is the jointly continuous family of local times of

N .
From the Dubins-Schwarz relation (see (23)), we obtain :

Lx
t (N) = Lx

〈N〉t(β). (27)

Consequently :
Lx

∞(N) = Lx
T0(β)(β). (28)

Hence, the local time process (Lx
∞(N), x ≥ 0) is a universal functional, whose

law, that is the law of the process (Lx
T0(β)(β), x ≥ 0) is well-known and is the

subject of the following Ray-Knight theorem.

Theorem 1.2 (Ray-Knight). Let (βu, u ≤ T0(β)) be a Brownian motion
starting at 1, considered up to time T0(β), its first time when it hits 0.
Then : (Zx = Lx

T0(β)(β), x ≥ 0) satisfies :

Zx = 2

∫ x

0

√

Zy dγy + 2 (x ∧ 1) , (29)

where (γy, y ≥ 0) is a Brownian motion.
In other words,

i. (Zx, x ≤ 1) is a BESQ0(2);
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ii. Z1 is distributed as 2e, where e is a standard exponential variable;

iii. Conditionally on Z1 = z, (Z1+x, x ≥ 0) is a BESQz(0).

Exercise 1.5. Recover the universal result :

sup
t≤T0(β)

βt
law
=

1

U
,

from Theorem 1.2.

Proof. (A possible one!)
Call Σ = supt≤T0(β) βt, and note that :

Σ = 1 + inf{x ≥ 1, Zx = 0}.
By time reversal ,

Σ = 1 + sup{t, Ẑt = Z1},
where (Ẑt) is a BESQ0(4). Hence :

Σ
law
= 1 +

Z1

2γ1

law
= 1 +

e

e′

law
=

e′ + e

e′

law
=

1

U
. (30)

It may be of interest to give the general Laplace transform of :
∫ ∞

0

d〈N〉sf(Ns) =

∫ T0(β)

0

duf(βu). (31)

We refer to [5].
However, we may identify directly the law of the RHS of (31) when f is

a power function : f(x) = xα α > 0. Indeed, applying ItÃt’’s formula to
(βα

u , u ≤ T0(β)), it is easily shown that :

βα
u = ρ

α2
∫ u

0
ds β

2(α−1)
s

, u ≤ T0(β), (32)

where (ρh, h ≥ 0) is a BES process, with dimension dα = 2 − 1
α
.

Consequently, formula (32) yields :

α2

∫ T0(β)

0

ds β2(α−1)
s

law
= T0(ρ)

law
= G1(ρ

′), (33)

where (ρ′u, u ≥ 0) is the BES process starting from 0, with dimension :
d′α = 2 + 1

α
. Then, elementary arguments using Lemma (1.1) lead to :

G1
law
=

1

2γ1/2α

,

where γν indicates a gamma variable with parameter ν. For this proof,we
refer to [28], p16–17.
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2 Note 2 : Computing the law of GK
In Note 1, we have shown (under our current hypotheses) :

E

[

(

1 − Mt

K

)+
]

= P (GK ≤ t) . (34)

As a motivation for this note, remark that when Mt = Et, the LHS of (34)
is known : this is the Black-Scholes formula ! Consequently, we can recover
from the Black-Scholes formulae (see (4) and (5)) the law of GK .

2.1 A general result

Here, we aim to give a formula for the law of GK associated to our general
local martingale (Mt), and its local times Lx

t (M) as defined via (26) :

∫ t

0

d〈M〉s f(Ms) =

∫ ∞

0

dx f(x)Lx
t (M). (35)

To proceed, we need to make some further hypotheses on M :

(H1) for every t > 0, the law3 of the r.v. Mt admits a density (mt(x), x ≥ 0),
and : (t, x) → mt(x) may be chosen continuous on (0,∞)2;

(H2) d〈M〉t = σ2
t dt, and there exists a jointly continuous function :

(t, x) → θt(x) = E
[

σ2
t |Mt = x

]

on (0,∞)2.

Then, the following holds :

Theorem 2.1. The law of GK is given by :

P (GK ∈ dt) =
(

1 − a

K

)+

ǫ0(dt) +
1{t>0}

2K
θt(K)mt(K) dt, (36)

where a = M0.

Proof. a) Using Tanaka’s formula, one obtains:

E
[

(K −Mt)
+]

= (K − a)+ +
1

2
E

[

LK
t (M)

]

. (37)

3We are grateful to F. Delarue for pointing out the exercise in [20] p.97 which gives a
sufficient condition.
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Thus, from (34), there is the relationship :

P (GK ∈ dt) =
(

1 − a

K

)+

ǫ0(dt) +
1{t>0}

2K
dt

(

E
[

LK
t (M)

])

, (38)

and formula (36) is now equivalent to the following expression for
dt

(

E
[

LK
t (M)

])

:

dt

(

E
[

LK
t (M)

])

= dt θt(K)mt(K) (t > 0). (39)

b) We now prove (39). The density of occupation formula (35) for the
local martingale (Mt) writes : for every f : R+ → R+, Borel,

∫ t

0

ds σ2
s f(Ms) =

∫ ∞

0

dK f(K)LK
t (M). (40)

Thus, taking expectations on both sides of (40), we obtain :

E

[
∫ t

0

ds σ2
s f(Ms)

]

=

∫ ∞

0

dK f(K)E
[

LK
t (M)

]

. (41)

The LHS of (41) equals :
∫ t

0

dsE
[

E
[

σ2
s |Ms

]

f(Ms)
]

=

∫ ∞

0

dK f(K)

∫ t

0

dsms(K) θs(K) (42)

and formula (39) now follows easily from (41).

Exercise 2.1. Give the particular case of formula (36) when Mt = Et, thus
recovering again the law of GK in the Brownian framework.

2.2 Some connection with the Dupire formula

We recall our original notation :

C±(t,K) = E
[

(Et −K)±
]

,

which we now extend to our general martingale case, i.e :

C±(t,K) = E
[

(Mt −K)±
]

.

Theorem 2.2. The following identities hold :

∂

∂T
(C−(T,K))

(a)

= θT (K)
∂2

∂K2
C−(T,K)

(b)

= 2KγK(T ), (43)

where (γK(T ), T > 0) is the density of GK .
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Comment : The identity (a) is also found, up to minor differences, in
Klebaner [8]. In general, connections between local times and the Black-
Scholes and Dupire formulae had been noticed for quite some time by several
authors. However, the identity (b) seems, to the best of our knowledge, to
be new.

Proof. Thanks to (37), one has :

∂

∂T
(C−(T,K)) =

1

2

∂

∂T
E[LK

T ], (44)

and, clearly :
∂2

∂K2
C−(T,K) = mT (K). (45)

From (39), we obtain :

∂

∂T
E[LK

T ] = θT (K)mT (K) = 2KγK(T ).

We refer to [6] and [7] for the “true” Dupire formula.

2.3 Specialising to transient diffusions

2.3.1 General framework

We present here some results which can be found in [22], chapter 6.
We consider the canonical realisation of a transient diffusion

(Rt, t ≥ 0; Px, x ∈ R+) on C(R+,R+).

For simplicity, we suppose that :

i. Px (T0 <∞) = 0, x > 0;

ii. Px (limt→∞Rt = ∞) = 1, x > 0.

As a consequence of (i) and (ii), there exists a scale function s for this diffusion
which satisfies s(0+) = −∞ and s(∞) = 0. Let Γ be the infinitesimal
generator of the diffusion4, and take the speed measure m to be such that :

Γ =
1

2

d

dm

d

ds
.

4This is the classical Itô-Mc Kean presentation; see also Borodin-Salminen [4]; for
“practical” cases, see 2.3.2
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Let
gy = sup{t > 0, Rt = y}.

Then, by applying the results of the previous section to Mt = −s(Rt), we
may obtain the following theorem :

Theorem 2.3 (Pitman-Yor, [22], section 6). For all x, y > 0,

Px (gy ∈ dt) =
−1

2s(y)
p•t (x, y) dt, (46)

where p•t (x, y) (= p•t (y, x)) is the density of the semigroup Pt(x, dy) with re-
spect to m(dy).

Proof. a) Previous arguments show that :

Px (gy ≤ t) = Ex

[

(

1 − Mt

(−s(y))

)+
]

, (47)

by changing the space variable : µ = s(x), which corresponds to putting
the diffusion R in its natural scale, i.e : replacing it by Mt = −s(Rt).

b) Tanaka’s formula now yields, from (47) :

Px (gy ≤ t) =

(

1 − s(x)

s(y)

)+

− 1

2s(y)
E

[

L−s(y)
t (M)

]

. (48)

Formula (46) will now follow from :

∂

∂t

(

Ex

[

L−s(y)
t (M)

])

= p•t (x, y). (49)

In turn, this formula follows from the density of occupation formula for
our diffusion R : for any f : R+ → R+, Borel :

∫ t

0

dsf(Rs) =

∫

m(dy) f(y) lyt , (50)

where (lyt ) is the family of diffusion local times (see, e.g., [4], II.13 and V.).
On the LHS, we obtain :

Ex

[
∫ t

0

dsf(Rs)

]

=

∫

m(dy)

∫ t

0

ds p•s(x, y) f(y). (51)

Thus, (50) implies that :

Ex [lyt ] =

∫ t

0

ds p•s(x, y) (52)
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On the other hand, there is the following relationship between the diffusion
and martingale local times :

lyt = L−s(y)
t (M). (53)

Finally, formula (46) follows from (52) and (53).

2.3.2 In practice . . .

In practice, it may be useful to write formula (46) in terms of the density
pt(x, y) of the semigroup Pt(x, dy) with respect to the Lebesgue measure dy
(and not m(dy), which may not be so “natural” as a reference measure).

We assume that the infinitesimal generator is of the form :

Γ =
1

2
a(x)

d2

dx
+ b(x)

d

dx
(54)

Consequently :
dm

dy
=

1

s′(y)a(y)
, (55)

and
p•t (x, y) = pt(x, y)s

′(y)a(y), (56)

so that formula (46) becomes :

Px (gy ∈ dt) = −
(

s′(y)a(y)

2s(y)

)

pt(x, y)dt. (57)

Exercise 2.2. Recover the law of G
(ν)
a from formula (57)

Exercise 2.3. Write explicitly formula (57) for (Rt) a transient BES pro-
cess, i.e : the R+-valued diffusion with infinitesimal generator :

1

2

d2

dx
+
δ − 1

2

d

dx
, δ > 2.

Answer :

ga(R)
law
=

a2

2γν
,

when R0 = 0. See [28].
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2.4 Other examples of explicit computations of the law
of GK

We present here the following examples : the killed Brownian motion, the
inverse of a 3-dimensional Bessel process, and an example of an inhomoge-
neous Markov process for which we can compute mt(x). For more details, see
[12]. These examples will be detailed in the appendix of Part B, in section
11.

Example 2.1. Mt = Bt∧T0 , where (Bt, t ≥ 0) is a Brownian motion starting
from 1 and T0 = inf{t ≥ 0, Bt = 0}. Then for every K ≤ 1,

GK(M)
law
=

U2
K

N2
, (58)

where UK is a uniform r.v. on [1 − K, 1 + K] and independent from N a
standard gaussian r.v.

Example 2.2. Mt = 1
Rt

where (Rt, t ≥ 0) is a 3-dimensional Bessel process
starting from 1. Then for every K < 1,

GK(M)
law
=

Ũ2
K

N2
, (59)

where ŨK is a uniform r.v. on [ 1
K

− 1, 1
K

+ 1], assumed to be independent
from N a standard gaussian r.v.

Exercise 2.4. Mt = cosh (Bt) exp
(

− t
2

)

where (Bt, t ≥ 0) is a Brownian
motion starting from 0. Use Theorem 2.1 to compute the law of GK.

Exercise 2.5. Draw a Black-Scholes-last time ( :BS-LT) Table as follows :

Mt G1

Et 4B2
1

? cγa

exp
(

−2BtB1

1−t

)

β 1
2
, 1
2

? βa,b

17



In this Table, βa,b denotes a beta variable with parameters (a, b), γa a gamma
variable with parameter a. exp

(

−2BtB1

1−t

)

, t < 1, is a martingale with respect
to Ft ∨ σ(B1).
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3 Note 3 : Representation of some particular

Azéma supermartingales

3.1 A general representation theorem and

our particular case

Let L = sup{t, Rt ∈ Γ}, where (Rt) is a transient diffusion, and Γ a compact
set in R+. It is interesting to describe the pre-L process : (Rt, t ≤ L)
and the post-L process : (RL+t, t ≥ 0); this has been the subject of many
studies in the Markovian literature ([15], [16]; [27] for Brownian motion). The
enlargement of filtration technique shows that these descriptions“follow”once
the Azéma supermartingale :

Zt = ZL
t = P (L > t|Ft)

has been computed “explicitly”.
For the moment, we give a general representation of (Zt) in the following

framework : let L be the end of a previsible set (on a given filtered probability
space) such that :

{

(C) all Ft martingales are continuous;

(A) for any stopping time T,P(L = T ) = 0.
(CA)

(C stands for continuous, and A for avoiding (stopping times)).

Theorem 3.1. [[14] or [19]] Under (CA), there exists a unique positive
continuous local martingale (Nt, t ≥ 0), with N0 = 1, such that :

P (L > t|Ft) =
Nt

St
, (60)

where St = sups≤tNs, t ≥ 0.

Exercise 3.1. a) Give the additive decomposition of the supermartingale
: Nt

St
as :

E [log(S∞)|Ft] − log(St).

Hint : from Itô’s formula :

Nt

St
= 1 +

∫ t

0

dNs

Ss
−

∫ t

0

NsdSs

S2
s

= 1 +

∫ t

0

dNs

Ss
−

∫ t

0

dSs

Ss
,
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since dSs only charges the set {s,Ns = Ss}. One obtains :

Nt

St
= 1 +

∫ t

0

dNs

Ss
− log (St). (61)

b) Prove that log(S∞) is distributed exponentially.
Answer :

log(S∞)
law
= log

(

1

U

)

.

c) We also note that the martingale E [log(S∞)|Ft] belongs to BMO,
since :

E [log(S∞) − log(St)|Ft] ≤ 1.

Rather than trying to prove Theorem 3.1, we now show how our previous
formula (11), i.e :

P (GK ≤ t|Ft) =

(

1 − Mt

K

)+

, (62)

or equivalently :

P (GK > t|Ft) =

(

Mt

K

)

∧ 1 (63)

is a particular case of formula (60).

Proposition 3.1. Let M0 ≥ K, there is the representation :

(

Mt

K

)

∧ 1 =
Nt

St
, (64)

where
{

Nt =
(

Mt

K
∧ 1

)

exp
(

1
2K

LK
t

)

,

St = sups≤tNs = exp
(

1
2K

LK
t

)

.
(65)

Proof. From Tanaka’s formula :

Mt

K
∧ 1 = 1 +

1

K

∫ t

0

1{Ms≤K}dMs −
1

2K
LK

t (M). (66)

The comparison of formulae (66) and (61) gives :

{

∫ t

0
dNs

Ss
= 1

K

∫ t

0
1{Ms≤K}dMs,

1
2K

LK
t (M) = log (St).

(67)
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Hence :

Nt =

(

Mt

K
∧ 1

)

St

=

(

Mt

K
∧ 1

)

exp

(

1

2K
LK

t

)

.

Since Mt → 0 when t→ ∞, it follows from the previous equality
that : Nt → 0 when t→ ∞.

We now compare the results of Theorem 3.1 and Proposition 3.1.
We remark that not every supermartingale of the form : (Nt

St
, t ≥ 0) can

be written as (Mt ∧ 1) where M0 ≥ 1 (there is no loss of generality in taking
K = 1).

Indeed, assuming (64), with K = 1, we deduce that :

d〈N〉s = exp (L(1)
s )1{Ms<1} d〈M〉s. (68)

Now, in a Brownian setting, we have d〈N〉s = n2
s ds and d〈M〉s = m2

s ds, for
two (Fs) previsible processes (m2

s) and (n2
s).

Note that (68) implies :

n2
s = exp (L(1)

s )1{Ms<1}m
2
s, ds dP a.s.

Consequently,
n2

s = 0, ds dP a.s. on {(s, ω),Ms > 1}.
However, this cannot be satisfied if we start from N such that n2

s > 0, for
all s > 0.

Note that the random set {s,Ms > 1} is not empty; if it were, then the
local time at 1 of M would be 0, and M would be identically equal to 1.

Question 3.1. It is now natural to ask the following : for which functions
h : R+ → [0, 1], is it true that, for any (Mt, t ≥ 0) in M+

0 , (h(Mt), t ≥ 0) is
an Azéma supermartingale? We shall call such a function an Azéma func-
tion.

Here is a partial answer to Question 3.1 :

Proposition 3.2. Assume that h is an Azéma function such that :

i. {x : h(x) < 1} = [0, K[, for some positive real K;

ii. h′′ -in L.Schwartz’distribution sense- is a bounded measure;
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Then :
h(x) =

( x

K

)

∧ 1.

Proof. a) From (ii), for any M ∈ M+
0 , we may apply the Itô-Tanaka

formula to write the canonical decomposition of (h(Mt), t ≥ 0) as a
semimartingale; we get :

h(Mt) = h(M0) +

∫ t

0

h′(Ms) dMs +
1

2

∫

h′′(dx)Lx
t (M). (69)

b) Since h(Mt) is an Azéma supermartingale, its increasing process in (69)
is carried by {s : h(Ms) = 1}. Therefore :

∫

h′′(dx)

∫ t

0

1{h(Ms)<1} dLx
s = 0. (70)

Now, the LHS of (70) equals :

∫

h′′(dx) 1{h(x)<1} Lx
t (M) =

∫

[0,K[

h′′(dx)Lx
t (M),

as a consequence of (i). This is equivalent to : h′′(dx) = 0, on
[0, K[, thus : h(x) = ax + b, on [0, K[; furthermore, h(0) = 0, since :
limt→∞ h(Mt) = 0, for any M ∈ M+

0 . Thus : h(x) = ax, on [0, K[,
and, applying (i) again yields to the result.

Question 3.2. Is it possible to relax further the hypotheses (i) and (ii)?

3.2 Enlargement of filtration formulae

Under (CA), there is a general expression for the transformation of a generic
(Ft)-martingale (µt) into a (FL

t ) semimartingale, where (FL
t ) is the smallest

filtration which contains (Ft) and makes L a stopping time.
Then :

µt = µ̃t +

∫ t∧L

0

d〈µ, Z〉s
Zs

+

∫ t

L

d〈µ, 1 − Z〉s
(1 − Zs)

(71)

where (µ̃t) is a (FL
t ) local martingale.

Now, since :

Zt =
Nt

St

,
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(see formula (60)), formula (71) becomes :

µt = µ̃t +

∫ t∧L

0

d〈µ,N〉s
Ns

−
∫ t

L

d〈µ,N〉s
(Ss −Ns)

. (72)

Particularising again with L = GK , we have seen previously that :

Zt =

(

Mt

K

)

∧ 1

and

Nt =

((

Mt

K

)

∧ 1

)

exp

(LK
t

2K

)

.

Hence, applying (71) and (72), we get :

µt = µ̃t +

∫ t∧GK

0

1{Ms<K}d〈µ,M〉s
Ms

−
∫ t

GK

d〈µ,M〉s
(K −Ms)

. (73)

It is of some interest to take µs = Ms, formula (73) then becomes :

Mt = M̃t +

∫ t∧GK

0

1{Ms<K}d〈M〉s
Ms

−
∫ t

GK

d〈M〉s
(K −Ms)

. (74)

3.3 Study of the pre GK- and the post GK-processes

We now apply formula (74) to give a description of the pre GK-process and
the post GK-process.

a) The post GK-process :
From (74), we may write :

MGK+t = K + M̂t −
∫ t

0

d〈M〉GK+u

(K −MGK+u)
, (75)

where (M̂t, t ≥ 0) is a FGK+t local martingale starting at 0.
We introduce the notations :

Rt = K −MGK+t; (76)

we have :

Rt = −M̂t +

∫ t

0

d〈M〉GK+u

Ru

. (77)

Since : 〈M̂〉t = 〈M〉GK+t − 〈M〉GK
, we may write : M̂t = β〈M̂ 〉t

, where
(βu) is a Brownian motion, we deduce from (77) that : Rt = ρ〈M̂ 〉t

,

where (ρu, u ≤ 〈M̂〉∞) is a BES(3) process, considered up to : 〈M̂〉∞ =
TK(ρ), as deduced from (76), and the fact that Mu → 0 when u→ ∞.
We also note that : 〈M〉GK

= GK(β.∧T0).
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b) The pre GK-process :
Here we take back the notations of subsection 2.1, but in order to see
precisely the situation, we drop the continuity hypotheses (H1) and
(H2) in that subsection. Theorem 2.1, which gives the law of GK (see
36) is now completed by the following computation of the conditional
law of the pre GK-process, given GK :

Theorem 3.2. Let (φu, u ≥ 0) denote a positive, (Fu) previsible pro-
cess. Then :

a)

E [φGK
] = E

[

φ0

(

1 − M0

K

)+
]

+
1

2K

∫ ∞

0

dsms(K)E
[

φsσ
2
s |Ms = K

]

, dK a.e,

(78)

b) As a consequence of a), we recover :

P (GK ∈ ds) = E

[

(

1 − M0

K

)+
]

ǫ0(ds)

+
ds

2K
ms(K)E

[

σ2
s |Ms = K

]

, dK a.e,

(79)

c) Furthermore :

P (φGK
|GK = s) =

E [φsσ
2
s |Ms = K]

E [σ2
s |Ms = K]

, P(GK ∈ ds) a.e. (80)

The proof hinges on the balayage formula, which we first recall :

Lemma 3.1. (see [23]) Let (Yt) be a continuous semimartingale, and
gY (t) = sup{s ≤ t, Ys = 0}. Then, for any bounded previsible process
(φs, s ≥ 0), one has :

φgY (t)Yt = φ0Y0 +

∫ t

0

φgY (s)dYs. (81)

Proof. (of Theorem 3.2) :
We deduce from (81), i.e : the balayage formula applied to (K −Mt)

+

that :

E
[

φGK
(K −M∞)+]

= E
[

φ0 (K −M0)
+]

+
1

2
E

[
∫ ∞

0

φsdLK
s

]

, (82)
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Now, (78) is deduced from (82) : under the present hypothesis : M∞ =
0, (82) writes :

E [φGK
] = E

[

φ0

(

1 − M0

K

)+
]

+
1

2K
E

[
∫ ∞

0

φsdLK
s

]

. (83)

Now, (78) will be proven if we show :

E

[
∫ ∞

0

φsdLK
s

]

=

∫ ∞

0

dsms(K)E
[

φsσ
2
s |Ms = K

]

, dK a.e. (84)

In order to prove (84), we use the density of occupation formula (40)
after integrating on both sides with respect to φs, which yields, using
(H1) in Section 2.1 :

∫ ∞

0

ds σ2
sf(Ms)φs =

∫ ∞

0

dK f(K)

∫ ∞

0

φsdLK
s . (85)

Taking expectations of both sides, we obtain, with the help of (H2) in
Section 2.1 :

∫ ∞

0

dK f(K)

∫ ∞

0

dsms(K)E
[

σ2
sφs|Ms = K

]

=

∫ ∞

0

dK f(K)E

[
∫ ∞

0

φsdLK
s

]

,

(86)

which is easily shown to imply (84). Then, replacing in (78) φs by
φsg(s), for a generic, Borel, g : R+ → R+, we deduce (79) and (80).

The particular case when (Ms) is Markovian, e.g : the Black-Scholes
situation where Ms = Es, allows for some simplification of the above
formula : in this case, σs = σ(s,Ms), where (σ(s, x)) is a deterministic
function on ([0,∞))2, and we obtain, from (80) :

E [φGK
|GK = s] = E [φs|Ms = K] , (87)

i.e : conditionally on GK = s, the pre GK-process is the bridge (for M)
on the time interval [0, s], ending at K.

Exercise 3.2. Prove Lemma 3.1 by applying the monotone class theorem ,
i.e :

a) show it for φs = 1[0,T ](s), with T a stopping time,
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b) apply the monotone class theorem.

Exercise 3.3. Prove, with the help of formula (81), that the following pro-
cesses are local martingales :

f(St)(St −Mt) −
∫ St

0

dxf(x),

for any bounded Borel function f : R+ → R.

3.4 A larger framework

We refer to [17]. We now wish to explain how our basic formula (11) which
we now write as :

EP

[

Ft

(

1 − Mt

K

)+
]

= E
[

Ft 1{GK≤t}

]

, (88)

for every Ft ≥ 0, (Ft) measurable, is a particular case of the following repre-
sentation problem for certain (Skorokhod) submartingales.

Let us consider, on a filtered space (Ω,F , (Ft)) :

a) a probability P, and a positive process (Xt) which is adapted to (Ft),
and integrable;

b) a σ-finite measure Q on (Ω,F) (Q may be finite, even a probability,
but we are also interested in the more general case where Q is σ-finite);

c) a positive F -measurable random variable G such that :

∀Γt ∈ Ft, EP [ΓtXt] = Q
(

Γt 1{G≤t}

)

. (89)

Note that it follows immediately from (89) that (Xt) is a (P,Ft) submartin-
gale, since, for (s < t), and Γs ∈ Fs :

EP [Γs(Xt −Xs)] = Q
(

Γs 1{s≤G≤t}

)

≥ 0. (90)

Conversely, we would like to find out which positive submartingales (Xt),
with respect to (Ω, (Ft),P) may be “represented” in the form (89); that is,
we seek a pair (Q,G) such that (89) is satisfied.

So far we have not solved this problem in its full generality, but we have
three set-ups where the problem is solved. The next three subsections are
devoted to the discussion of each of these cases.
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However, the three cases are concerned with what we would like to call
Skorokhod submartingales, i.e : (Xt) is a submartingale, such that :

Xt = −Mt + Lt, t ≥ 0, (91)

with :

1. Xt ≥ 0; X0 = 0;

2. (Lt) is increasing, and (dLt) is carried by the zeros of (Xt, t ≥ 0).

As is well known, this implies that :

Lt = St(M) ≡ sup
s≤t

Ms.

We assume that, (Mt, t ≥ 0) is a true martingale.
The three cases we shall consider are :

i.
Xt = (1 − Yt)

+ , t ≥ 0, (92)

where (Yt, t ≥ 0) is a positive martingale, which converges to 0, as
t→ ∞ and with Y0 = 1.

ii.
Xt = St(N) − Nt t ≥ 0, (93)

where (Nt, t ≥ 0) is a positive martingale, with N0 = 1, and which
converges to 0, as t→ ∞.

iii.
Xt = |Bt|, t ≥ 0, (94)

where (Bt) is a standard Brownian motion.

3.4.1 Case 1

Denote :
G = sup{t, Yt = 1} = sup{t, Xt = 0}.

Then, we have shown that (see Theorem 1.1) :

P (G ≤ t|Ft) = (1 − Yt)
+ . (95)

Therefore, in this case, we may write :

E [ΓtXt] = E
[

Γt1{G≤t}

]

, (96)

for every Γt ∈ Ft. Thus, Q = P is convenient in this situation.
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3.4.2 Case 2

Again, we introduce :

G = sup{t,Nt = St(N)} = sup{t, Xt = 0}.
We have (see Theorem 3.1 and Proposition 3.1) :

P (G ≤ t|Ft) =
Nt

St(N)
, (97)

and thus :

E

[

Γt

(

1 − Nt

St

)]

= E
[

Γt 1{G≤t}

]

. (98)

Since (98) is valid for every Γt ∈ Ft, and t ≥ 0, we may write (98) in the
equivalent form :

E [Γt (St − Nt)] = E
[

ΓtSt 1{G≤t}

]

. (99)

However, on (G ≤ t), we have : St = S∞. Therefore, (99) writes :

E [Γt (St − Nt)] = E
[

ΓtS∞ 1{G≤t}

]

, (100)

and a solution to (89) is :
Q = S∞ · P. (101)

However, we should note that Q has infinite total mass, since :

P(S∞ ∈ dt) =
dt

t2
1t≥1,

i.e, from Lemma 1.1 :

S∞
law
=

1

U
with U uniform on [0, 1].

3.4.3 Case 3

This study has been the subject of many considerations within the penalisa-
tion procedures of Brownian paths studied in [25] and [18].

In fact, on the canonical space C(R+,R), where we now denote (xt, t ≥ 0)
as the coordinate process, and Ft = σ{xs, s ≤ t}, then, if W denotes the
Wiener measure, a σ-finite measure W has been contructed in [25] and [18]
such that :

∀Γt ∈ Ft, W (Γt|xt|) = W (Γt 1G≤t) , (102)

where G = sup{s, xs = 0} is finite a.s under W. Thus, now a solution to (89)
is :

Q = W.

We note that W and W are naturally singular.
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3.4.4 A comparative analysis of the three cases

We note that in case 1 and case 2, {Xt, t → ∞} converges P a.s. and that
the solution to (89) may be written, in both cases :

E [XtΓt] = E [X∞ 1G≤t] , (103)

where : G = sup{t, Xt = 0}. Is this the general case for Skorokhod sub-
martingales which converge a.s.?
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4 Note 4 : How are the previous results

modified when M∞ 6= 0?

In this note, we work again with a continuous local martingale (Mt) taking
values in R+, and starting from a > 0. We do not assume that M∞ = 0;
thus :

P(M∞ > 0) > 0.

We ask a first question : can we describe the law of supt≥0 Mt?
Also can we describe the law of GK = sup{t,Mt = K}?

4.1 On the law of S∞ = supt≥0Mt

Note that we cannot use the Dubins-Schwarz theorem :

Mt = β〈M〉t , t ≥ 0,

in an efficient way, since in that generality, 〈M〉∞ cannot be interpreted in
terms of β.

Nonetheless, let us see how our argument involving Doob’s optional stop-
ping theorem (see lemma 1.1) may be modified.

Let b > a = M0, and Tb = inf{t,Mt = b}. Then

E [MTb
] = a,

that is :
bP (S∞ ≥ b) + E

[

M∞1{S∞<b}

]

= a. (104)

This leads us naturally to replace M∞ by :

φ (S∞) = E [M∞|S∞] , (105)

with φ(x) ≤ x. Formula (104) now becomes :

bP (S∞ ≥ b) + E
[

φ(S∞)1{S∞<b}

]

= a. (106)

Assuming φ as given, we consider (106) as an equation for the distribution
of S∞, and we obtain :

Proposition 4.1. For simplicity, we assume that : ∀b > 0, φ(b) < b. The
law of S∞ is given by :

P(S∞ ≥ b) = exp

(

−
∫ b

a

dx

x− φ(x)

)

. (107)
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Comment : since S∞ <∞ a.s., it follows from (107) that :

∫ ∞

a

dx

x− φ(x)
= ∞. (108)

Proof. of Proposition 4.1 : from formula (106), denoting µ(b) = P(S∞ ≥ b),
we obtain :

bµ(b) −
∫ b

a

dµ(x)φ(x) = a. (109)

Consequently :

bdµ(b) − dµ(b)φ(b) + dbµ(b) = 0

(b− φ(b))dµ(b) = −(db)µ(b).

Then, the above equation yields :

µ(b) = C exp

(

−
∫ b

a

dx

x− φ(x)

)

, (110)

which implies C = 1 by taking b = a.

Example 4.1. We consider (Bt) issued from a > 0, and for α < 1:

T (α)
a = inf{t, Bt = αSt}, (111)

to which we associate Mt = B
t∧T

(α)
a

. Then, φ(x) = αx; consequently we have
:

∫ b

a

dx

(1 − α)x
=

1

1 − α
log

(

b

a

)

.

Hence,

µ(b) = exp

(

− 1

1 − α
log

(

b

a

))

=
(a

b

)1/(1−α)

, b ≥ a,

and :

dµ(b) = a1/(1−α)

(

α

1 − α

)

db

b
2−α
1−α

1{b≥a}. (112)

Question 4.1. Can we describe all the laws of (Mt, t ≥ 0) which satisfy
(105) for a given φ? See Rogers [24] where the law of (S∞,M∞) is described
in all generality...See also P.Vallois [26]. However, these authors assume
that M is uniformly integrable...
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Question 4.2. Under which condition(s) is (Mt, t ≥ 0) uniformly integrable?
(this question had a negative answer when M∞ = 0, but now...?)
A first answer :

We shall have
E[M∞] = a,

which is satisfied if only if :

E [φ(S∞)] = a,

i.e :
∫ ∞

a

dx exp

(

−
∫ x

a

dy

y − φ(y)

)

φ(x)

x− φ(x)
= a. (113)

In fact there is a more direct criterion which may be derived from (104) :

lim
b→∞

bP(S∞ ≥ b) = 0 (114)

and which amounts to :

lim
b→∞

b exp

(

−
∫ b

a

dx

x− φ(x)

)

= 0. (115)

Note that, in all generality, it follows from (104) that :

lim
b→∞

bP (S∞ ≥ b) = a− E [M∞]

Exercise 4.1. Prove that (113) is equivalent to (115).(Probably, integration
by parts).

Example 4.2. Going back to Example 4.1, when φ(x) = αx, α < 1, we get
:

µ(b) = C
1

b1/(1−α)
. (116)

Then, Example 4.2 is a case of uniform integrability.

Exercise 4.2. Denote by M+ the set of positive local martingales (Mt, t ≥ 0)
such that M0 = 1 and by :

M+,c = {M ∈ M+, lim
b→∞

bP (S∞ ≥ b) = 1 − c}.

a) Prove that :

M+ =
⋃

0≤c≤1

M+,c;

(of course, this is a union of disjoint sets).
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b) Prove that c = 1 iff (Mt) is ui.;

c) Prove that c = 0 iff Mt →t→∞ 0;

d) Prove that for any c ∈ [0, 1], M ∈ M+,c iff E [M∞] = c.

e) For any c ∈ [0, 1], give as many examples as possible of elements of
M+,c.

Comments : A somewhat related discussion about the asymptotic behavior of
P (S∞ ≥ b) as well as that of P (〈M〉∞ ≥ b) is done in [2].

Exercise 4.3. Give some examples of non uniform integrability obtained
from the criterion (115).

At this point, it is very natural to recall Azéma-Yor’s solution of Sko-
rokhod’s embedding as given in [3] :
if ν(dx) is a probability on R, with

∫

ν(dx) |x| <∞, and
∫

ν(dx)x = 0, then
the stopping time :

Tν = inf{t ≥ 0, St ≥ ψν(Bt)},

where St = sups≤tBs, B0 = 0, and ψν(x) = 1
ν[x,∞)

∫

[x,∞)
ν(dy) y solves Sko-

rokhod’s embedding problem, in that : BTν
∼ ν, and (Bt∧Tν

, t ≥ 0) is uni-
formly integrable. See Obloj [21] for a thorough survey of Skorokhod’s prob-
lem.

Exercise 4.4. Modify the Azéma-Yor construction to obtain as many stop-
ping times T ′

µ of Brownian motion (Bt, t ≤ T0), where B0 = 1, such that
BT ′

µ
∼ µ.

More generally, one may ask :

Question 4.3. Given a stopping time T of (Bt, t ≥ 0), describe the set ST

of all the laws of BS, for all stopping times S ≤ T , such that (Bt∧S , t ≥ 0) is
uniformly integrable.

4.2 Extension of our representation theorem in the

case M∞ 6= 0

We now try to see how the formula (see (11)) :

P (GK ≤ t|Ft) =

(

1 − Mt

K

)+

(117)

is modified in the case M∞ 6= 0.
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Theorem 4.1. The following formula holds :

E
[

1{GK≤t} (K −M∞)+ |Ft

]

= (K −Mt)
+ . (118)

Proof. We may prove formula (118) in different ways.
First proof : It hinges on the balayage formula (see Lemma 3.1) applied

to Yt = (K −Mt)
+; we note : GK(s) = sup{u ≤ s,Mu = K}. The balayage

formula (81) now becomes :

φGK(t) (K −Mt)
+ = φ0 (K −M0)

+ −
∫ t

0

φGK(s) 1{Ms<K}dMs +
1

2

∫ t

0

φsdLK
s ,

(119)
since dLK

s charges only the set of times for which Ms = K, i.e for which
GK(s) = s.

This formula applied between t and ∞ yields :

E
[

φGK
(K −M∞)+ |Ft

]

= φGK(t) (K −Mt)
+ +

1

2
E

[
∫ ∞

t

φsdLK
s |Ft

]

(120)

Taking φs = 1{s≤t} and observing that GK(t) ≤ t and that
∫ ∞

t
1{s≤t}dLK

s =
0, we obtain :

E
[

1{GK≤t} (K −M∞)+ |Ft

]

= (K −Mt)
+ . (121)

Second proof : We consider for T a stopping time :

E
[

1{GK≤T} (K −M∞)+]

= E
[

1{dT =∞} (K −M∞)+]

, (122)

where dT

(

≡ dK
T

)

= inf{t > T,Mt = K}.
Then,

E
[

1{dT =∞} (K −M∞)+]

= E
[

1{dT =∞} (K −MdT
)+]

= E
[

(K −MdT
)+

]

We now note that, between T and dT , (LK
t ) does not increase; hence,

from Tanaka’s formula, the previous quantity equals :

E
[

(K −MT )+]

.

Therefore, we have obtained :

E
[

1{GK≤T} (K −M∞)+]

= E
[

(K −MT )+]

. (123)

This identity may be reinforced as :

E
[

1{GK≤T} (K −M∞)+ |FT

]

= (K −MT )+ . (124)
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4.3 On the law of GK

It is quite natural in this section to introduce the conditional law : νK(dm)
of M∞ given5 F(GK)− , i.e :

E
[

f(M∞)|F(GK)−
]

=

∫

νK(dm) f(m). (125)

In fact, it is the predictable process (µu ≡ µ
(K)
u , u ≥ 0) defined via :

E
[

(K −M∞)+ |F(GK)−
]

= µGK
=

∫

νK(dm) (K −m)+ , (126)

which will play an important role in the sequel.

Theorem 4.2. In the general case M∞ 6= 0, the Azéma supermartingale :

ZK
t = P (GK > t|Ft)

is given by :

ZK
t = E

[

(K −M∞)+

µGK

|Ft

]

− (K −Mt)
+

µGK(t)

. (127)

Proof. We start from (120), which we write (for t = 0) as :

E [φGK
µGK

] = E
[

φ0 (K −M0)
+]

+
1

2
E

[
∫ ∞

0

φsdLK
s

]

. (128)

Replacing (φuµu), by (φu), this identity writes :

E [φGK
] = E

[

φ0

µ0
(K −M0)

+

]

+
1

2
E

[
∫ ∞

0

φs
dLK

s

µs

]

. (129)

Then, applying formula (129) to φu ≡ 1[0,T ](u), with T a generic stopping
time, we obtain :

P (GK ≤ T ) = E

[

1

µ0

(K −M0)
+

]

+
1

2
E

[
∫ T

0

dLK
s

µs

]

= E

[

(K −MT )+

µGK(T )

]

,

(130)

5F(GK)− = σ{HGK
; Hpredictable}.
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from the balayage formula. We shall now deduce formula (127) from (130) :
to a set Γt ∈ Ft, we associate the stopping time :

T =

{

t, on Γt

∞, on Γc
t .

(131)

Then, formula (130) yields :

E
[

1Γt
1{GK≤t}

]

+E
[

1Γc
t

]

= E

[

1Γt

(K −Mt)
+

µGK(t)

]

+E

[

1Γc
t

(K −M∞)+

µGK

]

, (132)

which, by simply writing : 1Γc
t
≡ 1 − 1Γt

, we may write equivalently as :

E
[

1Γt
1{GK>t}

]

= E

[

1Γt

(

(K −M∞)+

µGK

− (K −Mt)
+

µGK(t)

)]

. (133)

This easily implies formula (127).

It may be worth giving other expressions than (127) for the supermartin-
gale :

ZK
t ≡ P (GK > t|Ft) .

Note that, if we develop ( (K−Mt)
+

µGK (t)
, t ≥ 0), then, again due to the balayage

formula, we obtain :

ZK
t =

1

2

(

E

[
∫ ∞

0

dLK
s

µs

|Ft

]

−
∫ t

0

dLK
s

µs

)

. (134)

In a similar vein, in order to apply formula (127), one needs to know how to
compute the process (µu, u ≥ 0). Now writing :

(K −M∞)+ = (K −M0)
+ −

∫ ∞

0

1{Ms<K} dMs +
1

2
LK

∞,

we obtain :

E
[

(K −M∞)+ |F(GK)−
]

= (K −M0)
+−E

[
∫ ∞

0

1{Ms<K} dMs|F(GK)−

]

+
1

2
LK

∞,

(135)
since LK

∞ ≡ LK
GK

. Thus, if we denote by (γu, u ≥ 0) a previsible process such
that :

E

[
∫ ∞

GK

1{Ms<K} dMs|F(GK)−

]

= γGK
, (136)
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we then deduce from (135) that :

µGK
= (K −M0)

+ −
∫ GK

0

1{Ms<K} dMs − γGK
+

1

2
LK

∞, (137)

that is :

µu = (K −M0)
+ −

∫ u

0

1{Ms<K} dMs − γu +
1

2
LK

u . (138)

Thus, we have shown that the computation of (µu) is equivalent to that of
(γu), as defined implicitly in (136).
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5 Note 5 : Let K vary...

In this note, we develop formulae to compute the dual predictable projections
of certain raw (i.e : non adapted) increasing processes.

Precisely, if (Rt, t ≥ 0) is a raw increasing process, there exists a unique
predictable increasing process (At, t ≥ 0) such that : ∀(φt) ≥ 0, predictable,

E

[
∫ ∞

0

φs dRs

]

= E

[
∫ ∞

0

φs dAs

]

. (139)

We shall always assume that : R0 = 0 and A0 = 0. In the Strasbourg
terminology, (At) is called the predictable dual projection (pdp) of (Rt).

5.1 Some predictable dual projections under the hy-

pothesis M∞ = 0

Theorem 5.1. a) For any K > 0, 1{0<GK≤t} admits as pdp 1
2K

LK
t .

b) Let S ′
t = S∞ − S(t,∞), where S(t,∞) = supu≥tMu, and S∞ = S(0,∞) =

supu≥0Mu. Then : (S ′
t) admits as pdp 1

2

∫ t

0
d〈M〉s

Ms
(with the convention

that 1
Ms

= 0, for s ≥ T0(M)).

Proof. 1. From formula (120), we get, for φ ≥ 0, predictable, with φ0 = 0
:

E [φGK
K] = E

[

1

2

∫ ∞

0

dLK
s φs

]

. (140)

We have obtained a)

2. We now integrate both sides of this identity with respect to dK f(K),
f ≥ 0, Borel. Then :

E

[
∫ ∞

0

dK f(K)φGK
K

]

= E

[

1

2

∫ ∞

0

dK f(K)

∫ ∞

0

dLK
s φs

]

. (141)

From the density of occupation formula (35), the RHS is equal to :

1

2
E

[
∫ ∞

0

d〈M〉s f(Ms) φs

]

. (142)

We note that :
(GK ≤ t) =

(

S(t,∞) ≤ K
)

,
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i.e : the inverse of : K → GK is : t → S(t,∞). As a consequence, we
may express the LHS of (141) as :

E

[
∫ ∞

0

dS ′
t f

(

S(t,∞)

)

S(t,∞) φt

]

, (143)

which we compare with (142). Taking f(x) = 1/x, we obtain :

E

[
∫ ∞

0

dS ′
t φt

]

=
1

2
E

[
∫ ∞

0

d〈M〉t
Mt

φt

]

, (144)

which translates b).

As a check, we would like to show ( more directly, or in a different manner
than above) that for a “good” martingale, with M0 = 1, there is the identity
:

E [S ′
t] =

1

2
E

[
∫ t

0

d〈M〉s
Ms

]

. (145)

First, we note that the RHS is equal, from Itô’s formula,
applied to : φ(x) = x log(x) − x, to :

1 + E [φ(Mt)] = 1 + E [Mt log(Mt)] − 1 (146)

Consequently, we wish to show :

E [S ′
t] = E [Mt log(Mt)] . (147)

The LHS is equal to :

E
[

S∞ − S(t,∞)

]

= E

[

St ∨
(

Mt

U

)

− Mt

U

]

=

∫ 1

0

du

u
E

[

(uSt −Mt)
+]

= E

[
∫ St

0

dv

v
(v −Mt)

+

]

.

Now, we note that, for 0 < a < b :

∫ b

0

dv

v
(v − a)+ =

∫ b

a

dv

v
(v − a) = (b− a) − a log

(

b

a

)

. (148)

Consequently, we need to show :

E [Mt log(Mt)] = E [(St −Mt) −Mt log(St) +Mt log(Mt)] , (149)
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that is :
0 = E [(St −Mt log(St)) −Mt] , (150)

which follows from the fact that {St −Mt log(St), t ≥ 0} is a martingale.
Proof :

Mt log(St) =

∫ t

0

Ms
dSs

Ss
+

∫ t

0

(log(Ss))dMs,

hence :

St −Mt log(St) = 1 −
∫ t

0

log(Ss)dMs.

5.2 A comparison with the property : S∞ ∼M0/U.

We consider (144), with φt = f(Mt); we note that the LHS of (144) is :

E

[
∫ ∞

0

dt(S(t,∞))f(S(t,∞))

]

= 2E

[
∫ S∞

0

dx f(x)

]

= 2

∫ ∞

0

dx f(x)
(a

x
∧ 1

)

.

(151)

Going back to (144), we now see that (using again our hypotheses (H1) and
(H2) in Section 2.1) :

E

[
∫ ∞

0

dt σ2
t

f(Mt)

Mt

]

=

∫ ∞

0

dt

∫ ∞

0

dK mt(K)
1

K
θt(K) f(K). (152)

Hence, we have obtained :

( a

K
∧ 1

)

=

∫ ∞

0

dt
mt(K)

2K
θt(K). (153)

Now this identity agrees with the expression of the law of GK ,
given by (36) : the RHS of (153) is equal to :

P (GK > 0) =
( a

K

)

∧ 1. (154)

5.3 Some predictable dual projections in the general

case M∞ 6= 0

Starting again from (119), we obtain :

E
[

φGK
(K −M∞)+]

= E

[

1

2

∫ ∞

0

dLK
s φs

]

. (155)
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We now integrate both sides of this identity with respect to dK f(K), f ≥ 0,
Borel. Then :

E

[
∫ ∞

0

dK f(K)φGk
(K −M∞)+

]

= E

[

1

2

∫ ∞

0

dK f(K)

∫ ∞

0

dLK
s φs

]

.

(156)
The RHS of (156) is, as seen before, still equal to :

1

2
E

[
∫ ∞

0

d〈M〉sf(Ms)φs

]

.

We know that, for K > M∞,

(GK = u) iff
(

K = S(u,∞)

)

,

and the LHS of (156) equals :

E

[
∫ ∞

0

dS ′
tf(S(t,∞))

(

S(t,∞) −M∞

)+
φt

]

. (157)

We may now state the following :

Theorem 5.2. a) For any K > 0, 1{0<GK≤t} (K −M∞)+ admits 1
2
LK

t as
pdp.

b) Let It = (S∞−M∞)2−(S(t,∞)−M∞)2. Then, (It, t ≥ 0) admits (〈M〉t)
as pdp.

5.4 A global approach

In this section, we provide a functional extension of :

E
[

(Et −K)+]

= P

(

G(1/2)
K ≤ t

)

, (158)

where : G(1/2)
K = sup{t, exp

(

Bt + t
2

)

= K}.
In fact, we prove a general version of (158), relative to a continuous,

positive martingale (Mt, t ≥ 0), which converges to 0, a.s., as t → ∞, and
plays the role of (Et, t ≥ 0) in the Brownian case. We assume that EP [Mt] ≡
1.

To state our result, we need to introduce a new probability P(M) such
that :

P(M)|Ft
= Mt · P|Ft
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Theorem 5.3. The following holds :
For every absolutely continuous Φ : R → R+, with Φ(0) = 0, i.e :

Φ(x) =

∫ x

0

dy φ(y), for φ ∈ L1
+,loc(R

+),

there is the relation :

EP [Φ(Mt)] = EP(M)

[

φ

(

inf
s≥t

Ms

)]

. (159)

As a consequence, for any K > 0, one has :

EP

[

(Mt −K)+]

= P(M) (GK ≤ t) , (160)

where GK = sup{u,Mu = K}.
Proof. We write :

EP [Φ(Mt)] = EP

[

∫ Mt

0
dy φ(y)

]

= EP [Mt φ(UMt)] ,

where U is uniform and independent from M . Thus, with the help of P(M),
we obtain, with Nu = 1

Mt+u
, u ≥ 0 :

EP [Φ(Mt)] = E
P(M)

[

φ

(

1

(Nt/U)

)]

= EP(M)

[

φ

(

1

sups≥tNs

)]

= EP(M)

[

φ

(

inf
s≥t

Ms

)]

,

(161)

which proves formula (159).
Formula (160) follows by taking Φ(x) = (x−K)+. Then,

φ(inf
s≥t

Ms) = 1{infs≥t Ms>K} = 1{GK≤t}.

We also need to justify the equality :

EP(M)

[

φ

(

1

(Nt/U)

)]

= EP(M)

[

φ

(

1

sups≥tNs

)]

in (161) by asserting that, under P(M), (Nu) belongs to M(+)
0 , and then use

Doob’s maximal identity (see Lemma 1.1).
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