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Abstract. The electromagnetic wave propagation in a nonlinear medium is described by the Kerr model in
the case of an instantaneous response of the material, or by the Kerr-Debye model if the material exhibits
a finite response time. Both models are quasilinear hyperbolic and are endowed with a dissipative entropy.
The initial-boundary value problem with a maximal-dissipative impedance boundary condition is considered
here. When the response time is fixed, in both the one-dimensional and two-dimensional transverse electric
cases, the global existence of smooth solutions for the Kerr-Debye system is established. When the response
time tends to zero, the convergence of the Kerr-Debye model to the Kerr model is established in the general
case, i.e. the Kerr model is the zero relaxation limit of the Kerr-Debye model.
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1 Introduction.

Nonlinear Maxwell equations are used for modelling nonlinear optical phenomena and electromagnetic wave
propagation is described by

0D — curl H =0,

OB+ curl E =0,

div D =div B = 0.
The field quantities F and H represent the electric and magnetic fields, respectively, while D and B are the

electric and magnetic displacements. The constitutive relations are given by

B:,MOH7
D =coE + P,

where P is the polarization.
We consider here a homogeneous isotropic nonlinear medium (a crystal, for instance), so that the polarization
is nonlinear. The Kerr model describes an instantaneous response of the medium and, in this case, P is
given by

P = Py = coe,|E)?E.

If the medium exhibits a finite response time 7, one should use the Kerr-Debye model for which
P= PKD = z’:‘oXE,
where 1 1
dix + =x = =& | E*.
T T
(For further details we refer the reader to, for example, [17] or [20].)

The Kerr-Debye model is a relaxation approximation of the Kerr model where 7 is regarded as the relaxation
parameter. (For a general discussion of relaxation problems, see [15].) Formally, when 7 tends to 0, x
converges to ¢,|E|? and Pxp converges to Pg.



To cope with a physically realistic situation, we need to cover the initial-boundary value problem (IBVP),
although in the rather simple geometry. We assume that the nonlinear material is confined in the region
{x1 > 0}, and we set Q =]0, +oo[xR?, T' = {0} x IR* denoting its boundary. We consider the Kerr and the
Kerr-Debye models in the domain IR;” x Q = [0, +00[xQ with the impedance boundary condition on IR} x T
and with zero initial data.
Once non-dimensionalized, the initial and boundary value problem (IBVP) for the Kerr model takes the
following form (for (t,z) € RT x Q):

0yD — curl H =0,

0¢H + curl E =0,

with the constitutive relation
D= (1+|E]P)E. (1.1)

We suppose that the initial data vanish:
D(0,z) = H(0,2) =0 forx € Q,
so that the divergence relations hold
divD=divH =0fort>0.

We denote by n = (—1,0,0) the outer unit normal along I" and we consider the impedance boundary
condition
Hxn+a((Exn)xn)=gfor (t,z) € RT xT, (1.2)

where a is a positive linear map on I'. If a = Id, (1.2) is the classical ingoing wave condition. If a = 0, (1.2)
is a Dirichlet boundary condition. The system is at rest for ¢ < 0. It is only excited by the source term ¢
which is localized in the variable (¢, z2, z3) and takes its values in T'.

In the same fashion, the IBVP for the Kerr-Debye model (in which 7 is replaced by ¢) writes (for (¢,z) €

R x Q)
0¢D. — curl H, = 0,

OH; +curl E. =0, (1.3)

1
O = ~(1E- = x2)

with the constitutive relation
D. = (1+ x.)E-. (1.4)

We suppose that the initial data vanish:
D.(0,2) = H.(0,x) =0, x(0,2) =0 for x € Q,

and we have also
div D. = div H. =0 for ¢t > 0.

In addition we suppose that we have the same impedance boundary condition

H. xn+a((E. xn) xn) =g for (t,r) € RT xT.

Two-dimensional models.

Following [19] we can also introduce the two-dimensional transverse magnetic (TM) and transverse electric
(TE) models, as follows. For the transverse magnetic case we assume that

H(xlaxZax?)) = t(O,H2($1,$3),O),
E(z1,22,23) = "(F1(z1,73),0, E3(x1, 23)),



in the domain (x1,z3) € {1 > 0} x IR. The Maxwell system becomes

0; D1 + O3 Hy = 0,

OtD3s — 01Hy =0,

OHo + 03E1 —01E3 =0,
while the divergence-free condition reads

D1+ 93D3 = 0.
(In this case the divergence condition for H is irrelevant.) The impedance boundary condition reads
Hy —aFEs = ¢ with a > 0.

The above system is coupled with either (1.1) (in the Kerr model), or (1.4) and the third equation in (1.3)
(in the Kerr-Debye model).

In the transverse electric case, we assume that

E(Z‘l,l‘Q,l‘g) = t(O,EQ(Z‘l,Z‘g),O),
H(x1,x9,23) = "(Hi(21,73),0, H3(x1, 23)),
and we obtain
0yDy — O3Hy + 01H3 = 0,
OyH1 — O3FE> = 0, (1.5)
O0:Hs + 01 FEy = 0,

with the divergence-free condition
OHy, + 03H3 = 0. (16)

The impedance boundary condition becomes
Hs3 + aFy = ¢ with a > 0. (1.7)
For the Kerr model, (1.5)-(1.7) is coupled with
Dy = (1+ (E»)?),
and for the Kerr-Debye model, (1.5)-(1.7) is coupled with

D2,6 = (]- + XE)E2,€7

1
8tX€ - g((EQ,E)Q - Xe)

In the case of a fixed finite response time, numerical simulations are presented for these two-dimensional
models by finite-difference methods in [19] and by finite-element methods in [13].

One-dimensional model.

In [3], the following one-dimensional model is introduced:

E(x1,72,23) = ¥(0,e(x1),0),
H(Z‘l,xg,xg) = t(0,0,h(Z‘l)).

In this case, the IBVP for the Kerr model reads

Od + O1h = 0,
Oth + 01e =0, (1.8)
d=(1+¢e?e,



with the impedance boundary condition
h(t,0) 4+ ae(t,0) = p(t), t > 0, where a > 0, (1.9)

and the zero initial data
e(0,21) = h(0,21) =0, z; > 0. (1.10)

The one-dimensional IBVP for the Kerr-Debye model is

Orde + O1he = 0,
8th5 + 8165 = O,

1 1.11
Bie = ()" ~ x2) -
d. = (1 + Xs)es;
with the impedance boundary condition
he(t,0) + ae.(t,0) = p(t), t > 0, where a >0, (1.12)
and the null initial data
e(0,21) = he(0,21) = xc(0,21) =0, 21 > 0. (1.13)

We can also remark that the divergence conditions on h and d are irrelevant for both models.

Mathematical properties and main results.

Since both Kerr and Kerr-Debye models are endowed with strictly convex entropies, the associated systems
are symmetrizable hyperbolic. Furthermore the boundary is characteristic of constant multiplicity (except
for the system (1.8)) and the boundary conditions are maximal dissipative. So the general results in [10]
ensure the local existence of smooth solutions for smooth data. For the Kerr model a better local existence
result is proved in [16]. A similar result for the Kerr-Debye model is established in the Appendix.

We denote by 7™ and T the lifespan of such smooth solutions for the Kerr and the Kerr-Debye IBVP,
respectively. Since the Kerr model is a homogeneous quasilinear hyperbolic system, shock waves can appear
at T*. In particular, for the one-dimensional case, we can rewrite (1.8) as a p-system which is genuinely
nonlinear for d # 0. In this case, using the results of [14], we can exhibit initial data such that the lifespan
T* is finite with formation of shock waves (see also [4]). On the other hand the Kerr-Debye model is a
quasilinear hyperbolic system with source term and it is totally linearly degenerate, i.e. each characteristic
field is linearly degenerate. So we can expect that, if the lifespan T is finite, the behavior of the smooth
solution is analogous to the semilinear case. Indeed we obtained this result in the 1-d case in [5]: if T is
finite then the solution and its gradient explode, i.e. shock formation never occurs. In fact, using stronger
dissipative properties for the Kerr-Debye model we proved in [7] that T = +oco for the one-dimensional
Cauchy problem. This global existence result should be also established for the Cauchy problem in the 2-d
TE case. In the present paper we choose to prove the same result for the impedance IBVP in the 1-d and
2-d TE cases (see Theorem 1 below). In the proofs we must take into account a new difficulty which does
not appear for the Cauchy problem: the boundary I' of the domain 2 is characteristic.

The Kerr-Debye model is a relaxation approximation of the Kerr model in the sense developed in [8] . The
stability conditions in [8] and [18] are satisfied so it is natural to study the behavior of the smooth solutions
to the Kerr-Debye model as the relaxation coeflicient € tends to zero. Concerning the Cauchy problem with
initial data (Dg, Ho, xo) satisfying div Dy = div Hy = 0, x¢ > 0, the convergence for the smooth solutions
is proved in [11] using the results of [18]. Generally a boundary layer in time appears because of the non
compatibility of the initial data with the equilibrium condition y = |E|?. We study here the convergence for
the impedance IBVP. In this case no boundary layer appears, neither in the time variable (since the zero
initial data fit the equilibrium condition) nor in the space variables (since the boundary condition is the
same for both IBVP). In the one-dimensional case, we presented in [3] a first convergence result. In fact we
obtained the convergence of (1.11)-(1.12)-(1.13) to (1.8)-(1.9)-(1.10) on some interval [0, 7] C [0, T*[. The



same kind of convergence result is announced for the 3-d case in [6]. Here we improve these results in all
cases since the convergence is obtained on each interval [0, 7] C [0,T7[.

Our paper is organized as follows. In Section 2 we exhibit general properties of the Kerr and the Kerr-Debye
models. For a fixed ¢ we establish the global existence result of the solutions to the Kerr Debye 2-d TE
model. Section 3 is devoted to convergence results when the relaxation parameter tends to zero.

2 (General Properties.

2.1 Properties of the Kerr model.

We recall the initial-boundary value problem for the general Kerr model:

0¢D —curl H =0,
OtH + curl £ =0, (2.1)
D= (1+|EP)E,

for (t,2) € IRT x € together with the initial and boundary conditions
D(t=0)=H(t=0)=0 for x € Q, (2.2)
H xn+a((Exn)xn)=g¢for (t,z) € RT xT. (2.3)
The energy density given by
£xc(D, H) = L(1EP +|HP + 3| B[*)
is a strictly convex entropy (with associated flux function E x H), so (2.1) is a quasilinear hyperbolic

symmetrizable system.
In the three-dimensional case, the eigenvalues are (for £ # 0)

AM(EE) <A (B8 <A3=X=0< X5 =X < A = Ay,
so the boundary IRT x T is characteristic of constant multiplicity two. By direct calculations we obtain

M(E,€) = —(1+|E[}) 2],

(B, €) = —(1+|B)) 2 (L+3|E[*) "2 (1 + [EP)EI + 2(B - %)%
In the two-dimensional cases, TM and TE, the eigenvalues are of the form:
AM(E,E) <A =0< A3 =M,

so the boundary IR™ x I is characteristic of constant multiplicity one. By direct calculations we obtain for
the TM model:

AM(B,€) = —(1+|E)"2(1+ 3|E[>)"2((1 + | B[] + 2(E - €))%,

and for the TE model: )
ME(B,€) = —(1+3[Ea*) "2 ¢].
In the one-dimensional case, the system is strictly hyperbolic and the boundary is non characteristic. We

have

)\1(E) <0< g = —/\1,
with

M (E) = —(1+3€e2)77.
We remark that the impedance boundary condition (2.3) is maximal dissipative. Generally speaking local
existence results of smooth solutions to IBVP for quasilinear hyperbolic systems with characteristic boundary
are available in [10]. For the Kerr system (2.1)-(2.2)-(2.3) we can also apply a more adapted result in [16].
We assume that the source term ¢ is compactly supported in IR™ x T'. We denote by H* the classical Sobolev
spaces and we suppose that ¢ belongs to H*(IR; x ') for s great enough. So the boundary condition (2.3)
and the initial data (2.2) are compatible and by [16] we obtain smooth local solutions.



Proposition 1 Let o € H3(IR x I') compactly supported in IRT x I'. Then there exists a maximal smooth
solution (D, H) to the IBVP (2.1)-(2.2)-(2.3) which lifespan is denoted by T* and such that

0{(D, H) € C°([0, T*[; H3~(Q)) fori=0,1,2,3.

Remark 1 In the third part we need more regular solutions. In fact, using [10] we obtain the following
result: for all k € IN, there exists so(k) such that if ¢ € H**®) (IR x T) then

OND, H) € C°([0,T*[; H*"H(Q)) fori=0,...,k.

For example, for k =7, using theorem 2 in [10] we obtain that so(7) = 18.

The previous existence result is stated in the three-dimensional case. Analogous results can be obtained for
both the two-dimensional and the one-dimensional cases.

2.2 Properties of the Kerr-Debye models.

Consider for a fixed € > 0 the Kerr-Debye model

0yD. — curl H. = 0,

O¢H. + curl E. =0,

1 (2.4)
Oxe = Z(1B=” = x2),
De = (1+ xo)E-.
for (t,x) € IRT x Q together with the initial and boundary conditions
D.(0,2) = H.(0,x2) =0, x(0,2) =0 for x € Q, (2.5)
H. xn+a((E. xn)xn)=¢ for (t,z) € R xT. (2.6)
The divergence free conditions are preserved by the system:
div H. = div (1 + x.)E. = 0. (2.7)
By the third equation in (2.4) we observe that we have
Xe > 0.
The energy density given by
Exep(D,H,x) = 2 (1+ )7 1DP + 5l HP + 148 (28)

is a strictly convex entropy in the domain {y > 0} (with associated flux function E x H = (1+x)~'D x H).
So (2.4) is a quasilinear symmetrizable hyperbolic system.

In the three-dimensional case the eigenvalues are, for £ # 0,
p1(x;€) = p2 < piz = pa = ps = 0 < pig = pir = —pun,

where pu; = —(1+ X)_% |€|. So the boundary is characteristic of constant multiplicity three.

In the two-dimensional cases we obtain

(O €) < po = py = 0 < pa = =y,



where p; = —(1+ X)f% |€|. So the boundary is characteristic of constant multiplicity two.
In the one-dimensional case, the system is strictly hyperbolic and the boundary is characteristic of constant

multiplicity one. The eigenvalues are

pr(x) < po =0 < pz = —p,

—1
2.

where pu; = —(1+ x)

We remark that each characteristic field of the quasilinear hyperbolic system (2.4) is linearly degenerate. It

suffices to prove this property for the eigenvalue uq(x, &) = —(1 + X)_% |€] for which the last component of
the corresponding eigenvector vanishes, so we have

Vuy-rp =0.
In the 3-d case this property is also obtained by a general result in [2].
Using the special structure of the Kerr-Debye model, we prove in the Appendix the following existence result.

Proposition 2 Let ¢ € H®(IR x I') compactly supported in IRT x I'. Then there exists a maximal smooth
solution (Dg, He, Xc) to the IBVP (2.4)-(2.5)-(2.6) which lifespan is denoted by T and such that

0i(D., H., xe) € CU[0, T2 [; H3(Q)) fori=0,1,2,3.

Analogous results can be established in both the 2-d and the 1-d cases.

2.3 Dissipative properties of the Kerr-Debye models.
For the Cauchy problem, it is well known (see [11]) that the Kerr-Debye system is dissipative and we have

d €
G | exoD o de = =5 [ oo,
IR3

dt IR3
We generalize this dissipative formula for the IBVP (2.4)-(2.5)-(2.6). In addition we exhibit another dissipa-
tive property for the time derivatives. To start with we extend the boundary condition (2.6) in the following
way: we replace Hy by Ho + 3(t, x2, x3)n(x1), Hs by Hs — @a(t, x2,x3)n(z1), where n is a cut off function
which is equal to 1 in a neighbourhood of 0, compactly supported in the interval [0,1[. Furthermore, to
preserve the divergence free condition (2.7) we replace Hy by

+oo
Hi + (023 — O3p2)(t, x2, 333)/ n(s)ds

Z1

and we denote
—+oo

(O2p3 — O302)(t, z2, $3)/ n(s)ds

R(t,x) =
(t) @3(t, z2,3)n(71)

_SDQ(tva) x3)7’]($1)
Then the system (2.4)-(2.7) becomes in the variable V = (U, x) = (E, H, x):

(Z) (1 + X)@E + (8,5X)E —curl H = Gl,

(it)  OH + curl E = Gy, (2.9)

1
(i) anx = Z( B =)



where G; = curl R and Gy = —9;R, with the homogeneous initial and boundary conditions:
V(0,2) =0,z € Q, (2.10)

Hxn+a((Exn)xn)=0,(tx) e Rt xT. (2.11)

The divergence free conditions are preserved:
div H =div (1 + x)E) = 0. (2.12)
For the IBVP (2.9)-(2.12) the dissipation properties are described by the following result:

Proposition 3 Let V' be the smooth solution to (2.9)-(2.12) given by Proposition 2. We denote Ep =
(0, B, E3). Then, on the interval [0, T2, we have

i/ 5KD(D,H,X)dx+5/ |8tx|2da:+/a(ET)-Ede2dx3 z/(Gl-E+G2-H)da:, (2.13)
dt Jo 2 Jo r Q

1d

1 3 €
-7 1 E2 H2 - 2 _/ E2 E2 _/ 2
i [ (@ 000E? o + on)?) do o [ BPOERar 5 [ o

(2.14)
—|—/ a(&tET) - Oy Epdxodrs = 236/ X|atE|2d$ + / (8tG1 O E 4 0:Go (9fH)dZ‘
T Q Q

Proof. Taking the inner product of (2.9.7) with E and (2.9.9) with H we obtain

/(l—l—X)&gE-de—i—/ |E|28txdx—/cur1H-de+/ 8,5H.de+/ curlE-de:/(Gl-E—i—GQ.H)daﬁ.
Q Q Q Q Q

Q
(2.15)
After integrating by parts we obtain

—/curlH-de—i—/curlE-de z/(Hxn)-degdxg
Q Q r
= —/a((E xn) xn) - Edrodxs
r

= / a(ET) -ETd$2d£E3.
r

In addition, we have

1d 1
/(1+x)8tE-de: ——/(1+X)|E|2dx——/ |E|20; xd.

Using the last equation in (2.9), we obtain

1 1d €
— | |E? =_— 2 - 2dx.
2/Q| 20y da 4dt/ﬂm dx+2/ﬂ(atx) dx

So replacing in (2.15) we obtain (2.13).
We differentiate (2.9) and (2.11) with respect to t:

(4) (14 x)OuE + 20X E + Oy xE — curl 0:H = 0,Gh,

(it)  OuH + curl O, F = 0,Ga,

2 1
(ZZZ) 8ttX = EE . 8tE — gatx,



0:H xn+a((0:F xn)xn)=0in RT xT.

As before we obtain

1d

3
- ((1 + X)|afE|2 + |8fH|2) dz + = / 8tX|8tE|2d$ + / atth . 8,5Ed$ + / a(&tET) . 8tETd$2d$3

= /(8fG1 . &E + 8,5G2 . 8fH)d$
Q
The last equation in (2.9) yields

/ OuxFE - 0;Edx = li / (Orx)?dx + < / (O x)?de,

so (2.14) holds.

Remark 2 It is clear that (2.14) holds also for the Cauchy problem.

2.4 Global existence for the 2d TE Kerr-Debye system.

For the two-dimensional TE model, the system is the following:

0Dy — 03H, + 01Hs =0,

O H1 — 035 =0,

(2.16)
O Hs + 01 E5 = 0,
1 2
ex = g(|E2| = X)
for t > 0, for (z1,73) € RT x IR, together with zero initial data
D5(0,21,23) = H1(0,21,x3) = H3(0,21,23) = x(0,z1,23) = 0 for 1 > 0,23 € IR, (2.17)
and the impedance boundary condition
Hs(t,0,23) + aFEs(t,0,23) = p(t,x3) for t > 0,23 € IR. (2.18)
Recall that we have y > 0 and
OHy + 03Hz = 0. (2.19)

We obtain the following global existence result.

Theorem 1 Let ¢ € H5(IR2), compactly supported in IRT x IR. Let ¢ > 0. Then the smooth solution
W = (Dq, Hy, Hs, x) to the IBVP (2.16)-(2.17)-(2.18) is defined on [0, +oo[ (T = +00).

Proof of Theorem 1.
We fix € > 0 and we assume that T < +00. Then from Proposition 2, if T < +o0, then

where

p
HP(Qr) = {W such that [[W{|y () = Z 10t W | Lo (0,717 (02)) < +OO} :
i=0



By variational estimates we will prove uniform bounds on ||[W |3, for T < T and so we will obtain a

contradiction with (2.20), which proves that T} = +ooc.

With this object, as in the 3-d case, we extend the boundary condition (2.20): we replace H3(t, 1, 3)
by Hs(t,z1,23) + o(t, 23)n(x1) where n is a smooth function compactly supported in IR, equal to 1 in a
neighbourhood of 0. Furthermore, to preserve the divergence free condition (2.19) we replace Hi(t,x1,x3)

+oo

by Hi(t,z1,23) + 83<p(t,x3)/ n(s)ds. Then the system (2.16)-(2.17)-(2.18) becomes, in the variable

z1
V = (EQ,Hl,Hg,X)Z
(14 x)0tEy — 03Hy + 1 H3z = —0yx F2 + G,

OH1 — 03F5 = G,
O0¢H3z + 01 By = G,

1
dhx = g(|E2|2 —X):
together with both zero initial data and homogeneous boundary condition:
V(Oa T, .133) = 0)

Hg(t, 0, .233) + aEg(t, 0, .233) = O,
where .
Galtoryms) = Bplt,zs) [ n(s)ds = plt, o) (o),

z1

+oo
Ga(t,z1,x3) = 3t53¢(t,$3)/ n(s)ds,

z1

G3 (t7 Z1, .133) = —8t(P(t, $3)7I($1)

We recall that the field H remains divergence free:
OWHy{ + 03H3 = 0.

In this case the dissipation formulae (2.13)-(2.14) read

1d 1
——/ (1 + )| E2|* + [H)? + =|x]? dmldxg—i—i/ |8tx|2dx+/a|E2|2dx3 :/ G- Udz.
2dt Jg 2 2 /o . o

and
1d 2 2, 1 2 3 2 2 € 2
S (1 +20)[0:E|” + |0 H|” + S[0ex|” | dordas + — [ |Ea||0:Eal"dx + 5 | [Oux|"dz

+/a|6tE2|2dx3 = 3/ X|8tE|2dx+/ 0:G - 0 Udx
r 2e Jo Q

where G = (G1,G2,Gs) and U = (Es, Hy, Hs).

From (2.25), using Gronwall lemma (recall that x > 0), there exists a constant C such that

IVllre@rs) = IVl 0.12:220) < C-

Estimates on the first order time derivatives.
We recall the derivatives of (2.21)-(2.22)-(2.23) with respect to t:

10

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)



(1 + X)&EEQ 4+ 20;xO0 By + 8,52XE2 — 030¢H1 + 010: H3 = 0;G1,
O2H, — 050,y = 0,C, (2.28)
8,52H3 + 010:Ey = 0;G3,

07X = = (2B20,E — Oyx), (2.29)

M | =

8tH3(ta 07 €3

~—

+ a&tEg(t, 0, 323) = 0. (230)

By the equations, we obtain zero initial data
9V (0,21, 23) = 0.

From these equations, we obtained (2.26), and by Gronwall lemma, there exists C' > 0 such that

||atV||Loo(()’T€*;L2(Q)) < C. (231)
The last two equations in (2.21) yield
B2l o< 0,121 () < C. (2.32)
Solving (2.22) we get
I s—1 9
x(t,z) = B exp(T)|Eg(s,x)| ds. (2.33)
0

From Sobolev theorem and (2.32), for all p € [2, +00[ there exists C' > 0 such that

[ B2l Lo (0,720 (00)) < C,s (2.34)
and so with (2.33), for all p with 1 < p < 400, there exists C such that

Xl 0,120 (0)) < C. (2.35)
So by (2.22) we obtain that, for all p € [1, +o0],

19ex || o< (0,70 (02)) < C. (2.36)

Estimates on the second order time derivatives.
We differentiate (2.28)-(2.29)-(2.30) with respect to t. We obtain

(14 X)0} By + 30; X0 B2 + 30} X0t Eo + O} x B2 — 0307 Hy + 0,107 H3 = 072G,
O3 Hy — 030} B2 = 02Ga, (2.37)
0P H3 + 0107 By = 0%Gs,
Ox = QOB + 2207 B, — 07, (239)
with homogeneous boundary condition
02 H3(t,0,23) + ad?Fa(t,0,23) = 0, (2.39)
and by the equations, the initial data vanish

O}V (0,21, 23) = 0.
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Taking the inner product of (2.37) with 92U we obtain

1d
—— ((1 + X)|8752E2|2 + |8t2H|2) dridxs + / a|8t2E2|2dx3
5
+§/ 8tx|8fE2|2dx+3/ afxatEQafEﬁ/ 02X F20? By :/afa-andx.
Q Q Q Q
Equation (2.22) yields
1 1
/8tx|8fE2|2da:: —/ |E2|2|33E2|2dx——/X|33E2|2dx.
Q € Ja € Ja
From (2.29) we get
2 1
/afxatEga,?Ezdxz g/ F5|0; B |?0? Bydx — g/ Orx 0y E20? Ead.
Q Q Q

From (2.38) we have

2 2 2
/ 8?XE28752EQCZ$ = —/ E2|8tE2|28,52E2d$ + —/ |E2|2|8,52E2|2d$ - = / |E2|28tE28,52E2d$
Q € Ja €Ja e Ja

1
—|——2/8tXE2(9t2E2d$.
€° Ja

So we obtain

1d

9
——/ (1 +x)|07 Eo|* + |07 HI?) dxldx3+/a|a$E2|2dx3+—/ | Ea|?|02 By |?dx =
2dt QO T 2e Q

/836‘-83de+3/X|8EE2|2dx—§/ E283E2|8tE2|2dx+§/8tx8tE28t2E2dx (2.40)
Q 2e Ja € Ja € Ja

2 1
—|-—2/ |E2|28tE283E2d$ — —2/ (9,5)(E283E2d$.
et Ja e Ja

By (2.28) and (2.31) we have
10¢ Bl 1 (0)) < C(L+ |07H | 12(q))- (2.41)

Let us estimate the right hand side terms in (2.40). First we have

8
‘—/ FE20?%Fs|0; Bs|?dx
€ Ja

9
< —/ | B2 | |0} Es|*dx + K(s)/ |0, Ba|*dz.
4e O Q
By interpolation inequalities and Sobolev theorem, we have
1 1
lellzsc@) < Cllully3 gy < lell 2oy Il oy
So using (2.41)

8
’—/E28§E2|8tE2|2dx
€ Ja

9
% / | B 2107 BaPder + K () (1 + 07 H | 220). (2.42)

By (2.36) and (2.41) we obtain

[ om0 Bae| < o oo |01 Eall s |2 2l
Q
2.43
< CllOE s o102 Eall o) (2.43)
< OO+ |0UI72(q)-

12



In the same way, (2.34) and (2.41) yield

<COA+ 07U 2@)s

V | s |20; B20? Eydx
Q

and by (2.34) and (2.36) we have

/ 8tXE2 81&2 E2 dx
Q

<COA A+ 187U 2(0)-

Using (2.42), (2.43), (2.44), (2.45) in (2.40), we obtain
Ld
2dt

so by Gronwall lemma there exists C' = C(T.") such that

107U || oo (0,73 12(52) < C-

So by (2.41)
0cE2||Loe 0,121 () < C,

and by Sobolev theorem, for all p, 2 < p < 400,

10cE2|lLo<0,12;Lr(0)) < C.
2 1
As 07y = gEgatEg — gatx, by (2.34), (2.36), (2.48) we have for 1 < p < +o0:

107 x|l Lo (0,2 Lr () < C.

Estimates on the third order time derivatives.
We differentiate (2.37)-(2.38)-(2.39) with respect to t:

(1 + X)a?EQ + 48tX8t3E2 + 682)(835]2 + 48t3X8tE2 + 8;1XE2 — 83831{1 + 818t3H3 = (9E’G1,

OMHY — 0303 Ey = 093G,

8;1H3 + 818?E2 = 8t3G3,

fx = g&sEQ&?Ez + §E283’E2 - 6_22|8tE2|2 - 6—22E283E2 + 6—1283)(,
together with homogeneous boundary condition:
02 H3(t,0,23) + adP Fa(t,0,23) = 0,
and by the equations, the initial data vanish:
APV (0,z1,23) = 0.
We take the inner product of (2.50) with 97U and we obtain

1d
2dt

+4 / 02X 0L a0} By + / i F20} By = / 03G - 93U dx.
Q Q Q

13

5
/Q (1 + )07 Bo|? + |07 H|?) dardas < C(1+ (07U |72(0y) + 2—€/Qx|8fE2|2dx,

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

/ (1 +x)|0; Eo|” + |0} H|?) dw1dws + / al0p By |*dxs + g / Orx|03 By |*dx + 6/ 0202 E207 B
Q r Q Q



Equation (2.22) yields

1 1
/atx|a§E2|2dx= —/ |E2|2|33E2|2dx——/X|3§E2|2dx.
Q Q Q

g 3
From (2.38)
2 2
/ 8?X8tE28?E2 = —/ |8tE2|38t3E2d33 + —/ EgatEgangathde — / 8,52X8tE28t3E2.
Q g Jo g Jo Q
From (2.51), we get

6 2 2
/afxEQa;?EQ = —/ EQatEQaEEzaszdx+—/ |Es|?|02 By |?dx — —2/ F5|0; 5|0} Eydx
Q € Ja € Ja €% Ja

2 1
——2/ |E2|283E263E2dx+—2/a,?XEQaEEQ.
S Q € Q

So we arrive at

1d 11
——/ (14 IO EP + 02 HP) dmlda:3+/a|8t3E2|2da:3+—/ | 2|03 Es |2 da
2dt Q r 2¢e Q
(2.52)
7
= / PG - 9} Udx + —/ x|02 By |Pdx + I + I,
Q 2e Jo
where
14 2
Il = —6/ 8§X8§E28?E2d$— ?/ EgatEgatQEQathgdl‘—f— g/ |E2|28§E28?E2d$,
Q Q Q
8 393 4 2 3 2 2493
Iy = —= [ [0:E2|°0; Badx + = | 0;x0iF20; Eadr + — | FE2|0:E2|"0; Eadx
€Ja € Ja e Ja
1 2 3
) 815 XEgat Egdir
€ Ja
From (2.37) and (2.46) we have
107 B2l 111 () < K(1+ |07 H | L2(e)- (2.53)
So by Sobolev theorem, (2.34), (2.48), (2.49) and (2.53), we get
| < C(L+ (107U |72q))- (2.54)
By (2.34), (2.48), (2.49), we have
|I2] < Cl10; Ball 20y (2.55)

Estimates (2.54) and (2.55) together with (2.52) imply

1d 7
ST (1 + )10} Bol? + |07 H|?) dardas < C(1+ 07U |72(0y) + 2—/ X|02 By |da.
Q €Ja
So there exists a constant C' = C(T) > 0 such that
”aEU”LN(O,TE*;LQ(Q)) <C.

By (2.53)
107 Ea || L= 0,121 (02)) < C

14



and, for all p, 2 < p < +o0,
”atQEZHLO"(O,T;;LP(Q)) <C. (2.56)

2 2 1
As 0Py = g|8tE2|2 + gEQaEE2 — gafx, using (2.34), (2.48), (2.49) and (2.56), for 1 < p < 400,

102X o< (0,753 10 (0)) < C-
Estimates in H3(Qr-).
In order to estimate the space derivatives of H we recall the following div-curl lemma (see [9]).

Lemma 1 Let Q = {(z1,73),71 > 0}. We denote T' = 0Q. Let H = (Hy,H3) € H*(Q) such that
div H = 8, Hy + 83Hs € H*(Q), curl H = —0,Hs + 0sH, € H*(Q), Hy € H**3(I"). Then H € H*(Q)
and we have

sy < € (1 ey + i Hgy -+ lewrl H ey + 181 s )
By the first equation in (2.21), using (2.34), (2.35), (2.36) and (2.48), we obtain
[carl H|| Lo (0,72 12(02)) < C.
Recall that div H = 0 and on the boundary I, H3(t,0,23) = —aFEs(t,0,23), so by (2.32),

||H3(ta07')|| <C.

Lo (0,7 H3 (T)) =

Using lemma 1, we obtain
[ [ Lo 0,721 (02)) < C-
By the first equation in (2.28), using (2.34), (2.35), (2.36), (2.48), (2.49) and (2.56), we get

||CU.I'1 8tH||L°°(O,T€*;L2(Q)) S C.
Condition (2.23) together with (2.47) yield

||atH3(ta07')|| C,

1 <
L>(0,Tr;H2(T)) —

thus
10:H || L 0,72; 11 (2)) < C. (2.57)

By the second and the third equations in (2.21), by (2.32) and (2.57),
B2l o 0,12 12(02)) < C, (2.58)

and by Sobolev theorem,
B2 oo, 72 [x0) < C.

As H%(Q) is an algebra, using (2.33), we obtain

IxIlLo< 0,12 12(0)) < C, (2.59)

and by Sobolev theorem,
XNl oo (0,72 [x2) < C.
. 1
Since Oy x = g(|E2|2 - X),
106\ o< (0,72 12 (02)) < C, (2.60)

and by Sobolev theorem,
19exII Lo (0,12 [x0) < C-

15



In addition with (2.38) we have
107X 2% 0,711 2)) < C-
By the first equation in (2.21), using (2.47), (2.58), (2.59), (2.60), we obtain

||curl H||Loo(o,Tg;H1(Q)) <C.

Using (2.58), (2.23) yields

<,

HH3(ta 0, ')”Loo(()’T*;H% (r)y) —

so by Lemma 1,
[H [ Lo (0,125 12(02)) < C-

By analogous arguments, we prove successively that
10 H|| Lo (0,72:11 (2)) < C,
0cE2||Loe 0,12 12(0)) < C,
102 x| o< (0,12: 12 (00)) < C,
10cH || oo (0,72 12 (02)) < C,s
| B2l oo 0,713 (02)) < C,s
IxIlo< 0,753 () < C,

[H | o< (0,72512 () < C-

Finally,
Vs < C.

This estimate contradicts (2.20), so T = +00. The proof of Theorem 1 is complete.

2.5 Global existence for the 1-d Kerr-Debye system.
The one-dimensional Kerr Debye IBVP writes:

Oyd + 0h = 0,
Oth + 0ze =0,
ooy 1(62 . (2.61)
€
d= (14 x)e,
for (t,2) € R x IR™, together with both zero initial data
(d,h,x)(0,2) =0 for x > 0, (2.62)
and the boundary condition
h(t,0) 4+ ae(t,0 = (t) for t > 0. (2.63)

Theorem 2 Let ¢ € H*(IR) compactly supported in IRT. Let ¢ > 0. Then the smooth solution (d,h,x) to
the IBVP (2.61)-(2.62)-(2.63) is defined on [0, +00].

16



The proof of Theorem 2 is analogous to the proof of Theorem 1. The one-dimensional case is easier: the
divergence free condition is irrelevant and the space regularity is obtained directly by the equations. In
addition, by Sobolev theorem, the H!-estimates implies bounds in the L®-norm. We refer to [7] for the
detailed proof of the global existence for the Cauchy problem.

Remark 3 Using the general stability results in [12] and [1], we can observe that for the 1-d Kerr-Debye
model, a constant equilibrium state (€, h,x = (&)%) is stable if € # 0. The stability property if € = 0 in the
one-dimensional case and in the two-dimensional TE case remains an open problem.

Remark 4 It seems more difficult to obtain the global existence for both the 2-dTM and the 3-d models. First
we lack for an adapted div-curl lemma to obtain the space reqularity. Indeed, in both cases, the divergence
free condition (2.7) is nonlinear in (x,E). In addition, the Sobolev embeddings used in the 2-d case don’t
work in the 3-d case.

3 Convergence result.

First we replace the Kerr-Debye model in the general framework of [8]. The equilibrium manifold in (2.4) is
defined by:
V={(D,Hx) € R",x =B = (1+x)?|DI},

so that the reduced system associated with the Kerr-Debye model (2.4) is the Kerr model (2.1).
The strictly convex entropy Exp satisfies the stability condition in the definition 2.1 of [8] and, on the
equilibrium manifold V, we have the relation:

Furthermore characteristic speeds associated to (2.4) and (2.1) are interlaced on the equilibrium manifold
V. In our case, by the previous calculations, in the 3-d model we have

pi(|E1,€) = M(E, &) = p2(|E*,€) < A2(E,€) <0 =pg = A3 = prg = Ay = pus.

So the Kerr-Debye model is a relaxation approximation of the Kerr model, with the stability properties. In
this context, it is natural to study the convergence of the solutions to the Kerr-Debye model as the relaxation
coefficient tends to zero. The Cauchy problem is studied in [11]. Here we establish the convergence for the
impedance IBVP.

3.1 Entropic variables and main result.

In order to prove the convergence result it is more convenient to use the entropic variables which are
introduced in [12]. These variables are obtained taking the gradient of the convex entropy (2.8):

Op€Exp = (1 + X)ilD =F,

Ouéxp =H,

1
anKD = §(X - |E|2) =,
The IBVP (2.4)-(2.5)-(2.6) becomes (for (t,x) € R" x Q):

3
AO(WE)atWE + Z AJajWE = %Q(We)a (31)

Jj=1

where

17



Ve —20,

(|E<> + 20 + 1)I3 + 2E.'E. 0 2F.

o Ag(We) = 0 Isy 0 |,
2E, 0 2
3 0 —curl 0
. ZAjaj = | curl 0 0 |,
j=1 0 0 0

with the initial data

E.(0,2) = H.(0,2) =0, v:(0,2) =0 for = € Q,

and with the boundary condition

H. xn+a((E. xn) xn) =g for (t,r) € RT xT.

(3.2)

(3.3)

We observe that in the entropic variables (E, H,v), the boundary condition is linear. In addition, with these
variables, the equilibrium manifold is flat since V = {(E,H ,U) € R, v= 0} and the relaxation term is

linear.

We rewrite the divergence free condition in the entropic variables:

div (1 + |E-|* + 2v.)E.) = div H. = 0.

In the same way we can write the Kerr model in its entropic variables :
Opéx = E,
Ouéx = H.
The IBVP (2.1)-(2.2)-(2.3) becomes
(14 |Eo*) I3 + 2Eo " E9) 9, Eo — curl Hy = 0,
0:Hy + curl Hy =0,
for (t,2) € RT x ) together with zero initial data
Ey(0,2) = Hp(0,2) =0 for x € Q,

and with the impedance boundary condition

Ho xn+a((Ey xn) xn) =g for (t,x) € RT xT.

We remark that the divergence free condition is satisfied

div (1 + |Eo|?)Ep) = div Hy = 0.

(3.8)

In these entropic variables the IBVP (3.5)-(3.6)-(3.7) is the reduced system of the IBVP (3.1)-(3.2)-(3.3).

Let us recall the assumptions on the source term ¢ in both problems:

¢ is compactly supported in R x T,
pe H(IRxT), s >5.

18

(3.9)



Thus we can apply Proposition 1 and Proposition 2 with the source term ¢ to define the solution (Ey, Hp) to
(3.5)-(3.6)-(3.7) on [0, T*[ and the solution (E., He,ve) to (3.1)-(3.2)-(3.3) on [0,7[. In addition we choose
s great enough to ensure a sufficient regularity on the profile (Ey, Hp) (see Remark 1).

As in the previous section we introduce for T'> 0 and k € IN:
k
HE(Qr) = {W such that W [5peary = Y N0}W | oo 0,710 (0)) < +oo} :
i=0
We obtain the following convergence result.

Theorem 3 Let ¢ satisfying (3.9). Let (Eo, Ho) be the solution to (3.5)-(3.6)-(3.7) which lifespan is denoted
by T*. We assume that for all T < T*, Ey € H"(Qr). Fore > 0, let (E., H.,v.) be the solution to (3.1)-
(3.2)-(3.83) which lifespan is denoted by Tx. We fix T < T*. There exists eg > 0 such that

Ve <ep, TS > T, (3.10)

and there exists a constant C' such that for all € < e,
1Bz — Eollnaor) + 1He = Hollwzor) + [[vell#ezr) < Ce. (3.11)
As remarked in the introduction, we don’t expect boundary layer formation in the IBVP (3.1)-(3.2)-(3.3)

near the profile (Fy, Hp,0). Hence we use a Hilbert expansion to describe the behavior of the solution as €
tends to zero.

3.2 Hilbert expansion.

We denote by p. =t (R., S-, sc) the remainder term in the Hilbert expansion of W,:
Ee = EO =+ €R5,

He = HO + ESE,

Ve = €81 + €8¢,

with s; = —E0:Fy. Using (3.5)-(3.6)-(3.7) and (3.1)-(3.2)-(3.3), the rest term p. satisfies the following
system:

3

- - 2
Ao(t, )0 pe + Z Aj0jpe + L(t,x)p: + B(t,z) + G(t,z, R.) + F(t,x, pc)0¢ pe = _t(07 0, gse), (3.12)
j=1
where
R,
® pe = 0 )
Se
(14 |Eo*) 5 +2Ey'Ey 0 2Ep
o Ao(t,z) = 0 I3 0 ;
2tE, 0 2
25.0:Fq + 2Eq - R.0:FEq + 2(E0 ‘R. + R, tE())atEo + 2e0ss1 R,
o L(t,x)pe = 0 ;
2tR.0,E,
2510:Fqg + 20:s1Ey
o B(t,x) = 0 ,

28,581
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€|R5|28tE0 +eR; tRsatE()

i G(t7 z, RE) = 0 ’
0
e(R.YEg+ Eg'R.)OtR. + €5.0;Re + e2R. 'R0y Re + 26 R.0;5- + 2| Re|? O R
o F(t,z,p:)0pe = 0 ;
2¢eR. - Oy R,

with the zero initial data
pe(0,2) =0 for z € Q, (3.13)

and the homogeneous boundary condition
S. xn+a((R: xn) xn)=0 for (t,2) € R" xT. (3.14)

We remark that we introduced the one order term s in the expansion of v, to avoid a singular source term
in the last equation of System (3.12).

For t < T we define . and 1. by

Nl=

pe(t) = | lpe@®ll720 + Z 10ipe (D1|7 2 () + Z 195pe (OI72 (2 + Z 10sk 0220y |
i£1 ij#1 0,4, kA1

=

Ge(t) = | 1019 (D)l 720) + D 101 (D) |72(0) + D 101650 (1)1 720
i i,

Let us remark that . measures the tangential derivatives 0y = 9, 02, 035 and we have

3
(p()? + (=) = Y 10t p(D)3g-+ (-
=0

We define also

P.(t) = sup ¢.(s),
s€0,t]

e (t) = sup ve(s),
s€0,t]

so we have

D (T) + W (T) ~ Hps||7-l3(QT)-
3.3 Proof of Theorem 3.
We fix T' < T* and we define T, by

1
T, = sup {t < Tl pellms o < %} , (3.15)

so by Proposition 2, T, < T7.

The proof of Theorem 3 is organized as follows. In the first step, by variational methods on the system
(3.12)-(3.13)-(3.14) we estimate the tangential derivatives of p.. In the second step we bound the normal
derivatives of p. by solving the last equation in (3.12) and using the divergence free conditions (3.4) and
(3.8).

We will use the following classical lemma.

Lemma 2 For k > 2, H*(Qr) is an algebra.
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Since Ey € H'(Qr), we obtain
Ao, L, B € H*(Qr), (3.16)

so Ag, L and B are sufficiently regular to allow the following calculations.
For the convenience of the reader, we will omit the dependence on the index €.

First step: estimates on ..

Let us establish the following lemma:

Lemma 3 There exists a constant C' such that for t € [0,T¢],

d
T / Agp - p+ Z AoOip - Oip + Z AoOijp - Oijp + Z AoOijip - Oijip | dx
Q2 i£1 i,j#1 0,5, k%1

[ X Fw s s | do| <CO+ )
ol\.*
i,J,k#1

Proof. The nonlinear terms in (3.12) are bounded thanks to the following estimates, which are a straight-
forward consequence of Lemma 2 and (3.15): there exists a constant C' such that for all € > 0,

HG(thvR)H'H?’(QTE) S Ca
[ F(t, z, p)0cpl 200, ) < C, (3.18)

HF(thvﬁ)”?‘ﬁ(QTE) < C\/E
Taking the inner product of (3.12) with p we obtain

1d

2
——/Aop-pdm—/a((Rxn)xn)-Rdmdm;;—!——/ |s|?dx =
2 dt Q r g Jo

1
—/&,Aop-pdm—/Lp-pdm—/B-pdx—/G(t,a:,R)-pdx—/F(t,x,ﬁ)&tﬁ-pdx.
2 Jao Q Q Q Q

By assumption on the operator a, we have
/ a((R x n) xn) - Rdradxs < 0.
r

Since Ej is regular enough, by (3.16), we have immediately

1
}5/ 5tAop-pdx—/ Lp - pdz| < C(p(1))?,
Q Q
and
/ B - pdx| < Cyp(t).
Q
From (3.18),
/QG(twﬁ) -pdz| < (|Gl 2@ llpllz2@) < 1Gl#e @) e(t) < Colt),

and

<|[FpllLzllplliLz) < 1FOpllnz e llpllL2) < Co(t).

Q

21



Thus we obtain the L? estimate:
d
G [ A0p-pde < O+ (0(0)2)
Q

In the same way, differentiating (3.12) with respect to the tangential variables, we obtain

d 2
pm /Q;Aoad) - O;pdx —l—/Q Z AO&;jp : (97;jpd33‘ < C(1+ (et)?).

i,j7#1

For the third order derivatives, we use also the estimate:
for i,j,k # 1,

N - - 1d ~ - -
‘/Qaijk (F(ta Z, p)atp) 'aijkpdx - 5% ,/Q F(ta Z, P)aijkp ’ aijkpdx < C(]- + (@(t))Q)’
and we conclude the proof of Lemma 3.

Let us recall that Ag(t,x) = Ao(Eo) (see (3.12)), so, since Ey is smooth on [0, 7] x €, there exists a constant
a > 0 such that for all ¢ € R® and (t,z) € [0,T] x ,

Ao(t, 2)¢ - € > alef. (3.19)
In addition, from the last estimate in (3.18) we remark that, for all ¢ € [0, T¢],
> F(t,x,p)dnp - dgpda| < Civ/e(p(h)). (3.20)
Q.4
1,7,k#1

So, integrating (3.17) and using (3.19) and (3.20) we obtain that, for ¢t € [0, T],

¢
a(t) - o) < o [ (14 9(s))ds,
0
so for € small enough,
t
P <C [ 1+,
0
so by Gronwall lemma, we obtain that there exists C' such that for all ¢ € [0, 7]

p°(t) < C. (3.21)

Second step: estimates on ..

In order to estimate the derivatives with respect to the normal variable 9; we proceed as follows:
1. We rewrite (3.12) isolating 01 Rs, 01 Ra 0153 and 0152 in curl R and curl S:

81R3 = 83R1 + 81552
{ O1R2 = Ry — 0453 (3.22)
so from (3.21),
191 s | 2= 0.7222(2)) + 101 Bl 0.72i22()) < € (3.23)
and
0153 = 0351 — (Ag0;p)2 — (Lp)2 + Ma(t, €, p, 01p), (3.2
8152 = 8251 + (Aoatp)3 + (Lp)3 + MB(taxafvﬁv 8tﬁ)a ’
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where, by (3.18),
Mz 720z, ) + [1M3ll32(0r,) < C. (3.25)

Using also (3.21), we obtain that

10185l oo (0, 72522(02)) + 10182 Lo (0,12522(02)) < C.

2. In order to estimate 0151, 01 R1 and 015, let us rewrite the divergence free conditions. From (3.4) and
(3.8), we obtain
0151 = —0252 — 0353, (3.26)

so we have
0151l L (0,12;L2(02)) < C.

It remains to estimate 0y Ry and 0;s. From (3.4) and (3.8), we have
div ((1+ |Eo|>R+ 2(Eo - R)Eo + 2sEo) = N(t,x,ep,01p,02p,03p)
= —div (2s1Ey +¢|R|*Eo + 2¢(s1 + s+ (Eo - R)R) + €| R|*R).
We expend the left hand side term and we obtain
(1+ |Eo|? + 2(Eo,1)?)01 Ry + 2E.1015 + A(t, z)p + Ao (t, 2)02p + As(t, 2)03p
+2E0,1Eo 201 Ry + 2Eo 1 Eo 301 Ry = N

where A(t,z), Ao(t,z) and As(t,z) are linear operators.
Using (3.22) we obtain

R +2(1+ | Eo|* +2(Eo1)*) ' Eopdis = At w)p+ Y Nt 2)dip+ N(t, 2,2, 5,01, 02p, 05p), (3.27)
i€{0,2,3}

where A(t,z) and the A;(t,z) are linear operators, and N = (1 + |Eo|*> + 2(Eo1)?)"'N. By (3.18) we have
[NH20r,) < C. (3.28)
3. Les us consider the last equation in (3.12):
Dys + és = —0.(Bo- Rt 1 + S|P,
We differentiate this equation with respect to zi:
0pO1s + 5318 = —0¢(E0,101R1) — 0s(Eo201 Ry + Eg 301 R + 01 Ep - R+ 0151 + %31|R|2),

and using (3.27), we obtain

1
8t(h(918 + b) + 5818 = 0, (329)
where
h=(1+4|Eol> +2(Eo1)*) 1+ |Eo[*),
b= Eo1(Ap+ Y Midip+ N) + Boodh R + Eoadi Ra+ i Eo - R+ 0151 + 501 R
it
‘We have )
s<h<l, (3.30)
and, from (3.21), (3.28), (3.23) and (3.15),
6] oo 0,72522(0)) < C. (3.31)
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We remark that hdis +b =0 at t = 0 and solving (3.29) :

_ by 1ot f b()
O1s(t) = —m + W/o gexp <—/G %d7> mala,
so0, by (3.30) and (3.31),
' 1018 ()| Lo (057522(02)) < O,

and by (3.27),
[01B1 | o< 0.12:22 2y < C

Therefore we obtain the H! estimate:
ol r) < C- (3.32)

In order to obtain the H? estimate on the remainder term p, first we deal with the derivative dy;p, i € {0,2, 3}.
We differentiate (3.22), (3.24) and (3.26) with respect to 0; and using (3.21) and (3.25) we obtain

01i B2l oo (0, 752(2)) + |01 Rl o< (0,72:2.2(0)) < C,
(3.33)
10151 | Lo (0,752 () + 101652 oo (0,72:22(02)) + 101:S3 || Loo 0,752 (02)) < C.

We differentiate (3.29) with respect to 0;:
1
8t(h(9171'5 + (81h818 + 81[))) + g817;s =0,

from (3.21), (3.33), (3.15) we remark that
01015 4 0;bl| Lo (0,112 (02)) < C,

S0, in the previous process, we can replace b by 0;hd1s + 0;b, and we obtain

10138 Loo (0,152 (02)) < C- (3.34)
We differentiate (3.27) with respect to 9; and we use (3.28), (3.21), (3.34) to obtain

101 Ra | Lo~ (0,7;22(02)) < C. (3.35)
Therefore, by (3.33)-(3.35) we have for i # 1,

101ipll Lo (0,1.:2(2)) < C. (3.36)

Now we estimate 011 p. Differentiating (3.22), (3.26) and (3.24) with respect to 01, using (3.21), (3.36), (3.25)
and (3.32) we obtain that

011 Ral| Lo 0,12 ;22(02)) + 1011 B3| Lo (0,72 2(0)) < C,

01151 [ e 0,72522(0)) + 101152/ Loe 0,725 22(02)) + (101193l L0 (0,72522(0)) < C.

Differentiating (3.29) and (3.27) with respect to 9; and using in particular (3.36) we obtain by the same
method that

0115]| Lo (0,12:22()) + 011 R || oo (0,72:22(0)) < O,

which conclude the H? estimate:
ol #2(0r.) < C-

For the H? estimate, we bound successively 101350l Los (0,15 12(02)) for 4,5 # 1, [|O11:p| o= 0,1.;12()) for i # 1
and ||0111p]| Lo (0,1.;22())- So we obtain that there exists a constant C' such that

ol 30,y < C. (3.37)
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Last step of the proof of Theorem 3.

1
We recall that we fixed ' < T, and that we defined 7. by (3.15). So, either T' = T. or ||pe|l3sqs) = 72
which is contradictory with (3.37) for e small enough. So there exists g > 0 such that fore < g, T >T. =T
and by (3.37), ||pc |13 () < C, so we obtain (3.10) and (3.11) in Theorem 3.

Remark 5 The same conclusions hold in the two-dimensional and the one-dimensional cases. In the 1-d
case we can replace (3.11) by:
lee — eollrz(r) + lhe = hollrz(r) + Vel @r) < Ce.

For the 1-d and 2-dTE cases, (3.10) is irrelevant since T, = +oo by Theorems 1 and 2.

4 Appendix: Proof of Proposition 2.
As in Section 2.3 the IBVP (2.4)-(2.7) is equivalent to the following system in the variable V = (U, x) =

(E, H,X):
(1) (I4+x)0E+ (Ox)E —curl H =Gy,

(it)  O:H + curl E = Go, (4.1)

(i) Do = (B> ),
with zero initial data and homogeneous boundary condition:
V(0,2) =0,z € Q, (4.2)
Hxn+a((Exn)xn)=0,(tx) e Rt xT. (4.3)
We recall the divergence free conditions
div H =div (1 + x)E) =0,

and the positiveness property
x > 0.

The proof is based on the following iteration scheme.
First, xx > 0 being given, we define Ugy1 = (Ex+1, Hpt1) by

(14 x#)OtEr1 + (Oexr) Ex1 — curl Hypq = Gy,

(4.4)
O;Hp11 + curl By 1 = Ga,

with zero initial data and homogeneous boundary condition
Uip+1(0,2) =0,z € Q, (4.5)
Hy1 xn+a((Exer xn)xn)=0,(t,z) € RT xT, (4.6)

so the divergence free conditions hold

div Hiy1 = div (1 + x%)Eg+1) = 0. (4.7)

Afterwards we define x4+1 solving the differential equation
Ot Xk+1+ %Xk+1 = §|Ek+1|27 (4.8)
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with the initial condition
Xk+1(0,2) =0,z € Q.

We remark that
Xk+1 = 0.

(4.9)

We initialize the iteration scheme by taking Vy = 0. Assuming that for any T > 0, Vi € H3(Qr) with
O xr € H3(Qr), using the existence results for linear problems in [16], the system (4.4)-(4.5)-(4.6) admits
a unique solution Uy = (Exi1, Hrp1) € H3(Q7) which satisfies the divergence free condition (4.7). So
(4.8)-(4.9) admits a unique solution ;1 € H3(27) and by these equations 9 xx+1 € H3(Qr) and yxr1 > 0.

4.1 High-norm boundedness.
We denote

3
§(t) = Z 10{ Uk (8)] r3-+ (62,
i=0
and

3 3
or(t) = Z 10 Vi (8) | rra—i 02) + Z 107 X0 (8) 121 () -

=0 i=0

For o = (v, a2, 3) € IN? we define the operator 9% = 9°95205? and we denote

nk(t) = > 10%Uk(t) || L2(0)

a=(ap,02,a3),|a|<3

that is, 7, () measures the L2-norm of the tangential derivatives of Uy.
Finally the source terms are estimated by

L(t) = |Gl )-

We introduce the time T}, defined by

T, =max <t >0, sup pg(s) <1,T(t)<1,.
s€[0,1]
To obtain the boundedness, we shall prove that there exists T > 0 such that
Vk>0,T,>T.

In order to estimate the tangential derivatives of Uy we first establish the following result.

Lemma 4 There exists a constant K > 0 such that, for all k, we have

d
Vi< T a/ S (U X B[P+ 10 Hiyr ) do < K(1+ (641)°)-
Q

a=(ao,02,03),/a|<3
Proof. Taking the inner product of (4.4) with Uy41 we obtain

1d
——/ ((1 + Xk)|Ek+1|2 + |Hk+1|2) dr — / a((Eg41 X n) X n) - Exyidradas

1
= —5/ 8th|Ek+1|2d$—|-/ G-Uk+1d$.
Q Q
Since [|0pxk | L () < ¢k we get the L?-estimate

1d
Vit < Ty, 5@/ (1 + x0) | Brgr1 2+ [ Hi41]?) do < K(1+ (§11)?).
Q
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By the same method we obtain similar estimates concerning the tangential derivatives. Let us describe the
order 3 derivatives estimates: for o = (ap, e, as) with |a| = ag + a2 + as = 3, we take the inner product
of 0%(4.4) with 0*Ug4+1. We obtain

1d

2 dt ((1+Xk)|8aEk+1|2+|8(’Hk+1|2) de < I + ...+ I5,
Q

with
ho=K > [ 193107 Bisalo* Bl do
Q

18] = (B0, B2, B3)| = 1
|’Y| = |(70772)73)| =3

<K > 10%llee @107 Eriall L2 @ll0” Exall 2@
|B]=1,|v|=3

b=k Y [ 1070007 |0 B
181=2,v=2"¢

<K > 10%klls@ 107 Exgall i) 10° Brgall 2o
[8]=2,]v|=2

ho=K Y [ 1070010 Bl Bslds
181=3,yI=1"9

<K Y 10%kllee@ 107 Exgall oo @10 Brra |l 2y,
|8]=3,|v|=1

I = [ 100l 07 Bl do
Q
< K[0:0% Xk || 220 | Exv1 1 oo (@) |0 Er1 || 22 (0),
I :/ 10°G|0° U1 |de
Q

<0Gl L2 |10“Uk+1ll 2 () -
So using Sobolev inequalities we obtain that for all ¢ < Ty,
LA+ I < K1+ (Epg1)?).
Now we control all the derivatives of U1 by the tangential derivatives with the following estimate.

Lemma 5 There exists K > 0 such that

ViVt < T, §er1(t) < K (t) +1(2)). (4.17)
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Proof. In order to estimate 01Up+1 we rewrite (4.4) and (4.7) to obtain

O1Hyy13 = —OixkErr1,2 — (14 Xk)0tEry12 + 03Hir11 + G2,
O Hyt12 =4+0xkErt1,3 + (1 + x6)0tErt1,3 + OoHpy11 — G13,

O Ery13 = 03Ep4110 + OrHpq10 — Ga o,
(4.18)
O Eky12 = 00FEp411 — OiHpq13 + Ga s,

O Hpp11 = —0o0Hpq1,20 — 03 Hpy 3,

N Epi11=—0:Ek12 — BEr3 — (14+x) (Ve - Brg).
Using (4.10), (4.11), (4.12), (4.13) and (4.14), we obtain the estimate
Vit < T, [[01Uk+1llL2(0) < K1 (8) + T(2)).
In order to estimate 01;Ui41 we differentiate (4.18) with respect to 9;. For i # 1, we obtain directly that
Yt < Too 00Ukl o) < K s (6) + (1), (4.19)
and using (4.19) we obtain
Vi < Tk, [|011Uk41l 22(02) < K (Mi41(t) +1'(2)).

With the same arguments we estimate successively ||014jUr+1l/22(0)s 10115Urk+1l2() and [|0111 U1 220
where ¢ # 1 and j # 1, so we conclude the proof of Lemma 5.

Using (4.16) and (4.17), by Gronwall lemma, we obtain that there exists K > 0 such that
VE Nt < Ty, (mrg1(t)? < et —1,

so by (4.17), there exists K > 0 such that
ViVt < Ty i (t) < K ((eKt LT I‘(t)) . (4.20)
Then, solving (4.8) we obtain that

X1 ()] 30y < K sup (Ert1(s))>.

s€[0,t]

Using (4.8), 0;(4.8), 07(4.8) and 9;(4.8) we obtain that

4

> 10Xkt 1l mra-e() < K sup (€ks1(s))”.
=1 s€[0,t]

So there exists K > 0 such that

VE, prr1(t) < & (t) + K sup (&g (s))”.

s€[0,t]

Therefore with (4.20) there exists K > 0 such that
VEYES T pr (t) < g(8) i= K (5= 1)1 +T(0) + (5 = ) +7(1)?) .

Since g(0) = 0 there exists T > 0 such that for t < T, g(t) < 3 and I'(t) < 3, so we conclude the proof of

(4.15). In addition we have obtained the high-norm boundedness:

Vk, sup pr(t) < 1. (4.21)
[0,7]
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4.2 Low-norm contraction.

Subtracting (4.4) for k — 1 to the one for k we have

(1 + x1)0¢(Erg1 — Ex) —curl (Hyp1 — Hy) = —0ixr(Ers1 — Ex) + (Xk—1 — Xk)0: Ex

+(Oexk—1 — Oexr) Bk,
8,5(Hk+1 — Hk) + curl (EkJrl — Ek) = 0,
with the zero initial data and the homogeneous boundary condition
(Ek—i-l — Ek)(O,x) = (Hk—i-l — Hk)(O,a:) =0,z € Q,
(Hpp1 — Hy) x n+a(((Exer — Ex) xn) xn) =0, (t,2) € RT xT.

Taking the inner product of (4.22) with Ug41 — Uy we obtain

1
/((1 + X8| Ers1 — Ex|* + |Hi1 — Hg[?)dw < —5/ Oixk|Fry1 — Ex|*dx
Q Q

N =
Sl

+/(Xk71 — X&)OtEx(Epy1 — E)dx + / (Osxk—1 — OsXk)Ey - (Exg1 — Ey)dw,
Q Q

so using (4.21)

d
pn Q((l + x1)|Era1 — Ex|? + |Hy1 — Hy|?)dz

<K <||Ek+1 — EpllZ20) + Ixk — xe-1l172(q) + 10exk — 3th71||2L2(Q)) :

Subtracting (4.8) for k — 2 to the one for k — 1 we have

1

1
Oc(xk — Xk—1) + E(Xk — Xk—1) = E(Ek + Ep—1) - (Ex — Ex—1),

SO

t
1 t—s
Xk — Xk—1 = / L ( - ) (B + Ex-1)(s) - (Ex — Eg—1)(s)ds.
0
We introduce
ug(t) = [[Ups1 — Ukl Lo (0,4522()) 5
and from (4.25) and (4.21) we have
1Ok = xk—1) )l 2(@) < Kuk—-1(2),

and from (4.24)
[1(Qexk — Oexr—1)(t)l|L2(0) < Kug—1(t).
Integrating (4.23) and using (4.26) and (4.27) we have

(ur(t))® < Kt(ur(t))® + Kt(up—1(t))*.

We fix T < T such that, in (4.28), KT < ~. So we have

R

v

-~
<
IN

t<T, up(t) < —=up_1(t).

1
<
V3

)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

Hence Uy, is a Cauchy sequence in C(0, T; L?(2)) and by (4.26), xy is also a Cauchy sequence in C(0, T; L?()).
By standard arguments we obtain a smooth local solution to (4.1)-(4.2)-(4.3). The end of the proof of

Proposition 2 is classical.
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