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Abstract. We prove that, for any choice of parameters, the Kazhdan-Lusztig cells of a Weyl group of type B are unions of combinatorial cells (defined using the domino insertion algorithm).

Let (W n , S n ) be the Weyl group of type B n , where S n = {t, s 1 , . . . , s n-1 } and where the Dynkin diagram is given by

i i i • • • i t s 1 s 2 s n-1
Let ℓ : W n → N = {0, 1, 2, 3, . . . } be the length function. Let Γ be a totally ordered abelian group and let ϕ : W n → Γ be a weight function (in the sense of Lusztig [10, §3.1]). We set ϕ(t) = b and ϕ(s

1 ) = • • • = ϕ(s n-1 ) = a.
To this datum, the Kazhdan-Lusztig theory (with unequal parameters [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]) associates a partition of W n into left, right or two-sided cells [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Chapter 8].

In [3, Conjectures A and B], Geck, Iancu, Lam and the author have proposed several conjectures for describing these partitions (at least whenever a, b > 0, but this is not such a big restriction, as can be seen from [2, Corollary 5.8]): they involve a domino insertion algorithm. Roughly speaking, one can define a partition of W n into combinatorial (left, right or two-sided) (a, b)-cells (which depend on a, b and which are defined combinatorially using the domino insertion algorithm): the combinatorial (left, right or two-sided) cells should coincide with the Kazhdan-Lusztig (left, right or two-sided) cells. The aim of this paper is to prove one of the two inclusions (see Theorem 1.24):

Theorem. If two elements of W n lie in the same combinatorial (left, right or twosided) cell, then they lie in the same Kazhdan-Lusztig (left, right or two-sided) cell.

In the case of the symmetric group, the partition into left cells (obtained by Kazhdan and Lusztig [START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF]Theorem 1.4]) uses the Robinson-Schensted correspondence, and the key tool is a description of this correspondence using plactic/coplactic relations Let (W n , S n ) be the Weyl group of type B n , where S n = {t, s 1 , . . . , s n-1 } and where the Dynkin diagram is given by

i i i • • • i t s 1 s 2 s n-1
Let ℓ : W n → N = {0, 1, 2, 3, . . . } be the length function. Let I n = {±1, . . . , ±n}: we shall identify W n with the group of permutations w of I n such that w(-i) = -w(i) for all w ∈ I n . The identification is through the following map t -→ (1, -1) and s i -→ (i, i + 1)(-i, -i -1).

The next notation comes from [4, §4]: it is rather technical but will be used throughout this paper. We set t 1 = r 1 = t and, for 1 i n -1, we set r i+1 = s i r i and t i+1 = s i t i s i .

We shall often use the following well-known lemma: Lemma 1.1. Let w ∈ W n , i ∈ {1, 2, . . . , n -1} and j ∈ {1, 2, . . . , n}. Then:

(a) ℓ(ws i ) > ℓ(w) (that is, ws i > w) if and only if w(i) < w(i + 1). (b) ℓ(wt j ) > ℓ(w) if and only if w(j) > 0.

As a permutation of I n , we have

(1.2) t i = (i, -i)
and

(1.3) r i (j) =      -i if j = 1, j -1 if 2 j i, j if i + 1 j n.
An easy computation shows that, if j ∈ {1, 2, . . . , n -1} and i ∈ {1, 2, . . . , n}, then

(1.4)

s j r i =          r i s j if j > i, r i+1 if j = i, r i-1 if j = i -1, r i s j+1 if 1 j < i -1.
Note also that, if l 2, then (1.5) r l r l = r l-1 r l s 1 .

We set a 0 = 1 and, if 0 l n, we set

a l = r 1 r 2 • • • r l .
As a permutation of I n , we have

(1.6) a l (i) = i -1 -l if 1 i l, i if l + 1 i n.
In particular,

(1.7) a -1 l = a l and, if i ∈ {1, 2, . . . , n -1} \ {l}, then

(1.8) a l s i a l = s l-i if i < l, s i if i > l.
Note also that (1.9) ℓ(a l ) = l(l + 1) 2 .

We shall identify the symmetric group S n with the subgroup of W n generated by s 1 ,. . . , s n-1 . We also set I + n = {1, 2, . . . , n}. Then, as a group of permutations of I n , we have

(1.10) S n = {w ∈ W n | w(I + n ) = I + n }. If 1 i j n,
we denote by [i, j] the set {i, i+1, . . . , j} and by S [i,j] the subgroup of W n (or of S n ) generated by s i , s i+1 ,. . . , s j-1 . If j < i, then we set [i, j] = ∅ and σ [i,j] = 1. As a group of permutations of I n , we have

(1.11) S [i,j] = {w ∈ S n | ∀k ∈ I + n \ [i, j], w(k) = k}.
The longest element of W n will be denoted by w n (it is usually denoted by w 0 , but since we shall use induction on n, we need to emphasize its dependence on n).

We denote by σ n the longest element of S n . The longest element of S [i,j] will be denoted by σ [i,j] . As a permutation of I n , we have (1.12)

w n = (1, -1)(2, -2) • • • (n, -n).
Note also that

(1.13)      w n = t 1 t 2 • • • t n = t n • • • t 2 t 1 w n = a n σ n = σ n a n , σ n = σ [1,n]
and that

(1.14) w n is central in W n .
1.B. Decomposition of elements of W n . If 0 l n, we denote by S l,n-l the subgroup of S n generated by {s 1 , . . . ,

s n-1 } \ {s l }. Then S l,n-l = S [1,l] × S [l+1,n] ≃ S l × S n-l .
We denote by Y l,n-l the set of elements w ∈ S n which are of minimal length in wS l,n-l . Note that a l normalizes S l,n-l (this follows from 1.8).

If w ∈ W n , we denote by ℓ t (w) the number of occurences of t in a reduced decomposition of w (this does not depend on the choice of the reduced decomposition). We set ℓ s (w) = ℓ(w)ℓ t (w). Lemma 1.15. Let w ∈ W n . Then there exists a unique quadruple (l, α, β, σ) where 0 l n, α, β ∈ Y l,n-l and σ ∈ S l,n-l are such that w = αa l σβ -1 . Moreover, there exists a unique sequence

1 i 1 < i 2 < • • • < i l n such that αa l = r i 1 r i 2 • • • r i l . We have ℓ(w) = ℓ(α) + ℓ(a l ) + ℓ(σ) + ℓ(β), ℓ t (w) = l and {i 1 , . . . , i l } = {i ∈ [1, n] | w -1 (i) < 0}.
Note also that

ℓ(α) = l k=1 (i k -k).
Proof. See [4, §4, and especially Proposition 4.10].

If l ∈ [0, n] and if 1 i 1 < • • • < i l n and 1 j 1 < • • • < j n-l n are two sequences such that [1, n] = {i 1 , . . . , i l } ∪ {j 1 , . . . , j n-l }, then it follows easily from 1.3 that (1.16) (r i 1 • • • r i l ) -1 (i k ) = k -l -1 if 1 k l, (r i 1 • • • r i l ) -1 (j k ) = l + k if 1 k n -l.
The elements α, β and σ of the previous lemma will we denoted by α w , β w and σ w respectively. We have

(1.17) ℓ t (w -1 ) = ℓ t (w), α w -1 = β w , β w -1 = α w and σ w -1 = a l (σ w ) -1 a l .
We shall now describe how the multiplication by the longest element w n acts on the decomposition given by Lemma 1.15. For this, we denote by σ l,n-l the longest element of S l,n-l .

Proposition 1.18. Let w ∈ W n and let l = ℓ t (w). Then:

(a) ℓ t (w n w) = n -l. (b) α wnw = α w σ n σ n-l,l and β wnw = β w σ n σ n-l,l . (c) σ wnw = σ n σσ -1 n σ n-l,l . (d) Let 1 i 1 < • • • < i l n be the sequence such that α w a l = r i 1 • • • r i l . Then α wnw = r j 1 • • • r j n-l , where 1 j 1 < • • • < j n-l n is the sequence such that {i 1 , . . . , i l } ∪ {j 1 , . . . , j n-l } = [1, n].
Proof. (a) is clear. (d) follows from Lemma 1.15. We now prove (b) and (c) simultaneously. For this, let

α ′ = α w σ n σ n-l,l , β ′ = β w σ n σ n-l,l and σ ′ = σ n σ w σ -1 n σ n-l,l
. By the unicity statement of the Lemma 1.15, we only need to show the following three properties:

(1) α ′ , β ′ ∈ Y n-l,l . (2) σ ′ ∈ S n-l,l . (3) w n w = α ′ a n-l σ ′ β ′-1 .
For this, note first σ n S l,n-l σ -1 n = S n-l,l , so that (2) follows immediately. This also implies that σ n σ n-l,l σ -1 n = σ l,n-l because conjugacy by σ n in S n preserves the length.

Let us now show [START_REF] Bonnafé | Two-sided cells in type B (asymptotic case)[END_REF]. Let i ∈ {1, 2, . . . , n} \ {n -l}. We want to show that ℓ(α ′ s i ) > ℓ(α ′ ). By Lemma 1.1, this amounts to show that α

′ (i + 1) > α ′ (i). But α ′ = α w σ l,n-l σ n . Also σ n (i) = n + 1 -i > σ n (i + 1) = n -i and n + 1 -i and n -i both belong to the same interval [1, l] or [l + 1, n]. Hence σ l,n-l σ n (i) < σ l,n-l σ n (i + 1) and α w σ l,n-l σ n (i) < α w σ l,n-l σ n (i + 1) since α w ∈ Y l,n-l . This shows that α ′ ∈ Y n-l,l . Similarly, β ′ ∈ Y n-l,l . So (1) is proved.
It remains to show [START_REF] Bonnafé | On domino insertion and Kazhdan-Lusztig cells in type B n , to appear in Progress in Mathematics[END_REF]. We have

α ′ a n-l σ ′ β ′-1 = (α w σ n σ n-l,l ) • a n-l • (σ n σ w σ -1 n σ n-l,l ) • (σ -1 n-l,l σ -1 n β -1 w ) = α w σ n σ n-l,l a n-l σ n σ w β -1 w But σ n-l,l = σ [n-l+1,n] σ n-l and σ n σ [n-l+1,n] σ -1 n = σ [1,l] = σ l so α ′ a n-l σ ′ β ′-1 = α w σ l σ n σ n-l a n-l σ -1 n σ w β -1 w = α w σ l σ n w n-l σ -1 n σ w β -1
w , the last equality following from 1.13. Now, σ n w n-l σ -1 n = w l w n (see again 1.13) so

α ′ a n-l σ ′ β ′-1 = α w σ l w l w n σ w β -1 w = α w a l w n σ w β -1 w = w n α w a l σ w β -1
w = w n w, the second equality following from 1.13 and the third one from the fact that w n is central (see 1. 

If I = {i 1 , . . . , i l } ⊆ [1, n -1] with i 1 < • • • < i l , then we set c I = s i 1 s i 2 • • • s i l and d I = s i l • • • s i 2 s i 1 . By convention, c ∅ = d ∅ = 1. We have (1.20) X n = {c [i,n-1] | 1 i n} ∪ {d [1,i] tc [1,n-1] | 0 i n -1}.
1.D. Hecke algebra. We fix a totally ordered abelian group Γ (denoted additively) and a weight function ϕ : W n → Γ. We set

ϕ(t) = b and ϕ(s 1 ) = a (= ϕ(s 2 ) = • • • = ϕ(s n-1 )).
Note that

(1.21) ϕ(w) = ℓ t (w)b + ℓ s (w)a
for all w ∈ W n . We denote by A the group algebra Z[Γ]. We shall use an exponential notation:

A = ⊕ γ∈Γ Ze γ
, where e γ • e γ ′ = e γ+γ ′ for all γ, γ ′ ∈ Γ. We set Q = e b and q = e a .
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Note that Q and q are not necessarily algebraically independent. We set

A <0 = ⊕ γ<0
Ze γ , and we define similarly A 0 , A >0 and A 0 .

We shall denote by H n the Hecke algebra of W n with parameter ϕ: it is the free A-module with basis (T w ) w∈Wn and the multiplication is A-bilinear and is completely determined by the following rules:

     T w T w ′ = T ww ′ if ℓ(ww ′ ) = ℓ(w) + ℓ(w ′ ), (T t -Q)(T t + Q -1 ) = 0, (T s i -q)(T s i + q -1 ) = 0 if 1 i n -1.
We also set

H <0 n = ⊕ w∈Wn A <0 T w .
Finally, we denote by : H n → H n the unique A-semilinear involution of H n such that e γ = e -γ and T w = T -1 w -1 for all γ ∈ Γ and w ∈ W n .

1.E. Kazhdan-Lusztig basis.

We shall recall here the basic definitions of Kazhdan-Lusztig theory. If w ∈ W n , then [ 

(resp. ∼ R , resp. ∼ LR ) is called a left (resp. right, resp. two-sided) cell. We recall the following result [10, §8.1]: if x, y ∈ W n , then (1.23) x ∼ L y ⇐⇒ x -1 ∼ R y -1 .

1.G. Domino insertion.

If r 0 and w ∈ W n , then the domino insertion algorithm (see [START_REF] Lam | Growth diagrams, domino insertion, and sign-imbalance[END_REF], [START_REF] Vanleeuwen | The Robinson-Schensted and Schutzenberger algorithms, an elementary approach, The Foata Festschrift[END_REF], [START_REF] Shimozono | Color-to-spin ribbon Schensted algorithms[END_REF]) into the 2-core δ r = (r, r -1, . . . , 2, 1) associates to w a standard domino tableau D r (w) (with n dominoes, filled with {1, 2, . . . , n}). If D is a domino tableau, we denote by sh(D) its shape: we shall denote by sh r (w) the shape of D r (w) (which is equal to the shape of D r (w -1 ), loc. cit.).

If x and y ∈ W n we shall write The main result of this paper is the following partial result towards the previous conjecture: The other sections of this paper are devoted to the proof of this theorem.

x ∼ r L y (resp. x ∼ r R y, resp. x ∼ r LR y) if D r (x -1 ) = D r (y -1 ) (resp. D r (x) = D r (y), resp. sh r (x) = sh r (y)).
Comments -If one assumes Lusztig's Conjectures P1, P2,. . . , P15 in [10, Chapter 14], then Theorem 1.24 implies that the statement (a) of the Conjecture is true. Indeed, Lusztig's Conjectures imply in this case that the left cell representations are irreducible, and one can conclude by a counting argument. It might be probable that a similar argument applies for the statement (b), using results of Pietraho [START_REF] Pietraho | Notes on combinatorial cells and constructible representations in type B[END_REF]: however, we are not able to do it.

In the case where b > (n -1)a, Theorem 1.24 was proved in [4, Theorem 7.7] (in fact, the conjecture was also proved) by using a counting argument. The proof here does not make use of the counting argument.

Kazhdan-Lusztig polynomials, structure constants

Hypothesis and notation. From now on, and until the end of this paper, we assume that a, b are positive. Recall that Q = e b and q = e a , so that Z[Q, Q -1 , q, q -1 ] ⊆ A. If p ∈ A 0 , we denote by τ A (p) the coefficient of 1 = e 0 in the expansion of p in the basis (e γ ) γ∈Γ .

2.

A. Recollection of general facts. If x and y are elements of W n , we set

C x C y = z∈Wn h x,y,z C z ,
where the h x,y,z belong to A and satisfy

h x,y,z = h x,y,z .
We also set

C y = x∈Wn p *
x,y T x and p x,y = e ϕ(y)-ϕ(x) p * x,y .

Recall [10, Proposition 5.4] that [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Proposition 6.3] has defined inductively a family of polynomials (M s x,y ) sx<x<y<sy by the following properties:

(2.1)              p * y,y = p y,y = 1, p * x,y ∈ A <0 if x = y. p * x,y = p x,y = 0 if x y, p x,y ∈ A 0 , τ A (p x,y ) = 1 if x y. Now, if s ∈ S n , Lusztig
(2.2a) M s x,y = M s x,y , (2.2b) M s x,y + x<z<y sz<z p * x,z M s z,y -e ϕ(s) p * x,y ∈ A <0 .
With this notation, we have [10, Theorem 6.6]:

Theorem 2.3 (Kazhdan-Lusztig, Lusztig). Let s ∈ S n and let y ∈ W n . Then:

(a) C s C y =    C sy + sx<x<y M s x,y C x if sy > y,
(e ϕ(s) + e -ϕ(s) ) C y if sy < y.

(b) If sy < y, and if x y, then 

p x,y =      q 2 p x,

2.B. Special features in type B.

The previous results of this section hold for any Coxeter group (finite or not). In this subsection, we shall investigate what is implied by the structure of W n . The particular ingredient we shall need is the following lemma [4, §4]: Lemma 2.5. {a l | 0 l n} is the set of elements w ∈ W n which have minimal length in S n wS n . If x < a l for some l ∈ {1, 2, . . . , n} and some x ∈ W n , then ℓ t (x) < ℓ t (a l ) = l.

It has the following consequences (here, if p ∈ Z[q], we denote by deg q p its degree in the variable q): Corollary 2.6. Let x and y be two elements of W n such that x y and ℓ t (x) = ℓ t (y). Then:

(a) p x,y ∈ Z[q] and, if x = y, then deg q p x,y < ℓ(y) -ℓ(x). (b) If 1 i n -1 is such that s i x < x < y < s i y, then M s i x,y ∈ Z: it is equal to τ A (qp * x,y ) (note also that qp * x,y ∈ Z[q -1 ]).
Proof. We shall prove (a) and (b) together by induction on the pair (ℓ(y), ℓ(y)-ℓ(x)) (with lexicographic order). The result is obvious if ℓ(y) = ℓ(x) or if ℓ(y) 1. So assume now that ℓ(y) > 1, that ℓ(y)ℓ(x) > 0 and that (a) and (b) hold for all pairs (x ′ , y ′ ) such that (ℓ(y ′ ), ℓ(y ′ )ℓ(x ′ )) < (ℓ(y), ℓ(y)ℓ(x)). First, note that

e ϕ(y)-ϕ(x) = q ℓ(y)-ℓ(x) , because ϕ(y) -ϕ(x) = (ℓ t (y) -ℓ t (x))b + (ℓ s (y) -ℓ s (x))a = (ℓ s (y) -ℓ s (x))a = (ℓ(y) -ℓ(x))a.
Let us first prove (a). So we have x < y and ℓ t (x) = ℓ t (y). By Lemma 2.5, this implies that there exists i ∈ {1, 2, . . . , n -1} such that s i y < y or ys i < y. In the second case, one can exchange y and y -1 (and x and x -1 ) by using [10, §5.6], so that we may assume that s i y < y. Then, Theorem 2.3 (b) can be rewritten as follows:

p x,y =      (q 2 p x,s i y -q ℓ(y)-ℓ(x) M s i z,s i y ) + p s i x,s i y - x<z<s i y s i z<z q ℓ(y)-ℓ(z) p x,z M s i z,s i y if s i x < x, p s i x,y if s i x > x.
If s i x > x, then the result follows from the induction hypothesis. If s i x < x, then

q 2 p x,s i y -q ℓ(y)-ℓ(x) M s i x,s i y = q ℓ(y)-ℓ(x) (qp * x,s i y -M s i
x,s i y ) belong to Z[q] and has degree < ℓ(y)ℓ(x) by the induction hypothesis. The other terms in the above formula also belong to Z[q] and also have degree < ℓ(y)ℓ(x) by the induction hypothesis. So we get (a).

Let us now prove (b). So we assume that s i x < x < y < s i y. Then, using the induction hypothesis and 2.1, the condition 2.2 (b) can be rewritten

M s i
x,yqp * x,y ∈ A <0 . Now, the result follows easily from (a). Now, if tx < x < y < ty are such that ℓ t (x) = ℓ t (y), let us define an element µ x,y ∈ A by induction on ℓ(y)ℓ(x) by the following formula:

µ x,y = p x,y - x<z<y tz<z p x,z µ z,y .
It follows easily from Corollary 2.6 (and an induction argument on ℓ(y)ℓ(x)) that (2.7) µ x,y ∈ Z[q] and deg q µ x,y < ℓ(y)ℓ(x).

Moreover:

Corollary 2.8. Assume that tx < x < y < ty and that ℓ t (x) = ℓ t (y). Then:

(a) If b > (ℓ(y) -ℓ(x))a, then M t x,y = Qq ℓ(x)-ℓ(y) µ x,y + Q -1 q ℓ(y)-ℓ(x) µ x,y . (b) If b = (ℓ(y) -ℓ(x))a, then M t x,y = µ x,y + µ x,y -τ A (µ x,y ).
Proof. Let us assume that b (ℓ(y)ℓ(x))a. We shall prove the result by induction on ℓ(y)ℓ(x). By the induction hypothesis, the condition 2.2 (b) can we written

M t x,y -Qq ℓ(x)-ℓ(y) p x,y + x<z<y tz<z p * x,z Qq ℓ(z)-ℓ(y) µ z,y + Q -1 q ℓ(y)-ℓ(z) µ z,y ∈ A <0 .
But, if x < z < y and tz < z, then

p * x,z Q -1 q ℓ(y)-ℓ(z) µ z,y ∈ A <0 because p * x,z ∈ A <0 , µ z,y ∈ A 0 and Q -1 q ℓ(y)-ℓ(z) = e -b+(ℓ(y)-ℓ(z))a ∈ A <0 (since ℓ(y) -ℓ(z) < ℓ(y) -ℓ(x)). Therefore, M t
x,y -Qq ℓ(x)-ℓ(y) p x,y + x<z<y tz<z

Qq ℓ(x)-ℓ(y) p x,z µ z,y ∈ A <0 .

In other words, M t x,y -Qq ℓ(x)-ℓ(y) µ x,y ∈ A <0 . Let µ = Qq ℓ(x)-ℓ(y) µ x,y . Two cases may occur:

• If b > (ℓ(y)ℓ(x))a, then µ ∈ A >0 and so the condition 2.2 (a) forces M t

x,y = µ + µ, as required.

• If b = (ℓ(y)ℓ(x))a, then µ = µ x,y ∈ A 0 and now the condition 2.2 (a) forces M t x,y = µ + µτ A (µ), as required. The proof of the Corollary is complete.

We conclude this subsection with two results involving the decomposition of Lemma 1.15.

Lemma 2.9. Let x and y be two elements of W n and let s ∈ S n be such that sx < x < y < sy, ℓ t (x) = ℓ t (y) and

β x = β y = β. Then M s x,y = M s xβ,yβ (note that β xβ = β yβ = 1).
Proof. See [4, Proposition 7.2]. Strictly speaking, in [START_REF] Bonnafé | Left cells in type B n with unequal parameters[END_REF], the authors are generally working with a special choice of a function ϕ ("asymptotic case"): however, the reader can check that the proof of this particular result, namely [4, Proposition 7.2], remains valid for all choices of parameters. Proposition 2.10. Let l ∈ [0, n], let σ and σ ′ ∈ S l,n-l be such that σ ∼ L σ ′ and let β ∈ Y l,n-l . Then

a l σβ -1 ∼ L a l σ ′ β -1 .
Proof. By the description of Kazhdan-Lusztig left cells in the symmetric group [START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF]Theorem 1.4 and §4], we may assume that there exist two elements s and s ′ in {s 1 , . . . , s l-1 , s l+1 , . . . , s n-1 } such that σ ′ = s ′ σ and sσ < σ < σ ′ < sσ ′ . Let u = a l sa l and u ′ = a l s ′ a l . Then u and u ′ belong to {s 1 , . . . , s l-1 , s l+1 , . . . , s n-1 } by 1.8, and

ua l σβ -1 < a l σβ -1 < u ′ a l σβ -1 = a l σ ′ β -1 < ua l σ ′ β -1 .
So ( * ) follows from Corollary 2.4.

2.C. * -operation.

We shall recall the definition of the * -operation (see [7, §4]) and prove some properties which are particular to the type B. Let us introduce some notation. If 1 i n -2 and x ∈ W n , we set

R i (x) = {s ∈ {s i , s i+1 } | ℓ(xs) < ℓ(x)}.
We denote by

D i (W n ) the set of x ∈ W n such that |R i (x)| = 1. If x ∈ D i (W n ), then it is readily seen that the set {xs i , xs i+1 } ∩ D i (W n
) is a singleton. We shall denote by γ i (x) the unique element of this set (it is denoted by x * in [7, §4], but we want to emphasize that it depends on i). Note that

γ i • γ i = Id D i (Wn) .
We recall Kazhdan-Lusztig result [7, Corollary 4.3]: if x and y ∈ D i (W n ), then

(2.11) x ∼ L y ⇐⇒ γ i (x) ∼ L γ i (y).
The fact that t is not conjugate to any of the s k 's implies the following easy fact:

Proposition 2.12. Let x ∈ W n and let 1 k n -1. Then xs k > x if and only if txs k > tx.

Proof. Indeed, by Lemma 1.1, we have xs k > x if and only if x(k) < x(k + 1). But, for any j ∈ I + n , there is no element j ′ ∈ I n such that t(j) < j ′ < j. So x(k) < x(k+1) if and only if tx(k) < tx(k + 1) that is, if and only if txs k > tx (again by Lemma 1.1).

The proposition 2.12 implies immediately the following result:

Corollary 2.13. Let x ∈ W n and let 1 i n -2. Then x ∈ D i (W n ) if and only if tx ∈ D i (W n ).
If this is the case, then γ i (tx) = tγ i (x).

2.D. Two relations

L ←-. The crucial steps towards the proof of Theorem 1.24 are the following two propositions, whose proofs will be given in sections 3 and 5 respectively.

Proposition 2.14. Let l ∈ {1, . . . , n -1} and assume that b (n -1)a. Then

M t r 1 •••r l σ [l+1,n] ,r 2 ...r l rnσ [l+1,n] = 0. Proposition 2.15. Let l ∈ {1, . . . , n -1} and assume that (n -2)a < b (n -1)a. Then a l-1 σ [l,n] L ←-a l σ [l,n] .
3. Proof of Proposition 2.14

Notation. If u, v ∈ W n are such that u v, we denote by [u; v]
the Bruhat interval between u and v. In this section, and only in this section, we assume that l 1 and b (n -1)a and we set

x = r 1 • • • r l σ [l+1,n] and y = r 2 . . . r l r n σ [l+1,n] .
3.A. Easy reduction. Note that tx < x < y < ty, so it makes sense to compute M t x,y . Moreover, ℓ(y)ℓ(x) = n -1 so, by Corollary 2.8, we only need to prove that µ x,y = 0 (even if b = (n -1)a). For this, we only need to show that (?) τ A (µ x,y ) = 0.

3.B. The Bruhat interval [x

; y]. First, note that x = a l σ [l+1,n] = σ [l+1,n] a l and y = s 1 • • • s l-1 s n-1 • • • s l x = s 1 • • • s l-1 s n-1 • • • s l σ [l+1,n] a l = c [1,l-1] σ [l,n] a l .
Since a l has minimal length in S n a l , the map

[σ [l+1,n] ; c [1,l-1] σ [l,n] ] -→ [x; y] z -→ za l is an increasing bijection [10, Lemma 9.10 (f)]. Since the support of c [1,l-1] is disjoint from the support of σ [l,n] , the map [1; c [1,l] ] × [σ [l+1,n] ; σ [l,n] ] -→ [σ [l+1,n] ; c [1,l-1] σ [l,n] ] (z, z ′ ) -→ zz ′ C. Bonnafé
is an increasing bijection (for the product order). Now, σ [l,n] is the longest element of S [l,n] and σ

[l+1,n] σ [l,n] = c [l,n-1]
. Therefore, the map

[1; c [l,n-1] ] -→ [σ [l+1,n] ; σ [l,n] ] z -→ zσ [l,n]
is a decreasing bijection. So, if we denote by P(E) the set of subsets of a set E, then the maps

P([1, l -1]) -→ [1; c [1,l-1] ] I -→ c I and P([l, n -1]) -→ [σ [l+1,n] ; σ [l,n] ] J -→ c J σ [l,n]
are increasing bijections (here, J denotes the complement of J). On the other hand, the map

P([1, l -1]) × P([l, n -1]) -→ P([1, n -1]) (I, J) -→ I ∪ J
is an increasing bijection. Finally, by composing all these bijections, we get an isomorphism of ordered sets (??) μ∅ = 0.

α : P([1, n -1]) -→ [x; y] I -→ c I∩[1,l-1] c I∩[l,n-1] σ [l,n] a l .
But, by the induction formula that defines the µ-polynomials and by 2.1, we have, for all I ⊆ [1, n -1] such that tα(I) < α(I),

(3.1) μI = 1 - I J⊆[1,n-1] tα(J)<α(J) μJ . Let E = {I ∈ P([1, n -1]) | tα(I) < α(I)}.
The set E is easy to describe: 

Lemma 3.2. Let I ⊆ [1, n -1].

For simplification, we set

A = [1, l -1] ∩ I and B = I ∩ [l, n -1]. So α(I) = c A c B σ [l,n] a l . First, assume that [1, l -1] ⊆ I. Then 0 < c -1 A (1) < n, so σ -1 [l,n] c -1 B c -1 A (1) = c -1 A (1) and α(I) -1 (1) = a -1 l (c -1 A ( 1 
)) < 0 by 1.6. This shows (#) in this case. Now, let us assume that [1, l -1] = I. [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]. This shows (#) again in this case. Now, let us assume that [1, l -1] I. Then c -1 A (1) = l and c -1 B (l) < n and so

Then c A = s 1 • • • s l-1 and c B = s l • • • s n-1 and so c -1 A (1) = l and c -1 B (l) = n. In particular, α(I) -1 (1) = a -1 l σ [l,n] (n) = a -1 l (l) = -1 < 0 by 1.
σ -1 [l,n] c -1 B c -1 A (1) > l. So α(I) -1
(1) > 0 by 1.6. The proof of (#) is complete.

3.D. Computation of the μI .

We shall now compute the family (μ I ) I∈E by descending induction on |I|, by using the formula 3.1. For this, the following wellknown lemma will be useful. To obtain the value of μ∅ , the proof goes in three steps. But, if J ∈ E is such that I J and I ′ ⊆ J, (or, equivalently, [l, n -1] J), then μJ = 0 by the induction hypothesis. On the other hand, if J ∈ E is such that I J and I ′ ⊆ J, then μJ = (-1) n-|J| by 3.4. Therefore, μI = 1-J∈E I J and I ′ ⊆J (-1) n-|J| = 1-

I ′ ⊆J [1,n-1] (-1) n-|J| = - I ′ ⊆J⊆[1,n-1] (-1) n-|J| = 0 by Lemma 3.3. (3.6) If I ⊆ [1, l -1], then μI = (-1) l-1-|I| .
Proof of 3.6. Note that I ∈ E. We shall argue by descending induction on |I|. First, for all J such that I J ⊆ [1, n -1], we have tα(I) > α(I). Therefore, μ[1,l-1] = 1, as desired. Now, let I [1, l -1] and assume that, for all I J ⊆ [1, l -1], we have μJ = (-1) l-1-|J| . Then μI = 1 -J∈E I J μI . Now, if J ∈ E is such that I J, then three cases may occur:

• If J ⊆ [1, l -1], then μJ = (-1) l-1-|J| by the induction hypothesis. • If J ⊆ [1, l -1] and [l, n -1] ⊆ I, then μJ = 0 by 3.5. • If [l, n -1] ⊆ J, then μJ = (-1) n-|J| . Therefore, if we set I ′ = I ∩ [l, n -1], then we get μI = 1 - I ′ ⊆J [l,n-1] (-1) n-|J| - I J [1,l-1] (-1) l-1-|J| . But 1 - I ′ ⊆J [l,n-1] (-1) n-|J| = - I ′ ⊆J⊆[l,n-1]
(-1) n-|J| = 0 and -

I J [1,l-1] (-1) l-1-|J| = (-1) l-1-|I| - I⊆J [1,l-1]
(-1) l-1-|J| = (-1) l-1-|I| by Lemma 3.3. The proof is now complete.

As a special case of 3.6, we get that μ∅ = (-1) l-1 .

This shows (?). The proof of the Proposition 2.14 is complete.

Consequence of Proposition 2.14

The aim of this section is to prove the following Proposition 4.1. Let l ∈ {0, 1, . . . , n}, let α, β ∈ Y l,n-l and let σ and σ ′ ∈ S l,n-l be such that σ ∼ L σ ′ . Assume that b (n -1)a. Then

αa l σβ -1 ∼ L a l σ ′ β -1 .
Remarks -(1) The condition σ ∼ L σ ′ does not depend on the choice of a and b in Γ. Indeed, by [5, Theorem 1], σ ∼ L σ ′ in W n if and only if σ ∼ L σ ′ in S l,n-l . But this last condition depends neither on the choice of b (since t ∈ S l,n-l ) nor on the choice of a (provided that it is in Γ >0 ).

(2) If b > (n -1)a, then the above proposition is proved in [4, Theorem 7.7] (see also [START_REF] Bonnafé | Two-sided cells in type B (asymptotic case)[END_REF]Corollary 5.2] for the exact bound) by a counting argument. The proof below will not use this counting argument but uses instead the proposition 2.14: it allows to extend the scope of validity to the case where b = (n -1)a (this is compatible with [2, Conjecture A (b)]).

Proof. First, recall that a l σβ -1 ∼ L a l σ ′ β -1 by Poposition 2.10. This shows that we may (and we will) assume that σ = σ ′ . We want to show that αa l σβ -1 ∼ L a l σβ -1 . We shall use induction on n. So let (P n ) denote the following statement:

(P n ) For all l ∈ [0, n], for all sequences 1 i 1 < • • • < i l n, for all σ ∈ S l,n-l and for all β ∈ Y l,n-l , we have r i 1 r i 2 • • • r i l σβ -1 ∼ L r 1 r 2 • • • r l σβ -1 .
The property (P 1 ) is vacuously true and the property (P 2 ) can be easily checked by a straightforward computation. So we assume that n 3 and (P m ) holds for all m < n. Now, let l ∈ [0, n], let 1 i 1 < • • • < i l n be a sequence of elements of [1, n], let σ ∈ S l,n-l and let β ∈ Y l,n-l . As a consequence of this induction hypothesis, we get:

Lemma 4.2. If k ∈ [1, l] is such that i k < n, then r i 1 r i 2 • • • r i l σβ -1 ∼ L r 1 • • • r k r i k+1 • • • r i l σβ -1 . Proof. Let w = r i 1 r i 2 • • • r i l σβ -1 and w ′ = r 1 • • • r k r i k+1 • • • r i l σβ -1 . Let us write w = vx -1 and w ′ = v ′ x ′-1 with v, v ′ ∈ W i k and x, x ′ ∈ X (i k ) n . First, note that ww ′-1 = (r i 1 • • • r i k ) • (r 1 • • • r k ) -1 ∈ W i k . Therefore, x = x ′ and vv ′-1 = (r i 1 • • • r i k ) • (r 1 • • • r k ) -1 ∈ W i k .
Moreover, by Lemma 1.19, we have 0

< x(1) < • • • < x(i k ). So, if i ∈ [1, i k ], then v -1 (i) < 0 (resp. v ′-1 (i) < 0) if and only if i ∈ {i 1 , . . . , i k } (resp.
{1, . . . , k}). So, by Lemma 1.15, we have [START_REF] Geck | On the induction of Kazhdan-Lusztig cells[END_REF]Theorem 1]). So, by [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Proposition 9.11], we get that w ∼ L w ′ .

v = r i 1 • • • r i k τ γ -1 and v ′ = r 1 • • • r k τ γ -1 , where τ ∈ S k,i k -k and γ ∈ Y k,i k -k . But, since i k < n, it follows from the induction hypothesis that v ∼ L v ′ . Here, note that v ∼ L v ′ in W i k if and only if v ∼ L v ′ in W n (see
Corollary 4.3. (a) If i l < n, then r i 1 r i 2 • • • r i l σβ -1 ∼ L r 1 r 2 • • • r l σβ -1 . (b) If i l = n, then r i 1 r i 2 • • • r i l σβ -1 ∼ L r 1 r 2 • • • r l-1 r n σβ -1 .
By Corollary 4.3, we only need to show that (?)

r 1 r 2 • • • r l-1 r n σβ -1 ∼ L r 1 r 2 • • • r l σβ -1 .
Now, let us write σ = (λ, µ), where λ ∈ S [1,l] and µ ∈ S [l+1,n] . Three cases may occur:

• Case 1: If λ = 1 and µ = σ [l+1,n] , then σ = σ [l+1,n] . Since r 1 r 2 • • • r l-1 r k σβ -1 = s k s k-1 • • • s l+1 σβ -1 for all k > l, we have r 1 • • • r l-1 r n σβ -1 L r 1 • • • r l-1 r n-1 σβ -1 L • • • L r 1 • • • r l-1 r l+1 σβ -1 L r 1 • • • r l-1 r l σβ -1 .
On the other hand, by Proposition 2.14 and Lemma 2.9, we get

r 1 • • • r l-1 r l σβ -1 L r 1 • • • r l-1 r n σβ -1
. This shows (?) in this particular case.

• Case 2: If µ = σ [l+1,n] , then n l + 2 and there exists k ∈ [l + 1, n -1] such that s k σ > σ. Let i be maximal such that s i σ > σ. We shall prove (?) by descending induction on i. For simplification, let

x = r 1 • • • r l-1 r n σβ -1 .
First, if i = n -1, then, by 1.4, we have (since n -2 > l -1)

s n-2 x = r 1 • • • r l-1 s n-2 r n σβ -1 = r 1 • • • r l-1 r n s n-1 σβ -1 > s n-2 x, s n-1 x = r 1 • • • r l-1 s n-1 r n σβ -1 r 1 • • • r l-1 r n-1 σβ -1 < x and s n-2 s n-1 x = r 1 • • • r l-1 s n-2 r n-1 σβ -1 = r 1 • • • r l-1 r n-2 σβ -1 < s n-1 x.
So x ∼ L s n-1 x by Corollary 2.4. On the other hand, by Corollary 4.3, we have

s n-1 x ∼ L r 1 • • • r l σβ -1
, so we get (?) in this case. Now, assume that l + 1 i < n -1. Then s i+1 σ < σ (by the maximality of i). Two cases may occur:

• Subcase 1: If s i s i+1 σ < s i+1 σ, then we set τ = s i+1 σ < σ and y = r 1 • • • r l-1 r n τ β -1 . Then y = s i x < x by 1.4. Moreover, still by 1.4, we have

s i-1 x = r 1 • • • r l-1 r n s i σβ -1 > x and s i-1 s i x = r 1 • • • r l-1 r n s i s i+1 σβ -1 < s i x.
So x ∼ L y by Corollary 2.4. But, by the induction hypothesis (and since s i+1 τ > τ ), we have y ∼ L a l τ β -1 . But σ ∼ L τ (again by Corollary 2.4 and since s i τ < τ < σ = s i+1 τ < s i σ), so a l σβ -1 ∼ L a l τ β -1 by ( * ). This shows (?).

• Subcase 2: If s i s i+1 σ > s i+1 σ, then s i+1 s i σ > s i σ (by an easy application of Lemma 1.1) so, if we set τ = s i σ and

y = r 1 • • • r l-1 r n τ β -1 ,
we have, by the induction hypothesis, y ∼ L a l τ β -1 . Moreover, s i+1 τ > τ = s i σ > σ > s i+1 σ and, by the same argument as in the subcase 1, we have

s i y > y = s i-1 x > x > s i x. So x ∼ L y, σ ∼ L τ .
So it follows from ( * ) and x ∼ L a l σβ -1 , as required.

• Case 3:

If λ = 1, then we set x = r 1 • • • r l-1 r n σβ -1 and y = r 1 • • • r l σβ -1
. We want to show that x ∼ L y. For this, let x ′ = w n x, y ′ = w n y, σ ′ = σ n σσ -1 n σ n-l,l and β ′ = βσ n σ n-l,l . Then, by Proposition 1.18,

x ′ = r l r l+1 • • • r n-1 σ ′ β ′-1 and y ′ = r l r l+1 • • • r n-2 r n σ ′ β ′-1 .
But, by Corollary 4.3, we have

x ′ ∼ L r 1 • • • r n-l σ ′ β ′-1 and y ′ ∼ L r 1 • • • r n-l-1 r n σ ′ β ′-1 . Now, if we write σ ′ = (λ ′ , µ ′ ), with λ ′ ∈ S [1,n-l] and µ ′ ∈ S [n-l+1,n] , we have µ ′ = σ [n-l+1,n] (because λ = 1)
. So, by Case 2, we have

r 1 • • • r n-l-1 r n σ ′ β ′-1 ∼ L r 1 • • • r n-l σ ′ β ′-1 .
Therefore, x ′ = w n x ∼ L y ′ = w n y, and so x ∼ L y by [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Corollary 11.7].

Corollary 4.4. Let l ∈ {1, . . . , n}, let 1 i 1 < • • • < i l n, let σ ∈ S n , let β ∈ Y l,n-l and let k ∈ [1, l] be such that b (i k -1)a. Then r i 1 • • • r i l σ ∼ L r 1 • • • r k r i k+1 • • • r i l σ.
Proof. The proof proceeds essentially as in Lemma 4.2. Let w [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Proposition 9.11].

= r i 1 • • • r i l σ, let w ′ = r 1 • • • r k r i k+1 • • • r i l σ and let us write w = vx -1 and w ′ = v ′ x ′-1 with v, v ′ ∈ W i k and x, x ′ ∈ X (i k ) n . Since w ′ w -1 = (r 1 • • • r k ) -1 (r i 1 • • • r i k ) ∈ W i k , we get that x = x ′ . The same argument as in Lemma 4.2 shows that v = r i 1 • • • r i k τ and v ′ = r 1 • • • r k τ ′ for some τ , τ ′ ∈ S i k . But v ′ v -1 = w ′ w -1 = (r 1 • • • r k ) -1 (r i 1 • • • r i k ), so τ = τ ′ . Now, by Proposition 4.1, v ∼ L v ′ . So w ∼ L w ′ by

Proof of Proposition 2.15

Notation. In this section, and only in this section, we assume that 1 l n -1 and that (n -2)a < b (n -1)a.

We define a sequence (C j ) l-1 j n-1 by induction as follows:

     C l-1 = 1, C l = C s l , C j+1 = C s j+1 C j -C j-1 , if l j n -2. Let µ denote the coefficient of C a l-1 σ [l,n] in the expansion of C n-1 C a l σ [l,n]
in the Kazhdan-Lusztig basis. To prove Proposition 2.15, it is sufficient to show the following statement:

(5.1) µ = 1 if b = (n -1)a, Q -1 q n-1 + Qq 1-n if (n -2)a < b < (n -1)a. Proof of 5.1. If r ∈ Z, we set H n [r] = ⊕ ℓt(w) r AT w = ⊕ ℓt(w) r AC w .
We shall show that

(5.2) C n-1 C a l σ [l,n] ≡ T s n-1 •••s l+1 s l a l σ [l,n] +Q -1 q n-1 T a l-1 σ [l,n] mod H n [l -2] + H <0 n .
The statement 5.2 will be proved at the end of this section. Let us conclude the proof of 5.1, assuming that 5.2 holds. Let

μ = 1 if b = (n -1)a, Q -1 q n-1 + Qq 1-n if (n -2)a < b < (n -1)a.
We want to show that µ = μ. But, by 5.2, we have

C n-1 C a l σ [l,n] -C s n-1 •••s l+1 s l a l σ [l,n] -μC a l-1 σ [l,n] ∈ H n [l -2] + H <0 n + ⊕ w<a l-1 σ [l+1,n] AT w . Since ⊕ w<a l-1 σ [l+1,n] AT w = ⊕ w<a l-1 σ [l+1,n]
AC w , there exists a family (ν w ) ℓt(w) l-2 or w<a l-1 σ [l+1,n] of elements of A 0 such that 

C n-1 C a l σ [l,n] -C s n-1 •••s l+1 s l a l σ [l,n] -μC a l-1 σ [l,n] - ℓ t (w) l-2 or a l-1 σ [l+1,n] ν w C w ∈ H <0 n . Let ν ′ w = ν w + ν w -τ A (ν w ). Then C n-1 C a l σ [l,n] -C s n-1 •••s l+1 s l a l σ [l,n] -μC a l-1 σ [l,n] - ℓ t (w) l-2 or a l-1 σ [l+1,n] ν ′ w C w ∈ H <0 n and ν ′ w = ν w . So, if we set C = C n-1 C a l σ [l,n] -C s n-1 •••s l+1 s l a l σ [l,n] -μC a l-1 σ [l,n] - ℓ t (w) l-2 or a l-1 σ [l+1,n]
(5.3) C a l = (T t 1 + Q -1 )(T t 2 + Q -1 ) • • • (T t l + Q -1 )T -1 σ l .
Let H(S n ) denote the sub-A-algebra of H n generated by T s 1 ,. . . , T s n-1 . It is the Hecke algebra of S n (with parameter a). Then H n [l -2] is a sub-A-module of H n . Therefore, it follows from 5.3 that

C a l ≡ T w l + Q -1 1 i l T t 1 •••t i-1 t i+1 •••t l T -1 σ l mod H n [l -2]. But, if 1 i l, then t 1 • • • t i-1 t i+1 • • • t l = s i s i+1 • • • s l-1 a l-1 σ l-1 s l-1 • • • s i+1 s i , and σ l = s l+1-i • • • s l-2 s l-1 σ l-1 s l-1 • • • s i+1 s i . Moreover, ℓ(σ l ) = ℓ(s l+1-i • • • s l-2 s l-1 ) + ℓ(σ l-1 s l-1 • • • s i+1 s i ).
Therefore,

C a l ≡ T a l + Q -1 1 i l T s i s i+1 •••s l-1 T a l-1 (T s l+1-i •••s l-2 s l-1 ) -1 mod H n [l -2].
Finally, we get

C a l σ [l,n] ≡ T a l C σ [l,n] + Q -1 1 i l T c [i,l-1] T a l-1 (T c [l+1-i,l-1] ) -1 C σ [l,n] mod H n [l -2]. Now, if l -1 j n -1, then (5.4) C j C a l σ [l,n] ≡ j i=l-1 q i-j T d [l,i] T a l C σ [l,n] +Q -1 C j 1 i l T c [i,l-1] T a l-1 (T c [l+1-i,l-1] ) -1 C σ [l,n] mod H n [l -2].
Proof of 5.4. We shall argue by induction on j. The cases where j = l -1 or j = l are obvious. So assume that j ∈ [l, n -2] and that 5.4 holds for j. By the induction hypothesis, we get

C j+1 C a l σ [l,n] ≡ C s j+1 j i=l-1 q i-j T d [l,i] T a l C σ [l,n] - j-1 i=l-1 q i-j+1 T d [l,i] T a l C σ [l,n] +Q -1 C j+1 1 i l T c [i,l-1] T a l-1 (T c [l+1-i,l-1] ) -1 C σ [l,n] mod H n [l -2]. Now, C s j+1 T d [l,j] T a l C σ [l,n] = T d [l,j+1] T a l C σ [l,n] + q -1 T d [l,j] T a l C σ [l,n]
and, if l -1 i < j, then

C s j+1 T d [l,i] T a l C σ [l,n] = T d [l,i] T a l C s j+1 C σ [l,n] = (q + q -1 )T d [l,i] T a l C σ [l,n] . Now 5.4 follows from a straightforward computation. Since d [l,i] ∈ Y l,n-l , we have T d [l,i] T a l C σ [l,n] = T d [l,i] a l C σ [l,n] ≡ T d [l,i] a l σ [l,n] mod H <0
n , so, by 5.4, we get

C n-1 C a l σ [l,n] ≡ T d [l,n-1] a l σ [l,n] + Q -1 C n-1 1 i l T c [i,l-1] T a l-1 (T c [l+1-i,l-1] ) -1 C σ [l,n] mod H n [l -2] + H <0 n . For 1 i l, let X i = Q -1 C n-1 T c [i,l-1] T a l-1 (T c [l+1-i,l-1] ) -1 C σ [l,n] . There exists a fam- ily (f I ) I⊆[l,n-1] of elements of Z such that C n-1 = I⊆[l,n-1] f I C d I . Moreover, f [l,n-1] = 1. Also, (T c [l+1-i,l-1] ) -1 = J⊆[l+1-i,l-1] (q -q -1 ) i-1-|J| T c J .
Therefore,

X i = I⊆[l,n-1] J⊆[l+1-i,l-1] f I Q -1 (q -q -1 ) i-1-|J| C d I T c [i,l-1] T a l-1 T c J C σ [l,n] . Let ∆ i,I,J = f I Q -1 (q -q -1 ) i-1-|J| C d I T c [i,l-1] T a l-1 T c J C σ [l,n] .
If we express ∆ i,I,J in the standard basis (T w ) w∈Wn , then the degree of the coefficients are bounded by

-b + (i -1 -|J| + |I|)a. Since b > (n -2)a, this degree is in Γ <0 , except if i = l, J = ∅ and I = [l, n -1]. Therefore, C n-1 C a l σ [l,n] ≡ T d [l,n-1] a l σ [l,n] + ∆ l,[l,n-1],∅ mod H n [l -2] + H <0 n . But ∆ l,[l,n-1],∅ = Q -1 (q -q -1 ) l-1 C s n-1 •••s l T a l-1 C σ [l,n] = Q -1 (q -q -1 ) l-1 T a l-1 C s n-1 •••s l C σ [l,n] = Q -1 (q -q -1 ) l-1 (q + q -1 ) n-l T a l-1 C σ [l,n] , the last equality following from Theorem 2.3 (a). So ∆ l,[l,n-1],∅ ≡ Q -1 q n-1 T a l-1 C σ [l,n] mod H <0
n . The proof of 5.2 is complete.

Consequences of Proposition 2.15

The aim of this section is to prove the following proposition: Proposition 6.1. Let l ∈ {1, . . . , n} and assume that b (n -1)a. Then

s 1 s 2 • • • s n-1 a l-1 σ [l,n-1] ∼ L ts 1 s 2 • • • s n-1 a l-1 σ [l,n-1] . Proof. Let u l,n = ts 1 s 2 • • • s n-1 a l-1 σ [l,n-1] = ts 1 • • • s l-1 a l-1 s l • • • s n-1 σ [l,n-1] = a l σ [l,n] .
We need to show that tu l,n ∼ L u l,n (note that tu l,n u l,n ). We shall argue by induction on n, the cases where n = 1 or 2 being obvious. So assume that n 3 and that tu

l,n-1 ∼ L u l,n-1 if b (n -2)a. First, assume that b (n -2)a. Then u l,n = u l,n-1 s n-1 • • • s l+1 s l if l n -1, u l,n = a n = u l-1,n-1 s n-1 • • • s 2 s 1 t if l = n.

By the induction hypothesis, we have tu

k,n-1 ∼ L u k,n-1 so, since s n-1 • • • s l+1 s l and s n-1 • • • s 2 s 1 t belong to X -1
n , it follows from [10, Proposition 9.11] that tu l,n ∼ L u l,n . This means that we may, and we will, assume that (n -2)a < b (n -1)a. But, by Proposition 2.15, we have a l-1 σ [l,n] L a l σ [l,n] = u l,n . On the other hand,

tu l,n = c [1,l-1] a l-1 σ [l,n] L c [2,l-1] a l-1 σ [l,n] L • • • L s l-1 a l-1 σ [l,n] L a l-1 σ [l,n] .
So tu l,n ∼ L u l,n , as desired. Remark 6.2 -Note that the converse of Proposition 6.1 also holds. Indeed, if b > (n -1)a and if x ∼ L y for some x and y in W n , then ℓ t (x) = ℓ t (y) (see [START_REF] Bonnafé | Left cells in type B n with unequal parameters[END_REF]Theorem 7.7] and [1, Corollary 5.2]). Corollary 6.3. Let l ∈ {1, 2, . . . , n} and let β ∈ Y l-1,n-l . Then

s 1 s 2 • • • s n-1 a l-1 σ [l,n-1] β -1 ∼ L ts 1 s 2 • • • s n-1 a l-1 σ [l,n-1] β -1 . Proof. Let w = s 1 s 2 • • • s n-1 a l σ [l+1,n-1] β -1 .
We want to show that w ∼ L tw. We shall argue by induction on ℓ(β). If ℓ(β) = 0 (i.e. β = 1), this is just the proposition 6.1. Sp we assume now that ℓ(β) 1. We shall use the * -operation (see §2.C). For this, we need to study the action of the γ i 's on w, when possible.

We have σ [l,n-1] a l-1 = a l-1 σ [l,n-1] , so

w = s 1 s 2 • • • s n-1 σ [l,n-1] (a l-1 β) -1 = s 1 s 2 • • • s l-1 σ [l,n] (a l-1 β) -1 .
Let 1 j 1 < • • • < j l-1 n-1 be the unique sequence such that a l β = r j 1 r j 2 • • • r j l-1 . Since ℓ(β) > 0, we have (j 1 , j 2 , . . . , j l-1 ) = (1, 2, . . . , l-1), so there exists k ∈ [1, l-1] such that j kj k-1 2 (where j 0 = 0 by convention). Note that j k < n so j k + 1 ∈ = n + 1q > 0 for some q ∈ [1, n + 1l]. Moreover, a similar computation shows that (with the convention that j l = n + 1)

w(j k ) = -(l -k) if j k+1 = j k + 1, n -q if j k+1 j k + 2.
In any case, we have w(j k ) < w(j k + 1) < w(j k -1).

This shows that ws j k -1 s j k < ws j k -1 < w < ws j k , So w ∈ D j k -1 (W n ) and γ j k -1 (w) = ws j k -1 < w. Now, let β ′ = s j k β. An easy computation as above shows that β ′ < β, so that β ′ ∈ Y l,n-1-l by Deodhar's Lemma (see [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]Lemma 2.1.2]). So γ j k (w) = s 1 • • • s n-1 a l-1 σ [l,n-1] β ′-1 where β ′ ∈ Y l,n-1-l is such that ℓ(β ′ ) = ℓ(β) -1. But, by Corollary 2.13, we have tγ i (w) = γ i (tw). So , by 2.11 and by the induction hypothesis, we get that w ∼ L tw, as desired.

7. Proof of Theorem 1.24 7.A. Knuth relations. By recent results of Taskin [13, Theorems 1.2 and 1.3], the equivalence relations ∼ r R and ≃ r R can be described using generalisations of Knuth relations (for the relation ≃ r R , a similar result has been obtained independently by Pietraho [12, Theorems 3.8 and 3.9] using other kinds of Knuth relations). We shall recall here Taskin's construction. For this, we shall need the following notation: if 0 r n-2, we denote by E (r) n the set of elements w ∈ W n such that |w(1)| > |w(i)| for i ∈ {2, 3, . . . , r + 2} and such that the sequence (w(2), w(3), . . . , w(r + 2)) is a shuffle of a positive decreasing sequence and a negative increasing sequence. If r n -1, we set E (r) n = ∅. Following [13, Definition 1.1], we introduce three relations which will be used to generate the relations ∼ r R and ≃ r R . Let w, w ′ ∈ W n and let r 0:

• We write w ⌣ 1 w ′ if there exists i 2 (respectively i n -2) such that w(i) < w(i -1) < w(i + 1) (respectively w(i) < w(i + 2) < w(i + 1)) and w ′ = ws i . • We write w ⌣ r 2 w ′ if there exists i min(r, n -1) such that w(i)w(i + 1) < 0 and w ′ = ws i . The relation ⌣ 0 2 never occurs. • We write w ⌣ r 3 w ′ if w ∈ E L and ∼ r R (respectively ≃ r L and ≃ r R ). Recall also that x ∼ r L y (respectively x ≃ r L y, respectively x ∼ L y) if and only if x -1 ∼ r R y -1 (respectively x -1 ≃ r R y -1 , respectively x -1 ∼ R y -1 ). So it is sufficient to show that Theorem 1.24 holds whenever ? = R. It is then easy to see that Theorem 1.24 will
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 1 A. Weyl group.

  [START_REF] Vanleeuwen | The Robinson-Schensted and Schutzenberger algorithms, an elementary approach, The Foata Festschrift[END_REF].

  1.C. Subgroups W m of W n . If m n, we shall view W m naturally as a subgroup of W n (the pointwise stabilizer of [m + 1, n]). It is the standard parabolic subgroup generated by S m = {t, s 1 , . . . , s m-1 }: we denote by X (m) n the set of w ∈ W n which are of minimal length in wW m . For simplification, we set X n = X (n-1) n . It follows from Lemma 1.1 that: Lemma 1.19. Let w be an element of W n . Then w belongs to X (m) n if and only if 0 < w(1) < w(2) < • • • < w(m).

  These are equivalence relations on W n . Note that ∼ r LR is the equivalence relation generated by ∼ r L and ∼ r R . We denote by ≈ r+1 L (resp. ≈ r+1 R , resp. ≈ r+1 LR ) the equivalence relation generated by ∼ r L and ∼ r+1 L (resp. ∼ r R and ∼ r+1 R , resp. ∼ r LR and ∼ r+1 LR ). Recall the following conjecture from [3, Conjectures A and B]:Conjecture. Assume that a, b > 0. Let r 0 and ? ∈ {L, R, LR}. (a) If ra < b < (r + 1)a, then the relations ∼ ? and ∼ r ? coincide. (b) If r 1 and b = ra, then the relations ∼ ? and ≈ r ? coincide.

Theorem 1 .

 1 24. Assume that a, b > 0. Let r 0, ? ∈ {L, R, LR} and x, y ∈ W n . Then: (a) If ra < b < (r + 1)a and x ∼ r ? y, then x ∼ ? y. (b) If r 1, b = ra and x ≈ r ? y, then x ∼ ? y.

3 .

 3 C. The elements z ∈ [x; y] such that tz < z. If I ⊆ [1, n -1] is such that tα(I) < α(I), we set μI = τ A (µ α(I),y ). So we can rephrase (?) as follows:

Lemma 3 . 3 .(- 1 )

 331 If S is a finite set and I S, then I⊆J⊆S |J| = 0.

(3. 4 ) 1 -(- 1 )

 411 If [l, n -1] ⊆ I [1, n -1], then μI = (-1) n-|I| . Proof of 3.4. First, note that I ∈ E by Lemma 3.2. We argue by descending induction on |I|. If |I| = n -2, then μI = 1, as desired. Now, let us assume that [l, n -1] ⊆ I [1, n -1] and that μJ = (-1) n-|J| for all I J [1, n -1]. Then, by 3.1, we have μI = n-|J| = (-1) n-|I| , the last equality following from Lemma 3.3. (3.5) If I ∈ E is such that [l, n -1] ⊆ I and I ⊆ [1, l -1], then μI = 0. Proof of 3.5. We shall again argue by descending induction on |I|. Let I ′ = I ∪ [l, n -1]. Then, by 3.1, we have μI = 1 -J∈E I J and I ′ ⊆J μJ -J∈E I J and I ′ ⊆J μJ .

2 :

 2 ν ′ w C w , then C = C and C ∈ H <0 n . So C = 0 by [10, Theorem 5.2], and so µ = μ, as expected. So it remains to prove the statement 5.Proof of 5.2. First of all, we have C a l σ [l,n] = C a l C σ [l,n] , since the supports of a l and σ [l,n] (in S n ) are disjoint. Moreover, since l n-1 (i.e. a l ∈ W n-1 ) and b > (n-2)a, it follows from [1, Propositions 2.5 and 5.1] that

[ 2 ,

 2 n]. We have, by 1.16w(j k )s 1 • • • s l-1 σ [l,n] (r j 1 • • • r j l-1 ) -1 (j k ) = s 1 • • • s l-1 σ [l,n] (kl) = -s 1 • • • s l-1 (lk) = -(l + 1k) < 0 and w(j k -1)s 1 • • • s l-1 σ [l,n] (r j 1 • • • r j l-1 ) -1 (j k -1) = s 1 • • • s l-1 σ [l,n] (l + q) = s 1 • • • s l-1 (n + 1q)

n 2 w 3 w 3 . 7 .

 2337 and w ′ = wt. If r n -1, the relation ⌣ r 3 never occurs. Remark -If w ⌣ r 2 w ′ , then w ⌣ r+1 ′ . If w ⌣ r 3 w ′ , then w ⌣ r-1 Theorem. With the above notation, we have: (a) The relation ∼ r R is the equivalence relation generated by the relations ⌣ 1 , ⌣ r 2 and ⌣ r 3 . (b) The relation ≃ r R is the equivalence relation generated by the relations ⌣ 1 , ⌣ r 2 and ⌣ r-1 B. Proof of Theorem 1.24. Recall that the relation ∼ r LR (respectively ≃ r LR ) is the equivalence relation generated by ∼ r

w ) w∈Wn is an A-basis of H n , called the Kazhdan-Lusztig basis of H n . 1.F. Cells. If x, y ∈ W n , then we shall write x

  if there exists h ∈ H n such that the coefficient of C x in the decomposition of hC y (resp. C y h, resp. hC y or C y h) is non-zero. We denote by L (resp. R , resp. Then L , R and LR are preorders on W n and we denote respectively by ∼ L , ∼ R and ∼ LR the associated equivalence relations[START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF] Chapter 8]. An equivalence class for ∼ L

				10, Theorem 5.2] there exists a unique
	C w ∈ H n such that
				C w = C w
				C w ≡ T w mod H <0 n .
	Note that [10, §5.3]
	(1.22)		C w -T w ∈ ⊕ w ′ <w	A <0 T w ′ ,
	where	denotes the Bruhat order on W n . In particular, (C L ←-y (resp. x	R ←-y, resp.
	x	LR ←-y) LR ) the transitive closure of	L ←-(resp.

R ←-, resp. LR ←-).

  sy + p sx,sy -

				e ϕ(y)-ϕ(z) p x,z M s z,sy	if sx < x,
			x z<sy sz<z		
		p sx,y				if sx > x,
	and	x,y = p *	   qp * x,sy + p * sx,sy -	x z<sy sz<z	p * x,z M s z,sy	if sx < x,
			  e -ϕ(s) p * sx,y			if sx > x.

Corollary 2.4. If s, s ′ ∈ {s 1 , . . . , s n-1 } and x, y ∈ W n are such that sx < x < s ′ x = y < sy, then x ∼ L y. Proof. See [9, Proposition 5 (b)].

 

Proof of Proposition 2.14

3.A. Easy reduction.

3.B. The Bruhat interval [x; y].

C. Bonnafé

follow from Taskin's Theorem and from the following three lemmas (which will be proved in subsections 7.C, 7.D and 7.E).

Lemma 7.1. Let w, w ′ ∈ W n be such that w ⌣ 1 w ′ . Then w ∼ R w ′ . Lemma 7.2. Let w, w ′ ∈ W n and let r 0 be such that b ra and w ⌣ r 2 w ′ . Then w ∼ R w ′ . Lemma 7.3. Let w ∈ W n and let r 0 be such that b (r + 1)a and w ⌣ r 3 w ′ . Then w ∼ R w ′ . 7.C. Proof of Lemma 7.1. Let w, w ′ ∈ W n be such that w ⌣ 1 w ′ . Let i ∈ I + n-1 be such that w ′ = ws i . Then i 2 and w(i) < w(i -1) < w(i + 1), or i n -2 and w(i) < w(i + 2) < w(i + 1). In the first case, we have ws i s i-1 > ws i > w > ws i-1 while, in the second case, we have ws i s i+1 > ws i > w > ws i+1 . So w ′ = ws i ∼ R w by 1.23 and Corollary 2.4. The proof of Lemma 7.1 is complete.

7.D. Proof of Lemma 7.2. Let w, w ′ ∈ W n and let r 0 be such that b ra and w ⌣ r 2 w ′ . Let i ∈ I + n-1 be the element such that w ′ = ws i . Then i r and w(i)w(i+1) < 0. By exchanging w and w ′ if necessary, we may assume that w(i) < 0 and w(i + 1) > 0.

Let us write w = xv, with x ∈ X (i+1) n and v ∈ W i+1 . Then vs i ∈ W i+1 and ws i = xvs i . Therefore, by [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Proposition 9.11], we only need to show that vs i ∼ L v. But 0 < x(1) < • • • < x(r + 1) (see Lemma 1.19), and v(j) ∈ I i+1 for all j ∈ I i+1 . So v(i) > 0 and v ′ (i + 1) < 0. In particular, v ⌣ r 2 vs i (and even v ⌣ i 2 v ′ ). This means that we may (and we will) assume that i = n -1. So we have b (n -1)a, w(n -1) < 0 and w(n) > 0, and we want to show that w ∼ R ws n-1 or, in other words, that (?)

By Lemma 1.15, there exists a unique sequence 1

But, again by Lemma 1.15, we have w -1 (i) < 0 if and only if i ∈ {i 1 , . . . , i l }. So

So the result follows from Proposition 4.1.

7.E. Proof of Lemma 7.3. Let w ∈ W n and let r 0 be such that b (r + 1)a and w -1 ⌣ r 3 w ′-1 . We want to show that w ∼ L w ′ = tw. The proof goes through several steps.

First step: easy reductions. First, note that r n -2. Let us write w

r+2 . Then tw = (tv)x -1 with tv ∈ W r+2 so, by [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Proposition 9.11], it is sufficient to show that tv ∼ L v. This shows that we may (and we will) assume that r = n -2.

By [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Corollary 11.7], this is equivalent to show that tw n w ∼ L w n w. Since

we may, by replacing w by tw, w n w or tw n w, assume that w -1 (1) > 0 and w

As a conclusion, we are now working under the following hypothesis:

Hypothesis. From now on, and until the end of this subsection, we assume that (1) w -1 (1) = n and w -1 (n) > 0, and

And recall that we want to show that (?) tw ∼ L w.

Second step: decomposition of w.

Note that

for all k ∈ [1, n -1], so that

and, by ( 2),

σ ∈ S l,n-1-l and β ∈ Y l,n-1-l . By 7.7 and Lemma 1.15, we have

Finally, note that

Proof of 7.9. By 7.6, we have

and, since σ stabilizes the interval [l + 1, n] and β is increasing on the same interval, this forces

Third step: conclusion. We first need the following elementary result:

Proof of 7.10. This follows easily from 1.3 or from 1.4.

Then, by 7.10, we have