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ON KAZHDAN-LUSZTIG CELLS IN TYPE B
CEDRIC BONNAFE

ABSTRACT. We prove that, for any choice of parameters, the Kazhdan-Lusztig
cells of a Weyl group of type B are unions of combinatorial cells (defined using
the domino insertion algorithm).

Let (W,,S,) be the Weyl group of type B,,, where S, = {t,s1,...,s,-1} and
where the Dynkin diagram is given by
t S1 S9 Sn—1

oc—]0—0— - - —0O

Let ¢: W, - N=1{0,1,2,3,...} be the length function. Let I' be a totally ordered
abelian group and let ¢ : W,, — I" be a weight function (in the sense of Lusztig [[[{,
§3.1]). We set

p(t)=>b and @(s1)="--=p(s,_1) = a.
To this datum, the Kazhdan-Lusztig theory (with unequal parameters [[0]) asso-
ciates a partition of W, into left, right or two-sided cells [[IT}, Chapter 8].

In [B, Conjectures A and B], Geck, Iancu, Lam and the author have proposed
several conjectures for describing these partitions (at least whenever a, b > 0, but
this is not such a big restriction, as can be seen from [, Corollary 5.8]): they
involve a domino insertion algorithm. Roughly speaking, one can define a partition
of W,, into combinatorial (left, right or two-sided) (a,b)-cells (which depend on a,
b and which are defined combinatorially using the domino insertion algorithm):
the combinatorial (left, right or two-sided) cells should coincide with the Kazhdan-
Lusztig (left, right or two-sided) cells. The aim of this paper is to prove one of the
two inclusions (see Theorem [.24)):

Theorem. If two elements of W,, lie in the same combinatorial (left, right or two-
sided) cell, then they lie in the same Kazhdan-Lusztig (left, right or two-sided) cell.

In the case of the symmetric group, the partition into left cells (obtained by Kazh-
dan and Lusztig [[], Theorem 1.4]) uses the Robinson-Shensted correspondence, and
the key tool is a description of this correspondence using plactic/coplactic relations
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2 C. BONNAFE

(also called Knuth relations). For W,,, whenever b > (n — 1)a, the partition into
left, right or two-sided cells was obtained by Tancu and the author (see [, Theorem
7.7] and [[l, Corollaries 3.6 and 5.2]) again by using the translation of a generalised
Robinson-Shensted correspondence through plactic/coplactic relations.

Recently, M. Taskin [[[3 and T. Pietraho [[[J] have independently provided plac-
tic/coplactic relations for the domino insertion algorithm. Our methods rely heavily
on their results: we show that, if two elements of W), are directly related by a plactic
relation, then they are in the same Kazhdan-Lusztig cell. The key step will be the
Propositions .14 and .17, where some multiplications between elements od the
Kazhdan-Lusztig bases are computed by brute force and their consequences (see
Propositions [L.1 and [.1), where it is proved that some elements are in the same
left cells. Then, the rest of the proof just uses the particular combinatoric of Weyl
groups of type B, together with classical properties of Kazhdan-Lusztig cells.
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4 C. BONNAFE

1. NOTATION

1.A. Weyl group. Let (W,,S,) be the Weyl group of type B,, where S, =
{t,s1,...,8,-1} and where the Dynkin diagram is given by

t S1 S2 Sp—1

oc—"—]0—0— - - —O

Let ¢ : W,, = N=1{0,1,2,3,...} be the length function. Let I,, = {£1,...,£n}: we
shall identify W,, with the group of permutations w of I,, such that w(—i) = —w(7)
for all w € I,,. The identification is through the following map

t— (1,-1) and s;+— (3,4 + 1)(—i,—i —1).

We shall often use the following well-known lemma:

Lemma 1.1. Letw e W,,, i€ {1,2,...,n—1} and j € {1,2,...,n}. Then:
(a) L(ws;) > L(w) (that is, ws; > w) if and only if w(i) < w(i+ 1).
(b) l(wt;) > L(w) if and only if w(j) > 0.

The next notation comes from [, §4]: it is rather technical but will be used
throughout this paper. We set t; =r; =t and, for 1 <7< n—1, we set

Tivr1 = ST and ti+1 = SitiSi.

As a permutation of I,,, we have

(1.2) ti = (i, —1)
and
—i if j =1,
(1.3) ri(j)=qJ7—1 if2<j<i,
j ifi+1<j<n.

An easy computation shows that, if j € {1,2,...,;n—1} and i € {1,2,...,n}, then
TS lfj > 1,
i ifi= .
(1.4) Sj’l"i = Titl 1 Z. j
Ti1 if j=1-—1,
TiSj+1 1f1<]<l—1
Note also that, if [ > 2, then
(1.5) nry = Tr-1risi-

If 0 <l < n, we set

al:T1T2"'rl :Tl.f,"er
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As a permutation of I,,, we have

(1.6) (i) 1—1—1 if1<i<,
. a(i) =
: i ifl+1<i<n

In particular,

(1.7) al=aq
and, if i € {1,2,...,n— 1} \ {l}, then

Si—i if 1 < l,

1.8 =

(1.8) s {si ifi> 1.
This shows that a; normalizes &;,,_;. Note also that

l(l+1

(1.9) E(al) = ( 5 )

We shall identify the symmetric group &,, with the subgroup of W,, generated by
S1y. .., Sp—1. We also set I = {1,2,...,n}. Then, as a group of permutations of
I,,, we have
(1.10) S,={weW, | wll)=1I}

If 1 <i<j<n,wedenote by [, j] theset {7,i+1,...,j} and by &, ;) the subgroup
of W, (or of &,,) generated by s, so,..., sj_1. If j < 4, then we set [4, j] = @ and
0,5 = 1. As a group of permutations of /,,, we have

(1.11) Suj={we &, |Vkel\[ij,wk) =k}

The longest element of W, will be denoted by w, (it is usually denoted by wy,
but since we shall use induction on n, we need to emphasize its dependence on n).
We denote by o, the longest element of &,,. The longest element of &y; ;; will be
denoted by oy; ;. As a permutations of I,,, we have
(1.12) w, = (1,-1)(2,-2) -+ (n, —n).

Note also that

Wy, :tltztn:tntQtl

(1.13) Wy = ApOp = Oply,
Opn = O]

and that

(1.14) wy, 1s central in W,.

1.B. Decomposition of elements of W,,. If 0 <! < n, we denote by &;,,_; the
subgroup of &,, generated by {s1,...,5,-1} \{s:}. Then &;,,_; = Sy ~ Spy1n) ~
6; X 6,,_;. We denote by Y;,,_; the set of elements w € &,, which are of minimal
length in w&;,,;.
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If w € W, we denote by ¢;(w) the number of occurences of ¢ in a reduced decom-

position of w (this does not depend on the choice of the reduced decomposition).
We set £5(w) = l(w) — £(w).

Lemma 1.15. Let w € W,,. Then there exists a unique quadruple (1, c, 3,0) where
0<Ii<n, o Y, ando € &, are such that w = aa;o3~t. Moreover, there

exists a unique sequence 1 < iy < ig < --- <14 < n such that ca; = ryriy - -1;. We
have
U(w) = L(a) + Ua) + (o) + £(B),
Et(w) =1

and {iv,...,yyy ={i€[l,n] | w() <0}
Note also that l

=D ik~

k=1
Proof. See [[, §4, and especially Proposition 4.10]. U

Ifle0nandif 1<iy < -+ <gyy<nand 1l < j; < -+ < j,y <n are two
sequences such that [1,n] = {i1,..., 4} U{j1,...,Jnt}, then it follows easily from

I3 that

(1.16) (riy - ori) M) =k —1-1 if1< k<,
' (riy - 1) k) =1+ k if1<k<n—1

The elements «, # and o of the previous lemma will we denoted by «,,, 3, and
oy respectively. We have

(1.17) 4w ) =l(w), qp1 =By, But=0a, and 0,1 =a(o,) ta.

We shall now describe how the multiplication by the longest element w,, acts on
the decomposition given by Lemma [.15. For this, we denote by o;,_; the longest
element of &;,,_;.

Proposition 1.18. Let w € W,, and let | = l;(w). Then:
(a) l(w,w) =n—1L.
(b) wpw = Qwonon_1; and By, w = BuOnOn_1,-
(€) Owpw = anaa_lan,l,l.
(d) Let 1 <iy < --- < i, <n be the sequence such that c,a; = 1y - --1;. Then

1
Q= Tjy 15, Where 1 < j1 < --- < gy < n is the sequence such that

{il,...,’il}U{jl,...,jn_l}—[ s ]
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Proof. (a) is clear. (d) follows from Lemma [[.T5. We now prove (b) and (c¢) simul-
taneously. For this, let o/ = 0,0, 11, 8/ = Buwonon_1y and o' = 0,0,0, 0n 1.
We need to show the following three properties:

(1) o/, B €Yoy
(2) o' € Giy-
(3) wow = 'a,_10' 3L
For this, note first
00Sin-10," = Gpiy,
so that (2) follows immediately. This also implies that o,,0,_;0, = 01— because

conjugacy by o, in G,, preserves the length.

Let us now show (1). Let i € {1,2,...,n}\ {n —1}. We want to show that
l(a/s;) > £(c/). By Lemma [[.1], this amounts to show that /(i + 1) > /(7). But
o = oy n_10,. Also 0,(i)) =n—i>o,(i+1)=n—i—landn—iandn—i—1
both belong to the same interval [1,{] or [[+1,n]. Hence 0,10,(i) < 0yn—10,(i1+1)
and av,07,-10, (%) < 0y —10,(i + 1) since B, € Y, ,—;. This shows that o/ € Y,,_;.
Similarly, 5’ € Y,,—;;. So (1) is proved.

It remains to show (3). We have
O/an—lo-/ﬁ/_1 = (awanan—l,l) “Ap— (O'nO'wCT;lO'n_u) . (0_;71“0_;15;1)
= awanan—l,lan—lanawﬁq;l
But 0y,—1; = 0pn—i141,0)0n—1 a0d 0,00, _111,0)0;, " = Oy = 07 SO
O/anflo'lﬁli1 = OéwO'lO'nO'n,lCLn,lO'glO'wﬁqzl
= awalanwnflarjlawﬁ;l7
the last equality following from [[.13. Now, o, w, 0, L = ww,, (see again [[LIJ) so
da,_0' 7 = apoww,o, B,
= uaw,o,B,"
= W00, = w,w,

the second equality following from [.TJ and the third one from the fact that w, is
central (see [.I9). O

1.C. Subgroups W,,, of W,,. If m < n, we shall view W,, naturally as a subgroup
of W,, (the pointwise stabilizer of [m + 1,n]). It is the standard parabolic subgroup
generated by S, = {t,s1,...,Sm_1}: we denote by X{™ the set of w € W, which
are of minimal length in wW,,. For simplification, we set X,, = XY 1t follows

from Lemma [[.]] that:
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Lemma 1.19. Let w be an element of W,,. Then w belongs to xm if and only if
0<w(l) <w(2) < <w(m).

If I'={iy,...,5} C[l,n—1] with é; <--- <, then we set

cr = 5i,8i, -8, and dr = 8;, - 5i,5,-

By convention, cg = dg = 1. We have

(1.20) Xn = {C[i,n—l] | 1 < 1 < TL} U {d[l,i]tc[l,n—l] | 0 < 1 < n — 1}

1.D. Hecke algebra. We fix a totally ordered abelian group I' (denoted additively)
and a weight function ¢ : W,, — I'. We set

p(t)=b and @(s1)=a (=¢(s2) =" =¢(sn-1))
Note that

(1.21) o(w) = L(w)b+ ls(w)a

for all w € W,,.
We denote by A the group algebra Z[T']. We shall use an exponential notation:

A= @ 7Ze, where e - e = et for all v, v € I'. We set
~yel’

Q=¢ and ¢=e"
Note that @) and g are not necessarily algebraically independent. We set
A<0 = & Zeva

<0

and we define similarly A<y, Ao and Axy.

We shall denote by H,, the Hecke algebra of W,, with parameter p: it is the free
A-module with basis (T, )wew, and the multiplication is A-bilinear and is completely
determined by the following rules:

TTo = Ty if ((ww') = 0(w) + (W),

(,I‘t - Q)(E + Qil) = 07
(T, —q)(Ts, + ¢ ) =0 if1<i<n—1.

We also set

wGWn

Finally, we denote by : H, — H, the unique A-semilinear involution of H, such
that € = e ¥ and T, = Tz;_ll for all v € I and w € W,,.
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1.E. Kazhdan-Lusztig basis. We shall recall here the basic definitions of
Kazhdan-Lusztig theory. If w € W, then [[(, Theorem 5.2] there exists a unique
Cy € H,, such that

éw = Cw
Cy,=T, modH:".
Note that [0, §5.3]
(1.22) Co—Tw€ @& Acolw,
w’' <w
where < denotes the Bruhat order on W,,. In particular, (Cy)wew, is an A-basis of
‘H,, called the Kazhdan-Lusztig basis of 'H,,.

1.F. Cells. If z, y € W, then we shall write = L y (resp. x £ Y, resp.
z B y) if there exists h € H,, such that the coefficient of C, in the decomposition
of hCy (resp. Cyh, resp. hC, or Cyh) is non-zero. We denote by <, (resp. <g, resp.
<pr) the transitive closure of L (resp. i, resp. ﬁ) Then <, <g and <y g
are preorders on W,, and we denote respectively by ~,, ~g and ~ the associated
equivalence relations [[(J, Chapter 8]. An equivalence class for ~ (resp. ~g, resp.
~rr) is called a left (resp. right, resp. two-sided) cell. We recall the following result
M0, §8.1]: if , y € W, then

(1.23) v~py<s=a gyl

1.G. Domino insertion. If r>0 and w € W, then the domino insertion
algorithm (see [, [[4], [I3]) into the 2-core 6, = (r,r — 1,...,2,1) associates to w
a standard domino tableau D,.(w) (with n dominoes, filled with {1,2,...,n}). If D
is a domino tableau, we denote by sh(D) its shape: we shall denote by sh,(w) the
shape of D,(w) (which is equal to the shape of D,(w™'), loc. cit.).

If v and y € W, we shall write z ~] y (resp. = ~% y, resp. = ~jp y) if
D.(z7') = D,(y™") (resp. D,(z) = D,(y), resp. sh.(z) = sh,(y)). These are
equivalence relations on W,,. Note that ~7 ; is the equivalence relation generated
by ~7 and ~.

We denote by %2“ (resp. %TR“, resp. %ﬁg) the equivalence relation generated

by ~% and ~7t! (vesp. ~% and ~% resp. ~%p and ~7 ). Recall the following

conjecture from [f, Conjectures A and BJ:

Conjecture. Assume that a, b > 0. Letr >0 and ? € {L, R, LR}.
(a) If ra < b < (r+ 1)a, then the relations ~+ and ~% coincide.

(b) If r > 1 and b = ra, then the relations ~+ and =~} coincide.
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The main result of this paper is the following partial result towards the previous
conjecture:

Theorem 1.24. Assume that a, b > 0. Let r >0, 7 € {L,R, LR} and x, y € W,,.
Then:

(a) If ra<b < (r+1)a and x ~} y, then x ~9 y.

(b) Ifr > 1, b=ra and x =} y, then x ~» y.

The other sections of this paper are devoted to the proof of this theorem.

COMMENTS - If one assumes Lusztig’s Conjectures P1, P2,... P15 in [[[0, Chapter
14], then Theorem [.24 implies that the statement (a) of the Conjecture is true.
Indeed, Lusztig’s Conjectures imply in this case that the left cell representations are
irreducible, and one can conclude by a counting argument. It might be probable
that a similar argument applies for the statement (b), using results of Pietraho [[]:
however, we are not able to do it.

In the case where b > (n — 1)a, the Theorem was proved in [, Theorem 7.7]
(in fact, the conjecture was also proved) by using a counting argument. The proof
here does not make use of the counting argument. O

2. KAZHDAN-LUSZTIG POLYNOMIALS, STRUCTURE CONSTANTS

Hypothesis and notation. From now on, and until the end of
this paper, we assume that a, b are positive. Recall that Q = € and
q=¢€", sothat Z|Q,Q ', q,¢ ') C A. Ifp € As, we denote by p(0)
the coefficient of 1 = € in the expansion of p in the basis (€7),er.

2.A. Recollection of general facts. If z and y are elements of W,,, we set
CJ:Cy - Z hm,y,zcza
zeWnp

where the h,, . belong to A and satisfy
h:v,y,z = hm,y,z-

We also set

Cy = Z p;,yTx and Dy = 6¢(y)_¢($)p;,y'
:BEWn
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Recall [[0, Proposition 5.4] that

(p;:,y = Pyy = 1,

Pry € A<o if z#y.
(2.1) Pry=Pey =0 ifzLy,

Pry € Aso,

\pm,y<0) =1 if x <.

Now, if s € S, Lusztig [L0, Proposition 6.3] has defined inductively a family of
polynomials (M) sy<z<y<sy by the following properties:

z,y
(2.2a) M;, = M;,,
(2.2b) M, + Y phoM:, —efOpl € A
x<z<<y

With this notation, we have [[(, Theorem 6.6]:

Theorem 2.3 (Kazhdan-Lusztig, Lusztig). Let s € S, and let y € W,,. Then:
Coyt+ Y M;,Co ifsy>y,
(a) C’SCy = sr<r<y
(e9() 4 e7¢()) O, ifsy<y.
(b) If sy <y, and if x < y, then

quamsy +psx,sy - Z 6£p(y)7ip(Z)px,zM§7sy Zf sr <z,

= <28y
Da,y Se<z

Pszy Zf sTr >,

* * * s .
Py sy +psx,sy - § pa:,zMz,sy Zf ST <,
— <
and Doy = sy

e‘*"(s)pzw if sx > x.

Corollary 2.4. If s, s € {s1,...,8,-1} and x, y € W, are such that st < = <
sx =y < sy, then x ~p y.

Proof. See [g, Proposition 5 (b)]. O

2.B. Special features in type B. The previous results of this section hold
for any Coxeter group (finite or not). In this subsection, we shall investigate what
is implied by the structure of W,,. The particular ingredient we shall need is the
following lemma [[], §4]:
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Lemma 2.5. {q; | 0 <1 < n} is the set of elements w € W,, which have minimal
length in G, w&,,. If v < a; for somel € {1,2,...,n} and some x € W, then
£t<$’) < ﬁt(al) =1.

It has the following consequences (here, if p € Z[q], we denote by deg, p its degree
in the variable ¢q):

Corollary 2.6. Let x andy be two elements of W,, such that x <y and l;(x) = l:(y).
Then:
(a) Pay € Zlq] and, if v # y, then deg, p,, < L(y) — {(x).
(b) If 1<i<n—1is such that s;x < x <y < s;y, then My, € Z: it is the
constant term of qp,,, (€ Z[q™']).

Proof. We shall prove (a) and (b) together by induction on the pair (¢(y), {(y)—{(z))

(with lexicographic order). The result is obvious if ¢(y) = ¢(x) or if {(y) < 1. So

assume now that ¢(y) > 1, that ¢(y) — ¢(z) > 0 and that (a) and (b) hold for all

pairs (2/,4y') such that (¢(y), l(y") — £(2")) < (U(y), (y) — €(z)). First, note that
eP)=(@) _ l)~£(o).

because (y) — ¢(x) = (L(y) — b(x))b + (L(y) — Le(x))a = (L:(y) — lo(x))a =
(6(y) - 0(z))a.

Let us first prove (a). So we have # < y and (,(z) = ¢,(y). By Lemma R.5, this
implies that there exists i € {1,2,...,n — 1} such that s;y < y or ys; < y. In the
second case, one can exchange y and y~! (and z and z~!) by using [0}, §5.6], so that
we may assume that s;y < y. Then, Theorem .3 (b) can be rewritten as follows:

(@PPrsy — @O OME) + Poasy — >, "W OpeME, i s <,

= r<z<s;y
pm,y siz<zZ

Dsizy if ;2 > x.
If s;x > x, then the result follows from the induction hypothesis. If s;z < x, then

quwiy . qz(y)*g(m)M;i = qf(y)fé(r)(qp;sly — M)

i z,5:y
belong to Z[q] and has degree < {(y) — £(x) by the induction hypothesis. The other
terms in the above formula also belong to Z[q] and also have degree < ((y) — ¢(x)
by the induction hypothesis. So we get (a).

Let us now prove (b). So we assume that s;x < z < y < s;y. Then, using the
induction hypothesis and P.1], the condition (b) can be rewritten

My —apzy € Ao

Now, the result follows easily from (a). O
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Now, if tx < z < y < ty are such that ¢,(z) = ¢,(y), let us define a polynomial
Uz € Z[g] by induction on £(y) — ¢(x) by the following formula:

= DPzy — :E: Pz 2z y-

r<z<ly
tz<z

Indeed, it follows from Corollary B.§ (and an induction argument on ¢(y) — ¢(z))
that

(27) Hay € Z[Q] and degq Moy < E(y) - E(ZL‘)

Moreover:

Corollary 2.8. Assume that tx < x <y <ty and that {;(z) = l(y). Then:
(a) If b> (€y) — U(x))a, then My, = Qq" D~ Wy, + Q' "W~ Wiy,
(b) If b = (L(y) — £(x))a, then M;:’y = Ugy + Hzy — Hay(0).

Proof. Let us assume that b > (¢(y) — ¢(x))a. We shall prove the result by induction
on {(y) — ¢(x). By the induction hypothesis, the condition (b) can we written
Mt )~ qu(x)iﬂy)px,y + Z p;Z (qu(z)ff(y)luz’y + Q*qu Z(z)lu > e A<0

r<z<ly
tz<z

But, if < 2 <y and tz < z, then

pm zQ ! gy) K(Z)IU/ z,Y € A<0
because p; ., € Aco, H., € Ag and QW) = 7 bHtW)—E)e ¢ A (since
U(y) — U(z) < L(y) — £(x)). Therefore,
Mt y qu(x)_e(y)px,y + Z qu(x)_z(y)par,zuz,y S A<O-

r<z<ly
tz<z

In other words,
ML, — Qg W, € A,
Let p= qu(l‘)*z(y)uwvy. Two cases may occur:
e If b > (U(y) — l(x))a, then u € A.y and so the condition (a) forces
M}, = p+Ti, as required.
o If b = ({(y) — l(x))a, then u = p,, € Aso and now the condition P.7 (a)
forces M, = pu+ 7t — p(0), as required.
The proof of the Corollary is complete. O

We conclude this subsection with a result involving the decomposition of Lemma

1.15.
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Lemma 2.9. Let x and y be two elements of W,, and let s € S, be such that
st <x <y<sy lzx)="Ll(y) and B, = B, = B. Then M, = M 5 (note that
Bup = Bys = 1).

Proof. See [[], Proposition 7.2]. Strictly speaking, in [H], the authors are generally
working with a special choice of a function ¢ (“asymptotic case”): however, the
reader can check that the proof of this particular result, namely [, Proposition 7.2],
remains valid for all choices of parameters. O

We conclude by another useful result:

Proposition 2.10. Let ! € [0,n], let 0 and o' € &,,—; be such that o ~, o' and let
B €Y. Then

aoft ~p ao’ 7L

Proof. By the description of Kazhdan-Lusztig left cells in the symmetric group [,
Theorem 1.4 and §4], we may assume that there exist two elements s and s’ in
{s1,--,81-1, 8141, - - -, Sn—1} such that ¢/ = s'o and so < 0 < ¢’ < so’. Let u = a;sq4
and v’ = @;8'a;. Then u and v’ belong to {s1,..., 811,841, --,5,_1} by [[.g, and

uaof !t < ot < Waof = o’ < uao’ 7

So (*) follows from Corollary R.4. O

2.C. x-operation. We shall recall the definition of the *-operation (see [[, §4])
and prove some properties which are particular to the type B. Let us introduce
some notation. If 1 <i<n—2and z € W,,, we set

Ri(x) ={s € {si,si11} | l(zs) < l(x)}.
We denote by D;(W,,) the set of x € W, such that |R;(z)| = 1. If 2 € D;(WV,,), then
it is readily seen that the set {xs;, xs;11} N D;(W,,) is a singleton. We shall denote
by 7:(z) the unique element of this set (it is denoted by z* in [, §4], but we want
to emphasize that it depends on 7). Note that

Yi 0 = ldp,w,) -

We recall Kazhdan-Lusztig result [, Corollary 4.3]: if x and y € D;(W,,), then
(2.11) x ~py <= vi(x) ~p (y).

The fact that ¢ is not conjugate to any of the s;’s implies the following easy fact:
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Proposition 2.12. Let x € W, and let 1 < k <n—1. Then xsx > = if and only if
trs, > tx.

Proof. Indeed, by Lemma [T, we have xs; > z if and only if z(k) < x(k + 1). But,
for any j € I}, there is no element j’ € I,, such that ¢(j) < j' < j. Soz(k) < z(k+1)
if and only if tx(k) < tx(k + 1) that is, if and only if txsy > tz (again by Lemma

I0). O

The proposition implies immediately the following result:

Corollary 2.13. Let x € W, and let 1 <i<n—2. Then x € D;(W,) if and only
if tx € D;(W,,). If this is the case, then v;(tx) = tvy;(x).

2.D. Two relations «=—. The crucial steps towards the proof of Theorem 24
are the following two propositions, whose proofs will be given in sections fj and f
respectively.

Proposition 2.14. Let | € {1,...,n — 1} and assume that b >(n — 1)a. Then
Mt

1 TIO[14+1,n]572-TI"nO[141,n) #

Proposition 2.15. Letl € {1,...,n— 1} and assume that (n —2)a < b <(n—1)a.
L

Then aj—107n) <— @Oy

3. PROOF OF PROPOSITION [2.14

Notation. If u, v € W, are such that u < v, we denote by [u;v]
the Bruhat interval between u and v. In this section, and only in
this section, we assume that I > 1 and b >(n — 1)a and we set © =
TLs T[] ONd Y = T RO 1 0]

3.A. Easy reduction. Note that

tr <z <y<ty,

so it makes sense to compute M, . Moreover, £(y) — £(x) = n — 1 so, by Corollary
2.8, we only need to prove that j,, # 0 (even if b = (n — 1)a). For this, we only
need to show that

(?) iy (0) 7 0.
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3.B. The Bruhat interval [x;y]. First, note that
T = Qi0[i+1,n] = O[i+1,n] A

and Y=81""81-1Sp—1"""SIT = 81" S1-1Sn—1"" " Si10[14+1,n]A1 = C[1,1—1]0[1,n]A1-
Since a; has minimal length in &,,a;, the map
[U[z+1,n];0[1,1_1}0[z,n]] —  [z;y]
z —  zaq
is an increasing bijection [[0, Lemma 9.10 (f)]. Since the support of cp ;1) is disjoint
from the support of oy, the map
(L el X [oprim; On]  — [0 1m); C1-1100m))
(z,2) b zz'
is an increasing bijection (for the product order). Now, oy, is the longest element
of &y, and 071410010 = Cn—1)- Therefore, the map
L cpn—1] —  [Ou41.n]; Oum))
z — Z011,n)
is a decreasing bijection. So, if we denote by P(FE) the set of subsets of a set F,

then the maps
P([lal - 1]) - [1; 0[1,171]]

P(l,n—1]) — [ous1.n); On))

and J . ¢70Nm]

are increasing bijections (here, J denotes the complement of .J). On the other hand,

the map
P(1,l—=1) x P(l,n—1]) — P(1,n—1))
(1,J) — 1JJ
is an increasing bijection. Finally, by composing all these bijections, we get an
isomorphism of ordered sets

a: P(l,n—1]) — 23 y]
I > CIN[LI— A= O[] -

3.C. The elements z € [x;y] such that tz < z. If I C [1,n — 1] is such that
ta(l) < a(I), we set fiy = fta(1),y(0). So we can rephrase (7) as follows:

(27) i £ 0.
But, by the induction formula that defines the p-polynomials and by R.1], we have,
for all I C [1,n — 1] such that ta(l) < a(I),

(3.1) pr=1- Y fi.
IGJC[1,n—1]
ta(J)<a(J)
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Let
E={IeP([l,n=1]) | ta(l) < a(I)}.
The set £ is easy to describe:

Lemma 3.2. Let I C [1,n—1]. Then ta(I) > o(I) if and only if [1,1 —1] & 1.

Proof of Lemma [B-3. By Lemma [[.]], we just need to show that

(#) a(I)1(1) > 0 if and only if [1,1 —1] G I.
For simplification, we set A = [1,l — 1N I and B = IN[l,n—1]. So a(l) =
CACBO'UJL]GJ[.

First, assume that [1,] — 1] € I. Then 0 < ¢;(1) < n, so a[zil}c;cgl(l) =c; (1)
and a(1)71(1) = a; '(c;"(1)) < 0 by [LG. This shows (#) in this case.

Now, let us assume that [1,/ — 1] = I. Then ¢4 = s1---8_1 and cg = 87+ Sy_1
and so ¢;' (1) =1 and ¢5'(I) = n. In particular, a(1)~1(1) = a; ‘o (n) = a; (1) =
—1 < 0 by [L.. This shows (#) again in this case.

Now, let us assume that [1,{ — 1] & I. Then ¢;*(1) = I and cz'(l) < n and so
aﬁl]cglc/&fl(l) > 1. So a(I)7*(1) > 0 by [.§. The proof of (#) is complete. O

3.D. Computation of the fiy. We shall now compute the family (f;);ee by
descending induction on |/|, by using the formula B.I. For this, the following well-
known lemma will be useful.

Lemma 3.3. If S is a finite set and I & S, then Z (-1 =o.

ICJCS

To obtain the value of iz, the proof goes in three steps.

(3.4) If[l,n—1)C I & [1,n—1], then fiy = (—1)" 1.

Proof of B.4. First, note that I € £ by Lemma B.J. We argue by descending in-
duction on |I|. If |[I| = n — 2, then fi; = 1, as desired. Now, let us assume that
[l,n—1C I ¢ [1,n—1] and that iy = (=1)" VI for all I & J ¢ [1,n — 1]. Then,
by B.I], we have

r=1- > (=p~M

I1GJG[1,n—1]
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Therefore,
fir = 1o (=1 (2 - STy
1CJIC[1,n—1]
the last equality following from Lemma B.3. O
(3.5) If I € & is such that [l,m — 1] Z I and I € [1,1 — 1], then fi; = 0.

Proof of B-J. We shall again argue by descending induction on |I]. Let I' = T U
[[,n — 1]. Then, by B.1], we have
pr=1-— Z Py — Z -
Je& Je&
IGJ and I'CJ IGJ and I'ZJ

But, if J € £ is such that I & J and I’ € J, (or, equivalently, [I,n — 1] € J), then
ft; = 0 by the induction hypothesis. On the other hand, if J € £ is such that [ & J
and I' ¢ J, then ji; = (—1)""VI by B-4. Therefore,

D DI o s T D o Ve DI G VA

1T md 1C I'CIG(Ln—1] 1eICin1]
by Lemma B.3. -
(3.6) IfI C1,1—1], then fiy = (=171,

Proof of B.4. Note that I € £. We shall argue by descending induction on |I|. First,
for all J such that I & J C [1,n — 1], we have ta(I) > a(I). Therefore, fif;—1 = 1,
as desired.

Now, let I & [1,I — 1] and assume that, for all I & J C [1,] — 1], we have

fiy = (—1)"7=I. Then
pr=1- Z/]I-

JEE
1GJ

Now, if J € £ is such that I ¢ J, then three cases may occur:
o If J C[1,1—1], then iy = (—1)""'"I by the induction hypothesis.
o If JZ[1,l—1] and [l,n — 1] Z I, then fi; = 0 by B.3.
o If [[,n—1] C J, then fi; = (1)1l
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Therefore, if we set I’ = I N [[,n — 1], then we get

=1- Y CpVe 3 ey

'cIgiin-1] 1GIC[L,I-1]
But
I S o e S G D
I'CIglln—1] 'cIC(in-1]
and o Z (_1)1—1—\J| _ (_1)l—1—|1| _ Z (_1)l—1—|J\ _ (_1)1—1—\1\
1GJC[L,I-1] ICIC1,1-1]
by Lemma B.3. The proof is now complete. O

As a special case of B.0, we get that
fio = (=)'
This shows (7). The proof of the Proposition is complete.

4. CONSEQUENCE OF PROPOSITION

The aim of this section is to prove the following

Proposition 4.1. Let I € {0,1,...,n}, let o, B € Y,y and let o and 0’ € &,
be such that o ~p o'. Assume that b > (n — 1)a. Then

aqoft ~p a0’ 57

REMARKS - (1) The condition o ~j, ¢’ does not depend on the choice of a and b in
I'. Indeed, by [B, Theorem 1], 0 ~ ¢’ in W, if and only if 0 ~;, ¢’ in &;,,_;. But
this last condition depends neither on the choice of b (since t & &;,,—;) nor on the
choice of a (provided that it is in T'sy).

(2) If b > (n — 1)a, then the above proposition is proved in [, Theorem 7.7] (see
also [[ll, Corollary 5.2] for the exact bound) by a counting argument. The proof below
will not use this counting argument but uses instead the proposition B.14}: it allows
to extend the scope of validity to the case where b = (n — 1)a (this is compatible
with [J], Conjecture A (b)]). O

Proof. First, recall that a;0371 ~1 a;0’371 by Poposition B.1(. This shows that we
may (and we will) assume that ¢ = o’. We want to show that aqof8~t ~p o371
We shall use induction on n. So let (P,) denote the following statement:
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(P,) For all [ € [0,n], for all sequences 1 < iy < -+ < 4, < n, for all
o € 6, and for all 8 € Yj,;, we have ry 1y, 1,087 ~p
Ty To ST

The property (P;) is vacuously true and the property (FP») can be easily checked
by a straightforward computation. So we assume that n > 3 and (F,,) holds for all
m < n. Now, let [ € [0,n], let 1<i; < -+ < i <n be a sequence of elements
of [1,n], let 0 € &;,-; and let § € Y;,,;. As a consequence of this induction
hypothesis, we get:

Lemma 4.2. If k € [1,1] is such that iy < n, then ryri,---ry0B37 1 ~p
P TRTi, T o B

— e . -1 [ . . -1
Proof. Let w = 14,14, -+ rjo37" and w' = ry---rprg, o087 . Let us

write w = vz~! and w' = v'2'~! with v, v’ € W;, and z, 2’ € X0, First,

note that

ww' ™t = (i -eriy) - (rreerR) T E W
Therefore, x = 2’ and

”U’U/il — (rh .. 'Tik) . (7’1 .. ‘Tk;)il € mk

Moreover, by Lemma [[.19, we have 0 < x(1) < -+ < z(ix). So, if i € [1,ix],
then v=1(i) < 0 (resp. v'71(i) < 0) if and only if i € {i1,...,ix} (resp.
{1,...,k}). So, by Lemma [[.1§, we have

1 1

— / —
V=TT TY and v =ry--orETy O,

where 7 € & ;, —r and v € Yy, ;. But, since i < n, it follows from the
induction hypothesis that v ~r, v'. Here, note that v ~ v' in W;, if and
only if v ~, v in W, (see [f, Theorem 1]). So, by [0, Proposition 9.11],
we get that w ~p, w'. O

Corollary 4.3.
(a) If iy < n, then ryri, - ri106*1 ~p Ty TS
(b) If iy = n, then riri, - ri106*1 ~L T - T T 3L

By Corollary .3, we only need to show that
(7) 1Ty T Tpo 3 2y riry - o BN

Now, let us write o = (A, ;u), where A € &y and p € Spyq ). Three cases may
occur:

o Case 1: It A\ =1 and p1 = 041, then o = 041, Since rirg - ri_rpo ™! =
SkSp_1 -+ 8110087 for all k > [, we have
—1 -1
Ty raTo 3 Kpryccmiarp108 <poce-

1 1
KL rearpoBT Ly mano B
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On the other hand, by Proposition and Lemma P.9, we get ry -+ -r_1ro8~1 <,
ry 117,031 This shows (?) in this particular case.

o Case 2: If 1 # 0141,5), then n > [ +2 and there exists k € [l +1,n — 1] such that
sgo > o. Let i be maximal such that s;c > ¢. We shall prove (?) by descending
induction on 4. For simplification, let x = ry ---r_1rp,o57 L.

First, if i = n — 1, then, by [[.4, we have (since n —2 > [ —1)

-1 -1
Spo® =T1°  T|_18p_2Tn0B = =71 T_1TpSp_103" > S, 92,

—1 —1
Sp1T =711 T_1Sp_1Tn0 B T1- - T11Tp10B " <

and Sy 08, 1T =11 T 1Sy aTp 10T =T T 00 8T < Sy
So z ~p $,_1x by Corollary B.4. On the other hand, by Corollary f.3, we have
Sp_1x ~p 11 -1o37L so we get (?7) in this case.

Now, assume that [ +1 < i < n —1. Then s;;10 < o (by the maximality of 7).
Two cases may occur:

o Subcase 1: If s;s;110 < s;410, then we set 7 = 5,410 < o and
y=ry---1_17,7B L. Then y = s;z < x by [.4. Moreover, still by
[.4, we have

~1
Si1X =711 T_1TpSioB " >x

and 818X =171 - -rl_lrnsisiﬂaﬁ_l < 8;T.

So x ~p y by Corollary P.4. But, by the induction hypothesis (and
since s;417 > T), we have y ~; @781, But ¢ ~; 7 (again by
Corollary B4 and since s;7 < 7 < 0 = 8417 < 5,0), 80 qo3~ ' ~p
a;737! by (*). This shows (?).

o Subcase 2: If s;8;110 > s;110, then s;.15,0 > s;0 (by an easy appli-
cation of Lemma [[.1) so, if we set 7 = s;0 and y =71 -+ -1 17,7871,
we have, by the induction hypothesis, y ~;, a;73~!. Moreover, s;, 7 >
T = 8;0 > 0 > s;410 and, by the same argument as in the subcase 1,
we have s;y >y = s; 1 > x > s;x. So x ~p y, 0 ~p 7. So it follows
from (%) and x ~1 a;o037, as required.

o Case 3: If A # 1, then we set x = 7 ---r_rpo3 tand y =7 --- 10371 We
want to show that o ~y y. For this, let 2’ = w,z, v = w,y, o' = 0,00, 0,1, and
B = Bo,04-1;. Then, by Proposition [.I§,

o =rrg 0’370 and Y =g - rparno’ BN

But, by Corollary [I.3, we have

/ ! Q! — / ! Ql—
xo~p Ty 3 ' and Y ~p T TR0 3 L
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Now, if we write o/ = (X, '), with X' € &, and i € Sp_i41,n), We have
W # 0111, (because A # 1). So, by Case 2, we have

1 a1—1 1 q1—1
TL Tp1Tp0 3 ~p Ty o

Therefore, 2/ = w,z ~1 3y = w,y, and so x ~1, y by [0, Corollary 11.7]. O

Corollary 4.4. Let | € {1,....,n}, let 1 <i; < -+ < iy <n, let 0 € G, let
B €Yy and let k € [1,1] be such that b > (i — 1)a. Then

Tig =Ty O~ T Tl 0 T4,0.

l

Proof. The proof proceeds essentially as in Lemma .2, Let w = r;, ---r;0, let
w =7y rpry,,, -+ r,0 and let us write w = vz~ and w' = 'z’ with v, v € W,
and z, 7' € X,

Since w'w™ = (ry---ry) " Hry --om,) € Wi, we get that x = 2/. The same
argument as in Lemma . shows that v = r;, ---r; 7 and v = ry - - - 7,7’ for some
7, 7 € ;. But Vvl = wwt = (ry-cor)Hri, oo om,), so T = 7. Now, by
Proposition .1, v ~1 v. So w ~1, w’ by [[L0, Proposition 9.11]. O

5. PROOF OF PROPOSITION

Notation. In this section, and only in this section, we assume that
1<l<n—1andthat (n—2)a<b<(n—1)a.

We define a sequence (C});—1 < j < n—1 by induction as follows:

Cl—l = ]-7
CYl :Csla
Cj+1 :CS]'+1C_]‘_C_]‘717 1fl<j<n—2

Let p denote the coefficient of Calflg[l,n] in the expansion of Cnflcazou,n] in the
Kazhdan-Lusztig basis. To prove Proposition .17, it is sufficient to show the fol-
lowing statement:

1 ifb=(n—1)a,
M:{ (n—1)

(5.1) Q7 '¢" '+ Q¢ if(n—2)a<b< (n—1)a.
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Proof of p.1. If r € Z, we set

Hulrl= & AT, = ACy
Le(w) < Le(w) <
We shall show that
Cnflcalo[l - Tsn 151415141071, n]

(5°2) +Q~ 16]" lTGl—IO'[L,n] mod (Hn [l - 2] + HSO)

The statement will be proved at the end of this section. Let us conclude the
proof of p.1, assuming that holds.
Let

- )1 ifb=(n—-1)a,
P01 + Qg it (n—2)a<b< (n—1)a.
We want to show that u = 1. But, by b.2, we have

Cn 1Cala[ln - an 18141510107 ] [LCal 10[1,m) c Hn[l _ 2] +H:0

So there exists a family (), (w) <1—2 of elements of A o such that

<0
10[1,n _Csn 1814151010 n) Ncaz 100,n] E Vwa < Hn :

L(w) < 1-2

Cn 1 Ca

Let v}, = vy + Uy — 14(0). Then

~ / <0
Cn—lcam[z,n] - Csn71~~~81+181¢110[l,n] - MC@L—N[z,n] - E : Vwa S Hn

L(w) <1-2
and 7., = v,,. So, if we set
C = CotCloyyy = Conrosiisiionm ~ ACariony = D, VuCu
Le(w) <1-2
then
C=C and CeHP°
So C'= 0 by [[[0,, Theorem 5.2], and so u = fi, as expected. O

So it remains to prove the statement [(.2:

Proof of p.3. First of all, we have Coaopm
01, (in Sy,) are disjoint. Moreover, since [ < n—1 (i.e. @y € W,,_1) and b > (n—2)a,
it follows from [, Propositions 2.5 and 5.1] that

(5.3) Cor = (T + Q"N + Q7Y (T, + Q)T

= Cq,Cyy,,)» since the supports of ¢; and



24 C. BONNAFE

Let H(S,,) denote the sub-A-algebra of H,, generated by T,,..., Ts, _,. It is the
Hecke algebra of &,, (with parameter a). Then H,[l — 2] is a sub-A-module of H,,.
Therefore, it follows from (.3 that

Cal = (Twl + Qil Z ,-Z—‘tl---ti_lti+1---tl)T071 mod Hn[l — 2]
1<i<l

But, if 1 <7 <[, then
b1 ticatipr -6 = SiSiqy1 - S1-1Q1-101-1S51-1 " * * Si+15i5
and 0; = ;41 - S1_28-101_18;_1 * * - Si+15;- Moreover,
U(o7) = (S141—i -~ S1—251-1) + L(01-151-1 - - - Si1154)-

Therefore,

Gl = Tal + Q Z §iSi+1S1—1 al 1(T81+1—i"'51—281—1)_1 HlOd Hn[l - 2]

1<igl

Finally, we get
CalU = T CU[l n) + Q Z Cli,1—1] al 1 TC[1+172',171])7IC<7[1,71] mod Hn[l o 2]'

1<igl

Now, if | — 1< j<n—1, then

J
CiCaoyn = Z ¢ Ty y T Con
(5.4) i=l—1
+Q_1Cj Z Tc[i,lfl]Talfl(Tc[l+17¢,171]>710¢7[z,n] mod Hn[l - 2]'
1<i<l
Proof of [5-4. We shall argue by induction on j. The cases where j =
[ —1 or j =1 are obvious. So assume that j € [I,n — 2] and that (.4
holds for j. By the induction hypothesis, we get
J Jj—1
Ci+1Ca0pm = Csjpn Z ¢ Ty y TuCop g — Z ¢y, T Coy,
i=l—1 i=l—1

+Q_1Cj+1 Z Tc[i,lfl]Talfl(Tc[l+17i,l71])7lc‘7[l,n] mod Hn[l - 2]'

1<i<l
Now,
-1
CS]+1 TazC Td[l,j+1]TalC‘7[l,n] +q Td[z,j]TazCU[z,n]
and, if [ —1 <7 < 7, then
Csj+1Td[l,i]TalCU[l,n] = T CSJ+1C 9i,n] <q_'_q )Td[l I, C"[ln

Now p.4 follows from a straightforward computation. O
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Since dj;) € ¥),,—, we have
Td[l,i]TalCU[l,n] = Td[z,i]alCU[z,n] = Td[l,i]ala[l,n] mod H;O’
so, by B4, we get
Cn1Caoy = Tay _yyaroy

+ Qilcnfl Z Tc[i,l—l]Talfl (Tc[l+17¢,171])7100[l,n] mod <Hn[l o 2] + HEO)
1<i<l
For 1 <i<llet X;=Q'C,_ 1oy Tal_l(Tc[m_u_l])*100”’”]. There exists a fam-
ily (fl)fg in—1) of elements of Z such that C,_; = Z[g[z,nq] frCq,. Moreover,
f[l,nfl} =1. AlSO,

(Tc[lﬁ»l—i,l—l])il = Z (q - qil)Fli'J‘TcJ.

JC[l41—4,1—1]
Therefore,
X = Z fIQil(q - qil)iiliLﬂCdITC[i,l—l]TalflTCJCO'[l,n]'
IC[l,n—1]
JC[l41—4,1—1]
Let Ajry = f1IQ (g —q ')y~ |J‘Cdl Lo Te,Co - 1f we express A;;; in

the standard basis (T, )wew,, then the degree of the coefﬁeients are bounded by
—b+ (i — 1 —|J|+|I])a. Since b > (n — 2)a, this degree is in "<, except if i = [,
J =@ and I = [[,n — 1]. Therefore,
Cnflcalo[lyn] = Td[l,nfl]alo'[l,n] + Al’[hn,l]’g mOd (Hn[l - 2] + H;0> :

But

Al,[l,n—l],@ = Q 1(q q 1)l 1Csn 1 SzTaz 10 O(l,n]
= Q (q q 1>l lTaz 1CSn 1 SLC O[l,n)
= Q g—a ) e+ a )" 0, Coy s

the last equality following from Theorem B3 (a). So Ay ,-11,0 = Q '¢" Ty, ,C,

aj—1"0]1,n]

mod H°. The proof of f.9 is complete. O

6. CONSEQUENCE OF PROPOSITION

The aim of this section is to prove the following proposition:

Proposition 6.1. Let | € {1,...,n} and assume that b <(n — 1)a. Then

8182+ * Sp—1A1-10[ n—1] ~L tS1S2* * * Sp—1G1-101 1]
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Proof. Let uy, = ts182+** Sp_141_10[n—1] = tS1*** S| 141-151 " * * Sp—10[n—1] = QO p]-
We need to show that tu;, ~p w., (note that tu;, < u;,). We shall argue by in-
duction on n, the cases where n = 1 or 2 being obvious. So assume that n > 3 and
that tu;,—1 ~p wp_1 if b <(n — 2)a.

First, assume that b <(n — 2)a. Then

Ul = Ulp—15n—1" " * S14181 if I <n—1,
Uy = Qp = U—1n—15p—1 - S251t it I =n.

By the induction hypothesis, we have tuy 1 ~ g n—1 S0, since S,_1 - --5;415 and
Sp—1 - S281t belong to X1, it follows from [I0, Proposition 9.11] that tu;, ~r up.

This means that we may, and we will, assume that (n —2)a < b <(n — 1)a. But,
by Proposition P.13, we have Q—10(1n] <L QO[] = U,- On the other hand,

LU = ClLI—1)0—10(1n) SL CR1-1]U-10(1,n] SL *°° SL SI-1G-10(1,0] SL Q—10]1,n]-

S0 Uy, ~1, Uy, as desired. O

REMARK 6.2 - Note that the converse of Proposition f.I] also holds. Indeed, if
b> (n—1)a and if x ~p y for some z and y in W, then {(z) = ((y) (see [,
Theorem 7.7] and [, Corollary 5.2]. O

7. PROOF OF THEOREM [[.24]

7.A. Knuth relations. By the main results of Taskin [[J, Theorems 1.2 and 1.3]
or of Pietraho [I2, Theorems 3.8 and 3.9], the following three lemmas will be crucial
for our purpose:

Lemma 7.1. Let w € W,, and let i € I7 . Assume that one of the following holds:
(1) i>22andw(i) <w(—1) <w(i+1),
(2)i<n—2and w(i) <w(i+2) <w(+1).

Then w ~p ws;.

Lemma 7.2. Let w € W, and let i € I | be such that b > ia and w(i)w(i+1) < 0.
Then w ~gr ws;.

Lemma 7.3. Let w € W, and leti € I | be such that b < ia and |w(1)| > |w(2)| >
<> |lw(i+1)|. Then w ~g wt.
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7.B. Proof of Lemma [7.1. Let w € W, and let i € I, ;. We need to separate
the two cases:
(1) If i > 2 and w(i) < w(i — 1) < w(i + 1), then, by Lemma [[.1, we have
WS;S;_1 > ws; > w > ws;_1 and so ws; ~r w by and Corollary P-4
(2) Ifi<n—2and w(i) < w(i+2) <w(i+1), then ws;s;41 > ws; > w > ws;41
and so ws; ~p w by [.2J and Corollary P.4.

The proof of Lemma [/.]] is complete.

7.C. Proof of Lemma [T.2. Let w € W, and let i € I,"_; be such that b > ia and
w(i)w(i+1) < 0. By replacing w by ws; if necessary, we may assume that w(i) < 0
and w(i+1) > 0.

Let us write w = xv, with z € X,(fH) and v € W;,;. Then vs; € W;,; and
ws; = xvs;. Therefore, by [[L0, Proposition 9.11], we only need to show that vs; ~p, v.
But 0 < z(1) <--- < z(i+1) (see Lemma [[.19), and v(j) € ;1 for all j € I,11. So
v(i)v(i + 1) < 0. This means that we may (and we will) assume that i =n — 1. So
we have

b>(n—1)a, wn—1)<0 and w(n)>0,
and we want to show that w ~g ws,,_1 or, in other words, that

(?) w! ~Tr sn_lw_l.

Let a = a1, 0 = -1 and § = [,-1. Then
w !t = aqoqf.

By Lemma [[.15, there exists a unique sequence 1 <i; < --- < 4y < n such that

Qap =T, -1y, SO

~1 —1
W=y T, 3

But, again by Lemma [[.15, we have w™!(i) < 0 if and only if i € {iy,...,4}. So
le =n—1.

So
wt = Tiy - ~ril71rn,laﬁ’1.
and
Sy, qw L= Ty - -rilflfr’naﬁfl.

So the result follows from Proposition [.1].

7.D. Proof of Lemma [7.3. The proof goes through several steps.

First step: easy reductions. Let w € W, and let i € I be such that b < ia and
lw™(1)] > |w™(2)] > -+ > Jw™ (i + 1)|. By [.23, Lemma [[-] is equivalent to show
that tw ~p w.
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Let j € [1,4] be the unique element such that (j —1)a < b < ja. Then |w™1(1)| >
lw=(2)] > -+ > |w™'(j+ 1)|. So this shows that we may assume that ¢ = j or, in
other words, that (i — 1)a < b < ia.

Let us write w = vz~!, with v € Wiyq and 2 € X9, Then 0 < z(1) <
<+ < x(i + 1) by Lemma [[L.I9, so [v=4(1)] > [v=}(2)] > -+ > [v7'(i + 1)|. Then
tw = (tv)z~! with tv € W;,; so, by [[0, Proposition 9.11], it is sufficient to show
that tv ~p v (again, by [, Theorem 1|, v ~, tv in W;;; if and only if v ~, tv in
W,). This shows that we may (and we will) assume that ¢ = n — 1. In particular,
lw™ (k)| =n+1—k for all k € [1,n].

By [L0, Corollary 11.7], this is equivalent to show that tw,w ~p w,w (and note
that |(w,w) 1 (1)| > [(w,w)~1(2)| > -+ > |(w,w) ' (n)|). So, by replacing w by tw,
wyw or tw,w, we may (and we will) assume that w=!(1) > 0 and w=!(n) > 0. Since
moreover |w™(1)] =n and |[w(n)| =1, we get w™(1) =n and w(n) = 1.

As a conclusion, we are now working under the following hypothesis:

Hypothesis. From now on, and until the end of this subsection, we
assume that

(1) (n—2)a<b<(n—1)a,

(2) w (1) =n and w™'(n) =1, and

(3) lw™ (k)| =n+1—k for all k € [1,n].

And recall that we want to show that

(7) tw ~p w.

Second step: decomposition of w. Let v = s,_1 - $9s7w. Thenv™'(n) =w™ (1) =n
by (3), so v € W,,_;. Therefore,

(7.4) W= 8182 Sp_1U, S1S9---Sp_1 € X,, and veW,_1.
Note that

(7.5) v (k) =w T (k+1)

for all & € [1,n — 1], so that

(7.6) P D> P 2) > > o (= 1)

and, by (2),

(7.7) v i n—1)=1.

Let us write v = r;, -+ r;,087Y, with | = 4,(v) = f(w), 1 < iy < -+ < iy <n—1,
0 €6, -1 and f € Y,,_1. By [[.[] and Lemma [.T5, we have

(7.8) ’il < n— 2.
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Finally, note that
(7.9) g = U[l—l—l,n—l]-

Proof of 9. By [(7], we have |[v='(i1)| > |v™(ia)| > -+ > |v7'(4)|. Therefore,
it follows from [ that B(c~'(1)) > B(c™'(l — 1)) > -+ > B(c7(1)). Since
o stabilizes the interval [1,[] and since ( is increasing on [1,[] (because it lies in
Y, n—1), this forces o(k) = k for all k € [1,1].

Similarly, if 1 < j; < -+ < j,_; < n denotes the unique sequence such that [1,n] =
{iv, iy Ui g}y then [0 ()| > [071 ()| > -+ > v} (jn)| by 7 So
it follows from [[.Iq that (e~ *(I+1)) > B(c*(I+2)) > --- > B(c7*(n)) and, since
o stabilizes the interval [[ 4 1,7n] and 3 is increasing on the same interval, this forces
ol+k)=n+1—Fkforke[l,n—1. O

Third step: further reductions. We first need the following elementary result:
(7.10) 8182 " Sp_1Tiy =Ty = Ti41°** Tiy+1S1+1S142 * * * Sp—1-

Proof of [[_10. This follows easily from [[.3 or from [[.4. O

Now, let 7 = 8;1185140 - Sp_103 L = 0‘[[+17n}/871 € 6,,. Then, by [[.1(, we have
W =Ty 4+1T594+1 " Ty41T and tw = T 4141 0 - - Ty 4+1T-
By [[.§, we have b > (4, + 1 — 1)a, so, by Corollary [f.4, we have
W~y Tolg - - T4 T and tUJNLTlTQ""I"H_lT.
So we only need to show that rors---r 17 ~p rire---r ;7. This means that we

may (and we will) assume that (iy,d2,...,4) = (1,2,...,1).

Hypothesis. From now on, we set w' = s; -- -sn_lalcr[lﬂ,n_l]ﬁ*l =

T« Tl+10-[l+1,n]ﬁ_17 with ﬁ c }/E,nflfl'

We need to show that

(77) tw' ~p w'.

Fourth step: x-operation. We shall now use the s-operation (see §2.0) for show-
ing that we may further reduce to the case where § = 1. For this, we need
to study study the action of the ~;’s on w’, when possible. Recall that w' =
5189 - 'Sn—1a10[1+1,n—1}571 with 8 € Yy, 1.

Proposition 7.11. Assume that 3 # 1. Then there exists i € [1,n — 2] such that
w' € Dy(W,) and vi(w') = 81+ sp_1ai0p11,0—1)3" " where ' € Y, 1y is such that
(B = £(p) — 1.
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Proof. We have 041,111 = @0[41,0-1], SO W = 8182 Sp_10711,0—1)(@f) " =
$152 - S101m(wB) . Let 1 < jy < --+ < jy <n—1 be the unique sequence such
that @;8 = r;,1j,---rj,. Since {(8) > 0, we have (j1,ja,...,51) # (1,2,...,1), so
there exists k € [1,1] such that ji — jx—1 = 2 (where jo = 0 by convention). Note
that jr < n so jp + 1 € [2,n]. We have, by [[.I

W' (Ji)s1 - 8100 (g, - 7) T 0k) = s1e e siopgn (B —1—1)
= —s1--s(l+1—k)
— (+2-k) <0
and
W' (Jr = D)s1 - 8100410 (rjy - 75) Gk = 1) = s1-si0ps1m (0 + @)
= s1---85(n+1-9q)
= n+1l-qg>0

for some ¢ € [1,n — []. Moreover, a similar computation shows that (with the
convention that jiy1 =n+ 1)

—(l+1—=k) if jpep1 =Jx +1
W= EEER e Zaet
n—gq if jrg1 > g + 2.
In any case, we have
w' (k) < w'(Gx +1) <w'(jr —1).
This shows that
w'sj, 185, < w'sj 1 <w' <w's;,,
So w' € Dj,_1(W,,) and v, 1 (v') = w'sj,_1 < w'. Now, let §' = s;, 5. An easy
computation as above shows that 5’ < 3, so that 3’ € Y, ,,_;_; by Deodhar’s Lemma

(see [B, Lemma 2.1.2]). So v;, (w') = 81+ Sp_101041,n—1)3" " where 3’ € Y} ,,_1_, is
such that ((5") = () — 1. O

Last step: induction on the length of 3. We shall now show (7?) by induction on
0(B). If ¢(B) = 0, then this follows from Proposition [.]. If ¢(5) > 0, then, by
Proposition [T1]], there exists ¢ € [1,n — 2] such that w' € D;(WW,,) and v;(w') =
1+ Spo1@0f41, 10~ where 3 € Yi,_1_; is such that £(3") = £(3) — 1. By the
induction hypothesis, we have v;(w’) ~p, ty;(w'). But, by Corollary .13, we have
tyi(w') = v (tw'). So v;(w') ~p vi(tw'). Therefore, w’ ~p tw’ by P11 The proof of
Lemma is complete.

7.E. Conclusion. We shall now complete the proof of Theorem [.24. This will
follow from the results of Taskin [[[J, Theorems 1.2 and 1.3] or of Pietraho [[3,
Theorems 3.8 and 3.9]. The results of Taskin and Pietraho are equivalent, but
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stated in slightly different forms; we could use any of them to conclude. We shall
show here how it is possible to conclude by using Pietraho’s results.

Let us first prove (a). So assume that ra < b < (r + 1)a and let w and w’ be
two elements of W, such that w ~% w’. By [[J, Theorems 3.8 and 3.9] and an easy
induction argument, we may assume that we are in one of the following three cases:

o If there exists i € /| such that v’ = ws; and one of the following holds
(1) i z2and w(i) <w(i—1) <w(i+1),
(2) i<n—2and w(i) <w(i+2) <w(i+1).
Then w ~ w' by Lemma [/

o If there exists ¢ € I- N I7 | such that w' = ws; and w(i)w(i + 1) < 0. Then
w ~r w' by Lemma [[.9 (and because b > ra > ia).

olf r <n—2 w =wtand |w(l)| > |w(2)|>---> |w(r+2)|. Then w ~ w' by
Lemma (and because b <(r + 1)a).

This completes the proof of (a) whenever ? = R. If 7 = L, then the result follows
from [[.23. If ? = LR, then the result follows from the fact that ~7 , is generated
by ~7 and ~%.

The proof of the statement (b) is entirely similar. The proof of Theorem [[.24] is
complete.
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