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Abstract
The data validation consists in obtaining an estimation of the true values of process variables that respect the balance
equations. Generally, the procedure needs the knowledge of the variance of the measurement errors; unfortunately, in
most situations, we only have a rough estimation of this variance and therefore the data validation procedure gives
results depending on this poor estimation. A pioneer work of Almasy and Mah (1984) presents a solution to this
problem based on the analysis of the constraint residuals. Darouach et al. (1989) developed a slighty different
approach based on a maximum likelihhod estimator. Here we present a direct method that simultaneously estimates
the variances of the measurement errors and reconciles the data with respect to the balance equations. Some
numerical results illustrate the efficiency of the proposed method.
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Introduction
Most of the data validation techniques are based on the
assumption that the measurement errors are random
variables obeying a known statistical distribution.
Almost without exception, the techniques use a given
variance matrix of the measurement errors. However, in
most practical situations, this matrix is unknown. The
problem of estimating simultaneously the measure-
ments and their variances has already been investigated.
Almasy and Mah (1984) have proposed a method that is
based on the sample evaluation of the variance matrix of
the residuals. More precisely, they minimize the sum of
squares of the off-diagonal elements of the measurement
error variance matrix subject to the constraint that links
this variance to that of the residuals. This method gives
an analytical solution and doesn’t make any hypothesis
on the statistical distribution of measurement errors.
Based on this idea, Darouach et al. (1989) have also
proposed a method of estimating the variance matrix
that is based on the maximum likelihood estimator
method and makes use of the model constraints and the
statistical properties of the residuals. More recently,
Keller and Darouach (1998) have enhanced the previous
method and proposed to estimate some off-diagonal
elements of the measurement error variance matrix due
to correlated measurements. The method proposed in
this paper is inspired from the last but one cited work of
Darouach. The measurement error variance matrix is
estimated by using a maximum likelihood estimator,
however this estimation is constrained by the process
model only and doesn’t require a sample evaluation of
the residual variance.

The paper is organized as follows. After this short
introduction, the second section states the problem in
the case of linear steady-state process operating around a

given point. The proposed solution is described in the
third section. In the fourth section, it is extended to the
case of several steady-state operating points. Some
numerical results, presented in the fifth section,
illustrate the efficiency of the proposed method.

Statement of the problem
Let us consider a process, under steady state conditions,
characterized by the vector of state variable X* . The
measurement equation is taken as:

Xi = X* + ei i = 1,...,N X* ∈ Rv.1 (1a)

where N  is the number of measurements, ei  the

measurement errors considered as independant, centered
and with a variance matrix V.

The model of the process is:

AX* = 0 A ∈ R p.v (1b)

The probability density function of the measurement
errors is chosen as:

P(e) = 2π( )−Nv /2 V −1/2 exp − 1
2

ei
TV −1ei( )





i=1

N
∏ (2)

that leads to the likelihood function of the estimations

X̂ :

  

L( X̂) = 2π( )−Nv /2 V −1/2 exp − 1
2

Xi − X̂
V −1

2





i=1

N
∏ (3)

A simplification is proposed by defining the moment
matrix:



M( X̂) = ei ei
T

i=1

N
∑ = Xi − X̂( ) Xi − X̂( )T

i=1

N
∑ (4)

Thus combining (3) and (4) and using the trace operator
(Tr) gives:

  

L( X̂) = 2π( )−Nv /2 V −1/2 exp − 1
2

Tr V −1M( X̂)( )





i=1

N
∏ (5)

Therefore, the problem of simultaneous estimation of
the state variables and the measurement error variance
matrix comes down to maximize the likelihood function

(5) with respect to ̂X  and V and subject to the model
constraint (1b).

This maximization is equivalent to the solving of the
following problem:

min
X̂ , V

 φ = N

2
LogV + 1

2
Tr V −1M( X̂)( )

s. t.   AX̂ = 0






(6)

General solution of the problem
From (6), let us define the Lagrangian

L = φ + λT AX̂ λ ∈ R p.1 (7)

The conditions of stationarity for the Lagrangian (7) are
expressed as:

∂L

∂X̂
= V −1 (

i=1

N

∑ X̂ − Xi ) + ATλ = 0

∂L

∂V
= N

2
V −1 − 1

2
V −1M( X̂)V −1 = 0

∂L

∂λ
= AX̂ = 0















(8)

The system (8) is non-linear, so no analytical solution
may be found. A solution based on a hierarchical
calculus using the method of relaxation may be
proposed. From (8b), one obtains:

V( X̂) = 1
N

M( X̂) (9)

In that expression, the variance matrix depends on the
state variable estimations. Equations (8a) and (8c) allow
the state variable estimation to be expressed as:

X̂ = Iv − V( X̂)AT AV( X̂)AT( )−1
A



 X (10a)

where:

 X = 1
N

Xi
i=1

N

∑ (10b)

Equation (10a) clearly shows that the state variable
estimations depend on the variance matrix.

Then, for solving the non-linear system (8), the
following algorithm is proposed:

1) k = 0. Select initial values: ̂Xk = X

2) Compute the moment matrix M( X̂k )  from (4)

3) Deduce the variance matrix V( X̂k ) from (9)

4) Compute the new estimation according

 X̂k+1 = Iv − V( X̂k )AT AV( X̂k )AT( )−1
A



 X

5) According to a convergence test, decide to stop
or change k to k+1 and go to step 2.

Extension to several steady-state points
In real process operation, the operating points are
continuously undergoing changes and steady-state is, in
fact, almost never attained. On a practical point of view,
steady-state has meaning only within the time interval
that is considered. Therefore, it is interesting for state
and variance estimation purpose, to consider sequences
of measurements corresponding to different operating
points even if these sequences are very short. The
proposed method may be extended to that case. If we
carry out p series of measurements, each involving N j
measurements around an operating point X j

*

representing a steady-state operating point of the
process, the set of measurements can then be written as:

Xij = X j
* + eij i = 1,...,N j j = 1,...,p (11a)

These measurements are then linked by the model:

AX j
* = 0 j = 1,...,p (11b)

With N , the total number of measurements

( N = N jj=1
p∑ ), the probability density function of the

errors is defined by:

P(e) = 2π( )−Nv /2

j=1

p

∏ V −1/2 exp − 1
2

eij
TV −1eij( )





i=1

N j

∏

(12)
Defining a moment matrix for each operating point:

M( X̂ j ) = eijeij
T

i=1

N j

∑ = Xij − X̂ j( ) Xij − X̂ j( )T

i=1

N j

∑ (13)

The maximization of the corresponding likelihood
function of the estimations leads to the following
problem:



min
X̂ j , V

 φ = N

2
LogV + 1

2 j=1

p

∑ Tr V −1M( X̂ j )( )
s. t.   AX̂ j = 0                                j = 1,...,p









(14)

The associated Lagrangian may be written as:

L = φ +
j=1

p

∑ λ j
T AX̂ j (15)

Its first order stationarity conditions constitute a non-
linear system that defines the searched solution:

∂L

∂X̂ j
= V −1 (

i=1

N j

∑ X̂ j − Xij ) + ATλ j = 0 j = 1,...,p

∂L

∂V
= N

2
V −1 − 1

2
V −1

j=1

p

∑ M( X̂ j )V −1 = 0             (16)

∂L

∂λ j
= AX̂ j = 0 j = 1,...,p
















As previously, equation (16b), together definition (13),
gives the expression of the variance matrix:

V( X̂) = 1
N j=1

p

∑ M( X̂ j ) (17)

and equations (16a) and (16c) allow, for each operating
point j, the state variable estimation to be expressed as:

X̂ j = Iv − V( X̂)AT AV( X̂)AT( )−1
A



 X j (18a)

where X j = 1
N j

Xij
i=1

N j

∑ (18b)

Then, the solution of the non-linear system (16) may be
obtained using a hierarchical calculus which scheme is
presented figure 1.

1st level
Estimation of the variance
matrix           using eq. (17)V( X̂)

Estimation of the
state variables      

using eq. (18)
X̂1

Estimation of the
state variables      

using eq. (18)
X̂p

2nd level

X̂pX̂1

Initialization

X̂ j = X j ,  j = 1,..,p

Figure 1 : Hierarchical estimation

Simulation experiments
Let us consider the carriage network made up of four
process units and eight streams represented on figure 2:
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Figure 2 : A carriage network

The incidence matrix of the corresponding graph that
describes the model of the process may be written as:

A =

1 −1 −1 0 0 0 1 0

0 1 0 −1 −1 0 0 0

0 0 1 0 1 −1 0 0

0 0 0 0 0 1 −1 −1



















For the first trial, 100 measurements of the eight
variables have been simulated around a single operating
point. This point is described by:

X* = 15.0 7.5 12.5 3.5 4.0 16.5 5.0 11.5( )T

The variance of the measurement errors have been
chosen equal to:

dV = 3.0 0.9 2.4 0.2 0.5 5.7 0.3 1.6( )T

The table 1 shows the estimation results for N=100.
Since the “measurement errors” are precisely known in
the simulation experiments, we are able to compute the
true variance matrix of measurement errors based on the
sample population. Therefore,  in order to appreciate the
quality of the variance estimation, the sample variances
of the N repeated measurements have been calculated ;
they are also given in the last column of table 1. Notice
that this calculus is possible in that case as
measurements concern a unique steady-state operating
point. Of course, this kind of “verification” cannot be
done in the general case.

There is a good correspondence between sample standard
deviation of the measurements and their estimation. Of
course, when the number of measurement is increasing,
one obtains a better approximation.



Stream Estimation Estimated Std Sample Std

1 14.989 1.744 1.747
2   7.455 0.926 0.931
3 12.624 1.595 1.603
4   3.469 0.419 0.421
5   3.985 0.796 0.800
6 16.609 2.664 2.678
7   5.089 0.513 0.516
8 11.520 1.335 1.338

Table 1. Estimations of states and variances (N=100)

For the second trial, measurements issued from four
steady-state operating points have been simulated. The
first comprises 15 samples, the second 25, the third 40
and the last comprises 20 samples. The “true” flowrates
at the different operating points are the following:

X* =

15.0 7.5 12.5 3.5 4.0 16.5 5.0 11.5

22.5 11.5 18.5 5.5 6.0 24.5 7.5 17.0

17.5 8.5 14.5 4.0 4.5 19.0 5.5 13.5

15.0 7.5 12.5 3.5 4.0 16.5 5.0 11.5



















T

The variances of the measurement errors have been
chosen identical to that of the previous trial. The table 2
presents the obtained estimation results. The four first
columns are relative to the four operating points; the
last column shows the estimated standard deviation.

Stream Estimation Estimated

Std

1 15.105 22.622 17.363 14.710 1.636
2   7.499 11.666   8.450   7.501 1.041
3 12.367 18.559 14.390 12.234 1.756
4   3.503   5.605   4.004   3.530 0.475
5   3.997   6.062   4.446   3.971 0.704
6 16.364 24.621 18.836 16.205 2.334
7   4.761   7.603   5.477   5.024 0.569
8 11.603 17.017 13.359 11.336 1.200

Table 2. Estimations of states and variances

To have an idea of the noise level, the time evolution of
the two flowrates number 2 and 8 are given at the
bottom of that page.

Conclusion
The proposed method is very useful in data
reconciliation. The major advantage is that the weights
of the measurement (which correspond to the variances
of the measurement errors) are not arbitrarily fixed but
estimated using the available data. Simulations have
shown a good agreement between theoretical values of
the variances and their estimations even if the number of
measurement for each operating point is small. This
method constitutes an alternative to that proposed
recently by Mandel et al. (1998) who represent the
uncertainties on the measurement error variances by
intervals variables.
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