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Abstract—A method is proposed for the classification of urban
hyperspectral data with high spatial resolution. The approach is
an extension of previous approaches and uses both the spatial
and spectral information for classification. One previous approach
is based on using several principal components from the hyper-
spectral data and building several morphological profiles. These
profiles can be used all together in one extended morphological
profile. A shortcoming of that approach is that it was primarily
designed for classification of urban structures and it does not fully
utilize the spectral information in the data. Similarly, the commonly
used pixel-wise classification of hyperspectral data is solely based
on the spectral content and lacks information on the structure
of the features in the image. The proposed method overcomes
these problems and is based on the fusion of the morphological
information and the original hyperspectral data, i.e., the two
vectors of attributes are concatenated into one feature vector.
After a reduction of the dimensionality the final classification is
achieved using a Support Vector Machines classifier. The proposed
approach is tested in experiments on ROSIS data from urban areas.
Significant improvements are achieved in terms of accuracies when
compared to results obtained for approaches based on the use of
morphological profiles based on PCs only and conventional spectral
classification. For instance, with one data set, the overall accuracy
is increased from 79% to 83% without any feature reduction and
to 87% with feature reduction. The proposed approach also shows
excellent results with a limited training set.

Index Terms—Data fusion, hyperspectral data, support vector
machines, feature extraction, extended morphological profile, high
spatial resolution.

I. I NTRODUCTION

In classification of remote sensing data from urban areas,
the identification of relatively small objects, e.g., houses and
narrow streets is important. Therefore, high spatial resolution
of the imagery is necessary for accurate classification. The
most commonly available remote sensing data of high spatial
resolution from urban areas are single-band panchromatic data.
However, using only one high-resolution panchromatic data
channel is usually not sufficient for accurate classification of
structural information. To overcome that problem, Pesaresi and
Benediktsson [1] proposed the use of morphological transfor-
mations to build a Morphological Profile (MP). In [2] the
method in [1] was extended for hyperspectral data with high
spatial resolution. The approach in [2] is based on using several
Principal Components (PCs) from the hyperspectral data. From

each of the PCs, a morphological profile is built. These profiles
are used all together in one Extended Morphological Profile
(EMP), which is then classified by a neural network. The method
in [2] has been shown to perform well in terms of accuracies
when compared to more conventional classification approaches.
However, a shortcoming of the approach is that it is primarily
designed for classification of urban structures and it does not
fully utilize the spectral information in the multispectral or
hyperspectral data.

However this type of data contains a lot of information about
the spectral properties and the land cover of the data. A finer
definition of the classes is possible and more classes can be
considered. Based on the spectral signatures of the classes,
many advanced pixel-based classifiers have been proposed in-
cluding advanced statistical classifiers [3] and distribution free
approaches such as neural networks and support vector ma-
chines [4]. The later one has shown remarkable abilities to deal
with remote multispectral data, especially with hyperspectral
data. However, if the spatial content of the image is not usedthe
resulting thematic map sometimes looksnoisy (salt and pepper
classification noise). Approaches involving Markov Random
Field (MRF) and Monte Carlo optimization have been proposed
in [5], [6]. These approaches use thecontextual information. The
main shortcoming of such algorithms is the computing time,
which can be high even for small data sets. Regarding the high
dimensionality of recently acquired data, both in the spectral
and in the spatial domain, computationally light algorithmare
of interest. In this sense, the MP has been proposed as an
alternative way to use spatial information [1], [7]. Relatively
to the MRF-based classifiers, the MP and its extension to a
multiband image, the EMP, have the possibility to use geo-
metrical contextual information (shape, size,etc) and perform
well on many kinds of data (panchromatic, multispectral and
hyperspectral data). However, as stated above, a shortcoming of
this approach is it does not fully utilize the spectral information
in the data, and consequently several approaches based on the
MP/EMP have been proposed to fully exploit the spatial and
the spectral information [8]–[10].

Each data set has its own properties, defining its ability to
deal with different natures of classes. TableI sums up the
properties of spectral and morphological/spatial data. The first
main consideration is the complementary characteristics of the
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data. It has a consequence in the discrimination ability of such
a feature, as will be seen in the experiments. The fusion of
two types of information should clearly results in an increase
of the classification in terms of global accuracy. The use of
spectral information can be critical for classification of non-
structured information in urban areas, e.g., vegetation and soil
classes while the use of spatial information can be useful
for classification of structured objects, e.g., road and building
classes.

The second consideration is the possible redundancy of each
features set, see [3] for the spectral features and [11] for the
spatial features. Hence feature extraction (FE) algorithms could
be of an interest.

To include both type of information an extension to the
approach in [2] is proposed in this paper. The proposed method
is based on the data fusion of the morphological information
and the original data: First, an extended morphological profile is
created based on the PCs from the hyperspectral data. Secondly,
feature extraction is applied on the original hyperspectral data
and the extended morphological profile. Finally, the extracted
feature vectors from both the original data and the extended
morphological profile are concatenated into one stacked vector
and classified. The proposed approach is different from ap-
proaches in [12]–[14], where the authors had extracted spatial
information and used composite kernel to include both type
of information. Here, feature extraction algorithms are used to
select informative feature from the spectral and spatial domain.

For the multisource classification, Support Vector Machines
(SVM) are used rather than a Neural Network, which was
used in our previous experiment with MP/EMP. The superiority
of SVM, implementingstructural risk minimization, over the
neural classifiers, implementingempirical risk minimization, has
been discussed in [4] (in Chapters 9.6 and 12) and in [15],
[16]. SVM aim to discriminate two classes by fitting an optimal
separating hyperplane to the training data within a multi-
dimensional feature space, by using only the closest training
samples. Thus, the approach only considers samples close to
the class boundary and works well with small training set,
even when high dimensional data sets are classified. SVM have
already been applied for multisource classification in [17]where
several output coding methods were investigated.

In this paper, the proposed approach has been compared
to statistical classification methods and SVM classification.
Experiments were conducted on two different high resolution
remote sensing data sets from urban areas. The effectiveness of
the proposed methodology with a limited training set has been
also assessed.

The paper is organized as follows. SectionII reviews the
use of morphological transformations for processing of hyper-
spectral imagery in urban areas. In SectionIII , the considered
supervised feature extraction approaches are introduced.Sup-
port Vectors Machines (SVM) are discussed in SectionIV.
The applied data fusion schemes are discussed in SectionV.
Experimental results obtained on two ROSIS data sets from
urban areas are presented in SectionVI . Finally, conclusions
are drawn in SectionVII .

TABLE I
SPECTRAL AND SPATIAL DATA PROPERTIES. ’ր’ INDICATES A GOOD

PROPERTY, ’∼’ INDICATES THAT THE PROPERTY MIGHT BE HARMFUL AND

’ց’ INDICATES A CRITICAL PROPERTY.

Spectral features Morphological features
ր Fine physical description ր Geometrical information
ր Directly accessible ∼ Needs to be extracted
∼ Redundancy ∼ Redundancy
ց No spatial information ց Reduced spectral information

II. EXTENDED MORPHOLOGICAL PROFILE

Mathematical Morphologyis a theory aiming to analyze spa-
tial relationship between pixels. For a remote sensing applica-
tion, several morphological operators are available for extracting
geometrical information. An overview of operators can be found
in [18]. In the following sub-section, some basic notions of
mathematical morphology are reviewed. Then, the concept of
the Morphological Profileand its extension to multivalued data
are detailed.

A. Mathematical Morphology

The two fundamental operators in mathematical morphology
areerosionanddilation [19]. These operators are applied to an
image with a set of known shape, called a structuring element
(SE). To erode an image consists of finding where the SE fits the
objects in the image. The dilation, which is dual to the erosion,
shows where the SE hits the objects.

Openingandclosingare combinations of erosion and dilation.
These operators remove from an original image structures of
size less than the SE. But they also modify structures which are
still present in the image after the opening/closing. Thus,they
can introducefakeobjects in the image. To avoid this problem,
geodesicmorphology andreconstructionshould be used [19].
Opening and closing by reconstructions are connected operators
that satisfy the following assertion: If the structure of the image
cannot contain the SE, then it is totally removed, else it is totally
preserved. For a given SE, geodesic opening or geodesic closing
allows to know the size or shape of some objects present in the
image: The objects that are smaller than the SE are deleted
while the other (that are bigger than the SE) are preserved. To
determine the shape or size of all elements present in an image,
it is necessary to use a range of different SE sizes. This concept
is calledGranulometry.

Granulometries are typically used for the analysis of the size
distribution of the structures in the images. Classical granu-
lometry by opening is built by successive opening operations
with an SE of an increasing size. By doing so, the image
is progressively simplified. Using connected operators, like
opening by reconstruction, no shape noise is introduced.

Morphological Profiles(MPs) are defined using the granu-
lometry. An MP is composed of theopening profile(OP) and
the closing profile(CP). The OP at the pixelx of the image I
is defined as ann-dimensional vector:

OPi(x) = γ
(i)
R (x), ∀i ∈ [0, n] (1)

where γ
(i)
R is the opening by reconstruction with an SE of a

size i and n is the total number of openings. Also, the CP at
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Fig. 1. Simple morphological profile with two opening and two closings. In
the shown profile, circular structuring elements are used with radius increment
4 (r = 4, 8 pixels). The processed image is a part of Fig.4.(a).

the pixelx of image I is defined as ann-dimensional vector:

CPi(x) = φ
(i)
R (x), ∀i ∈ [0, n] (2)

whereφ
(i)
R is the closing by reconstruction with an SE of a size

i. Clearly we haveCP0(x) = OP0(x) = I(x). By collating
the OP and theCP , the MP of image I is defined as2n + 1-
dimensional vector:

MP (x) = {CPn(x), . . . , I(x), . . . , OPn(x)} (3)

Example of MP is shown in Fig.1. Thus, from a single image
results a multiband image, whose dimension corresponds to
the number of transformations and spatial information is now
contained in the MP for each pixel. However, an MP is built with
only one band. Therefore, the spectral information is lost.One
approach to deal with this problem is to extract several images
that contain some parts of the spectral information and then
build the MP on each of the individual images. This approach,
namely the Extended Morphological Profile (EMP), is discussed
in the following.

B. Extended Morphological Profile

In order to apply this approach to hyperspectral data, charac-
teristic images need to be extracted. In [11], it was suggested
to use several principal components of the hyperspectral data
for such a purpose. Hence, the MP is applied on the first PCs,
corresponding to a certain amount of the cumulative variance
and a stacked vector is built with the MP on each PC. This
yields to theextended morphological profile(EMP). Following
the previous notation, the EMP is anm(2n + 1)-dimensional
vector:

MPext(x) = {MPPC1(x), . . . ,MPPCm} (4)

wherem is the number of retaining PCs. Example of EMP is
shown in Fig.2.

As with multispectral data, the MP/EMP may include some
redundancy. Classical feature reduction algorithm can be ap-
plied, as detailed in the following section.

III. SUPERVISED FEATURE EXTRACTION

Feature extraction can be viewed as finding a set of vectors
that represents an observation while reducing the dimensionality.
In pattern recognition, it is desirable to extract featuresthat are
focused on discriminating between classes of interest. Although
a reduction in dimensionality is desirable, the error increment
due to the reduction in dimension has to be without sacrific-
ing the discriminative power of classifiers. In linear feature
extraction, the number of input dimensions corresponds to the

number of selected eigenvectors [3]. The transformed data are
determined by

x = ΦT
x (5)

whereΦ is the transformation matrix composed of the eigen-
vectors of the feature matrix,x is the data in the input space
and x is the transformed data in the feature space. We have
in general dim(x) ≥ dim(x). Several statistical extraction
approaches have been proposed for remote sensing data [3],
including Decision Boundary Feature Extraction(DBFE) and
Nonparametric Weighted Feature Extraction(NWFE).

A. Decision Boundary Feature Extraction

It was shown in [20], that both discriminantly informative fea-
tures and redundant features can be extracted from the decision
boundary between two classes. The features are extracted from
the decision boundary feature matrix (DBFM). The eigenvectors
of the DBFM corresponding to non-zero eigenvalues are the
necessary feature vectors to achieve the same classification
accuracy as in the original space. The efficiency of the DBFE is
related to the training set and can be computationally intensive.

B. Nonparametric Weighted Feature Extraction

To overcome the limitations of the DBFE, Kuo and Land-
grebe [21] proposed the nonparametric weighted feature ex-
traction. NWFE is based on the Discriminant Analysis Feature
Extraction by focusing on samples near the eventual decision
boundary. The main ideas of the NWFE are 1) putting different
weights on every sample to compute the local means and 2)
defining nonparametric between-class and within-class scatter
matrices [3].

Many experiments have shown the effectiveness of these
approaches for the classification of hyperspectral data [3]. They
are usually applied on the spectral data, but it was successfully
applied to the EMP [11].

IV. CLASSIFICATION BY THE SUPPORTVECTORMACHINE

So far, in our previous approach [2], [7], [11], [22] the clas-
sification was done with either a statistical classifier (Gaussian
Maximum Likelihood), a neural network or a fuzzy classifier.
Here it is proposed to use theSupport Vector Machines(SVM).
Early work in classification of remotely sensed images by SVM
showed excellent results [17], [23], [24]. In [15], severalSVM-
based classifiers were compared to other classical classifiers
such as a K-nearest neighbors classifier and a neural network
classifier and the SVM using the kernel method outperformed
the other classifiers in terms of accuracy. Multiclass SVM
performances were also positively compared with a discriminant
analysis classifier, a decision tree classifier and a feedforward
neural network classifier with a limited training set [25]. SVM
show good results in the situation of limited training set in[26].
Semisupervised SVM were also investigated for multi-spectral
data classification [27], [28].

SVM are surely among the most used kernel learning al-
gorithm. It performs robust non-linear classification of samples
using the kernel trick. The idea is to find a separating hyperplane
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Fig. 2. Extended morphological profile of two images. Each of the original profile has two openings and two closings. Circular structuring element with radius
increment4 was used (r = 4, 8). The processed image is a part of Fig.4.(a).

in some feature space induced by the kernel function while
all the computations are done in the orignal space [4]. A
good introduction to SVM for pattern recognition can be found
in [29]. Given a training setS = {(x1, y1), . . . , (x

ℓ, yℓ)} ∈
R

n × {−1; 1}, the decision function is found by solving the
convex optimization problem:

max
α

g(α) =
ℓ

∑

i=1

αi −
1

2

ℓ
∑

i,j=1

αiαjyiyjk(xi,xj)

subject to 0 ≤ αi ≤ C and
∑ℓ

i=1 αiyi = 0

(6)

whereα are the Lagrange coefficients,C a constant that is used
to penalize the training errors, andk the kernel function. To
be an acceptable kernel,k should be a positive semi-definite
function [30]. One classical effective kernel is the Gaussian
kernel:

kσ(xi,xj) = exp

(

−‖xi − x
j‖2

2σ2

)

(7)

where the norm is theEuclidean-norm andσ ∈ R
+ tunes

the flexibility of the kernel. A short comparison of kernels for
remotely sensed image classification can be found in [26].

When the optimal solution of (6) is found, i.e., theαi, the
classification of a samplex is achieved by looking to which
side of the hyperplane it belongs:

y = sgn

(

ℓ
∑

i=1

αiyik(xi,x) + b

)

. (8)

To deal with multiclass classification problem, the pairwise
approach was used in our experiments [31]. More advanced
multiclass approaches applied to remote sensing data can be
found in [15]. For the particular case of one-class-classification,
a dedicated methodology is proposed in [32].
The SVM are mainly anon-parametric method, yet some
parameters need to be tuned before the optimization. In the
Gaussian kernel case, there are two parameters:C, the penalty
term, andσ, the with of the exponential. It is usually done by
a cross-validation step, where several values are tested. In our
experiments,C was fixed to200 and σ2 ∈ {0.5, 1, 2, 4} was
selected using a 5-fold cross validation. The SVM optimization
problem was solved using the LIBSVM [33].

V. DATA FUSION

The proposed method is based on the data fusion of the
morphological information and the original data. In a previous
work [34], it was proposed to fuse the classification resultsof
two SVM classifiers, each one working with either the spectral
or the EMP data. It consisted in an appropriate adaptive fusion

Fig. 3. Proposed data fusion scheme.

scheme based on the output’s characteristics of the SVM. The
results in terms of accuracy were increased but it needed two
training of SVM, that could be time consuming.

Here it is proposed to use a multisource strategy to fuse
spectral and spatial information. First, an EMP is created based
on applying the PCA on the hyperspectral data. Secondly,
feature extraction is applied on both the EMP and the original
hyperspectral data. Finally, the extracted feature vectors are
concatenated into one stacked vector and classified by the SVM.

In the morphological processing we usually retain PCs cor-
responding to 99% of the cumulative variance. This is done in
order to reduce the redundancy in the data but keep most of the
variation. The EMP is built using them PCs that correspond
to the 99% variance. Each MP is composed ofn geodesic
openings,n geodesic closing and the corresponding PC. The
SE is a disk with initial radius ofr pixels. The size increment
is s. Hence, each MP has2n + 1 features and the EMP has
m(2n + 1) features. Notingxϕ the features associated to the
spectral bands andxω the features associated to the EMP, the
corresponding extracted features from the FE algorithm are:

xϕ = ΦT
ϕxϕ (9)

and

xω = ΦT
φxω. (10)

The stack vector is finallyx = [xϕ, xω]T .
Fig. 3 presents the data fusion scheme. Note that in this work,

only morphological information is extracted, but it is possible to
extract other types of spatial information with other processing
and include them in the stacked vector.

VI. EXPERIMENTS

A. Data set

Airborne data from the ROSIS-03 (Reflective Optics System
Imaging Spectrometer) optical sensor are used for the exper-
iments. The flight over the city of Pavia, Italy, was operated
by the Deutschen Zentrum fur Luft- und Raumfahrt (DLR, the
German Aerospace Agency) in the framework of the HySens
project, managed and sponsored by the European Union. Ac-
cording to specifications, the number of bands of the ROSIS-03
sensor is 115 with a spectral coverage ranging from 0.43 to
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TABLE II
INFORMATION CLASSES AND TRAINING-TEST SAMPLES FOR THE

UNIVERSITY AREA DATA SET.

Class Samples
No Name Train Test

1 Asphalt 548 6641
2 Meadows 540 18649
3 Gravel 392 2099
4 Trees 524 3064
5 Metal Sheets 265 1345
6 Soil 532 5029
7 Bitumen 375 1330
8 Bricks 514 3682
9 Shadows 231 947

Total 3921 42776

TABLE III
INFORMATION CLASSES AND TRAINING-TEST SAMPLES FOR THEPAVIA

CENTER DATA SET.

Class Samples
No Name Train Test

1 Water 824 65971
2 Trees 820 7598
3 Meadows 824 3090
4 Bricks 808 2685
5 Soil 820 6584
6 Asphalt 816 9248
7 Bitumen 808 7287
8 Tiles 1260 42826
9 Shadows 476 2863

Total 7456 148152

0.86µm. The data have been atmospherically corrected but not
geometrically corrected. The spatial resolution is 1.3m per pixel.
Two data sets were used in the experiment:

1) University Area: The first test set is around the Engi-
neering School at the University of Pavia. It is 610 by
340 pixels. Some channels (twelve) have been removed
due to noise. The remaining 103 spectral dimensions
are processed. Nine classes of interest are considered,
i.e., trees, asphalt, bitumen, gravel, metal sheets, shadow,
bricks, meadows and soil.

2) Pavia Center: The second test set is the center of Pavia.
The Pavia center image was originally 1096 by 1096
pixels. A 381 pixel wide black stripe in the left part of
image was removed, resulting in a “two parts” image. This
“two parts” image is 1096 by 715 pixels. Some channels
(thirteen) have been removed due to noise. The remaining
102 spectral dimensions are processed. Nine classes of
interest are considered, i.e., water, trees, meadows, bricks,
soil, asphalt, bitumen, tiles and shadows.

Available training and testing set for each data set are given in
TableII andIII and Fig.4 presents false colors images for both
data set.

The classification accuracy was assessed with:

• An overall accuracy(OA) which is the number of well
classified samples divided by the number of test’s samples

• An average accuracy (AA) which represents the average of
class classification accuracy

• A kappa coefficient of agreement (κ) which is the percent-

(a) (b)

Fig. 4. ROSIS data: (a) University Area, (b) Pavia Center. Three-channel
color composite of the areas used for the classification. Datacharacteristics are
detailed in Sub-SectionsVI-B andVI-C.

age of agreement corrected by the amount of agreement
that could be expected due to chance alone [35].

These criteria were used to compare classification results and
were computed using the confusion matrix. Furthermore, the
statistical significance of differences was computed usingMc-
Nemar’s test, which is based upon the standardized normal test
statistic [36]:

Z =
f12 − f21√
f12 + f21

(11)

wheref12 indicates the number of samples classified correctly
by classifier 1 and incorrectly by classifier 2. The difference in
accuracy between classifiers 1 and 2 is said to be statistically
significant if |Z| > 1.96. The sign of Z indicates whether
classifier 1 is more accurate than classifier 2 (Z > 0) or vice-
versa (Z < 0). This test assumes related testing samples and
thus is adapted to our situation since the training and testing set
were the same for each experiment.

The feature extractions were done with MultiSpecc© [3] while
the morphological operations were done with the Image Pro-
cessing Toolbox of Matlabc©. The SVM classification was done
using the LIBSVM through its Matlabc© interface [33]. From
previous experiments on the same data set, the Gaussian kernel
provides the best results and was used for the experiments [26].
The range of each feature, be it spectral or morphological, was
stretched between 0 and 1.

To obtain a baseline result for comparison, the classification
was also done using the Gaussian Maximum Likelihood (ML)
classifier on the hyperspectral data using MultiSpecc©1. Feature
extraction was done using the two FE algorithms (DBFE and
NWFE) but only the best results have been reported for both
data sets. The results were compared to those obtained by the
proposed approach.

1For the ML, the kappa coefficient was not accessible.
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TABLE IV
UNIVERSITY AREA . EIGENVALUES OF PRINCIPAL COMPONENTS IN

PERCENTAGE.

Value Cumulative Val.
λ1 82.75 82.75
λ2 15.56 98.01
λ3 1.51 99.55
λ4 0.14 99.70

B. University Area data set

PCs were computed from the hyperspectral data. The results
for the eigenvalues are shown in TableIV. The left column gives
the component number, the center column the eigenvalues in
percentage of the total amount of variance and the right column
the cumulative amount of variance. From the table, three PCs
were necessary to retain 99% of the variance criterion. EMPs
were built according to the scheme presented in the SectionV:
A circular SE with a step size increment of 2 was used. Four
openings and closings were computed for each PC, resulting in
an EMP of dimension 27.

First, the classification with SVM was done using the spectral
information and the extended morphological profile. The best
ML accuracy was obtained using 8 features extracted with the
NWFE, following Landgrebe’s recommendations in [3]. The
results are reported in TableV. Regarding the global accuracies,
both SVM approaches perform equally well, for instance the
difference between the classification using the spectral informa-
tion and the EMP is not statistically significant, see TableVI .
Note that it is consistent with the characteristics of the scene:
The University Area is a mix between man-made structures and
natural materials. Therefore, the morphological information is
not as useful as it could be in a very dense urban area. When
a careful analysis is done on the class-specific accuracies,we
can see from TableV that each approach performed well for
complementary classes, e.g. the spectral approach performed
better for classes 3, 6, 9 while the EMP approach performed
better for classes 1, 2, 7, 8. After the data fusion we have to
look at these classes and see if the best information was used,
i.e., if the classification accuracy increased for these classes.

The experiment was then performed with the concatenated
vector. The vector was made of the 103 spectral bands and the
27 features of the EMP. The vector was directly used as an input
to the SVM. The classification results are reported in TableV.
As can be seen from the table, the global accuracies increased.
The κ value in percentage is79.13% against74.47% for the
spectral approach and73.25% for the EMP and the differences
are statistically significant (see TableVI). Regarding the class-
specific accuracies, the results in terms of accuracies have
increased for classes 1, 7, 8 when compared to both individual
approaches. In fact all the classes are more accurately classified
than the worst respective cases for the individual approaches.

In the last experiment, feature reduction was applied on the
morphological data and the original data before the concate-
nation. Then the stacked vector was classified by the SVM.
Table VII summarizes the test accuracies for several values of
the variance criterion for the DBFE and NWFE. Best results
were obtained with95% and 80% variance criterion for the

TABLE VII
UNIVERSITY AREA . GLOBAL ACCURACIES IN PERCENTAGE WITH

DIFFERENT FEATURE EXTRACTION METHODS. THE NUMBERS OF FEATURES

FROM THE SPECTRAL DATA AND THE MORPHOLOGICAL DATA,
RESPECTIVELY, ARE GIVEN IN BRACKETS.

Feature extraction Cum. Var. Features OA AA κ

DBFE

99 60 (45,15) 84.77 89.98 80.43
95 27 (27,10) 87.97 88.94 84.40
90 28 (20,8) 86.49 88.94 82.50
80 19 (14,5) 82.95 87.51 77.27
70 14 (10,4) 76.93 84.63 71.20

NWFE

99 62 (42,20) 84.15 88.89 79.61
95 28 (16,12) 82.90 87.25 77.98
90 18 (10,8) 82.64 86.77 77.65
80 13 (7,6) 87.59 88.93 83.89
70 10 (5,5) 79.57 87.39 74.49

DBFE and NWFE, respectively. Using95% of the variance
criterion with DBFE, the hyperspectral data were reduced to
27 features and the EMP to10 features. With NWFE and80%,
7 features were extracted from the hyperspectral data and6 from
the EMP. Again, as can be seen in TableVI , differences between
the classification accuracies are statistically significant.

Considering the class-specific accuracies, the DBFE approach
improved the classification for class 2 while class 3 was lessac-
curately classified than with the concatenated full hyperspectral
data and EMP. However, the DBFE outperformed the individual
classifications of the spatial or spectral information. On this
data set, the classification of the DBFE feature extracted data
gave the best classification results. Similar comments can be
made for the accuracies obtained with classifications of the
NWFE. Still, the number of features needed to achieve the
same accuracy is significantly lower for the NWFE approach
than for the DBFE. Since the SVM is linearly related to the
dimensionality of the data, lower dimensional data reducedthe
training time and increased the speed of the classification.

To assess this increase, comparison of the processing time
(training and classification process) for the different approaches
was made. TableVIII summarizes the results, which are clearly
different according to the features used. The training timecould
depend on several factors:

1) The dimension of the data;
2) The size of the training set;
3) The number of parameters for the kernel.

For our given problem, items 2) and 3) are the same. Reducing
the size of the data is beneficial for the processing time, since
data with lower dimensionality (EMP and NWFE) have the
shortest processing time. For the best case (NWFE), the gain is
about 73%.

For the classification processing time, two factors have an
influence: The dimension of the data and the number of support
vectors (non-zeroαi in (8)). Thus, approaches with low di-
mensionality and few support vectors perform the classification
task of the whole image faster (EMP and NWFE). Nevertheless,
the classification processing is really fast by comparison to the
training time, in all the cases.

Classification maps for the different approaches are shown in
Fig. 5.
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TABLE V
UNIVERSITY AREA . SUMMARY OF THE GLOBAL AND THE CLASS-SPECIFIC TEST ACCURACIES IN PERCENTAGE FOR THE CLASSIFICATION. THE NUMBERS

OF FEATURES FROM THE SPECTRAL DATA AND THE MORPHOLOGICAL DATA , RESPECTIVELY, ARE GIVEN IN BRACKETS.

ML (NWFE) Spectral EMP Spec. EMP DBFE 95% NWFE 80%

Features 8 103 27 130 37 (27,10) 13 (7,6)

OA 80.10 79.48 79.14 83.53 87.97 87.59
AA 87.00 88.14 84.30 89.39 89.43 88.93
κ - 74.47 73.25 79.13 84.40 83.89

Class 1 76.00 84.36 94.50 95.33 90.92 86.80
Class 2 73.90 66.20 72.82 73.46 85.91 86.95
Class 3 70.80 71.99 53.22 65.89 57.88 63.26
Class 4 96.70 98.01 98.89 99.18 99.22 98.53
Class 5 99.90 99.48 99.55 99.48 99.48 99.88
Class 6 87.60 93.12 58.11 84.15 85.32 82.62
Class 7 92.00 91.20 96.09 97.22 95.19 96.61
Class 8 87.30 92.26 95.27 96.12 95.84 95.38
Class 9 99.10 96.62 91.24 93.66 95.14 90.60

TABLE VI
UNIVERSITY AREA . STATISTICAL SIGNIFICANCE OF DIFFERENCES IN CLASSIFICATIONACCURACIES.

EMP/Spectral Spectral/Spec. EMP Spectral/DBFE 95% Spectral/NWFE 80% Spec. EMP/DBFE 95% Spec. EMP/NWFE 80% DBFE 95%/NWFE 80%
Z -1.36 -19.55 -37.98 -36.61 -25.19 -21.79 2.32

TABLE VIII
UNIVERSITY AREA . PROCESSING TIME IN SECONDS AS FUNCTION OF DIMENSIONALITY ANDNUMBER OF SUPPORT VECTORS.

Spectral EMP Spec. EMP DBFE 95% NWFE 80%

Dimension 103 27 130 37 13
Training 3074 850 3257 1184 859

Number of SVs 1085 406 529 727 572
Classification 76 9 41 18 9

(a) (b) (c) (d)

Fig. 5. University Area: Classification map obtained with SVM from: (a) the original hyperspectral data, (b) the EMP, (c) 37 DBFE features and (d) 13NWFE
features. Classification accuracies are reported in the Table V.

C. Pavia Center data set

For the second test, the scene is a very dense urban area in
the center of the city of Pavia. Because of that, morphological
information should be useful for the discrimination. PCs were
computed from the hyperspectral data. The results for the

eigenvalues are shown in TableIX. From the Table, three PCs
were necessary to retain 99% of the variance criterion. The EMP
was built according to the scheme presented in the sectionV:
A circular SE with a step size increment of 2 was used. Four
openings and closings were computed for each PC, resulting in
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TABLE IX
PAVIA CENTER . EIGENVALUES OF PRINCIPAL COMPONENTS IN

PERCENTAGE.

Value Cumulative Val.
λ1 82.94 82.94
λ2 14.82 97.77
λ3 1.70 99.47
λ4 0.19 99.66

an EMP of dimension 27.
SVM classification was applied to the original hyperspectral

data and the EMP. The best ML accuracy was obtained using 29
features extracted with the DBFE. The results are reported in
Table X. From the Table, it can be seen that SVM classifier
achieved excellent global accuracies. In these experiments,
the morphological approach performs better than the spectral
based approach. TableXI shows the statistical significance of
differences between the classification accuracies for the different
approaches. This is consistent with the characteristics ofthe pic-
ture: it is a very dense urban area and morphological processing
provides discriminative information. In terms of accuracies, the
main improvement in the classification is achieved for class4.
The other classes are classified equally accurately. The data
fusion should thus improve the classification of class 4 while
preserving very good results for the others classes.

Next, the experiment was performed using the concatened
vector. The vector was made of the 102 spectral bands and the
27 features of the EMP. This vector was used as an input for
the SVM without any additional processing. The classification
results are reported in TableX. The differences of classification
accuracies between the EMP and the concatened vector are not
statistically significant, since the McNemar’s test is almost equal
to zero, see TableXI . Thus, both EMP and concatened vector
perform equally well.

As in the previous experiment, feature reduction was applied
both on the morphological data and on the original data before
the concatenation. Then, the stacked vector was classified by
the SVM. TableXII summarizes the test accuracies for several
values for the variance criterion for the DBFE and NWFE. The
best results are obtained with99% variance criterion for both
DBFE and NWFE. Using99% of the variance with the DBFE,
the hyperspectral data is reduced to51 features and the EMP is
reduced to15 features. With the NWFE and99% of the variance
criterion,44 features were extracted from the hyperspectral data
and20 from the EMP. The results are given in TableX.

For this experiment, the DBFE does not help for the clas-
sification since the Z test is not significant. On the other
hand, similar classification accuracy is reached with far less
features, nearly half the size of the previous feature set, thus
decreasing the total training and classification time. The NWFE
leads to a significant increase of the classification accuracies,
|Z|= 7.75 by comparison to the best results obtained with
the concatenation vector, which is contrary to the previous
experiment. Classification maps for the different approaches are
shown in Fig.6. Visually, the thematic map produced with the
classification of the NWFE features seems less noisy than the
one obtained with the classification of the DBFE features. This
is especially true in the top-left corner which correspond to a

TABLE XII
PAVIA CENTER . GLOBAL ACCURACIES IN PERCENTAGE WITH DIFFERENT

FEATURE EXTRACTION METHODS. THE NUMBERS OF FEATURES FROM THE

SPECTRAL DATA AND THE MORPHOLOGICAL DATA, RESPECTIVELY, ARE

GIVEN IN BRACKETS.

Feature extraction Cum. Var. Features OA AA κ

DBFE

99 66 (51,15) 98.65 97.30 98.10
95 41 (31,10) 98.37 96.86 97.70
90 31 (23,8) 98.08 96.71 97.29
80 22 (17,5) 98.53 97.22 97.42
70 17 (13,4) 98.53 97.31 97.42

NWFE

99 66 (44,20) 98.87 97.95 98.41
95 31 (19,12) 98.58 96.66 97.99
90 21 (12,9) 98.41 97.28 97.71
80 14 (8,6) 98.24 96.63 97.52
70 10 (6,4) 98.39 96.39 97.73

TABLE XIV
UNIVERSITY AREA . SUMMARY OF THE GLOBAL TEST ACCURACIES IN

PERCENTAGE FORSVM CLASSIFICATION USING A LIMITED TRAINING
SET.THE NUMBERS IN BRACKETS ARE THE NUMBERS OF FEATURES FROM

THE SPECTRAL DATA AND FROM THE MORPHOLOGICAL DATA,
RESPECTIVELY.

Cum. Var. Features OA AA κ

Spectral - 103 71.25 75.79 63.70
EMP - 27 75.79 80.72 69.00

Spec. EMP - 130 75.25 81.23 68.66

DBFE

99 66 (44,12) 77.33 83.77 71.31
95 32 (25,7) 81.34 82.84 75.65
90 23 (18,5) 74.55 79.15 67.45
80 16 (12,4) 72.28 80.35 65.25
70 11 (9 ,2) 61.31 72.04 52.26

NWFE

99 53 (35,18) 85.42 87.48 80.87
95 25 (14,11) 81.04 85.42 75.84
90 17 (10,7) 79.05 83.72 73.27
80 13 (7,6) 84.77 85.65 80.09
70 9 (5,4) 83.10 84.35 77.84

very dense urban area.
Regarding the computing time, the results for the training and

the classification are reported in TableXIII . As expected, using
feature extraction methods reduces the processing time forboth
the training and the classification.

Classification maps for the different approaches are shown in
Fig. 6.

D. Small training set experiment: University Area

To assess the effectiveness of the proposed methodology fora
limited training set, we have randomly extracted a few training
samples from the training set. For this experiment, we used
20 samples for each class, which represents less than 5% of
the original training set. We have used the same EMP but had
some problems with the DBFE, the covariance matrix was non-
invertible (the NWFE does not suffer from this problem). In
order to overcome this shortcoming and to apply the DBFE
anyway, we use theleave on out covariance(LOOC) to estimate
the covariance matrix and perform astatistical enhancement
with unlabeled samples, both algorithms were implemented in
the MultiSpecc© software [37], [38]. We have repeated the
training samples selection and the classification process five
times, and the mean classification results are reported in the
paper.
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TABLE X
PAVIA CENTER . SUMMARY OF THE GLOBAL AND THE CLASS-SPECIFIC TEST ACCURACIES IN PERCENTAGE FORSVM CLASSIFICATION. THE NUMBERS OF

FEATURES FROM THE SPECTRAL DATA AND THE MORPHOLOGICAL DATA, RESPECTIVELY, ARE GIVEN IN BRACKETS.

ML (DBFE) Spectral EMP Spec. EMP DBFE 99% NWFE 99%

Features 29 102 27 129 66 (51,15) 64 (44,20)

OA 94.50 97.67 98.69 99.69 98.65 98.87
AA 94.00 95.60 97.69 98.07 97.30 97.95
κ - 96.71 98.15 98.15 98.10 98.41

Class 1 91.50 98.35 99.08 98.66 99.17 99.21
Class 2 92.00 91.23 91.62 93.52 90.00 92.49
Class 3 97.70 96.76 96.18 95.95 96.54 96.76
Class 4 86.90 88.45 98.40 98.77 98.92 99.55
Class 5 95.60 96.97 98.81 99.42 99.27 99.74
Class 6 94.40 96.32 97.98 98.36 98.45 98.70
Class 7 96.40 96.01 97.89 98.22 97.91 98.41
Class 8 99.30 99.40 99.74 99.79 99.81 99.72
Class 9 92.30 99.93 99.44 99.93 98.60 96.93

TABLE XI
PAVIA CENTER . STATISTICAL SIGNIFICANCE OF DIFFERENCES IN CLASSIFICATIONACCURACIES.

EMP/Spectral EMP/Spec. EMP EMP/DBFE 99% EMP/NWFE 99% Spec. EMP/DBFE 95% Spec. EMP/NWFE 80% DBFE 95%/NWFE 80%
Z 27.84 -0.06 1.44 -8.14 1.42 -7.75 -9.44

TABLE XIII
PAVIA CENTER . PROCESSING TIME IN SECONDS AS FUNCTION OF DIMENSIONALITY ANDNUMBER OF SUPPORT VECTORS.

Spectral EMP Spec. EMP DBFE 95% NWFE 80%

Dimension 102 27 129 66 66
Training (s) 5178 1569 5909 3520 3962

Number of SVs 691 265 401 558 408
Classification (s) 143 20 105 73 47

(a) (b) (c) (d)

Fig. 6. Pavia Center: Classification map obtained with SVM from: (a) the original hyperspectral data, (b) the EMP, (c) 66 DBFE features and (d) 64NWFE
features. Classification accuracies are reported in the Table X.

As with the previous experiments, we perform the classifica-
tion using the spectral or the morphological feature with SVM.
The ML produced very poor results, simply close to random
classification and hence not reported. The global accuracies are
reported in TableXIV . Statistical significance of differences is
reported in TableXV.

First of all, the test results are lower than those in TableV
and VII , due to the limited training set. For instance, with the

concatened feature vector, the overall accuracy and theκ are
respectively, 83.53% and 79.13% for the original training set
while using a limited training set, the overall accuracy andthe
κ are respectively, 75.35% and 68.66%. Nevertheless, with a
very small training set, the results are still good.

For the feature extraction, NWFE with 99% of the cumulative
variance provides the best results: The obtained overall accuracy
is 85.42% and theκ is 80.87%, which is closed to the best
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results obtained with the full training set (OA=97.87% andκ

= 84.40%, see TableV). The |Z| between the best results with
limited training and the best results with full training setis equal
to 13.65.

Furthermore, the accuracies are better than those obtained
with the full training set with the spectral or morphological
information alone. It is also important to note that NWFE
outperforms better DBFE without any statistical enhancement.

Considering the processing time, with only 20 samples for
each class, the training as well as the classification of the entire
data set are done in 1 or 2 seconds.

VII. C ONCLUSION

Classification of hyperspectral data with a fine spatial reso-
lution has been investigated. The contribution of this workis a
methodology to include both spatial and spectral information in
the classification process by a data fusion scheme. Experimental
results on two ROSIS data sets showed excellent accuracies
and improvements compared to those obtained with pixel-based
classifiers and the EMP-based classifier.

The use of feature extraction was motivated by the fact that
the full stacked vector contains a lot of redundancy, because
there is a redundancy in the hyperspectral data [3] as well as
in the EMP [11], which was confirmed by the experiments. On
the other hand, SVM are known to be robust to dimensionality.
Therefore, the use of feature reduction for SVM could be
disputable. However, in the experiments lower dimensionaldata
decreased the processing time, which can be crucial for some
applications, and more important it has been showed that SVM
can suffer from the dimensionality when many features are
irrelevant [39]. By construction, the stacked vector may contain
many copies of the same information and a feature extraction
step may finally be needed to ensure correct classification
on every data set, which is confirmed by the experiments
(Usefulness of features reduction for the classification ofremote
sensing data with SVM was also assessed in [40]).

It is clear that feature extraction helps for the classification
of hyperspectral data but it is not clear which one of the
feature extraction methods should be used for the fusion of
morphological and spectral features. From a theoretical point
of view, the NWFE was derived because of some intrinsic
problems with the DBFE [3], i.e., ”DBFE can involve lengthly
calculations and more significantly it does not perform as well
for small numbers of training samples”. Hence, the NWFE
might be more preferable, especially when a small training set
is available. The experiments performed with a limited training
set confirmed that.

In conclusion, the proposed fusion method succeed in taking
advantage of the spatial and the spectral information simulta-
neously. It outperformed previous results [2], [10]. Our current
research is oriented to the definition of additional spatialfea-
tures, such as textural characteristics [41], to be includein the
feature vectors.
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