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Abstract—A method is proposed for the classification of urban each of the PCs, a morphological profile is built. These msfil
hyperspectral data with high spatial resolution. The approach is are used all together in one Extended Morphological Profile
an extension of previous approaches and uses both the spatial gn1p) which is then classified by a neural network. The métho

and spectral information for classification. One previous approab . 21 has b h ¢ f Iin t f .
is based on using several principal components from the hyper- in [2] has been shown to perform well in terms of accuracies

spectral data and building several morphological profiles. These When compared to more conventional classification appezach
profiles can be used all together in one extended morphological However, a shortcoming of the approach is that it is primgaril

profile. A shortcoming of that approach is that it was primarily  designed for classification of urban structures and it dags n

designed for classification of urban structures and it does not fully fully utilize the spectral information in the multispedtrar
utilize the spectral information in the data. Similarly, the commonly hyperspectral data

used pixel-wise classification of hyperspectral data is solely based . . . .
on the spectral content and lacks information on the structure ~ However this type of data contains a lot of information about

of the features in the image. The proposed method overcomesthe spectral properties and the land cover of the data. A finer
these problems and is based on the fusion of the morphological definition of the classes is possible and more classes can be
information and the original hyperspectral data, i.e., the tWwo ,nqidered. Based on the spectral signatures of the classes

vectors of attributes are concatenated into one feature vecto d d pixel-b d ol ifi h b di
After a reduction of the dimensionality the final classification is Many advanced pixei-based classilers have been proposed in

achieved using a Support Vector Machines classifier. The proposed cluding advanced statistical classifiers [3] and distidutree
approach is tested in experiments on ROSIS data from urban areas approaches such as neural networks and support vector ma

Significant improvements are achieved in terms of accuracies when chines [4]. The later one has shown remarkable abilitiesetd d
compared to results obtained for approaches based on the use OfWith remote multispectral data, especially with hypersgc

morphological profiles based on PCs only and conventional spectra - . 4 .
classification. For instance, with one data set, the overall accucy data. However, if the spatial content of the image is not tised

is increased from 79% to 83% without any feature reduction and resulting thematic map sometimes loaksisy (salt and pepper
to 87% with feature reduction. The proposed approach also shows classification noise). Approaches involving Markov Random

excellent results with a limited training set. Field (MRF) and Monte Carlo optimization have been proposed
Index Terms—Data fusion, hyperspectral data, support vector N [5], [6]. These approaches use tmntextual informationThe
machines, feature extraction, extended morphological profile,igh main shortcoming of such algorithms is the computing time,
spatial resolution. which can be high even for small data sets. Regarding the high
dimensionality of recently acquired data, both in the spéct
and in the spatial domain, computationally light algoritlame
of interest. In this sense, the MP has been proposed as ar
In classification of remote sensing data from urban areadternative way to use spatial information [1], [7]. Relaty
the identification of relatively small objects, e.g., haauisnd to the MRF-based classifiers, the MP and its extension to a
narrow streets is important. Therefore, high spatial @gmt multiband image, the EMP, have the possibility to use geo-
of the imagery is necessary for accurate classification. Theetrical contextual information (shape, sistg) and perform
most commonly available remote sensing data of high spatve¢ll on many kinds of data (panchromatic, multispectral and
resolution from urban areas are single-band panchromata d hyperspectral data). However, as stated above, a shorigaohi
However, using only one high-resolution panchromatic dathis approach is it does not fully utilize the spectral imi@tion
channel is usually not sufficient for accurate classificattd in the data, and consequently several approaches baseca on th
structural information. To overcome that problem, Pesaaed MP/EMP have been proposed to fully exploit the spatial and
Benediktsson [1] proposed the use of morphological transfahe spectral information [8]-[10].
mations to build a Morphological Profile (MP). In [2] the Each data set has its own properties, defining its ability to
method in [1] was extended for hyperspectral data with higleal with different natures of classes. Tablesums up the
spatial resolution. The approach in [2] is based on usingragév properties of spectral and morphological/spatial datae fitst
Principal Components (PCs) from the hyperspectral da@mFrmain consideration is the complementary characteristidhe

I. INTRODUCTION



: o - TABLE |
data. It has a consequence in the discrimination abilityuchs SPECTRAL AND SPATIAL DATA PROPERTIES’ " INDICATES A GOOD

a feature, as will be seen in the experiments. The fusion ®ROPERTY’~’ INDICATES THAT THE PROPERTY MIGHT BE HARMFUL AND
two types of information should clearly results in an inc®a "\ INDICATES A CRITICAL PROPERTY

of the classification in terms of global accuracy. The use o
spectral information can be critical for classification afnn
structured information in urban areas, e.g., vegetatiah swil
classes while the use of spatial information can be useful
for classification of structured objects, e.g., road andding
classes.

Spectral features Morphological features
Fine physical description Geometrical information
Directly accessible Needs to be extracted
Redundancy Redundancy

No spatial information Reduced spectral information

7 UNN\
N

The second consideration is the possible redundancy of each
features set, see [3] for the spectral features and [11]Her t

spatial features. Hence feature extraction (FE) algosteould ~ Mathematical Morphologys a theory aiming to analyze spa-
be of an interest. tial relationship between pixels. For a remote sensingiegpl

tion, several morphological operators are available foraexing

To inclqde bpth type of.info.rmation an extension to th eometrical information. An overview of operators can henid
approach in [2] is proposed in this paper. The proposed rdetr] [18]. In the following sub-section, some basic notions of

is based on the data fusion of the morphological informati‘?ﬂathematical morphology are reviewed. Then, the concept of
and the original data: First, an extended morphologicdilprs rtéla ’

Il. EXTENDED MORPHOLOGICAL PROFILE

created based on the PCs from the hyperspectral data. 3gco 2“32{5:;2!;_)@06“ Profileand its extension to multivalued data
feature extraction is applied on the original hyperspécteda

and the extended morphological profile. Finally, the exadc )

feature vectors from both the original data and the extendfd Mathematical Morphology

morphological profile are concatenated into one stacketbwec The two fundamental operators in mathematical morphology
and classified. The proposed approach is different from am-eerosionanddilation [19]. These operators are applied to an
proaches in [12]-[14], where the authors had extractedapaimage with a set of known shape, called a structuring element
information and used composite kernel to include both tyd&E). To erode an image consists of finding where the SE fits the
of information. Here, feature extraction algorithms arediso objects in the image. The dilation, which is dual to the emsi
select informative feature from the spectral and spatiah@io. shows where the SE hits the objects.

Openingandclosingare combinations of erosion and dilation.

For the multisource classification, Support Vector Maciainel_h rators remove from an oriainal im fructur ¢
(SVM) are used rather than a Neural Network, which was €se operalors remove Irom an original Image Structures o

used in our previous experiment with MP/EMP. The supegiorit'slt_zne less thta_n t?f? S_E' But t?tey fﬂso mod_lfy }stlruqture;\;\;]hleh a
of SVM, implementingstructural risk minimization over the stll present In e Image after the openingiclosing. %y

neural classifiers, implementirgnpirical risk minimizationhas can mtrpduce‘akeobjects in the Image. To avoid this problem,
been discussed in [4] (in Chapters 9.6 and 12) and in [1 ’odgsmmorpholqu andeconstrucponshould be used [19].
[16]. SVM aim to discriminate two classes by fitting an optim pening and closing .by recons.trucnons are connecteq apsra
separating hyperplane to the training data within a mult hat satisfy the following assertion: If the structure of image

dimensional feature space, by using only the closest rrginicannot contain the SE, then it is totally removed, else itally

samples. Thus, the approach only considers samples closé)lr ser\:edk. For ?hglvgn SE, gheode5|fc openlng.ortgeodesmt(g:.lo?h
the class boundary and works well with small training sef'oWs 10 Know Ihe Size or shape of Some objects present in he

even when high dimensional data sets are classified. SVM hé%é?lget:hThihObjetﬁtst that bgre sn:r?llertr:hagEthe SE are dec;et_?d
already been applied for multisource classification in jdfigre while the other (that are bigger than the SE) are presened.

several output coding methods were investigated. _de_termme the shape or size of al _elements present in areimag
it is necessary to use a range of different SE sizes. Thisepinc
In this paper, the proposed approach has been compagedalled Granulometry

to statistical classification methods and SVM classificatio Granulometries are typically used for the analysis of tlze si
Experiments were conducted on two different high resofutiqjistribution of the structures in the images. Classicalngra
remote sensing data sets from urban areas. The effeCt-B/efheS()metry by opening is built by successive Opening Operation
the proposed methodology with a limited training set hasibe@jith an SE of an increasing size. By doing so, the image
also assessed. is progressively simplified. Using connected operatorke li

The paper is organized as follows. Sectiinreviews the ©OPening by reconstruction, no shape noise is introduced.
use of morphological transformations for processing ofeémyp ~ Morphological Profiles(MPs) are defined using the granu-
spectral imagery in urban areas. In Sectltin the considered lometry. An MP is composed of thepening profile(OP) and
supervised feature extraction approaches are introdugeg- the closing profile(CP). The OP at the pixet of the image |
port Vectors Machines (SVM) are discussed in Sectign is defined as am-dimensional vector:
The applied data fusion s.chemes are discussed in Sevtion OP;(x) = Wg) (x), Vi€ [0,n] (1)
Experimental results obtained on two ROSIS data sets from ‘
urban areas are presented in Sectiin Finally, conclusions where 71(;) is the opening by reconstruction with an SE of a
are drawn in SectioVIl . sizei andn is the total number of openings. Also, the CP at



Closings Original Openings

number of selected eigenvectors [3]. The transformed da&ta a
determined by

r=oTx (5)

o1 Simol holoaical orofile with ¢ _ § twosihas. | where @ is the transformation matrix composed of the eigen-
ig. 1. imple morphological profile with two opening an osihgs. In P : ;
the shown profile, circular structuring elements are uset vetlius increment vector_s of the feature matrix IS_ the data in the Input space
4 (r = 4, 8 pixels). The processed image is a part of Fida). and ¢ is the transformed data in the feature space. We have
in generaldim(x) > dim(r). Several statistical extraction
approaches have been proposed for remote sensing data [3]
the pixelx of image | is defined as an-dimensional vector: including Decision Boundary Feature ExtractiofDBFE) and
; Nonparametric Weighted Feature ExtractiNWFE).
CPi(x) = ) (), Vi € [0.n] @ " ¢ WS

wheregﬁ%) is the closing by reconstruction with an SE of a sizé. Decision Boundary Feature Extraction

i. Clearly we haveC'Iy(x) = OPy(x) = I(x). By collating 4 \yas shown in [20], that both discriminantly informativest
the OP and theC'P, the MP of image | is defined & + 1- 15 and redundant features can be extracted from theiatecis
dimensional vector: boundary between two classes. The features are extracted fr
MP(x) = {CP,(x),...,1(x),...,0P,(x)} (3) the decision boundary feat_ure matrix (DBFM). The eigenwest
of the DBFM corresponding to non-zero eigenvalues are the
Example of MP is shown in Fig. Thus, from a single image necessary feature vectors to achieve the same classificatio
results a multiband image, whose dimension correspondsg§uracy as in the original space. The efficiency of the DBFE i

the number of transformations and spatial information i& norelated to the training set and can be computationally siven
contained in the MP for each pixel. However, an MP is builtwit

only one band. Therefore, the spectral information is |Qste
approach to deal with this problem is to extract several esag
that contain some parts of the spectral information and thenT0 overcome the limitations of the DBFE, Kuo and Land-
build the MP on each of the individual images. This approac@ifebe [21] proposed the nonparametric weighted feature ex-

namely the Extended Morphological Profile (EMP), is disedss traction. NWFE is based on the Discriminant Analysis Feature
in the following. Extraction by focusing on samples near the eventual decisio

boundary. The main ideas of the NWFE are 1) putting different

weights on every sample to compute the local means and 2)

defining nonparametric between-class and within-clasttesca
In order to apply this approach to hyperspectral data, charanatrices [3].

teristic images need to be extracted. In [11], it was suggest Many experiments have shown the effectiveness of these

to use several principal components of the hyperspecti@ dgpproaches for the classification of hyperspectral dataTlsy

for such a purpose. Hence, the MP is applied on the first PGge usually applied on the spectral data, but it was suadgssf
corresponding to a certain amount of the cumulative vagangpplied to the EMP [11].

and a stacked vector is built with the MP on each PC. This
yields to theextended morphological profilEMP). Following
the previous notation, the EMP is an(2n + 1)-dimensional
vector:

B. Nonparametric Weighted Feature Extraction

B. Extended Morphological Profile

IV. CLASSIFICATION BY THE SUPPORTVECTORMACHINE

So far, in our previous approach [2], [7], [11], [22] the clas
sification was done with either a statistical classifier (§&#an
MPey4(x) = {MPpc1(x),..., MPpcm} (4) Maximum Likelihood), a neural network or a fuzzy classifier.
wherem is the number of retaining PCs. Example of EMP igz:g I\tvfrlf ri(r)lpcolaslsegiff(c:’al:isc‘)i tlﬁ:gg%r:e};egfgsggﬁmggivx )'SVM
shown in Fig.2.
showed excellent results [17], [23], [24]. In [15], seveB M-

As with multispectral data, the MP/EMP may include S9MGased classifiers were compared to other classical classifie

re.dundancy. C_:Ias_smal feature. reductlp n algorithm can fbe Ruch as a K-nearest neighbors classifier and a neural network
plied, as detailed in the following section.

classifier and the SVM using the kernel method outperformed
the other classifiers in terms of accuracy. Multiclass SVM
Ill. SUPERVISED FEATURE EXTRACTION performances were also positively compared with a discrmi

Feature extraction can be viewed as finding a set of vectansalysis classifier, a decision tree classifier and a feedial

that represents an observation while reducing the dimeabip. neural network classifier with a limited training set [25V I8

In pattern recognition, it is desirable to extract featutest are show good results in the situation of limited training sef26].

focused on discriminating between classes of intereshofigjh Semisupervised SVM were also investigated for multi-géct

a reduction in dimensionality is desirable, the error inteat data classification [27], [28].

due to the reduction in dimension has to be without sacrific- SVM are surely among the most used kernel learning al-

ing the discriminative power of classifiers. In linear featu gorithm. It performs robust non-linear classification ofngdes

extraction, the number of input dimensions correspond$i¢o tusing the kernel trick. The idea is to find a separating hylperp



Profile from PC1 Profile from PC2

Combined Profile

Fig. 2. Extended morphological profile of two images. Each efdhginal profile has two openings and two closings. Cincstaucturing element with radius
increment4 was used« = 4, 8). The processed image is a part of Hga).

. i . Original data @

in some feature space induced by the kernel function while '

all the computations are done in the orignal space [4]. A (e JL & J+lsw]
) : " A

good introduction to SVM for pattern recognition can be fdun

in [29]. Given a training seS = {(x',y1),...,(x" )} € Fig. 3. Proposed data fusion scheme.
R™ x {—1;1}, the decision function is found by solving the

convex optimization problem:

‘ 1 & scheme based on the output’s characteristics of the SVM. The

max g(a) = Zo‘i — = Z aiayiyk(xt, x7) results in terms of accuracy were increased but it needed two
* i=1 2 ij=1 (6) training of SVM, that could be time consuming.

subject to 0<a; <Cand Zle oy =0 Here it is proposed to use a multisource strategy to fuse

h the L ficients tant that i ds:pectral and spatial information. First, an EMP is createsed
wherea are the Lagrange coetlicients, a constant that s used, , applying the PCA on the hyperspectral data. Secondly,
to penalize the training errors, aridthe kernel function. To

b table kernet should b ii idefinit feature extraction is applied on both the EMP and the orlgina
€ an acceplable kernei, snould be a positive semi-detini .ehyperspectral data. Finally, the extracted feature vectoe

Lunctul)_n [30]. One classical efiective kemel is the Gamssi concatenated into one stacked vector and classified by tiik SV
ernet. , - In the morphological processing we usually retain PCs cor-
o (X1, x7) = exp < [x" — x| ) (7 responding to 99% of the cumulative variance. This is done in
7 202 order to reduce the redundancy in the data but keep most of the
where the norm is the&uclideannorm ando € R* tunes variation. The EMP is built using the: PCs that correspond
the flexibility of the kernel. A short comparison of kernets f to th? 99% vanan(_:e. Ea,Ch MP is composed mfgeodesm
remotely sensed image classification can be found in [26]. openings,n geF’de_S',C_ cIosmg and t_he correspc_)ndl_ng PC. The
When the optimal solution of6f is found, i.e., then;, the SE is a disk with initial radius of- pixels. The size increment
classification of a sample is achieved by looking to which IS 8- Hence, each MP han + 1 features and the EMP has

side of the hyperplane it belongs: m(2n + 1) features. Notingx,, the features associated to the
' spectral bands and,, the features associated to the EMP, the

14 . .
R <Z aiik(xi %) + b) . ®) corresponding extracted features from the FE algorithm are
i=1 Tp = @gxw 9
To deal with multiclass classification problem, the paiwvisand
approach was used in our experiments [31]. More advanced
multiclass approaches applied to remote sensing data can be tw = (I)Z;XW' (10)
found in [15]. For the particular case of one-class-clasiion,

, . . The stack vector is finally = [r,, t.]7.
a dedicated methodology is proposed in [32]. . Py W N
The SVM are mainly anon-parametric method, yet some Fig. 3 presents the data fusion scheme. Note that in this work,

parameters need to be tuned before the optimization. In t?m'%ly morphological '”form?"of‘ IS extra_lcted,_ but itis pmto
Gaussian kernel case, there are two parametershe penalty extrqct other typeg of spatial information with other pisxiag
term, ando, the with of the exponential. It is usually done bfnd include them in the stacked vector.

a cross-validation step, where several values are testeourl

experiments,C' was fixed t0200 and 02 € {0.5,1,2,4} was VI. EXPERIMENTS
selected using a 5-fold cross validation. The SVM optimarat A. Data set
problem was solved using the LIBSVM [33]. Airborne data from the ROSIS-03 (Reflective Optics System
Imaging Spectrometer) optical sensor are used for the exper
V. DATA FUSION iments. The flight over the city of Pavia, Italy, was operated

The proposed method is based on the data fusion of thy the Deutschen Zentrum fur Luft- und Raumfahrt (DLR, the
morphological information and the original data. In a poas German Aerospace Agency) in the framework of the HySens
work [34], it was proposed to fuse the classification resafts project, managed and sponsored by the European Union. Ac-
two SVM classifiers, each one working with either the spéctraording to specifications, the number of bands of the ROSIS-0
or the EMP data. It consisted in an appropriate adaptivefusisensor is 115 with a spectral coverage ranging from 0.43 to



TABLE Il
INFORMATION CLASSES AND TRAININGTEST SAMPLES FOR THE
UNIVERSITY AREA DATA SET.

Class Samples
No | Name Train Test
1 Asphalt 548 6641
2 Meadows 540 18649
3 Gravel 392 2099
4 Trees 524 3064
5 Metal Sheets| 265 1345
6 | Soil 532 | 5029
7 Bitumen 375 1330
8 Bricks 514 3682
9 Shadows 231 947
Total | 3921 [ 42776
TABLE IlI
INFORMATION CLASSES AND TRAINING TEST SAMPLES FOR THEPAVIA
CENTER DATA SET.
(b)
Class Samples Fig. 4. ROSIS data: (a) University Area, (b) Pavia Centerre€hchannel
No [ Name Train [ Test color composite of the areas used for the classification. Exag@acteristics are
1 Water 824 65971 detailed in Sub-Sectiongl-B andVI-C.
2 Trees 820 7598
3 Meadows 824 3090
‘5" zgﬁks ggg Zggi age of agreement corrected by the amount of agreement
6 | Asphalt 816 9248 that could be expected due to chance alone [35].
7 Bitumen 808 7287 . . e .
8 | Ties 1260 | 42826 These criteria were used to compare clas_smcatlon resolls a
9 | Shadows | 476 | 2863 were computed using the confusion matrix. Furthermore, the
Total [ 7456 | 148152 statistical significance of differences was computed usileg
Nemar's test, which is based upon the standardized norrsial te
statistic [36]:
0.86um. The data have been atmospherically corrected but not
. . . . . f12 - f21
geometrically corrected. The spatial resolution is 1.3mppeel. 7 = (11)

Two
1)

2)

data sets were used in the experiment: Vhiz +

University Area The first test set is around the Engiwhere f,, indicates the number of samples classified correctly
neering School at the University of Pavia. It is 610 byy classifier 1 and incorrectly by classifier 2. The differenc
340 pixels. Some channels (twelve) have been removadcuracy between classifiers 1 and 2 is said to be statlgtical
due to noise. The remaining 103 spectral dimensiosfgnificant if |Z| > 1.96. The sign of Z indicates whether
are processed. Nine classes of interest are considergdssifier 1 is more accurate than classifierZ2> 0) or vice-

i.e., trees, asphalt, bitumen, gravel, metal sheets, shadoersa ¢ < 0). This test assumes related testing samples and
bricks, meadows and soil. thus is adapted to our situation since the training andngstet
Pavia Center The second test set is the center of Pavigvere the same for each experiment.

The Pavia center image was originally 1096 by 1096 The feature extractions were done with MultiS@§3] while
pixels. A 381 pixel wide black stripe in the left part ofthe morphological operations were done with the Image Pro-
image was removed, resulting in a “two parts” image. Thigessing Toolbox of MatlaB). The SVM classification was done
“two parts” image is 1096 by 715 pixels. Some channe|gsing the LIBSVM through its Matla®) interface [33]. From
(thirteen) have been removed due to noise. The remainiggsvious experiments on the same data set, the Gaussiagl kern
102 spectral dimensions are processed. Nine classesp@fvides the best results and was used for the experimesits [2

interest are considered, i.e., water, trees, meadowsksbricThe range of each feature, be it spectral or morphologica w
soil, aSphalt, bitumen, tiles and shadows. stretched between 0 and 1.

Available training and testing set for each data set arengiie  To obtain a baseline result for comparison, the classitinati

Tablell andlll and Fig.4 presents false colors images for botlwas also done using the Gaussian Maximum Likelihood (ML)

data set. classifier on the hyperspectral data using MultiSpécFeature
The classification accuracy was assessed with: extraction was done using the two FE algorithms (DBFE and

An overall accuracy(OA) which is the number of welNWFE) but only the best results have been reported for both
classified samples divided by the number of test's sampl@%ta sets. The results were compared to those obtained by the
An average accuracy (AA) which represents the averageR§PPosed approach.

class classification accuracy

A kappa coefficient of agreement)(which is the percent-  For the ML, the kappa coefficient was not accessible.



TABLE IV TABLE VII
UNIVERSITY AREA. EIGENVALUES OF PRINCIPAL COMPONENTS IN UNIVERSITY AREA. GLOBAL ACCURACIES IN PERCENTAGE WITH
PERCENTAGE DIFFERENT FEATURE EXTRACTION METHODS THE NUMBERS OF FEATURES
FROM THE SPECTRAL DATA AND THE MORPHOLOGICAL DATA

Value Cumulative Val. RESPECTIVELY, ARE GIVEN IN BRACKETS.
A1 82.75 82.75

X2 | 15.56 98.01 Feature extraction| Cum. Var. | Features [ OA [ AA [ &
Az | 151 99.55 99 60 (45,15) | 84.77 | 89.98 | 80.43
A4 | 014 99.70 95 27 (27,10) | 87.97 | 88.94 | 84.40
DBFE 0 28 (20,8) | 86.49 | 88.94 | 82.50
80 19 (14,5) | 82.95 | 87.51 | 77.27
70 14 (10,4) | 76.93 | 84.63 | 71.20
B. University Area data set 99 62 (42,20) | 84.15 | 88.89 | 79.61
95 28 (16,12) | 82.90 | 87.25 | 77.98
PCs were computed from the hyperspectral data. The results NWFE 20 18 (10,8) | 82.64 | 86.77 | 77.65
for the eigenvalues are shown in Tabe The left column gives 80 13(7.6) | 87.59 | 88.93 | 83.89
70 10 (5,5) 79.57 | 87.39 | 74.49

the component number, the center column the eigenvalues in
percentage of the total amount of variance and the rightneolu
the cumulative amount of variance. From the table, three PCs
were necessary to retain 99% of the variance criterion. EMP8FE and NWFE, respectively. Using5% of the variance
were built according to the scheme presented in the Se®tioncriterion with DBFE, the hyperspectral data were reduced to
A circular SE with a step size increment of 2 was used. FoRf features and the EMP tt) features. With NWFE and0%,
openings and closings were computed for each PC, resuttingrifeatures were extracted from the hyperspectral daté dram

an EMP of dimension 27. the EMP. Again, as can be seen in Ta¥le differences between

First, the classification with SVM was done using the spéctrthe classification accuracies are statistically signitican
information and the extended morphological profile. Thet bes Considering the class-specific accuracies, the DBFE approa
ML accuracy was obtained using 8 features extracted with thmproved the classification for class 2 while class 3 was éess
NWFE, following Landgrebe’s recommendations in [3]. Theurately classified than with the concatenated full hyperspl
results are reported in Tablé Regarding the global accuraciesdata and EMP. However, the DBFE outperformed the individual
both SVM approaches perform equally well, for instance tt#assifications of the spatial or spectral information. ®is t
difference between the classification using the spectfatima- data set, the classification of the DBFE feature extractad da
tion and the EMP is not statistically significant, see Ta¥lle gave the best classification results. Similar comments @n b
Note that it is consistent with the characteristics of thengc made for the accuracies obtained with classifications of the
The University Area is a mix between man-made structures aNiVFE. Still, the number of features needed to achieve the
natural materials. Therefore, the morphological infoipratis same accuracy is significantly lower for the NWFE approach
not as useful as it could be in a very dense urban area. Whkan for the DBFE. Since the SVM is linearly related to the
a careful analysis is done on the class-specific accurasies, dimensionality of the data, lower dimensional data redubed
can see from Tabl&/ that each approach performed well fottraining time and increased the speed of the classification.
complementary classes, e.g. the spectral approach pe&dorm To assess this increase, comparison of the processing time
better for classes 3, 6, 9 while the EMP approach perform@gaining and classification process) for the differentrapphes
better for classes 1, 2, 7, 8. After the data fusion we have as made. Tabl¥Ill summarizes the results, which are clearly
look at these classes and see if the best information was usfifferent according to the features used. The training thmeld
i.e., if the classification accuracy increased for thesesesa. depend on several factors:

The experiment was then performed with the c:oncatenated1
vector. The vector was made of the 103 spectral bands and th
27 features of the EMP. The vector was directly used as art inpu
to the SVM. The classification results are reported in Tahle
As can be seen from the table, the global accuracies inateadeor our given problem, items 2) and 3) are the same. Reducing
The x value in percentage i89.13% against74.47% for the the size of the data is beneficial for the processing timesesin
spectral approach arit8.25% for the EMP and the differencesdata with lower dimensionality (EMP and NWFE) have the
are statistically significant (see Tabi). Regarding the class- shortest processing time. For the best case (NWFE), the gain i
specific accuracies, the results in terms of accuracies h&gout 73%.
increased for classes 1, 7, 8 when compared to both individuaFor the classification processing time, two factors have an
approaches. In fact all the classes are more accurateliftdas influence: The dimension of the data and the number of support
than the worst respective cases for the individual appegch vectors (non-zeray; in (8)). Thus, approaches with low di-

In the last experiment, feature reduction was applied on theensionality and few support vectors perform the classifina
morphological data and the original data before the concatésk of the whole image faster (EMP and NWFE). Nevertheless,
nation. Then the stacked vector was classified by the SVRihe classification processing is really fast by comparigothe
Table VIl summarizes the test accuracies for several valuestegining time, in all the cases.
the variance criterion for the DBFE and NWFE. Best results Classification maps for the different approaches are shown i
were obtained with95% and 80% variance criterion for the Fig. 5.

) The dimension of the data;
3) The size of the training set;
3) The number of parameters for the kernel.



UNIVERSITY AREA. SUMMARY OF THE GLOBAL AND THE CLASS-SPECIFIC TEST ACCURACIES IN PERCENTAGE FOR THE CLASSIFICKON. THE NUMBERS

TABLE V

OF FEATURES FROM THE SPECTRAL DATA AND THE MORPHOLOGICAL DAY, RESPECTIVELY ARE GIVEN IN BRACKETS.

| ML (NWFE) | Spectral EMP  Spec. EMP  DBFE 95%  NWFE 80%
Features | 8 | 103 27 130 37 (27,10) 13 (7,6)
OA 80.10 79.48 79.14 83.53 87.97 87.59
AA 87.00 88.14  84.30 89.39 89.43 88.93
K - 74.47 73.25 79.13 84.40 83.89
Class 1 76.00 84.36 94.50 95.33 90.92 86.80
Class 2 73.90 66.20  72.82 73.46 85.91 86.95
Class 3 70.80 7199 5322 65.89 57.88 63.26
Class 4 96.70 98.01 98.89 99.18 99.22 98.53
Class 5 99.90 99.48 99.55 99.48 99.48 99.88
Class 6 87.60 9312 5811 84.15 85.32 82.62
Class 7 92.00 9120  96.09 97.22 95.19 96.61
Class 8 87.30 92.26 95.27 96.12 95.84 95.38
Class 9 99.10 96.62 91.24 93.66 95.14 90.60
TABLE VI

UNIVERSITY AREA. STATISTICAL SIGNIFICANCE OF DIFFERENCES IN CLASSIFICATIONACCURACIES.

EMP/Spectral | Spectral/Spec. EMP| Spectral/DBFE 95%| Spectral/NWFE 80%| Spec. EMP/DBFE 95%| Spec. EMP/NWFE 80%| DBFE 95%/NWFE 80%
4 -1.36 -19.55 -37.98 -36.61 -25.19 -21.79 2.32
TABLE VIl

UNIVERSITY AREA. PROCESSING TIME IN SECONDS AS FUNCTION OF DIMENSIONALITY ANDNUMBER OF SUPPORT VECTORS

[| Spectral [ EMP | Spec. EMP [ DBFE 95% | NWFE 80%

Dimension 103 27 130 37 13

Training 3074 850 3257 1184 859

Number of SVs 1085 406 529 727 572
Classification 76 9 41 18 9

@)

Fig. 5. University Area: Classification map obtained with SVM from: (a) the originapbyspectral data, (b) the EMP, (c) 37 DBFE features and (N\W&E
features. Classification accuracies are reported in thée "ab

C. Pavia Center data set eigenvalues are shown in Tal. From the Table, three PCs

were necessary to retain 99% of the variance criterion. THE E

For the second test, the scene is a very dense urban aregda pyiit according to the scheme presented in the sebtion
the center of the city of Pavia. Because of that, morpholigica circylar SE with a step size increment of 2 was used. Four

information should be useful for the discrimination. PCgave openings and closings were computed for each PC, resufting i
computed from the hyperspectral data. The results for the



TABLE IX TABLE XII
PAviA CENTER. EIGENVALUES OF PRINCIPAL COMPONENTS IN PAviA CENTER. GLOBAL ACCURACIES IN PERCENTAGE WITH DIFFERENT
PERCENTAGE FEATURE EXTRACTION METHODS THE NUMBERS OF FEATURES FROM THE
SPECTRAL DATA AND THE MORPHOLOGICAL DATA RESPECTIVELY, ARE

Value | Cumulative Val. GIVEN IN BRACKETS.
A1 82.94 82.94
o | 14.82 97.77 Feature extraction] Cum. Var. [ Features | OA [ AA | &
Az | 170 99.47 99 66 (51,15) | 98.65 | 97.30 | 98.10
A | 019 99.66 95 41 (31,10) | 98.37 | 96.86 | 97.70
DBFE 90 31 (23,8) 98.08 | 96.71 | 97.29
80 22 (17,5) 98.53 | 97.22 | 97.42
) ) 70 17 (13,4) 98.53 | 97.31 | 97.42
an EMP of dimension 27. 99 66 (44,20) | 98.87 | 97.95 | 98.41
SVM classification was applied to the original hyperspédctra 95 31(19,12) | 98.58 | 96.66 | 97.99
data and the EMP. The best ML accuracy was obtained using 29 NWFE gg 2114((1825) gg"z‘i g;gg g;;;
features extracted with the_ DBFE. The results are repont_e(_j i 70 10 6.4) | 9839 | 96.39 | 97.73
Table X. From the Table, it can be seen that SVM classifier
achieved excellent global accuracies. In these experanent TABLE XIV

the morphological approach performs better than the sgectr UNIVERSITY AREA. SUMMARY OF THE GLOBAL TEST ACCURACIES IN

based approaCh Tabkl shows the statistical Signiﬁcance of PERCENTAGE FORSVM CLASSIFICATION USING ALIMITED TRAINING
) SET.THE NUMBERS IN BRACKETS ARE THE NUMBERS OF FEATURES FROM

differences between the classification accuracies foritferehnt THE SPECTRAL DATA AND FROM THE MORPHOLOGICAL DATA
approaches. This is consistent with the characteristitiseopic- RESPECTIVELY
ture: it is a very dense urban area and morphological proagss
provides discriminative information. In terms of accuesgithe Cum. Var. [ Features | OA | AA [ «
main improvement in the classification is achieved for ckss Spectral - 103 | 7125 | 7579 | 63.70
The other classes are classified equally accurately. The dat EMP - 2 7579 | 8072 | 9900
eo i qually Y- : Spec. EMP - 130 | 7525 | 81.23 | 68.66
fusion should thus improve the classification of class 4 evhil 99 66 (44,12) | 77.33 | 83.77 | 71.31
preserving very good results for the others classes. 95 32 (257) | 81.34 | 82.84 | 75.65
Next, the experiment was performed using the concatened DBFE o 2 822 [hgod Il il
vector. The vector was made of the 102 spectral bands and the 70 119 ,'2) 6131 | 72.04 | 52.26
27 features of the EMP. This vector was used as an input for 99 53 (35,18) | 85.42 | 87.48 | 80.87
the SVM without any additional processing. The classifarati 95 25(14,11) | 81.04 | 8542 | 7584
I . . . NWFE 90 17 (10,7) 79.05 | 83.72 | 73.27
results are reported in Tab}. The differences of classification 80 13(7.6) | 8477 | 8565 | 80.00
accuracies between the EMP and the concatened vector are not 70 9(54) | 83.10 | 84.35 | 77.84

statistically significant, since the McNemar's test is astrequal
to zero, see TablXI. Thus, both EMP and concatened vector

perfor.m equally _Well- . . ‘very dense urban area.
As in the previous experiment, feature reduction was agplie Regarding the computing time, the results for the training a
both on the morphological data and on the original data lkefafe classification are reported in Tabiél . As expected, using

the concatenation. Then, the stacked vector was classified@ature extraction methods reduces the processing timieokbr
the SVM. TableXIl summarizes the test accuracies for severgie training and the classification.

values for the variance criterion for the DBFE and NWFE. The cjassification maps for the different approaches are shawn i
best results are obtained witl9% variance criterion for both Fig 6,
DBFE and NWFE. Usin@9% of the variance with the DBFE,
the hyperspectral data is reducedstofeatures and the EMP is o ) ) )
reduced ta 5 features. With the NWFE ari@h% of the variance D- Small training set experiment: University Area
criterion, 44 features were extracted from the hyperspectral dataTo assess the effectiveness of the proposed methodology for
and 20 from the EMP. The results are given in Tab{e limited training set, we have randomly extracted a few trajn
For this experiment, the DBFE does not help for the clasamples from the training set. For this experiment, we used
sification since the Z test is not significant. On the oth&0 samples for each class, which represents less than 5% o
hand, similar classification accuracy is reached with fas lethe original training set. We have used the same EMP but had
features, nearly half the size of the previous feature $ets t some problems with the DBFE, the covariance matrix was non-
decreasing the total training and classification time. TNéR¥E invertible (the NWFE does not suffer from this problem). In
leads to a significant increase of the classification ac@sac order to overcome this shortcoming and to apply the DBFE
|Z|= 7.75 by comparison to the best results obtained witimyway, we use thieave on out covariancd OOC) to estimate
the concatenation vector, which is contrary to the previotise covariance matrix and perform satistical enhancement
experiment. Classification maps for the different appreacre with unlabeled samples, both algorithms were implemented i
shown in Fig.6. Visually, the thematic map produced with theahe MultiSpe© software [37], [38]. We have repeated the
classification of the NWFE features seems less noisy than thaining samples selection and the classification process fi
one obtained with the classification of the DBFE featuress Thimes, and the mean classification results are reporteden th
is especially true in the top-left corner which correspoadat paper.



TABLE X
PaviA CENTER. SUMMARY OF THE GLOBAL AND THE CLASS-SPECIFIC TEST ACCURACIES IN PERCENTAGE FOBVM CLASSIFICATION. THE NUMBERS OF
FEATURES FROM THE SPECTRAL DATA AND THE MORPHOLOGICAL DATARESPECTIVELY, ARE GIVEN IN BRACKETS.

| ML (DBFE) | Spectral EMP  Spec. EMP  DBFE 99%  NWFE 99%

Features | 29 | 102 27 129 66 (51,15) 64 (44,20)
OA 94.50 97.67  98.69 99.69 98.65 98.87
AA 94.00 95.60  97.69 98.07 97.30 97.95

K - 96.71 98.15 98.15 98.10 98.41

Class 1 91.50 98.35  99.08 98.66 99.17 99.21

Class 2 92.00 9123  91.62 93.52 90.00 92.49

Class 3 97.70 96.76 96.18 95.95 96.54 96.76

Class 4 86.90 88.45 98.40 98.77 98.92 99.55

Class 5 95.60 96.97  98.81 99.42 99.27 99.74

Class 6 94.40 96.32  97.98 98.36 98.45 98.70

Class 7 96.40 96.01  97.89 98.22 97.91 98.41

Class 8 99.30 99.40  99.74 99.79 99.81 99.72

Class 9 92.30 99.93 99.44 99.93 98.60 96.93

TABLE XI

PAvVIA CENTER. STATISTICAL SIGNIFICANCE OF DIFFERENCES IN CLASSIFICATIONMMCCURACIES.

EMP/Spectral | EMP/Spec. EMP| EMP/DBFE 99% | EMP/NWFE 99% | Spec. EMP/DBFE 95%| Spec. EMP/NWFE 80%| DBFE 95%/NWFE 80%
Z 27.84 -0.06 1.44 -8.14 1.42 -7.75 -9.44

TABLE XIlI
PAvIA CENTER. PROCESSING TIME IN SECONDS AS FUNCTION OF DIMENSIONALITY ANDNUMBER OF SUPPORT VECTORS

[| Spectral | EMP | Spec. EMP [ DBFE 95% | NWFE 80%

Dimension 102 27 129 66 66

Training (s) 5178 1569 5909 3520 3962
Number of SVs 691 265 401 558 408
Classification (s) 143 20 105 73 a7

Fig. 6. Pavia Center. Classification map obtained with SVM from: (a) the originapkyspectral data, (b) the EMP, (c) 66 DBFE features and (d{\84E
features. Classification accuracies are reported in thée Tab

As with the previous experiments, we perform the classificaoncatened feature vector, the overall accuracy andxtlaee
tion using the spectral or the morphological feature withVBV respectively, 83.53% and 79.13% for the original trainirg s
The ML produced very poor results, simply close to randomhile using a limited training set, the overall accuracy dmel
classification and hence not reported. The global accwwasie « are respectively, 75.35% and 68.66%. Nevertheless, with a
reported in TableXIV . Statistical significance of differences isvery small training set, the results are still good.

reported in TablexV. For the feature extraction, NWFE with 99% of the cumulative
First of all, the test results are lower than those in Table variance provides the best results: The obtained overaliracy
and VII, due to the limited training set. For instance, with thes 85.42% and the: is 80.87%, which is closed to the best
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results obtained with the full training set (OA=97.87% and to thank the IAPR - TC7 for providing the data and Prof. Paolo

= 84.40%, see Tabl¥). The|Z| between the best results withGamba and Prof. Fabio Dell’Acqua of the University of Pavia,

limited training and the best results with full training &eequal Italy, for providing reference data. The authors also th#rek

to 13.65. reviewers for their many helpful comments. This research wa
Furthermore, the accuracies are better than those obtaiseg@ported in part by the Research Fund of the University of

with the full training set with the spectral or morpholodicalceland and the Jules Verne Program of the French and ldeland

information alone. It is also important to note that NWFEovernments (PAlI EGIDE).

outperforms better DBFE without any statistical enhanagme
Considering the processing time, with only 20 samples for

each class, the training as well as the classification of tiieee

data set are done in 1 or 2 seconds. [1]

VII. CONCLUSION 2]

Classification of hyperspectral data with a fine spatial +eso
lution has been investigated. The contribution of this wigrla
methodology to include both spatial and spectral inforomatn
the classification process by a data fusion scheme. Expetaine =]
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