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It is a great honour for me to speak on this occasion and I want to ex-
press my gratitude to the Abdus Salam International Centre for Theoretical
Physics as well as the Selection Committee of the Dirac Medal. It is also a
great pleasure to be here with Luciano Maiani and discuss the consequences
of our common work with Sheldon Glashow on charmed particles [1]. I will
argue in this talk that the same kind of reasoning, which led us to predict
the opening of a new chapter in hadron physics, may shed some light on the
existence of new physics at the as yet unexplored energy scales of LHC.

The argument is based on the observation that precision measurements
at a given energy scale allow us to make predictions concerning the next en-
ergy scale. It is remarkable that the origin of this observation can be traced
back to 1927, the two fundamental papers on the interaction of atoms with
the electromagnetic field written by Dirac, which are among the cornerstones
of quantum field theory. In the second of these papers [2] Dirac computes
the scattering of light quanta by an atom γ(k1) + Ai → γ(k2) + Af , where
Ai and Af are the initial and final atomic states, respectively. He obtains
the perturbation theory result:

Hfi = Σj

H1
fjH

1
ji

Ei − Ej

(1)

where H are the amplitudes. For the significance of the rhs, Dirac notes:
“...The scattered radiation thus appears as a result of the two processes i → j
and j → f , one of which must be an absorption, the other an emission, in
neither of which the total proper energy is even approximately conserved.”
This is the crux of the matter: In the calculation of a transition amplitude
we find contributions from states whose energy may put them beyond our
reach. The size of their contribution decreases with their energy, see (1), so,
the highest the precision of our measurements, the further away we can see.

Let me illustrate the argument with two examples, one with a non-
renormalisable theory and one with a renormalisable one. A quantum field
theory, whether renormalisable or not, should be viewed as an effective the-
ory valid up to a given scale Λ. It makes no sense to assume a theory for
all energies, because we know already that at very high energies entirely
new physical phenomena appear (example: quantum gravity at the Planck
scale). The first example is the Fermi four-fermion theory with a coupling
constant GF ∼ 10−5GeV −2. It is a non-renormalisable theory and, at the
nth order of perturbation, the Λ dependence of a given quantity A is given
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by:

A(n) = C
(n)
0 (GF Λ2)n + C

(n)
1 GF (GF Λ2)n−1 + C

(n)
2 G2

F (GF Λ2)n−2 + .... (2)

where the Ci’s are functions of the masses and external momenta, but their
dependence on Λ is, at most, logarithmic. Perturbation theory breaks down
obviously when A(n) ∼ A(n+1) and this happens when GF Λ2 ∼ 1. This
gives a scale of Λ ∼ 300GeV as an upper bound for the validity of the
Fermi theory. Indeed, we know today that at 100GeV the W and Z bosons
change the structure of the theory. But, in fact, we can do much better
than that [3]. Weak interactions violate some of the conservation laws of
strong interactions, such as parity and strangeness. The absence of such
violations in precision measurements will tell us that GF Λ2 ∼ ǫ with ǫ be-
ing the experimental precision. The resulting limit depends on the value
of the C coefficient for the quantity under consideration. In this particular
case it turned out that, under the assumption that the chiral symmetry of
strong interactions is broken only by terms transforming like the quark mass

terms, the coefficient C
(n)
0 for parity and/or strangeness violating amplitudes

vanishes and no new limit is obtained [4]. However, the second order coef-

ficient C
(n)
1 contributes to flavour changing neutral current transitions and

the smallness of the K1 − K2 mass difference, or the K0
L → µ+ + µ− decay

amplitude, give a limit of Λ ∼ 3GeV before new physics should appear. The
new physics in this case turned out to be the charmed particles [1]. We see
in this example that the scale Λ turned out to be rather low and this is
due to the non-renormalisable nature of the effective theory which implies
a power-law behaviour of the radiative corrections on Λ.

The second example in which new physics has been discovered through
its effects in radiative corrections is the well-known “discovery” of the t quark
at LEP, before its actual production at Fermilab. The effective theory is now
the Standard Model, which is renormalisable. In this case the dependence of
the radiative corrections on the scale Λ is, generically, logarithmic and the
sensitivity of the low energy effective theory on the high scale is weak (there
is an important exception to this rule for the Standard Model which we shall
see presently). In spite of that, the discovery was made possible because
of the special property of the Yukawa coupling constants in the Standard
Model to be proportional to the fermion mass. Therefore, the effects of
the top quark in the radiative corrections are quadratic in mt. The LEP
precision measurements were able to extract a very accurate prediction for
the top mass.
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I claim that we are in a similar situation with the precision measurements
of the Standard Model. Our confidence in this model is amply justified on
the basis of its ability to accurately describe the bulk of our present day data
and, especially, of its enormous success in predicting new phenomena. All
these spectacular successes are in fact successes of renormalised perturbation
theory. Indeed what we have learnt was how to apply the methods which
had been proven so powerful in quantum electrodynamics, to other elemen-
tary particle interactions. The remarkable quality of modern High Energy
Physics experiments, mostly at LEP, but also elsewhere, has provided us
with a large amount of data of unprecedented accuracy. All can be fit using
the Standard Model with the Higgs mass as the only free parameter. Let
me show some examples: Figure 1 indicates the overall quality of such a fit.
There are a couple of measurements which lay between 2 and 3 standard
deviations away from the theoretical predictions, but it is too early to say
whether this is accidental, a manifestation of new physics, or the result of
incorrectly combining incompatible experiments.

Another impressive fit concerns the strong interaction effective coupling
constant as a function of the momentum scale (Figure 2). This fit already
shows the importance of taking into account the radiative corrections, since,
in the tree approximation, αs is obviously a constant. Similarly, Figure 3
shows the importance of the weak radiative corrections in the framework
of the Standard Model. Because of the special Yukawa couplings, the de-
pendence of these corrections on the fermion masses is quadratic, while it
is only logarithmic in the Higgs mass. The ǫ parameters are designed to
disentangle the two. The ones we use in Figure 3 are defined by:

ǫ1 =
3GF m2

t

8
√

2π2
−

3GF m2
W

4
√

2π2
tan2 θW ln

mH

mZ

+ ... (3)

ǫ3 =
GF m2

W

12
√

2π2
ln

mH

mZ

−
GF m2

W

6
√

2π2
ln

mt

mZ

+ ... (4)

where the dots stand for subleading corrections. As you can see, the ǫ
s vanish in the absence of weak interaction radiative corrections, in other
words, ǫ1 = ǫ3 = 0 are the values we get in the tree approximation of
the Standard Model but after having included the purely QED and QCD
radiative corrections. We see clearly in Figure 3 that this point is excluded
by the data. The latest values for these parameters are ǫ1 = 5.4 ± 1.0 and
ǫ3 = 5.34 ± 0.94 [5].

Using all combined data we can extract the predicted values for the
Standard Model Higgs mass which are given in Figure 4. The data clearly
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0 1 2 3

∆αhad(mZ)∆α(5) 0.02761 ± 0.00036 0.02768

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1873

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4965

σhad [nb]σ0 41.540 ± 0.037 41.481

RlRl 20.767 ± 0.025 20.739

AfbA0,l 0.01714 ± 0.00095 0.01642

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1480

RbRb 0.21638 ± 0.00066 0.21566

RcRc 0.1720 ± 0.0030 0.1723

AfbA0,b 0.0997 ± 0.0016 0.1037

AfbA0,c 0.0706 ± 0.0035 0.0742

AbAb 0.925 ± 0.020 0.935

AcAc 0.670 ± 0.026 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1480

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.425 ± 0.034 80.398

ΓW [GeV]ΓW [GeV] 2.133 ± 0.069 2.094

mt [GeV]mt [GeV] 178.0 ± 4.3 178.1

Mesure AjustementObservable
O     - Omes. ajust.

mes.σ

Figure 1: Various physical quantities measured and computed.
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Figure 2: The variation of αs with the momentum scale. The renormalisa-
tion group prediction and the experimental points.

0.004

0.006

0.008

0.004 0.006 0.008

ε3

ε 1

68 % CL

mt

mH

mt= 178.0 ± 4.3 GeV
mH= 114...1000 GeV

Figure 3: The importance of the Standard Model radiative corrections. The
arrows show how the prediction moves when we vary mt and mH , in partic-
ular if we use the most recent lower value for mt.
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Figure 4: The predicted values for the Standard Model Higgs mass using all
available data. The shaded region is excluded by direct searches.

favour a low mass (≤ 200 GeV) Higgs, although, this prediction may be less
solid than what Figure 4 seems to indicate.

The main conclusion I want to draw from this comparison can be stated
as follows:

Looking at all the data, from low energies to the Tevatron, we have learnt

that perturbation theory is remarkably successful, outside the specific regions

where strong interactions are important.

Let me explain this point better: At any given model with a coupling
constant g we expect to have a weak coupling region g ≪ 1, in which weak
coupling expansions, such as perturbation theory, are reliable, a strong cou-
pling region with g ≫ 1, in which strong coupling expansions may be rel-
evant, and a more or less large gray region g ∼ 1, in which no expansion
is applicable. The remarkable conclusion is that this gray area appears to
be extremely narrow. And this is achieved by an enlargement of the area
in which weak coupling expansion applies. The perturbation expansion is
reliable, not only for very small couplings, such as αem ∼ 1/137, but also for
moderate QCD couplings αs ∼ 1/3, as shown in Figure 2. This is extremely
important because without this property no calculation would have been
possible. If we had to wait until αs drops to values as low as αem we could
not use any available accelerator. Uncalculable QCD backgrounds would
have washed out any signal. And this applies, not only to the Tevatron and
LHC, but also to LEP. We can illustrate this observation using a qualitative
argument first introduced by F. Dyson. He noted that in a field theory like
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QED, the contribution of the 2n-th order perturbation term to a physical
amplitude A(2n) grows with n roughly as1

A(2n) ∼ αn(2n − 1)!! (5)

where α is (the square of) the coupling constant. Again, perturbation theory
will break down when A(2n) ∼ A(2n+2) which gives

2n + 1 ∼ α−1 (6)

This leaves a comfortable margin for QED but leaves totally unexplained
the successes of QCD at moderate energies.

A global view of the weak and strong coupling regions is given in Figure
5 which shows the R-ratio, i.e. the e+ + e− total cross section to hadrons
normalised to that of e+ +e− → µ+ +µ− as a function of the centre-of-mass
energy. The lowest order perturbation value for this ratio is a constant,
equal to ΣQ2

i , the sum of the squares of the quark charges accessible at
this energy. We see clearly in this Figure the areas of applicability of per-
turbation theory: At very low energies, below 1 GeV, we are in the strong
coupling regime characterised by resonance production. The strong inter-
action effective coupling constant becomes of order one (we can extrapolate
from Figure 2), and perturbation breaks down. However, as soon as we
go slightly above 1 GeV, R settles to a constant value and it remains such
except for very narrow regions when new thresholds open. In these regions
the cross section is again dominated by resonances and perturbation breaks
down. But these areas are extremely well localised and threshold effects do
not spread outside these small regions.

In this talk I want to exploit this observational fact and argue that
the available precision tests of the Standard Model allow us to claim with
confidence that new physics will be unravelled at the LHC, although we have
no unique answer on the nature of this new physics. The argument assumes
the validity of perturbation theory and it will fail if the latter fails. But, as
we just saw, perturbation theory breaks down only when strong interactions
become important. But new strong interactions do imply new physics.

The key is again the Higgs boson. As we explained above, the data
favour a low mass Higgs. However, the opposite cannot be excluded, first

1The estimation is only heuristic. It is based on a rough counting of the number of

diagrams and assumes that they all contribute equally and have the same sign, neither of

which is exact. The estimation can be improved but the result remains the same.
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Figure 5: The ratio R of e+ + e− total cross section to hadrons normalised
to that of e+ + e− → µ+ + µ− as a function of the centre-of-mass energy.

because it depends on the subset of the data one is looking at2, and, second,
because the analysis is done taking the minimal Standard Model.

Given this result, let us see what, if any, are the theoretical constraints.
The Standard Model Higgs mass is given, at the classical level, by m2

H =
2λv2, with v the vacuum expectation value of the Higgs field. v is fixed by
the value of the Fermi coupling constant GF /

√
2 = 1/(2v2) which implies

v ≈246 GeV. Therefore, any constraints will come from the allowed values
of λ. A first set of such constraints is given by the classical requirement:

1 > λ > 0 ⇒ mH < 400 − 500GeV (7)

The lower limit for λ comes from the classical stability of the theory. If
λ is negative the Higgs potential is unbounded from below and there is no
ground state. The upper limit comes from the requirement of keeping the
theory in the weak coupling regime. If λ ≥ 1 the Higgs sector of the theory
becomes strongly interacting and we expect to see plenty of resonances and
bound states rather than a single elementary particle.

Going to higher orders is straightforward, using the renormalisation

2This prediction is, in fact, an average between a much lower value, around 50 GeV,

given by the data from leptonic asymmetries, and a much higher one, of 400 GeV, obtained

from the hadronic asymmetries. Although the difference sounds dramatic, the two are still

mutually consistent at the level of 2-3 standard deviations.
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Figure 6: Bounds on the Higgs mass.

group equations. The running of the effective mass is determined by that of
λ. Keeping only the dominant terms and assuming t = log(v2/µ2) is small
(µ ∼ v), we find

dλ

dt
=

3

4π2
[λ2 + 3λh2

t − 9h4
t + ...] (8)

where ht is the coupling of the Higgs boson to the top quark. The dots stand
for less important terms, such as the other Yukawa couplings to the fermions
and the couplings with the gauge bosons. This equation is correct as long as
all couplings remain smaller than one, so that perturbation theory is valid,
and no new physics beyond the standard model becomes important. Now
we can repeat the argument on the upper and lower bounds for λ but this
time taking into account the full scale dependence λ(µ). We thus obtain for
the Higgs mass an upper bound given by the requirement of weak coupling
regime (λ(µ) < 1) all the way up to the scale µ, and a lower bound by the
requirement of vacuum stability (λ(µ) > 0), again up to µ. Obviously, the
bounds will be more stringent the larger the assumed value of µ. Figure
6 gives the allowed region for the Higgs mass as a function of the scale for
scales up to the Planck mass. We see that for small µ ∼ 1TeV, the limits are,
essentially, those of the tree approximation equation (7), while for µ ∼ MP
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we obtain only a narrow window of allowed masses 130GeV< mH <200GeV,
remarkably similar to the experimental results.

This analysis gives the first conclusion: If perturbation theory remains
valid, in other words, if we have no new strong interactions, there exists at
least one, relatively light, Higgs boson:

Conclusion 1: The absence of a light Higgs boson implies New Physics.

Here “heavy Higgs” is not clearly distinguished from “no-Higgs”, because
a very heavy Higgs, above 1 TeV, is not expected to appear as an elementary
particle. As we explained above, this will be accompanied by new strong
interactions. A particular version of this possibility is the “Technicolor”
model, which assumes the existence of a new type of fermions with strong
interactions at the multi-hundred-GeV scale. The role of the Higgs is played
by a fermion-antifermion bound state. “New Physics” is precisely the dis-
covery of a completely new sector of elementary particles. Other strongly
interacting models can and have been constructed. The general conclusion
is that a heavy Higgs always implies new forces whose effects are expected
to be visible at the LHC.3

The possibility which seems to be favoured by the data is the presence
of a “light” Higgs particle. In this case new strong interactions are not
needed and, therefore, we can assume that perturbation theory remains
valid. But then we are faced with a new problem. The Standard Model
is a renormalisable theory and the dependence on the high energy scale is
expected to be only logarithmic. This is almost true, but with one notable
exception: The radiative corrections to the Higgs mass are quadratic in
whichever scale Λ we are using. The technical reason is that mH is the
only parameter of the Standard Model which requires, by power counting,
a quadratically divergent counterterm. The gauge bosons require no mass
counterterm at all because they are protected by gauge invariance and the
fermions need only a logarithmic one. The physical reason is that, if we
put a fermion mass to zero we increase the symmetry of the model because
now we can perform chiral transformations on this fermion field. Therefore
the massless theory will require no counterterm, so the one needed for the
massive theory will be proportional to the fermion mass and not the cut-off.

3We can build specific models in which the effects are well hidden and pushed above the

LHC discovery potential, at least with the kind of accuracy one can hope to achieve in a

hadron machine. In this case one would need very high precision measurements, probably

with a multi-TeV e
+
− e

− collider.
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In contrast, putting mH = 0 does not increase the symmetry of the model.4

As a result the effective mass of the Higgs boson will be given by

(m2
H)eff = m2

H + CαeffΛ2 (9)

where C is a calculable numerical coefficient of order one and αeff some ef-
fective coupling constant. In practice it is dominated by the large coupling
to the top quark. The moral of the story is that the Higgs particle cannot
remain light unless there is a precise mechanism to cancel this quadratic
dependence on the high scale. This is a particular aspect of a general prob-
lem called “scale hierarchy”. The only known mechanism which reconciles
a light Higgs and a high value of the scale Λ with the validity of pertur-
bation theory is supersymmetry. In this case the Higgs mass is protected
against the quadratic corrections of eq. (9) because it behaves like the mass
of the companion fermion which, as we just said, receives only logarithmic
corrections. It is closest in spirit to the charm mechanism, in the sense
that a heavy effective cut-off is made compatible with the low energy data
by the presence of new particles. The alternative is to have a low value of
Λ, i.e. new physics, at a low scale. The models with large compact extra
dimensions enter into this category. This brings us to our second conclusion:

Conclusion 2: A light Higgs boson is unstable without new physics.

Both conclusions are good news for LHC. But the time for speculations
is coming to an end. The LHC is coming. Never before a new experimental
facility had such a rich discovery potential and never before was it loaded
with so high expectations.
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