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Abstract
In this paper, multicarrier techniques are studied in the context of the future wideband wireless networks. After a brief

presentation of the third generation mobile networks, MC-CDMA systems are considered for the downlink of the future high

rate cellular networks. The performance of different mono-user and multi-user detection techniques are compared with the

help of Monte Carlo simulations over a frequency selective Rayleigh channel. Thus, the efficiency of MC-CDMA as a very

promising multiple access and robust modulation scheme is successfully demonstrated for the downlink of the future

wideband mobile networks. Finally, the first results concerning the performance of Multicarrier CDMA technique combined

with space-time block coding in order to build a Multiple Input Multiple Output/MC-CDMA system are presented over a

Rayleigh channel.

I Introduction

The European third generation (3G) terrestrial mobile system under deployment aims at offering a large variety of circuit

and packet services and greater capacity compared to second-generation (2G) systems, GSM (Global System for Mobile

Comunications) and its annual releases leading to the introduction of GPRS (General Packet Radio Service) and EDGE

(Enhanced Data rates for GSM Evolution). The evolution from 2G to 3G corresponds to adopting a new air interface but

most of all to a change of focus from voice to multimedia. Meanwhile, there is already an urgent necessity to start thinking

now about 4th Generation (4G) [1] in order to offer very high data rates over broadband radio channels for future multimedia

services (internet, video transmission, data transfer…).

These last ten years, we have observed the success of spread spectrum communications in mobile cellular networks,

whose first commercial widespread deployment came with the CDMA based mobile radio standard IS-95 in the USA.

Nowadays, with the use of CDMA for third generation mobile radio systems as IMT2000 (International Mobile Telephony)

and its european component UMTS (Universal Mobile Telecommunication System) in Europe, the success of this technique

is unquestionable. So, to enable symmetric and asymmetric data services in a spectrum efficient way, the UMTS Terrestrial

Radio Access (UTRA) supports respectively FDD (Frequency Division Duplex) and TDD (Time Division Duplex), which

are both based on the CDMA technology. Wideband CDMA, the leading candidate for FDD mode leans on direct sequence

spread spectrum with a chip rate of 3.84 Mchip/s and a transmitted signal bandwidth of about 5 MHz. It supports circuit and

packet data access at nominal peak data rate equal to 384 Kbit/s for macro cellular environment with a vehicular mobility and

up to 2 Mbit/s for indoor environments with a pedestrian mobility [2] as shown in Figure 1, which gives the mobility versus

the data rates for current and future wireless access systems.

Figure 1     Mobility versus data rate for wireless access systems

0.1 1 10 100

Data Rate (Mbit/s)

Mobility

Stationnary

Pedestrian

Vehicle

Wireless LAN :

HIPERLAN2
IEEE 802.11a,

MMAC

4th Generation
High Data Rate

High mobility

3rd Generation

    IMT 2000

      UMTS

  2nd Generation

GSM, Edge, GPRS DS-CDMA

OFDM

MC-CDMA ?



2

Meanwhile, the multi-carrier technique, well known under the acronym OFDM, which stands for Orthogonal Frequency

Division Multiplexing, has been receiving widespread interest for wireless broadband multimedia applications over the last

decade. The main advantages of this technique are widely known: robustness and high spectrum efficiency in frequency-

selective and time-variant fading channels, capability of portable and mobile reception and flexibility. Introduced into

european digital broadcasting systems like Digital Audio Broadcasting (DAB) and Digital Video Broadcasting-Terrestrial

(DVB-T) [3], OFDM was selected for next generation Wireless Local Area Networks (WLAN) like ETSI-HIPERLAN/2 [4],

American IEEE-802.11a and Japanese MMAC as illustrated in Figure 1. These standards will offer high bit rates from 6 to 54

Mbit/s on the physical layer for short range communications typically in offices and home environment with a 20 MHz

channel spacing in the 5 GHz.

Today, one of the most promising candidate for the 4th Generation air interface is Multi-Carrier Code Division Multiple

Access (MC-CDMA) [5][6], as mentioned in Figure 1. Based on the combination of multi-carrier modulation and spread

spectrum, MC-CDMA benefits from the main advantages of both schemes: high spectral efficiency, high flexibility, multiple

access capabilities, narrow-band interference rejection, simple one-tap equalisation, … During the last years, deep system

analysis and comparison of MC-CDMA with DS-CDMA have been performed demonstrating the superiority of MC-CDMA

[7][8]. With respect to UMTS and IMT requirements based on a 5 MHz bandwidth channel for FDD mode, it is for example

demonstrated in [9] that with MC-CDMA technology, a net bit rate of up to 4 Mbit/s with a ½ rate channel code and even 6

Mbit/s with a ¾ rate code could be assigned to a single user for indoor but also macro cellular environments with a vehicular

mobility. Those figures have to be compared to the previous throughputs offered by UMTS and reminded at the beginning of

this introduction. However, further researchs on integration and optimization of processing techniques as coding and

modulation, multi-user detection techniques, channel estimation, synchronisation and networks issues are required.

The purpose of this paper is to give a general framework for MC-CDMA, to discuss the detection techniques and to

study its performance for the downlink of high rate cellular networks. In section II, we give a general presentation of MC-

CDMA systems. After a functional description of the transmitter and the receiver, section III discusses the detection problem

with a presentation of different mono-user detection techniques. Section IV deals with multi-user detection techniques.

Interference cancellation techniques and a new Global Minimum Mean Square Error (GMMSE) detection technique are

compared. It is shown that this new linear detection scheme offers very good performance mainly for non-full load systems.

Furthermore, different results are given for a synchronous MC-CDMA system with various combinations of GMMSE and

interference cancellation techniques, in order to look for the scheme that will offer the best trade-off between performance

and complexity. Then, in section V, the first results concerning the performance of Multicarrier CDMA modulation

combined with space-time block coding in order to build a Multiple Input Multiple Output / MC-CDMA system are

presented over a Rayleigh channel. Finally, section VI summarises the results and draws together the conclusions.

II Multi-carrier spread spectrum concept

The MC-CDMA concept, also known as OFDM/CDMA, is based on a serial concatenation of Direct Sequence

spreading with Multi-Carrier Modulation. The MC-CDMA transmitter spreads the original data stream over different

subcarriers in the frequency domain using a given spreading code. The effect of spreading is that different users can have

access to the same carriers in a CDMA manner. The separation of the user's signals is then performed in the code domain.

The advantage of MC-CDMA in comparison with DS-CDMA is that the spreading can be adapted to the frequency selective

behaviour of the channel. Simple methods for signal detection in the frequency domain as one-tap equaliser per carrier can be

used. Figure 2 shows the MC-CDMA transmitter of the jth user and the power spectrum of the transmitted signal.
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Figure 2       MC-CDMA transmitter scheme and power spectrum of the transmitted signal.

The data symbol xj(t) of the user j is transmitted in parallel over Nc subcarriers, each multiplied by one chip ck,j of the

spreading code Cj(t) = [c1,j c2,j …..cLmc,j] assigned to user j. In this figure, the length Lmc of the spreading code is equal to the

number Nc of subcarriers but this is not mandatory. As a consequence, the MC-CDMA systems offer an additional degree of

freedom, and actually the number Nc of subcarriers is chosen to guarantee frequency non-selective fading over each

subcarrier. The expression of the transmitted signal Sj(t) of user j during the time interval [0, Tx[ is:
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where Tx is the data symbol duration which is in this case equal to the OFDM symbol duration, xj the data symbol

transmitted during the signalling interval [0, Tx[, P(t) the pulse shaping waveform which is generally rectangular and f0 is the

carrier frequency.

Practically, the MultiCarrier modulation and demodulation is easily carried out in the digital domain by performing IFFT

and FFT operations. Furthermore the insertion between adjacent MultiCarrier (MC) symbols of a guard interval ∆, longer

than the delay spread of the impulse response of the channel, guarantees the absence of Inter Symbol Interference (ISI)

during the "useful" part of the symbol. In the receiver, after direct FFT and possibly de-interleaving, the received sequence is

"equalised" in the frequency domain. Therefore, the MC-CDMA receiver can always employ all the received signal energy

spread in the frequency domain. Undoubtedly, this is the main advantage of the MC-CDMA scheme compared to a DS-

CDMA Rake receiver that has difficulties in making full use of the received signal energy scattered in the time domain. For a

synchronous system as the downlink mobile radio communication channel, the application of orthogonal codes such as

Walsh-Hadamard codes guarantees the absence of Multiple Access Interference (MAI) in a gaussian channel. However, in

non-ideal channels with frequency selective fading due to multipath propagation, the orthogonality between the signals of the

different users is lost and MAI occurs. To combat the channel fading and thus the MAI, a multitude of detection techniques

was proposed. They can be classified as either single-user detection (SD) or multi-user detection (MD), as we will see in the

following sections.

III Performance analysis of MC-CDMA systems with single user detection techniques

III.1 MC-CDMA transmitter and receiver

The block diagram of the considered MC-CDMA transmitter and receiver is depicted in Figure 3 for the downlink. Each

data symbol xn
j assigned to user j, j = 1,...,Nu and transmitted during the symbol interval n is multiplied with its user specific

Walsh-Hadamard spreading code Cj(t)=[c1,j c2,j …..cLmc,j]
T of length Lmc, where [.]T denotes matrix transposition. Lmc

corresponds to the bandwidth expansion factor and is equal to the maximum number of simultaneous active users. The jth

column vector of the LC x LC matrix C corresponds to the spreading code Cj of the user j.
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Figure 3      Studied MC-CDMA transmitter and receiver.

The vector of the data symbols transmitted during the nth Orthogonal Frequency Division Multiplexing (OFDM) symbol

by all the users can be written Xn = [xn
1,x

n
2,...,x

n
j,...,x

n
Lmc]

T, with xn
j = 0 when user j is inactive. Since we consider the

synchronous downlink of an MC-CDMA system, the different data modulated spreading codes of the Nu
 users can be added

before Serial-to-Parallel (S/P) conversion. Furthermore, the Nu user signals are supposed to be transmitted with the same

power. The number Nc of subcarriers which are QPSK modulated is chosen equal to the spreading code length Lmc. For this

study, frequency non-selective Rayleigh fading per subcarrier and time invariance during one OFDM symbol are assumed.

The absence of Intersymbol Interference is also guaranteed by the use of a guard interval longer than the delay spread of the

impulse response of the channel. Based on these assumptions and considering time and frequency interleaving, the complex

channel fading coefficients are independent for each subcarrier and can be estimated for the subcarrier k by ki

k kh e
θρ= . The

signal received after the inverse OFDM operation (serial to parallel conversion and direct FFT) and de-interleaving can be

expressed as:

R = [r1,r2,...,rNc]
T
 = HCX + N
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where the Nc x Nc diagonal matrix H = diag{h1,…., hNc} describes the complex channel frequency response and
N = [n1,n2,...,nNc]

T is the Additive White Gaussian Noise (AWGN) vector with nk representing the noise term at the subcarrier

k with variance given by σN
2 = E{|nk|

2}, k = 1,...,Nc..

After equalisation the received signal can be written as:

Y = [y1,y2,…,yNc]
T
  = GR = GHCX + GN

In case of single user detection, the NcxNc matrix G, which represents the complex equalisation coefficients is diagonal

with G = diag{g1,…., gNc}. The different coefficients gk can be derived from the channel estimation which is based on known

transmitted pilot symbols inserted between the data carriers. Finally, after despreading and threshold detection, we obtain the

detected data symbol xj, which corresponds to the sign of the scalar product of the received vector Y and the specific

spreading code Cj as:

^
2

, , , ,

1 1 1 1

,
c u c cN N N N

j j k j k k j k i k j k k i k j k k

k i k k
i j

x sign Y C sign c g h x c c g h x c g n

λ η
γ

= = = =
≠

 
 
 = = + + 
 
 
 

∑ ∑∑ ∑
�✂✁✄✁✆☎✝✁✝✁✟✞ �✠✁✡☎☛✁☞✞

�✂✁☛✁✄✁✌☎✝✁☛✁✝✁✍✞

where •  represents the useful signal part, •  the MAI and •  the noise term.

III.2 Single user detection techniques: description and performance

Single-user detection is performed by one tap equalisation to compensate for the phase and amplitude distortions caused

by the mobile radio channel. The one tap equaliser is simply one complex-valued multiplication per subcarrier. Various basic

single user detection techniques can be implemented:

Maximum Ratio Combining technique (MRC): In the single user case, MRC is the optimum diversity combining

technique. The corresponding equalisation coefficients are: *

k kg h= where * stands for complex conjugation. However, in a

multi-user scenario, the multiplication by the conjugate complex channel coefficients results in enhanced MAI.

Equal Gain Combining technique (EGC): With EGC, only the phase shift is corrected. So, in fading channels the

orthogonality of the Walsh-Hadamard spreading codes gets lost, resulting in MAI. The equalisation coefficients are:
* /k k kg h h=

Orthogonality Restoring Combining technique (ORC): This technique, also called Zero Forcing (ZF), inverses the

channel transfer function and thus restores the orthogonality between the users by applying 1/k kg h= . As the MAI is

completely eliminated, performance does not depend on the number of active users. The drawback of ORC is that for small

amplitude of hk, the noise level is enhanced.

Minimum Mean Square Error technique (MMSE): Among all these single-user detection techniques, MMSE equalisation

offers the best results. It minimizes the mean square value of the error εk between the signal sk transmitted on subcarrier k and

the assigned output yk of the equaliser. The equalisation coefficients based on this MMSE criterion applied independently per

carrier are equal to:  
* *

2 21 1
k k

k
c

k k

c u x

h h
g

N
h h

Nγ γ

= =
+ +

where γC is the subcarrier signal to noise ratio and γx is the signal to noise ratio of the received data xj.

As already reported in the previous section, the matrix G is diagonal for all these basic single user detection techniques

which means that the received sequence is equalised by using a bank of Nc adaptive one tap equalisers which results in a low

complexity equaliser. The simulation results with MRC, EGC, ORC and MMSE detections are presented in Figure 4 for a

Rayleigh channel with one transmit antenna (Nt=1) and one receive antenna (Nr=1), in order to compare those results to the

performance of multiple antennas systems in section V. The number Nu of active users is equal to the spreading code length

Lmc (full user capacity) which is also equal to the number Nc=64 of subcarriers. For this study, the synchronisation and the

channel estimation are supposed to be perfect.
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Figure 4       Performance of single user detection techniques;

  full load system: 64u mc cN L N= = = .

The MMSE outperforms the other single user detection techniques avoiding an excessive noise amplification for low

signal to noise ratios while restoring the orthogonality among users for large signal to noise ratios. The potential of MMSE

already pointed out in many references [5][6] is there confirmed. However, this MMSE equalisation per carrier method is not

optimal, since it does not take into account the despreading process and thus does not minimise the mean square error at the

input of the threshold decoder. In order to obtain better performance, a new method based on a global implementation of the

MMSE criterion is presented in the following section.

IV Multi-user detection

With the aim to improve the performance of the receiver still further, Multi-user Detection (MD) can be carried out,

where the a priori knowledge about the spreading codes of the interfering users is exploited in the detection process. Based

on the Maximum Likelihood criterion, the ML detector is the optimum detector. It applies Joint Detection (JD) with

Maximum Likelihood Sequence Estimation (MLSE) or Maximum Likelihood Symbol-by-Symbol Estimation (MLSSE).

Since the complexity of MLSE and MLSSE receivers grows exponentially with the number of users, their use is limited in

practice to applications with a small number of users. Therefore, in order to handle a large number of users, receivers can

implement sub-optimal non-linear interference cancellation (IC) techniques with lower complexity. The principle of IC is to

detect the information of the interfering users and to reconstruct the interfering contribution in order to subtract it from the

received signal. IC can be performed parallel for all interfering users with Parallel Interference Cancellation (PIC) detectors,

or successively with Successive Interference Cancellation (SIC) detectors where only the strongest interferer remaining after

the previous IC stage is cancelled. An other interesting solution is the linear Global Minimum Mean square Error (GMMSE)

detection technique which can be combined to interference cancellation schemes as we will see in this section.

Successive Interference Cancellation

The SIC detector first detects the most powerful interfering user and then cancels its contribution from the received

signal. The second strongest interferer is then cancelled and so on. The processing may be repeated for a few or for all users.

A complete detector would consider all users, but commonly only the interferers stronger than the useful one are suppressed.

SIC detector is generally used when the power of some users are higher than the power of the useful user. Since processing

one supplementary stage leads to an additive time delay, a trade-off between the number of stages and the total acceptable

delay has to be found. The process is carried out iteratively until the remained interferers are considered insignificant. The

resulting signal is finally despread. The data detection may be hard or soft.

Parallel Interference Cancellation

The Parallel Interference Cancellation (PIC) structure is based on an estimation of the total interference due to the

simultaneous other users in order to remove it from the received signal. The contribution of all interfering users is cancelled

in parallel reducing the time delay of a SIC detector. The expression of this iterative system for the mth stage and the jth user is

given by the following:

it

[ ]
[ ] [ 1]*ˆ ˆ         1, , M  

( )
1,

m N
um mT

x x m
j j i i

i i j

 
− = − =∑  = ≠ 

C G R H C ✎
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with the expression of the initial stage given by:

(0] [0]*  ˆ 1, ,Tx j N
j j u

= =C G R ✏

The received signal is first equalised by a SU technique, then it is despread by each code. An Inverse Fast Hadamard

Transform (IFHT) can be implemented since the system is synchronous. As for SIC detector, data detection may be either

hard or soft. After detection, the data is spread again, tapped by the estimated channel coefficients Ĥ  and then subtracted

from the received signal. Finally, the resulting signal with lower MAI term is then equalised, despread and detected. We can

note that the second equaliser structure (G[m]) may be different from the first one (G[m-1]).

A new Global Minimum Mean Square Error (GMMSE) detection technique

The aim of this new method, which has been patented [11] and named as the Global MMSE algorithm, is to minimise

the mean square error between the transmitted symbol xj and the estimated symbol ˆ
jx [10]. Let WjT= [wj

0,wj
1,...,wj

Nc] be the

optimal weighting vector. The estimated symbol of the jth user is: ˆ T

j jx = = T

jW R C G R

According to Wiener filtering, the optimal weighting vector is:  
1

, ,.
jj R R R x

−=W ΓΓ ΓΓ  where ΓΓR,R is the autocorrelation matrix

of the received vector R and ΓΓR,xj is the cross-correlation vector between the desired symbol xj and the received signal vector

R.  The subcarrier noises have the same variance and are independent. Thus, E{NN*T} = σN
2.I where I is the identity matrix.

In the downlink, since the user signals have the same power (E{xj
2} = Es) and are independent, we can write E{XX*T} = Es.A,

where A = {aij} is a diagonal matrix with the term ajj = 1 if the user j is active and ajj = 0 if the user j is inactive. Then, the

equalisation coefficient matrix is:

1
2

* *         
T N

s

ó

E

−

+
 

=  
 

G H HCAC H I

In the full load case (Nu = Lmc) and only in that case, the quantity C.A.CT is equal to the identity matrix and the

equalisation coefficients matrix G is a diagonal matrix with the kth subcarrier equalisation coefficient equal to the former

equation given for MMSE single user detection. On the other hand, when the capacity is not full (Nu < Lmc), the equalisation

coefficient matrix G is no more diagonal. In that case, the Global MMSE (GMMSE) algorithm outperforms the MMSE per

carrier algorithm, since it minimizes the decision error taking into account the de-spreading process instead of minimizing the

error independently on each subcarrier.
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Figure 5       Maximum number Nu of active users against Eb/N0  for BER = 10-3

           and 64mc cL N= =  with equal mean power signals.

Figure 5 shows the performance of various detection systems with 64mc cL N= = , taking into account the number Nu of

active users against the required Eb/N0 to achieve a BER = 10-3, with equal mean power signals. In any case, MRC and EGC

perform poorly. The performance of the MMSE system, with the equalisation coefficients optimised independently on each

subcarrier can be compared to the performance of the GMMSE system. For full load systems (Nu = Lmc = 64), the two MMSE

approaches offers the same results, while for non-full load systems the GMMSE achieves a gain of more than 2 dB with Nu =

32 or 16, which corresponds to a system load respectively equal to 50 % and 25 %.

In order to improve the performance still further, it is possible to combine linear GMMSE and non linear Interference

Cancellation techniques. In Figure 6, the performance of two stage parallel interference cancellation PIC-MMSE and PIC-

GMMSE are compared to MMSE, GMMSE, SIC-MMSE  and SIC-GMMSE with Lmc = Nc = 16. The number Nu of active
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users against the required Eb/N0 to achieve a BER = 10-3 is given with equal mean power signals. In any case, the two stage

PIC-GMMSE scheme offers the best results. Furthermore, this figure shows that for Nu inferior to the maximum number

Lmc = 16 active users, the linear GMMSE offers almost the same performance. This clearly indicates a possible trade-off

between performance and complexity in favor of the less complex linear GMMSE technique.
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Figure 6       Maximum number Nu of active users against Eb/N0  for BER = 10-3

           and 16mc cL N= =  with equal mean power signals.

V Combining space-time block coding with MC-CDMA

For future wideband wireless networks, space diversity schemes relying on multiple antennas at the receiver and the

transmitter in order to build a Multiple Input Multiple Output system are very attractive to combat fading and improve the

transmission performance [12]. Recently, space-time coding, such as Space-Time Block Coding (STBC), relying on multiple-

antenna transmissions and appropriate signal processing in the receiver was proposed [13]. It provides diversity and

interesting coding gains compared to uncoded single-antenna transmissions. So, in order to take advantage of the space

diversity, the combination of MC-CDMA systems with space-time coding as STBC has been studied in the case of two

transmit antennas, Nt = 2, and two receive antennas, Nr = 2. The principle of the selected STBC proposed by Alamouti in [13]

is shown on Table 1.

t t + Tx

Antenna 1 0

jx 1*

jx−

Antenna 2 1

jx 0*

jx

Table 1      Principle of the encoding and transmission diversity scheme

The two successive data symbols 0

jx  and 1

jx  presented at the input of the space-time encoder for user j are sent

respectively to antennas 1 and 2 during the first symbol period, while during the next symbol period, 1*

jx− and 0*

jx are

respectively sent to antennas 1 and 2, where [ ]* denotes the complex conjugate operation. As the space-time coding is carried

out on two adjacent OFDM symbols, the receiver has to deal with two successive symbols as a whole. For each receive

antenna r, the two signals rr(t) and rr(t+Tx) are combined after equalisation, as explained in detail in [14]. The resulting

signals from the two antennas are then added in order to detect the two symbols 0

jx  and 0

jx . The simulation results are

presented on Figure 7 for various single user detection techniques in the full load case, i.e, with Nu = Lmc = Nc. As expected,

MMSE outperforms the other single user detection techniques. Furthermore, compared to the previous results shown on

Figure 4, the performance of MC-CDMA is highly improved when combined with STBC, in order to exploit the transmit

diversity. Besides, it can be shown that the transmit diversity gain is all the more significant that the number of active users

Nu is high.

VI Conclusion

In this paper, we have described the MC-CDMA system well adapted to the downlink of wireless high rate system

cellular networks. Existing single user and multi-user detection techniques have been presented. Performance comparaisons

show that the GMMSE scheme offers very good results, mainly for non-full load systems. This is confirmed by the results

published in [9], which demonstrate how efficient the use of the GMMSE detector is over BU, HT and Vehicular channels,

especially when associated with a powerful Turbo Code.
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Figure 7       Performance of MIMO/MC-CDMA systems with single user detection techniques;

  Two transmit antennas (Nt = 2), two receive antennas (Nr = 2); full load system: 64u mc cN L N= = = .

Thus, it is shown that MC-CDMA is a very promising multiple access scheme especially for the downlink of future mobile

radio systems. Finally, the performance of MC-CDMA is highly improved when combined with STBC in order to take

benefit of the transmit diversity. These promising results warrant why those techniques are now studied within the framework

of a new european IST project named MATRICE which stands for "Multicarrier CDMA Transmission Techniques for

Integrated Broadband Cellular Systems".

Acknowledgements: The authors would like to thank the European Commission which supports a part of this study.

References:

[1] PEREIRA (J. M.), A personal perspective of fourth generation. Telektronikk, Wireless future, 97, N°1 - 2001, pp. 20-

30, (1 – 2001).

[2] CHARLES (J-P), 3rd generation mobile systems UMTS/IMT2000. Annales des Télécommunications, UMTS

technology advances, vol. 56, N° 5/6, pp. 229-235, (Mai/Juin 2001).

[3] ETSI ETS 300 744, Digital video broadcasting (DVB): framing structure, channel coding and modulation for digital

terrestrial television (DVB-T), (March 1997).

[4] ETSI. Project Broadband Radio Access Networks (BRAN); HIPERLAN Type 2, Technical specification; Physical

layer, (October 1999).

[5] YEE (N.), LINNARTZ (J.P.), FETTWEIS (G.). Multicarrier CDMA in indoor wireless radio networks. Proceedings of

IEEE PIMRC'93, pp 109-113, Yokohama, Japan, (1993).

[6] HARA (S.), PRASAD (R.). Overview of multicarrier CDMA. IEEE Communications Magazine, pp 126-133,

(December 1997).

[7] KAISER (S). OFDM-CDMA versus CDMA: performance evaluation for fading channels. IEEE International

Conference on Communications, pp 1722-1725 (June 1995).

[8] OH (J-Y.), LIM (M-S.). The bandwidth efficiency increasing method of multicarrier CDMA and its performance

evaluation in comparison with DS-CDMA with Rake receivers. Proceedings of  IEEE  Vehicular Technology

Conference, pp. 561-565 (1999).

[9] HELARD (M.), LE GOUABLE (R.), HELARD (J-F.), BAUDAIS (J-Y.). Multicarrier techniques for future wideband wireless

networks. Annales des Télécommunications, UMTS technology advances, vol. 56, N° 5/6, pp. 260-274, (Mai/Juin

2001)

[10] BAUDAIS (J.-Y.), HELARD (J.-F.), CITERNE (J.). An improved linear MMSE detection technique for Multi-Carrier

CDMA systems : comparison and combination with interference cancellation. European Transactions on

Telecommunications, Special issue on Multi-Carrier Spread-Spectrum, vol. 11, N°6, pp.547-554, (December 2000).

[11] BAUDAIS (J.-Y.), HELARD (J.-F.). Procédé d’égalisation dans des récepteurs utilisant une combinaison des techniques

de modulations à porteuses multiples et à accès multiple par répartition de codes. French patent N° 99/11689

(September 1999) and N° 99/15919 (December 1999).

[12] FOSCHINI (G.L.), GANS (M.J.). On limits of wireless communication in a fading environment when using multiple

antennas. Wireless Personal Communications, vol. 6, pp. 331-335, (1998).

[13] ALAMOUTI (S.M.). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected

Areas in Communications, vol.16, pp. 1451-1458, (Oct. 1998).

[14] AUFFRAY (J-.M.). HELARD (J-.F.),. Performance of multicarrier CDMA technique combined with space-time block

coding over rayleigh channel. Submitted to IEEE International Symposium on Spread Spectrum Techniques and

Applications 2002.


