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Abstract. - Networks of elastic beams can deform either by stretching or bending of their mem-
bers. The primary mode of deformation (bending or stretching) crucially depends on the specific
details of the network architecture. In order to shed light on the relationship between microscopic
geometry and macroscopic mechanics, we characterize the structural features of networks which
deform uniformly, through the stretching of the beams only. We provide a convenient set of geo-
metrical criteria to identify such networks, and derive the values of their effective elastic moduli.
The analysis of these criteria elucidates the variability of mechanical response of elastic networks.
In particular, our study rationalizes the difference in mechanical behavior of cellular and fiber
networks.

Introduction. – Various elastic systems can be un-
derstood as networks of interconnected rods which de-
form by a combination of bending, stretching, twisting
and shearing mechanisms. Examples include polymer gels,
protein networks and cytoskeletal structures [1–7], crystal
atomic lattices and granular materials [8,9], paper [10,11],
wood, foams, and bones [12–16], and even continuous elas-
tic bodies under certain circumstances [17]. Moreover,
the pairwise interaction potentials used in standard elastic
percolation models can also be identified with the strain
energy of elastic beams [1, 8, 18]. Despite extensive re-
search [2–7,19–22], the connection between the mechanical
properties of such networks on a macroscopic level and the
description of their structures on a microscopic level has
not been completely elucidated yet. Interestingly, under
identical loading conditions, some structures appear to de-
form primarily through the local stretching of the beams,
while in other structures the elastic energy is stored via
local bending [12,13] (twisting and shearing contributions
are usually neglected). For instance, “foam-like” cellular
architectures tend to be bending-dominated [2, 3], while
fibrous architectures exhibit a rich mechanical behavior:
Head et al. [4, 5] and Wilhelm and Frey [6] simulated the
two-dimensional elastic deformation of a network of cross-
linked fibers and observed a transition from a nonaffine,
bending-dominated regime to an affine, stretch-dominated
regime with increasing density of fibers. Recent exper-

imental studies [23, 24] and mean field theories [25, 26]
have confirmed this transition. Buxton and Clarke [7] also
characterized a similar bending-to-stretching transition in
three-dimensional networks, in terms of the connectivity
of nodes. Elucidating this variability of mechanical re-
sponse is of interest to structural applications, as well as
to our understanding of various biological systems.

With this aim in view, we analyze in this letter the
structural conditions under which a network of beams de-
forms uniformly (affinely) through the extension or com-
pression of its members. Only some specific network
geometries are compatible with such an affine, stretch-
dominated, deformation. Indeed, the network architecture
must meet two requirements: the possible symmetries of
the structure, and the mechanical equilibrium at every
point of the network, respectively. The first requirement
results in restrictions on the beam angular distribution.
We will limit our analysis to isotropic structures, though
the reasoning can be transposed without difficulty to ma-
terials with lower symmetries. The second requirement
results in restrictions on the possible configurations of the
junctions. The inspection of these requirements provides a
convenient set of geometrical criteria to identify the struc-
tures that deform affinely. Moreover, the analysis of these
geometrical criteria rationalizes the observations reported
on the mechanical behavior of cellular and fiber networks,
and clarifies how the microscopic structural parameters
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(density of beams, density and connectivity of nodes,...)
affect the macroscopic mechanical response of such net-
works. We will consider essentially athermal systems, and
specify how the results can be extended to the case of
thermal beams.

Isotropy requirement. – Affine strain, being a com-
bination of translation, rotation and extension, induces
only stretching and compression of beams (see Fig. 1).
Therefore, an analytic expression for the elastic energy

Fig. 1: Geometry of a typical beam (i, j). Under an affine
displacement field, the beam is subjected to a combination of
translation, rotation, and compression/extension.

associated with such a strain can be easily derived. Let
ǫij be the relative change in length of the beam linking
nodes i and j. Then, the elastic energy of this beam is
κslijǫ

2
ij/2, where lij is its initial length, and κs the one-

dimensional stretch/compression modulus. κs is deter-
mined by the Young’s modulus of the beam material E0

and the beam cross-sectional area s: κs = E0s. For slen-
der rods (

√
s ≪ lij), the contribution of nodes to the strain

energy can be neglected in comparison with the stretching
energy of beams. The energy of the whole network is then
simply obtained by summing over all the beams that are
under extension/contraction:

E =
κs

2

∑

(i,j)

lijǫ
2
ij . (1)

For an affine strain, the displacement field u is a linear
application of the position r: u = A · r, where A is the
matrix associated with the strain. For instance, Aαβ =
A0δαxδβy for a uniform shear strain A0 in the xy plane,
and Aαβ = A0δαβ for a uniform radial strain A0. For
small strains, ǫij = eij · (uj − ui) /lij, where uj −ui is the
relative displacement of nodes i and j, and eij is the unit
vector pointing from i to j. Therefore, the relative change
in length can be written as

ǫij =
∑

α,β

Aαβe
α
ije

β
ij , (2)

where eαij = eα · eij is the cosine of the angle between the
beam (i, j) and the α axis (α ∈ {x, y} for two-dimensional
materials, and α ∈ {x, y, z} for three-dimensional mate-
rials). Usually, isotropic networks are idealized as con-
tinuous and uniform angular distributions of identical

beams [4, 5, 15, 16]. However, this simplistic model does
not account for the structural limitations imposed by the
isotropic symmetry. Actually, isotropic networks might
contain beams with different lengths, or distributed non-
uniformly. By definition, the strain energy of an isotropic
network must be invariant under rotations and reflections
of the strain field. Therefore, the energy expression de-
duced from Eqs (1) and (2) must be invariant under the
substitution A → RT ·A·R, for any orthogonal matrix R.
After a little algebra, the application of these invariance
properties leads to the following set of relations:















〈

eαij
2
〉

= 1
d

〈

eαij
4
〉

= 3
d(d+2)

〈

eαij
2eβije

γ
ij

〉

= 0 (β 6= γ)

(3)

with d = 2 for two-dimensional (2D) networks, and d = 3
for three-dimensional (3D) networks. The angular brack-
ets denote an average over the network, defined for any
quantity qij as: 〈qij〉 =

∑

(i,j) lijqij/
∑

(i,j) lij . If the net-

work contains beams with free end(s), they must be ex-
cluded from the above summations, since they do not con-
tribute to its mechanical properties. The “isotropy con-
ditions” (3) constitute a set of 4 (resp. 14) equations for
2D (resp. 3D) networks. As expected, these conditions
are satisfied for a continuous and uniform angular distri-
bution of identical beams. But they are also satisfied for
networks with discrete angular distributions or heteroge-
neous beams, as it is the case for most cellular structures
[30].

Networks that deform in an affine (stretch-dominated)
way are stiffer than other networks of similar density.
With the help of the isotropy conditions (3), it is straight-
forward to derive analytic expressions for the elastic mod-
uli of such stiff networks. Indeed, these conditions imply

that
〈

(eβije
γ
ij)

2
〉

= 1/ (d (d+ 2)) and
〈

eβije
γ
ij

〉

= 0 (with

β 6= γ). Thus, the density of strain energy ε simplifies to

ε =
κsρc

d (d+ 2)





1

2
(
∑

α

aαα)
2 +

∑

α,β

a2αβ



 , (4)

with aαβ = (Aαβ +Aβα) /2. ρc is the corrected line den-
sity, defined as the total beam length per unit area (2D)
or unit volume (3D), agreeing that only beams connected
at both ends are taken into account (i.e.: dangling ends
are disregarded). Eq. (4) must be compared with the gen-
eral expression for the strain energy density of an isotropic
body in linear elasticity [27]:

ε =
λ

2
(
∑

α

uαα)
2 + µ

∑

α,β

u2
αβ , (5)

where λ is the Lamé’s first parameter, µ the shear modulus

(or Lamé’s second parameter), and uαβ = 1
2

(

∂uα

∂xβ
+

∂uβ

∂xα

)
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Title

λ/κs µ/κs E/κs K/κs ν
2D ρc/8 ρc/8 ρc/3 ρc/4 1/3
3D ρc/15 ρc/15 ρc/6 ρc/9 1/4

Table 1: Elastic moduli of stiff isotropic networks normalized
by the one-dimensional stretching modulus κs: Lamé’s first
parameter (λ), shear modulus (µ), Young’s modulus (E), bulk
modulus (K), and Poisson’s ratio (ν).

are the components of the strain tensor (uα are the com-
ponents of the displacement field). One obtains for the
effective Lamé’s parameters of an isotropic stiff network:

λ = µ =
κs

d (d+ 2)
ρc. (6)

Any other elastic modulus of an isotropic body is related
to λ and µ [27], and hence can be easily evaluated. Values
of most common moduli are reported on table 1. These
values coincide with those reported in the literature [4, 5,
12,15,16,28,29] (note, however, that our values of E and ν
correct those given by Head et al. [4, 5]). They constitute
upper-bounds for the macroscopic moduli of networks with
similar density ρc: any deviations from affine deformation
can only lower the stiffness of the material [30]. It can also
be noticed that these elastic moduli vary linearly with ρc,
in agreement with scaling arguments [7, 13].

Mechanical equilibrium requirement. – Obvi-
ously, the isotropy conditions (3) alone are not sufficient to
identify the structures which deform in an affine manner:
the compatibility of an affine deformation with the equa-
tions of mechanical equilibrium must also be inspected.
The forces and torques acting on any junction of the net-
work must balance at equilibrium. The (tensile) force ex-
erted by the beam (i, j) on the junction i is κsǫijeij , where
ǫij is related to the affine strain field by Eq. (2). Thus,
the moment of this axial force is zero, and the mechan-
ical equilibrium conditions reduce to the force balance:
∑

j ǫijeij = 0, where the summation is over all the nodes
that are connected to the node i (agreeing that dangling
ends are disregarded). This equality must hold for any
orientation of the strain field. Using the same rotational
invariance argument as for the energy expression, we ob-
tain a set of structural conditions at every junction i of
the 2D (resp. 3D) network, which can be summarized as:

∑

j

eαije
β
ije

γ
ij = 0, (7)

for all α, β, γ ∈ {x, y} (resp. {x, y, z}). Therefore, the
mechanical equilibrium requirements lead to a set of 4
(resp. 10) equations per node for 2D (resp. 3D) networks.
These conditions, along with the isotropy conditions (3),
constitute a set of necessary and sufficient conditions for
an affine, stretch-dominated, deformation.
The mechanical conditions (7) impose severe restric-

tions on the geometry and valency of a junction. Some

of the implications of these conditions are analyzed below
for 2D networks. Let us note zi the connectivity of node
i (number of beams connected to it, with the exception
of dangling ends), and θij the angle between the beam
(i, j) and the x axis. Introducing the complex variables
yij = exp (ıθij), the mechanical equilibrium conditions (7)
simplify to

zi
∑

j=1

yij = 0,

zi
∑

j=1

y3ij = 0. (8)

Clearly, there is no solution to this set of equations for
two- (zi=2) and three-fold (zi=3) junctions (configura-
tions with beams all collinear are left out). In agreement
with Maxwell’s criterion [14, 19, 26, 31–33], we conclude
that a stiff network must have a node connectivity equal
to or greater than 4 (for large structures). Furthermore, it
can be shown [30] that the only possible configurations for
a four-fold junction (zi=4) are those with beams parallel
in pairs: θi3 = θi1 + π, θi4 = θi2 + π1. These results
shed light on the transition observed in computational
and experimental studies of cross-linked fibers [4–6, 24]:
because of the finite fiber length, there are two-, three-,
and four-fold coordinated cross-links in such networks. By
construction, the mechanical conditions (8) are fulfilled at
the four-fold junctions, but not at the two- and three-fold
junctions. At low density of fibers (ρcL ∼ 1, where L is the
length of a fiber), there is a significant number of two- and
three-fold junctions, so the network deforms in a non-affine
way2. When the density of fibers increases, the proportion
of two- and three-fold nodes decreases and the propor-
tion of four-fold nodes increases, leading asymptotically
(ρcL → ∞) to an affine strain regime3. This is consistent
with earlier observations [4–6,24] reporting that the defor-
mation of a fiber network becomes asymptotically affine
as the number of cross-links per fiber (∼ ρcL) increases. It
must be noted that this analysis is valid for small strains
only. At larger strains, even low-density fiber networks
will eventually become stretch-dominated [20–22].
Similarly, our results reveal why cellular networks are al-

most always bending-dominated [2, 3, 14]: such structures
usually do not meet the mechanical conditions (7). This is
specifically the case of open-cell foams. Foams are particu-
lar cellular materials: their structures result from a surface
minimization process, leading to geometrical and topolog-
ical rules, known as Plateau’s laws. Unlike a closed-cell
foam, the cell walls of an open-cell foam disappear during
the drying process, leaving only a network of intercon-
nected edges. Plateau’s laws state that these edges meet

1The analysis of the solutions for nodes with valency zi ≥ 5 is
more delicate. Nodes with an even number of adjoining beams have
trivial solutions: beams parallel in pairs. But it is not clear whether
these are the only solutions.

2Such a network will deform through floppy modes if the typical
elastic energy of a node is much smaller than the typical bending
energy of a beam (free hinges) [33], and primarily through bending
modes in the opposite limiting case (fixed angles).

3The random orientation of fibers ensures that isotropy conditions
(3) are satisfied.
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in threefold (resp. fourfold) junctions with equal angles
of 120◦ (resp. 109.5◦) in 2D (resp. 3D) foams. Such
node configurations cannot satisfy the equilibrium condi-
tions (7). Therefore, open-cell foams will rather deform
by bending of their edges.
Figure 2 illustrates this discussion. Four different struc-

tures are depicted: two fiber networks at low and high den-
sity, respectively, and two cellular networks: the Voronoi
diagram of a random set of points in the plane, and a tri-
angular lattice. For each of these structures, the isotropy
conditions (3) are met. But only the fiber network in the
limit of high density (rigorously, when ρcL → ∞) and the
triangular lattice satisfy the mechanical conditions (7) at
every node, and thus deform uniformly. Incidentally, it is

Fig. 2: Examples of two-dimensional networks: low-density
fiber network (a), high-density fiber network (b), Voronoi dia-
gram of a random set of points in the plane (c), and triangular
lattice (d). For convenience, dangling ends in the fiber net-
works are shaded off. By construction, the low-density fiber
network (a) and Voronoi diagram (c) contain nodes with va-
lency < 4, and so deform in a non-affine way (see footnote 2).
On the other hand, the high-density fiber network (b) and the
triangular lattice (d) satisfy the mechanical conditions (7) at
every node. Consistent with our analysis, these two networks
deform uniformly.

worth noting that our results apply to both random and
regular structures. The triangular lattice is one example
of regular structure deforming in an affine way. Other ex-
amples of two- and three-dimensional regular structures
are given in [30].
In the above, we have considered a purely athermal

model of networks. However, many biological systems are
comprised of thermally fluctuating polymers. In these sys-
tems, the effects of temperature on the elastic properties
of the polymer are quantified by the persistence length

lp, defined as the ratio of bending stiffness to thermal en-
ergy lp = κb/(kBT ) (κb = E0s

2/(4π) for a cylindrical
beam). Such thermal fluctuations result in an effective,
length-dependent, stretch modulus [3–5]: κth

s ∼ κblp/l
3
ij

for a thermal beam of length lij . This entropic compliance
dominates for long enough beams, giving rise to a distinct
affine regime. Accordingly, the mechanical condition (7)

becomes for this affine entropic regime:
∑

j e
α
ije

β
ije

γ
ij/l

3
ij =

0. Unlike in the affine mechanical regime, the mechani-
cal conditions in the affine entropic regime depend on the
beam length distribution. It must be mentioned that an
alternative model has been recently proposed to explain
the mechanical response of biological networks, in which
the elastic network is composed of rigid rods connected by
flexible cross-linkers [34, 35].

Conclusion. – In summary, we analyzed the struc-
tural features of isotropic networks which deform uni-
formly through the stretching/compression of their beams.
The study of these structural features sheds light on the re-
lationship between the structural details of a network and
its macroscopic mechanical behavior, and rationalizes the
variability of mechanical response of diverse elastic net-
works (fibrous and cellular, regular and disordered). In
particular, our analysis confirms the previously observed
bending-to-stretching transition in fiber networks. The
elastic moduli of networks that deform affinely are also
derived, and can be simply expressed in terms of the beam
stretch modulus and the line density. We hope these re-
sults are of interest to structural applications, as well as
to our understanding of biological systems.
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