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Abstract. Data warehouses contain large volumes of time-variant data
stored to help analysis. Despite the evolution of OLAP analysis tools and
methods, it is still impossible for decision makers to find data mining
tools taking the specificity of the data (e.g. multidimensionality, hierar-
chies, time-variant) into account. In this paper, we propose an original
method to automatically extract sequential patterns with respect to hi-
erarchies. This method extracts patterns that describe the inner trends
by displaying patterns that either go from precise knowledge to general
knowledge or go from general knowledge to precise knowledge. For in-
stance, one rule exhibited could be data contain first many sales of coke

in Paris and lemonade in London for the same date, followed by a large

number of sales of soft drinks in Europe, which is said to be divergent

(as precise results like coke precede general ones like soft drinks). On the
opposite, rules like data contain first many sales of soft drinks in Europe

and chips in London for the same date, followed by a large number of

sales of coke in Paris are said to be convergent. In this paper, we define
the concepts related to this original method as well as the associated
algorithms. The experiments which we carried out show the interest of
our proposal.

1 Introduction

Data warehouses collect large volume of data through time for decision making
purpose. As soon as data are described through time, sequential pattern mining
is well adapted [1]. Indeed, sequential patterns aim at describing the main trends
from a database based on correlations between events through time. However,
sequential patterns are mined among only one dimension whereas databases can
contain several dimensions. Therefore, they have recently been extended to mul-
tidimensional sequential patterns in order to handle this multidimensionality [7,
8, 10]. Even if multidimensional sequential pattern mining provides a better view
of source data for decision support, these methods cannot totally take advantage
of the framework of multidimensional databases. In particular, they do not con-
sider hierarchies. Note that mining rules at very high levels of granularity leads
to trivial rules whereas mining rules at very low levels of granularity is not always
possible because the support value would be too low. The algorithm HYPE [9]
defined to take hierarchies into account in the extraction of multidimensional se-
quential patterns has some drawbacks. This approach does not allow to discover



patterns such as ”When coke sales increase in U.K, soft drink sales increase one

month later in E.U”. Indeed, the two multidimensional items of the sequence
(U.K, Coke) and (Europe, Soft drink) are comparable (i.e. (U.K, Coke) is more
specific than (Europe, Soft drink)). Note that mining all possible combinations
of items is impracticable because of the size of the search space. To the best
of our knowledge, there is no sequence mining approach that proposes to take
hierarchy into account in a multidimensional framework such that comparable

items can appear in the discovered sequences.

In this paper, we propose the concepts of convergent and divergent multidi-
mensional sequences. They provide a more complete knowledge extraction that
is better adapted to the main specificity of multidimensional frameworks. Thus,
the generation of patterns is either from general items to specific items or from
specific items to general ones in order to limit the number of candidate patterns.
These new kinds of multidimensional sequences allow to mine longer sequences
by modulating the degree of precision/generalization among them. A convergent
sequence goes from general knowledge to precise knowledge. As an example,
”when soft drink sales increase in USA, coke sales increase on the west coast

whereas lemonade sales increase on the east cost” is a convergent sequence. A
divergent sequence goes from precise knowledge to general knowledge. For in-
stance, ”many sales of beer in London and of wine in France are followed by

many sales of alcoholic drinks in Europe” is a divergent sequence.

The rest of this paper is organized as follows. Preliminary concepts and re-
lated work are described in Section 2. We define the convergent and divergent
multidimensional sequences and algorithms that allow their discovery in Section
3. Some experiments carried out on synthetic and real data are reported in Sec-
tion 4. In the last Section, we give some conclusions and perspectives for future
researches.

2 Related Work: Multidimensional Sequential Patterns

and Hierarchies

Combining several analysis dimensions allows to extract knowledge that well
describe the data. [7] was the first work dealing with multidimensional sequen-
tial pattern mining. The purchased products are not only described by date id

and customer id as in classic sequential pattern mining, but according to a set
of dimensions such as Cust-Grp, City, Cust-Age, etc.. This approach mines se-
quences that are defined among only one dimension (product). These sequences
are described by a multidimensional pattern. Thus, it is impossible to mine com-
binations of multidimensional pattern through time.

[8] proposes to mine such inter pattern multidimensional sequences. Discov-
ered patterns do not only combine several analysis dimensions. These dimensions
are combined through temporal dimensions (e.g. time). As an example, in the
pattern ”lemonade sales increase in N.Y. then coke sales increase in L.A.”, NY

appears before LA and lemonade before coke.



In [10], the authors mine for sequential patterns in the specific framework
of Web Usage Mining. Even though they consider three dimensions (pages, ses-
sions, days), these dimensions are very particular since they belong to a single
hierarchized dimension.

This approach provides a better time management but does not fit to multi-
dimensional framework.

Few approaches handle both hierarchy and multidimensionality in sequen-
tial pattern mining. In [10] , dimensions are just used to represent time, so
multidimensionality is not really handled. HYPE ([9]) allows the mining of se-
quences that are defined among different levels of hierarchy. HYPE provides the
discovery of rules as ”when drink sales increase in Europe, carbonated water

exports increase in France whereas soft drink exports increase in USA” where
different levels of hierarchy are present in the multidimensional sequence. How-
ever, this proposal cannot extract sequences with items that are defined on the
same dimensions but with different granularities such as (London, Coke) and
(Europe, Soft drink). Indeed, this approach mines multidimensional sequential
patterns from the most specific items in order to preserve its scalability.

3 CD M2S Convergent or Divergent Multidimensional

Sequential Patterns

In this section, we introduce an original concept. Indeed, human mind often
thinks in two different and symmetrical ways. Thinking runs from general to
specific or from specific to general. We try to replicate these types of reasoning
in the knowledge that we want to extract. We introduce the concept of convergent
and divergent sequences. First, we present the preliminary definitions associated
to multidimensional sequential patterns and hierarchies. We then describe the
convergent and divergent patterns and the associated algorithms.

3.1 Preliminary Definitions

Let SDB be a set of multidimensional data sequences. Each element of data
sequences is defined on a set of m analysis dimensions denoted by DA. Each
dimension Di ∈ DA is associated with a domain of values, denoted by Dom(Di).
For every dimension Di, we assume that Dom(Di) contains a specific value
denoted by ALLi.

We assume that each dimension Di ∈ DA is associated with a hierarchy Hi.
Every hierarchy Hi is a direct acyclic graph (DAG) whose nodes are elements
of Dom(Di) and whose root is ALLi. As usual, the edges of such a DAG can be
seen as is-a relationships. The specialization relation corresponds to a top-down
path in Ti, i.e. a path connecting two nodes when scanning Ti from the root
to the leaves. We note that when no hierarchy is defined for a dimension Di,
we consider Hi as being a tree whose root is ALLi and whose leaves are all the
elements of Dom(Di) \ {ALLi}.



Every element (item) ei of a multidimensional data sequence is a tuple t =
(d1, . . . , dm) such that for every i = 1, . . . , m, di ∈ Dom(Di) and di is a leaf
in Hi. In other words, data sequences are defined at the finest levels of the
hierarchies associated to DA.

The multidimensional sequence database in Table 1 is used to illustrate the
different concepts and definitions. It describes the purchases of products carried
out in various cities of the world for three different companies identified by an
SID. Items of data sequences are defined on two dimensions: Place and Prod-

uct. Dimension Place is associated to hierarchy HPlace whose root is ALLPlace.
Element of dimension Place are defined through several levels of hierarchy:
ALLPlace > Continent > Country > City. Dimension Product is associated
to hierarchy HProduct whose root is ALLProduct and Coke and Wine are leaves.
Part of the hierarchies is illustrated Fig. 3.1.

SID Multidimensional data sequences

S1 〈{(Paris, Coke)}{(Paris, Coke)}{(London, Coke)}{(Tokyo, Coke)}〉
S2 〈{(Paris,Coke)}{(Lyon, Wine)(Paris,Coke)}{(Turin, Coke)}{(N.Y, Coke)}〉
S3 〈{(N.Y, Wine)}{(L.A, Coke)}{(Paris, W ine), (London, Wine)}〉

Table 1. Set of multidimensional data sequences SDB

(a) Cities (b) Drinks
Fig. 1. Part of Hierarchies ALLPlace and HProduct

A multidimensional item a = (d1, . . . , dm) is a tuple defined on DA such that
∃di 6= ALLi. It is important to note that a multidimensional item can be defined
with any value at any level of the hierarchies associated to the analysis dimen-
sions. For instance, (Europe,Coke) and (N.Y, Wine) are two multidimensional
items.

Since multidimensional items are defined at different levels of hierarchies, it
is possible to compare them using a specificity relation. Let a = (d1, . . . , dm)
and a′ = (d′

1
, . . . , d′m) be two multidimensional: (i) e is said to be more general

than a′ (a′ ⊆ a) if ∀di, di is an ancestor of di′ in Hi or di = d′i; (ii) a is said to
be more specific than a′ (a ⊆ a′) if ∀di, di is a descendant of d′i in Hi or di = d′i;
(iii) a and a′ are said to be incomparable if there is no relation between them
(a * a′ and a′ * a).



A multidimensional itemset i = {a1, . . . , ak} is a non-empty set of mul-
tidimensional items such that for all distinct i, j in {1 . . . k}, ai and aj are
incomparable. For instance, {(France, Wine), (U.K, Wine)} is a multidimensional
itemset. {(Europe, ALLProduct), (London, Wine)} is not a multidimensional item-
set because (London, Wine) ⊆ (Europe,ALLProduct).

A multidimensional sequence s = 〈i1, . . . , il〉 is an ordered list of multidi-
mensional itemsets. 〈{(USA, Wine)}{(France, Wine)(U.K, Wine)}〉 is a multidi-
mensional sequence associated to the database SDB Table 1.

A multidimensional data sequence S supports a multidimensional sequence
s = 〈i1, . . . , il〉 if for every item ai of every itemset ij, there exists an item a′

i

in S such that a′

i ⊆ ai with respect to the ordered relation (itemset i1 must
be discovered before itemset i2, etc.). According to Table 1, data sequence S2

supports the sequence s = 〈{(France, Coke)}{(Europe, Wine)}{(USA, Coke)}〉.

The support of a sequence s is the number of data sequences of SDB that
support s. Given a user-defined minimum support threshold minsup, a sequence
is said to be frequent if its support is greater than or equal to minsup.

Given a set of multidimensional data sequences SDB that are defined on a
set of dimension DA, the problem of mining multidimensional sequential patterns

is to discover all multidimensional sequences that have a support greater than
or equal to the user specified minimum support threshold minsup.

3.2 Convergent and Divergent Multidimensional Sequences

So far, we have defined the problem of mining multidimensional sequential pat-
terns. We have also noticed that taking hierarchies into account provides rela-
tions between multidimensional items. Now, we can introduce the concept of
convergent and divergent sequences.

Definition 1 (Divergent Sequence ) A sequence s = 〈i1, . . . , ik〉 is said to

be a divergent sequences if for every item ej ∈ ik, ∄e′j′ ∈ ik′ such that k′ < k

and ej ⊂ e′j′ .

In other words, for each item e of the sequence, there does not exist more gen-
eral item contained before e in the sequence. The sequence 〈{(Paris, Coke)},-

{(France, Coke)(U.K, Coke)}, {(Europe,Coke)}{(ALLPlace, Coke)}〉 is a divergent
sequence.

Definition 2 (Convergent Sequence) A sequence s = 〈i1, . . . , ik〉 is said to

be a convergent sequence if for every item ej ∈ ik, ∄e′j′ ∈ ik′ such that k′ < k

and e′j′ ⊂ ej.

For each item e of the sequence, there does not exist more specific item contained
before e in the sequence. The sequence 〈{(ALLPlace, W ine)}, {(Europe, Wine)},

{(Italy,W ine)(France,Wine)}〉 is a convergent sequence.



3.3 Algorithm

Ordering the items in the itemsets of the sequences is a fundamental step to
avoid the already examined cases. Existing methods that are based on different
paradigms (pattern growth ([6]), Apriori([1, 5, 11, 2])), are not directly applicable
in a multidimensional framework. Indeed, items, that are not defined with the
finest level of hierarchy, are not explicitly present in the database. Such items
are retrieved by inference since there is no associated tuple in the database.

We then introduce functions to locally handle all items and not only items
that are present in data sequences. An itemset is said to be extended if it is
equal to its closure according to the relation of specialization (⊆). This notion
allows to take all items into account. In order to enhance the management of
items, we introduce a lexicographicospecific order (lgs) that is an alpha-numeric
order according to the precision degree of the item. Thus, the most specific
items are the first to be handled. We have to define a function LGS-Closure that
transforms an itemset of a data sequence into its extended itemset that contain
all the items that can be inferred. As an example, LGS-Closure({(Paris, Coke)})

= {(Paris, Coke),(Paris, ALLProduct, (France,Coke), (France, ALLProduct),

(Europe,Coke),(Europe, ALLProduct), (ALLPlace, Coke)}. We note that the tuple
(ALLPlace, ALLProduct) is not considered by definition of multidimensional item.

The extraction of frequent items can be done on each extended itemset. In
pattern growth approaches, sequences are extracted by greedily adding a frequent
item to a frequent sequence. It is thus necessary to define an efficient way for
extending sequences from the last itemset of the sequences. For this purpose, we
define the function LGS-ClosureX where X is an itemset that contains ”forbidden
items” (i.e. every items ei of the last itemset of the prefix sequence and all items
comparable to ei). As an example, {(ALLPlace, W ine)} =

LGS-Closure{(Europe,ALLProduct)}({(Paris, W ine), (London, Wine)}).

Divergent sequences are discovered thanks to algorithm CD M2S. To mine
all divergent sequences on SDB, routineCD M2S(〈〉, SDB, ∅, minsup) is called.

This algorithm is pattern growth based [6]. Instead of scanning the whole
database, level by level as Apriori based methods, the database is projected
according to the prefix sequence. This data projection projection is quite different
from [6]. Indeed, we have to handle all possible items, so the projection has to
take the itemsets of the data sequences that contain the discovered item, and
not only the item as in [6].

Two kinds of items can be extracted from the projected database:

1. Items that are added in a new itemset of the prefix sequence α. These items
are mined thanks to LGS-Closure.

2. Items (denoted by e) that are added in the last itemset of the prefix sequence
α. In this case, we use the function LGS-ClosureX where X is the last itemset
of the sequence α.

This algorithm allows the extraction of divergent sequences. To mine conver-
gent sequences, it is necessary to use the same algorithms but on an inverted
database. Indeed, beginning by the end (invert the ordered relation) of the data



Algorithm 1: CD M2S

Data: Prefix sequence α, projected database SDB|α, set of current frequent
sequences FS , minimum support threshold minsup

Result: Set of divergent frequent sequences with prefix α

begin

if α 6= 〈〉 then

FS ← FS ∪ {α};

LF ← {e s.t. support(e,SDB|α) ≥ minsup and
∄e′ s.t. support(e′, SDB|α) ≥ minsup and e′ ⊂ e};
foreach items e ∈ LF do

α′ ← α.e;
Call CD M2S(α′, SDB|α′ , FS,minsup);

end

sequences and re-invert the discovered patterns allows a discovery from general
to particular case.

4 Experiments

In this Section, we report experiments on both synthetic and real data.
Synthetic Data:

Experiments were carried out on a synthetic database. This database con-
tains 10, 000 data sequences (with an average of 47 itemsets) over 5 analysis
dimensions. Some hierarchical relations are defined between elements of each
analysis dimension. In this paper, we report the behavior of our approach (num-
ber of patterns, runtime) according to several parameters (support threshold,
|DA|, degree and depth of hierarchies).

Figures Fig. 2(a) and Fig. 2(b) respectively report the runtime and the num-
ber of frequent sequences according to the minimum support threshold. The
number of sequences tends to increase when the support decreases. The runtime
follows the same behavior. However, it is possible that the number of frequent se-
quences decreases when the support decreases. Indeed, some more specific items
can appear. Furthermore, a more general item is faster inferred in a data se-
quence than a more specific one. Therefore, we can obtain a smaller number of
frequent sequences.

Figures Fig. 2(c) and Fig. 2(d) report the runtime and the number of frequent
sequences according to the depth of the hierarchies on the analysis dimension.
Adding one level in the hierarchies provides more precise data (soda becomes
pepsi or coca). There is thus more different values in the database. CD M2S is
robust front of the specialization phenomena. Indeed, even if the data become
very specific (5 different levels in the hierarchy), our approach allows to extract
some sequences that are described among several level of hierarchy. We can
notice that the runtime increases when the number of levels of the hierarchies
increases. This is due to the number of potentially frequent items that increases.
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Fig. 2. Experiments carried out on synthetic data

Figures Fig. 2(e) and Fig. 2(f) report the behavior (runtime and number of
sequences) of our approach according to the degree of the hierarchies. Increas-
ing the degree of a hierarchy provides more specific data (adding a son or an
instance). Our approach allows to discovery knowledge while hierarchies become
more specific. However, the cost of the extraction (runtime) is more expensive.

Figures Fig. 2(g) and Fig. 2(h) report the runtime and the number of se-
quences according to the number of analysis dimensions (|DA|). Adding some



analysis dimensions generates an increase of the number of frequent sequences
and the runtime.

These experiments on synthetic data show the robustness of our approach
according to the diversity of the data (DA, degree and depth of the hierarchies,
etc.). Considering a more diverse source data leads to a more important extrac-
tion cost that stays acceptable.
Real Data:

We report experiments on logs of toy game [3] which is an Eleusis based card
game. This game was created in order to simulate the activity of the scientific
discovering (publications, refutations, experiments). The problem in Robert Ab-
bot’s Eleusis card game [4] is to find a secret law hidden from the players and
determining the valid sequences of cards that can be played during the game.
[3] proposes a new version in which humans are helped by machines to produce
a theory. Players have to discover a rule (for instance a rule is ”two successive

cards must have two different colors” and a positive example according to this
rule is ”ace of hearts followed by king of spades”). A player wins points if he
produces a positive example or he publishes his theory. He also earns points if
he refutes a theory published by another player. He loses points if his theory is
disproved by another player.

The hidden rules are card sequences. Each sequence contains a left part and a
right part. Each part can contain several cards. We have described this problem
according to several analysis dimensions: one dimension for the card values (
king, queen, . . ., ace); one dimension for the card colors (heart, diamond, spade
and clubs); one dimension for the position of the card in the sequence(right or
left) and one dimension for the oracle answer (true, wrong).

We can obtain convergent and divergent rules. A divergent sequence is: ”For

the secret rule water lily, players frequently propose the following cards: three

of spade, ace of spade, a odd card of spade and finally a black odd card.”. A
convergent sequence is: ”For the secret rule lily, players frequently propose a red

card, a card of heart, a numbered card of heart.”. We notice that these rules are
relevant for the expert and they cannot be extracted with classical algorithm.

5 Conclusion

We proposed an original method to extract multidimensional sequences that
are defined on several levels of hierarchy according to different points of view:
from general to particular (convergent) or from particular to general (divergent).
We thus defined the concepts of convergent and divergent multidimensional se-
quences. We also introduced the algorithm CD M2S that is pattern growth
based. Some experiments on synthetic and real data show the interest of our ap-
proach. Note that this proposal is totally different from [9]. Indeed, in this paper,
we focus on mining for special sequences: divergent or convergent sequences. Such
sequences mean that comparable items can appear together within a convergent
or divergent sequence whereas they cannot in HY PE. Furthermore, HY PE al-
gorithm is APriori based whereas algorithm CD M2S is pattern-growth based.



This work offers several perspectives. First, divergent sequence can model
special behaviours like buzz or the appearance of a seminal paper that leads to
lot of publications and applications. Convergent sequences can model behaviors
that become specialized through time like the appearance of new scientific topics
or marketing products. Therefore, It would be very interesting to focus on the
discovery and the prediction of such behaviors. Second, the efficiency of the ex-
traction can be enhanced thanks to condensed representations (closed patterns,
etc.) that provide some properties to efficiently prune the search space. Further-
more, other propositions can be done on the management of the hierarchies.
We can imagine a modular management of hierarchies where some levels of the
hierarchies would be more important (minimal and maximal levels on some hi-
erarchies in order to be not too general or too specific) to fit user needs and to
preserve the scalability of the extraction.
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