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Abstract Data warehouses are now well recognized as the way to store historical

data that will then be available for future queries and analysis. In this context, some

challenges are still open, among which the problem of mining such data. OLAP mining,

introduced by J. Han in 1997, aims at coupling data mining techniques and data

warehousing. These techniques have to take the specificities of such data into account.

One of the specificities that is often not addressed by classical methods for data mining

is the fact that data warehouses describe data through several dimensions. Moreover,

the data are stored through time, and we thus argue that sequential patterns are one of

the best ways to summarize the trends from such databases. Sequential pattern mining

aims at discovering correlations among events through time. However, the number

of patterns can become very important when taking several analysis dimensions into

account, as it is the case in the framework of multidimensional databases. This is

why we propose here to define a condensed representation without loss of information:

closed multidimensional sequential patterns. This representation introduces properties

that allow to deeply prune the search space. In this paper, we also define algorithms

that do not require candidate set maintenance. Experiments on synthetic and real data

are reported and emphasize the interest of our proposal.

Keywords data mining · datawarehouses · closed multidimensional sequential

patterns

1 Introduction

Data warehouses are now well spread over companies. They contain valuable informa-

tion that can easily be queried and visualized with the OLAP tools, provided the fact

that the user is able to design on-line his own queries. However, it is still challenging

to provide the user with tools that can automatically extract relevant knowledge from

such huge amounts of data. Data warehouses are indeed different from usually mined
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databases as they contain aggregated data, described by means of several dimensions

that can possibly be organized through hierarchies. In this paper, we thus try and

extend existing methods that are now recognized for mining classical databases to this

framework. As data are historized, we argue that sequential patterns are well-suited

to this task. Sequential patterns have been studied for more than ten years [1], with a

lot of research and industrial applications (e.g. user behavior, web log analysis, discov-

ery of patterns from proteins’ sequences, security and music). Algorithms have been

proposed, based on the APriori-based framework [23],[9] ,[2], or on other approaches

[11],[8]. Sequential patterns have recently been extended to multidimensional sequen-

tial patterns by [14], [15], and [22]. They aim at discovering patterns that take time

into account and that involve several dimensions. For instance in [15], rules like A cus-

tomer who bought a surfboard together with a bag in NY later bought a wetsuit in SF

are discovered. Note that such sequences can also contain a wild-card item ∗ instead

of a dimension value. For instance, considering the previous example, if there is no

frequent pattern in the database describing the fact that wetsuits were later bought in

SF, or NY etc, but there are numerous wetsuits bought whatever the city, then the rule

A customer who bought a surfboard together with a bag in NY later bought a wetsuit

will be mined, represented as 〈(surfboard , NY )(wetsuit , ∗)〉.

Sequential patterns are usually extracted from the simple schema: (e.g. products,

customer id and date) but the number of mined patterns can be very huge. This is why

condensed representations were proposed for the itemset framework ([10],[13],[24],[5])

and for sequential patterns ([21],[18]). In both cases, the approaches allow a condensed

representation and a pruning strategy in the search space.

However, these works are not suitable for multidimensional sequential patterns

because they only consider a particular case for candidate generation. In our context, a

super-sequence may indeed result from several cases (1) a longer sequence (more items)

or (2) a more general sequence based on the relation between dimension values and the

wild-card value ∗ (more general items).

The main contributions of this paper are a theoretical framework for mining closed

multidimensional sequential patterns and some algorithms called CMSP (Closed Mul-

tidimensional Sequential Pattern mining) to mine such patterns. When considering

multidimensional data, the number of possible patterns is combinatorially explosive

and the generate-and-prune methods are no more scalable for long sequences, as high-

lighted in [12],[16]. This is why we adopt the pattern growth paradigm ([11]) to propose

a greedy approach for mining frequent sequences without candidate generation.

The paper is organized as follows. First we recall the related work in Section 2

and we detail why existing works are not suitable for mining data warehouse. Then we

present the core of our proposition: the definitions are introduced in Section 3 while

the CMSP algorithms are detailed in Section 4. Experiments on synthetic and real

data, reported in Section 5, show that our method performs well both on runtime and

number of extracted closed sequences. Finally, we provide some concluding remarks

and suggestions for future work in Section 6.

2 Related Work

In this Section, we first recall from [15] the seminal definitions of multidimensional

sequential patterns. Then we present existing works from the literature on closed pat-

terns.
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2.1 Multidimensional Sequential Patterns

To the best of our knowledge, three proposals exist for mining sequential patterns when

considering several dimensions.

The approach proposed by [14] mines sequences over one single dimension (e.g.

product) labeled by multidimensional patterns. However, no combination of dimensions

is possible through time (within the sequence).

[22] is very particular since the dimensions are embedded one within the other one

(web pages are visited within one session during one day).

In [15], rules not only combine several dimensions but they also combine these

dimensions over time. For instance in the rule A customer who bought a surfboard

together with a bag in NY later bought a wetsuit in SF, NY appears before SF , and

surfboard appears before wetsuit.

As the last approach is more general than the other two ones, we focus here on the

concepts of multidimensional sequential patterns introduced in [15].

More formally, let us consider a database DB where data are described with respect

to n dimensions. We consider a 3-bin partitioning of the dimensions:

– the set of those dimensions that will be contained within the rules (analysis dimen-

sions) is denoted by DA;

– the set of those dimensions on which the counting will be based (reference dimen-

sions) is denoted by DR;

– the set of those dimensions that are meant to introduce an order between events

(e.g. time) is denoted by DT .

The database can then be partitioned into blocks defined by their positions on the

reference dimensions.

A multidimensional item e is a m-tuple defined over the set of the m DA dimen-

sions. We consider e = (d1, d2, . . . , dm) where di ∈ Dom(Di) ∪ {∗}, ∀Di ∈ DA and

where ∗ stands for the wild-card value. For instance, (1, 2) is a multidimensional item

defined with respect to two dimensions.

A multidimensional itemset i = {e1, . . . , ek} is a non-empty set of multidimensional

items. All items of the itemset have to be “incomparable” to preserve the notion of

set. For instance, {(1, 1), (1, 2)} is a multidimensional itemset whereas {(1, 1)(1, ∗)} is

not an itemset because (1, 1) ⊆ (1, ∗).

A multidimensional sequence ς = 〈i1, . . . , il〉 is a non-empty ordered list of multidi-

mensional itemsets. For instance, ς1 = 〈{(1, 1), (1, 2)}{(1, ∗), (∗, 4)}{(1, 3)}〉 is a multi-

dimensional sequence.

Sequences that contain k items and g itemsets are called g-k-sequences:

Definition 1 (g-k-Sequence) A g-k-sequence S is a sequence that is composed of g

itemsets and k items as following:

S = 〈{e1
1, e1

2, . . . , e1
k1
}, {e2

1, e2
2, . . . , e2

k2
}, . . . , {eg

1, eg
2, . . . , eg

kg
}〉 where

Pg
1(ki) = k.

A multidimensional sequence can be included into another one:

Definition 2 (Sequence inclusion) A multidimensional sequence ς = 〈a1, . . . , al〉

is said to be a subsequence of ς ′ = 〈b1, . . . , bl′〉 if there exist integers 1 ≤ j1 ≤ j2 ≤

. . . ≤ jl ≤ l′ such that a1 ⊆ bj1 , a2 ⊆ bj2 , . . . , al ⊆ bjl
.

For instance, the sequence 〈{(1, 2), (∗, 3)}{(2, 2)}〉 is a subsequence of the sequence

〈{(1, ∗), (∗, 3)}{(∗, 2)(∗, 3)}〉.
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We consider that each block defined over DR contains one multidimensional data se-

quence, which is thus identified by that block. A block supports a sequence ς if all items

of ς can be matched (each value on each analysis dimension has to be matched except

with wild-card value *) with an item of the data sequence with respect to time order.

Thus, the support of a multidimensional sequence is the number of those blocks

defined over DR which contain this sequence.

When considering the classical case of sequential patterns, the sets of analysis, ref-

erence, and order dimensions consist of only one dimension (usually the product,

customer id and time dimensions). Note that even in this classical case, the num-

ber of frequent sequential patterns discovered from a database can be huge. And this

problem becomes worse in the case of multidimensional patterns since multidimensional

framework produces more patterns than classical framework.

For this reason, it is necessary to study condensed representations. We aim at

representing the sequential patterns and their support. Thus, we do not consider the

solution of representing only maximal sequential patterns, since this would result in

the loss of the information about the support of subsequences.

In this paper, we consider closed patterns. They indeed allow to represent the

patterns in a compressed manner without any loss of information.

2.2 Closed Patterns

A major challenge in mining frequent patterns is the fact that such mining often gen-

erates a huge number of patterns satisfying the minimum support threshold. This is

because if a pattern is frequent, each of its subpatterns is also frequent. A pattern

will contain an exponential number of smaller subpatterns. To overcome this problem,

closed frequent pattern mining were proposed by [10]. Frequent closed patterns algo-

rithms, which heavily draw on Formal Concept Analysis (FCA) mathematical settings

[6,20], present a novel alternative with a clear promise to dramatically reduce, without

information loss, the size of the frequent pattern set. From the frequent closed patterns,

the support of frequent non-closed patterns can be inferred.

Based on the previous approaches [5],[10],[13],[24], a closed pattern is defined as

follows:

Definition 3 (Closed Pattern) A (sequential) pattern α is closed if there does not

exist any pattern β such that α ⊆ β and support(α) = support(β).

For instance, let us suppose that the sequences 〈a〉3 and 〈a, b, c〉2 are closed, where

〈a〉3 stands for the sequence 〈a〉 having support 3. Then it can be deduced that the

sequences 〈a, c〉 and 〈b, c〉, which are included in the previous ones, have support 2. If

their support was 3 then the sequence 〈a〉 would not be closed. Thus, their frequency

is directly correlated to the frequency of 〈a, b, c〉. All the sequences are shown in Figure

1 where the closed sequences are circled.

It should be noticed that many works have been done on the extraction of closed

itemsets [5,13,24,19] but only two approaches have been proposed for sequential closed

patterns: BIDE and CloSpan.

CloSpan [21] first extracts a set of closed sequence candidates, which contains

the set of frequent sequences. In this first set, some sequences are not closed. Thus,
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Fig. 1 Searching all the frequent sequences from the closed ones

CloSpan prunes the non-closed sequences in a second step. CloSpan uses the pattern-

growth approach, which is different from the APriori-like candidate-generation-and-

test approaches. CloSpan decomposes the database in order to discard non-needed

computations [12]. In order to reduce the space search, the database is projected by the

current mined sequence also called prefix sequence. The projected database according

to the sequence α is denoted DB|α. For instance, given the data sequence S = 〈(abcd)-

ea(bc)(ac)〉 and α = 〈(ab)a〉, S|α = 〈(bc)(ac)〉. As soon as a sub-pattern or a super-

pattern of the current sequence shares the same projected database as the current one,

we do not need to explore this database in order to grow this sequence. Indeed, their

subtrees can be merged into one without having to mine a subtree in the search space

already mined.

BIDE [18] enhances the previous approach (CloSpan). The authors propose an

approach without any candidate maintenance-and-test paradigm. This approach prunes

the search space more deeply. It checks a pattern closure in a more efficient way while

consuming less memory than CloSpan. Indeed, BIDE does not maintain the set of

historic closed patterns.

It should be noted that these two approaches not only reduce the number of se-

quences to be considered, but also result in better performances (both in time and

memory).

We can also cite the work of [17] which considers closed sequential patterns in

multidimensional framework. However, this approach uses a condensed representation

of [14]. So this approach mines sequences over one single dimension (e.g. product)

labeled by multidimensional patterns. Thus, no combination of dimensions is possible

through time (within the sequence).

OLAP Mining has been studied since 1997 [7], aiming at designing methods to

automatically extract relevant knowledge from multidimensional databases. In this

framework, the challenges are numerous, as this kind of data is different from classical

databases that are usually mined. First, multidimensional databases contain aggre-

gated data. Moreover, this data is described using dimensions, which can be organized

through hierarchies. Finally, the data is historized so as to report the evolution through

time. Discovering trends from such data can thus be seen as the task of extracting the

relevant frequent sequences that occur. This is the reason why we choose here to study

sequential patterns, as efficient methods have been designed to extract such trends,

while remaining scalable (typically by using algorithms that do not have to manage

sets of candidates) and concise (typically by using closed sequential patterns). However

to the best of our knowledge, multidimensional sequential patterns have not been con-
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sidered in the existing work. So, we propose a theoretical framework for mining closed

multidimensional sequential patterns.

2.3 Particularity of the Multidimensional Framework

In this section, we explain why it is quite difficult to apply existing work on sequential

pattern to the multidimensional framework. These reasons are essentially due to the

inclusion of wild-carded -sequences.

Unfortunately, the classical framework (one analysis dimension) is no longer suit-

able when considering wild-carded multidimensional sequential patterns. For instance,

if we assume that 〈{(a1, b1), (∗, b2)}〉2 is closed, then by calculating the other sequences,

it could be calculated that the sequences 〈{(a1, b1), (a1, b2)}〉 and 〈{(a1, b1), (a2, b2)}〉

are in the same case as previously (support should be 2). However, it may happen that

the sequences 〈{(a1, b1), (a1, b2)}〉 and 〈{(a1, b1), (a2, b2)}〉 have a support of 1. This

may occur because a super-sequence may result from several cases: a longer sequence

(more items) or a more general sequence based on the relation between dimension val-

ues and the wild-card (more general items). More precisely, it is due to the fact that

all values of domain dimensions are contained in wild-card.

3 CMSP - Closed Multidimensional Sequential Patterns

In order to define Closed Multidimensional Sequential Patterns, we introduce a special-

ization relation between patterns to catch the specific context of the multidimensional

data.

Definition 4 (Specialization/Generalization) A multidimensional sequential pat-

tern α = 〈a1, . . . , al〉 is more general than β = 〈b1, . . . , bl′〉 (l ≤ l′) (and β is more

specific than α) if there exist integers 1 ≤ j1 ≤ j2 ≤ . . . ≤ jl ≤ l′ such that

bj1 ⊆ a1, bj2 ⊆ a2, . . . , bjl
⊆ al.

If β is more specific than α, we write α ⊂S β where ⊂S denotes a specialization

relation.

Example 1 The sequence β = 〈{(a1, b1), (a2, b2)}{(∗, b1)}〉 is more specific than the

sequence α = 〈{(a1, ∗), (a2, b2)}〉. We denote α ⊂S β. We can note that this definition

is different from the inclusion definition (definition 2). Here, the main idea is that

a sequence is more specific than another one if it is at least longer than the other

one and its items should be more specific. For instance, 〈(1, ∗)〉 ⊂S 〈(1, 1), (1, 1)〉 and

〈(1, ∗)〉 * 〈(1, 1), (1, 1)〉.

We can now define closed multidimensional sequence and closed multidimensional

sequential patterns as follows:

Definition 5 (Closed Multidimensional Sequence) A multidimensional sequence

α is closed if there does not exist β such that α ⊂S β and support(α) = support(β)

Definition 6 (Closed Multidimensional Sequential Pattern) Let minsup be a

minimal support threshold, a sequence s is a closed multidimensional sequential pattern

if s is closed and support(s) ≥ minsup.



7

Example 2 (Closed Multidimensional Sequential Patterns and Inference)

With a minimal support threshold equal to 3 and the database shown in Table 1, the

set of closed patterns is given by the first part of Table 2.

With a minimal support threshold equal to 2, the set of closed sequential patterns is

given by Table 2. Unclosed sequences can be inferred from the closed ones. For instance,

the support of the sequences 〈(∗, b2)〉 and 〈(a2, ∗)〉 can then be computed as being equal

to 3.

Thus, two levels of knowledge can be inferred from closed patterns:

1. for subsequences containing fewer items;

2. for subsequences containing more general items (more wildcards).

These two levels can be mixed in order to infer even more general knowledge.

1 〈{(a1 , b1), (a1, b2)}{(a2 , b2)}{(a1, b3)}{(a1, b2)(a2, b2)}〉
2 〈{(a1, b2), (a2, b1)}{(a3, b2)}{(a2 , b1)}{(a2 , b1)}〉
3 〈{(a4, b4)}{(a2 , b1)}{(a1, b1)(a2, b2))}〉

Table 1 Running Example

〈(a1, ∗)〉3
〈(a2, ∗), (a2, ∗)〉3
〈(a2, ∗), (∗, b2)〉3
〈(∗, b1), (a2, ∗)〉3
〈(∗, b2), (∗, b2)〉3

〈{(a1, b1), (∗, b2)}〉2
〈{(a1, b2), (∗, b1)}, (a2, ∗), (a2, ∗)〉2
〈{(a1 , b2), (∗, b1)}(∗, b2), (a2, ∗)〉2

〈(a2, b1), (a2, ∗)〉2
〈(a2, b1), (∗, b1)〉2
〈(a2, b1), (∗, b2)〉2
〈(a2, ∗), (2, 2)〉2
〈(a2, ∗), (1, ∗)〉2
〈(∗, b1), (a2, b2)〉2
〈(∗, b1), (a1, ∗)〉2

Table 2 Closed multidimensional sequences with support 2 and 3

4 CMSP : Mining Closed Multidimensional Sequential Patterns

As mentioned in the introduction, generate-and-prune methods cannot be scalable for

long sequences. This non-scalability problem is worse in a multidimensional framework

since the number of possible patterns is combinatorially explosive.Thus, we adopt the

pattern-growth paradigm in order to define complete and scalable algorithms for mining

multidimensional closed sequential patterns. The definitions we consider here are taken

from the approaches that are recognized as being efficient for mining for sequential

patterns. The first approach is described in Section 4.2. It considers the methods defined
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in CloSpan [21]. The second approach we consider here is based on Bide [18] described

in Section 4.3. In this approach, no candidate set is maintained.

We define below the definitions that are common to these two approaches, and we

then detail on each of them the implementation we propose. Experimental results are

reported in Section 5.

4.1 Order Within The Itemset of a Sequence

Ordering items within the itemsets is one of the main basis to improve the implementa-

tion and to discard already examined cases. The existing methods presented in [21] and

[18] for ordering sequences are not directly applicable to the multidimensional frame-

work. Indeed wild-carded items are not explicitly present in databases. Such items are

retrieved by inference since there is no associated tuple in the database.

1 〈{(a1 , b1), (a1, b2)}〉
2 〈{(a1 , b2), (a2, b1)}〉

Table 3 Where is the sequence 〈{(a1 , b2), (∗, b1)}〉 ?

Table 3 shows an example of a database that cannot be treated by these two

methods, since wild-carded items are not explicitly present in the database. Thus, no

total lexicographic order can be defined between the elements of the itemsets. So these

methods cannot mine the sequence 〈{(a1, b2), (∗, b1)}〉. As an example, CloSpan finds

the frequent item (a1, b2) with a support of 2 and then, it constructs the projected

database prefixed by the sequence 〈{(a1, b2)}〉. This projected database contains the

sequences 〈{}〉 and 〈{(a2, b1)}〉. Thus the item (∗, b1) does not appear to be frequent

in this projected database whereas it is frequent in the initial database.

This trivial example highlights the need to introduce a lexical order taking wild-

carded items into account.

It should be noted that it is not possible to extend the whole database with all

the possible wild-carded items before the mining process. For example, if we consider

a database containing m analysis dimensions and ni items in an itemset i, this trans-

formation would produce (2m − 1) × ni items instead of ni leading to a database of

size (2m − 1)
P

ti∈DB nti .

It is then necessary to take all wild-carded items into account during the process

of closed multidimensional sequential patterns and not before as a pre-treatment.

We will then introduce an lexical order and functions to locally materialize the

wild-carded items.

It is necessary to have a lexicographic order when mining frequent patterns since

it is the basis foundation of the non-duplication of items during the computation. We

now define the concept of extended itemset.

Definition 7 (Extended Itemset) A frequent itemset is said to be extended if it is

equal to its downward closure according to the specialization relation (⊂S).

The extended itemsets enable to mine wild-carded items which can be deduced

from data sequences.

In order to optimize the computation of closed multidimensional sequential pat-

terns, we introduce a lexico-graphico-specific (LGS) order. This order results from an
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alpha-numerical order according to the precision of the items (number of * in the

item). Thus the priority is given to the most specific items during the mining process.

For instance, itemset i1 = {(a1, b1), (a2, b1), (a1, ∗), (a2, ∗), (∗, b1)} is sorted w.r.t LGS

order.

We define a function which transforms an itemset (transaction) into its extended

itemset.

Definition 8 (Function LGS-Closure) LGS-Closure is an application from an

itemset i to the closure of i w.r.t. the LGS order <lgs.

Example 3 (LGS-Closure) LGS-Closure({(a1, b1), (a2, b1)}) = {(a1, b1), (a2, b1),-

(a1, ∗), (a2, ∗), (∗, b1)}

This closure is illustrated in the Figure 5. Note that we do not return the most

general item (*,*) of the lattice . This item does not need to be mined since it is a

tautology.

Fig. 2 LGS-Closure

The extraction of frequent items is then performed on each extended itemset. In the

pattern-growth approach, the sequences are greedily extracted by adding a frequent

item to a frequent prefix sequence. The prefix sequence can be extended by adding a

frequent item in a new itemset or by adding a frequent item in the last itemset of

the prefix sequence. It is thus necessary to define an efficient way to extend a prefix

sequence according to its last itemset. Furthermore, we have to preserve the notion of

set of an itemset (two comparable items cannot appear together within an itemset).

For that purpose, we define a restriction as follows.

Definition 9 (Function LGS-ClosureX) The function LGS-ClosureX(i) in an ap-

plication from an itemset i to the closure of i taking filtering of the itemset X =

{x1 ≤lgs . . . ≤lgs xk′} into account such that:

LGS-ClosureX(i) = {e ∈ LGS-Closure(i) s.t. e ≥lgs xk′ and ∄xj ∈ X | xj ⊆ e}

Example 4 (LGS-ClosureX) LGS-Closure{(a1,b1)}({(a1, b1), (a1, b2), (a1, b3)}) =

{(∗, b2), (∗, b3)}
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4.2 CMSP Cand

In this section, we define an algorithm adapted from CloSpan.

Closed sequential patterns are extracted using algorithms 1 (CMSP Cand) and 2

(SequenceGrowing) following a depth-first strategy.

Instead of scanning the whole database level by level in the same way as APriori-like

methods, the database is projected according to the current examined prefix sequence.

This projection is quite different from [11]. Since we should take into account wild-

carded items, the database projection should take into account the transaction (itemset

of the block data sequence) where item was found, and not only the item itself like

in [11]. To take into account this transaction, we use the LGS-Closure function by

filtering the already found items.

For instance, if we consider the following data sequence S = 〈(1, 1), {(1, 2), (1, 3)}, (2, 2)〉

and the current prefix sequence α = 〈(1, 2)〉. According to [11], the projected database

S|α = { (1, 3)}, (2, 2)〉 where (1, 3) indicates that the item (1, 3) and the last itemset

of α shares the same itemset in the data sequence. With our algorithm, the projected

database is quite different since we take into account wild-card values. The projected

database is built as follows: S|α = LGS-Closure{(1,2)}({(1, 2)(1, 3)}), {(2, 2)}, thus

we have: S|α = { (1, 3) (1, ∗) (∗, 3)}, {(2, 2)}.

The use of projected database prevents from scanning already seen data. Indeed,

if we consider a frequent sequence α and the current examined prefix sequence β such

that β ⊆S α or α ⊆S β and such that the projected database is the same for β and α,

then it is not necessary to expand this last sequence. We just need to copy the subtree

(already mined) of the sequence α to the sequence β.

We can note that:

– if α ⊆S β then α cannot be closed;

– if β ⊆S α then the sequences prefixed by β are already known, thus allowing us to

discard the frequent suffixes of β.

In the latter case, it should be noted that β cannot be closed. However, it is nec-

essary to keep this sequence as it can be included in some other ones, thus avoiding

database scans.

Algorithm 3 considers locally frequent items from projected fragments of the databa-

se. It is based on the LGS-Closure function (definition 9). The projected database is

scanned only once in order to extract all frequent items. Two types of items can be

mined:

1. The items which cannot be included in the last itemset of the prefix sequence ς.

These items should be included in a new itemset of ς. In order to mine such items

and to take into account wild-carded item, we need to extend all transactions of

the projected database (step by step) thanks to the function LGS-Closure.

2. The items which can be included in the last itemset of the prefix sequence ς. In

that case, we use the function LGS-Closure parametrized with the last itemset of

ς.

The last task of Algorithm 1 is to eliminate non-closed multidimensional sequences

from the set of closed sequence candidates. The problem is to check out for each multi-

dimensional sequence ς, whether there exists a multidimensional sequence ς ′ such that

ς ⊂S ς ′ and support(ς) = support(ς ′). A naive algorithm, which compares each multi-

dimensional sequence with other ones in the set, cannot work because of its quadratic
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complexity in the number of closed sequence candidates. We adopt the fast subsump-

tion checking algorithm introduced by Zaki [24]. The value of support is very dense.

Thus support cannot be a relevant hash key which enables a sparse distribution of keys.

[24] proposes using the sum of sequences’ identifiers (denoted τ (DS))as its hash key

instead of using support. However, in sequence framework, the equivalence of τ (DS)

does not imply the equivalence of support. Thus, for the multidimensional sequences

that share the same τ (DS), we need to check their support in order to eliminate the

invalid candidates. This hash key, also used in CloSpan, is easy to compute. Further-

more, it enhances the space search reduction. Thus, the complexity of this operation is

Θ(
P

n2
τi

) where nτi is the number of closed sequence candidates that share the same

τi. The nτi are significantly less than the total number of closed sequence candidates

(
P

nτi).

Algorithm 1: CMSP Cand

Data: Database DB, minimal support minsup

Result: The set of closed C
begin

/* Initialization */
Set L← {}
Set C ← {}
Sequence α← 〈〉
/*Frequent sequence mining (depthfirst)*/

SequenceGrowing(α,DB, L, minsup)
/*Pruning of non-closed in L*/
foreach s1 ∈ L do

foreach s2 ∈ L do

if s1 ⊆S s2 et support(s1) = support(s2) then

delete(s1, L)

C ← L
return C

end

Algorithm 2: SequenceGrowing: Mining algorithm

Data: Sequence α,projected database DB|α, closed sequence candidate set L , mini-
mal support minsup

Result: The set of sequences prefixed by α

begin

/*α may be closed*/
insert(α, L);
/*Check if the sequence was already checked out */
if ∃β | (α ⊆S β or β ⊆ α) and they both share the same projected database then

Copy the descendants of β in α;
return

Set Fl ← getF requentItems(DB|α, minsup);
foreach α′ ← α.b do

Build DB|α′;
SequenceGrowing(α′, DB|α′, L, minsup);

end
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Algorithm 3: getFrequentItems: Localy frequent item mining

Data: Projected database DB|α, minsup

Result: localy frequent item set Fl

begin

/*We assume that for each data sequence Si of DB|α we have: Si =
LGS-ClosurelastItemset(α)(same).otherTrans
We should examine all the data sequences of DB*/
foreach Si ∈ DB|α do

foreach item e in same do

handle e ;

foreach itemset is in other do

/*Search all items which could be inserted inyo a further itemset of α*/
SearchOtherTransFrequentItem e in LGS-Closure(is);
/*Search all items which could be inserted into the last itemset of α*/
if is supports lastItemset(α) then

SearchSameTransFrequentItem e in LGS-ClosurelastItemset(α)(is);

return (Fl = {e|support(e) ≥ suppmin});

end

Example

Let us consider the multidimensional sequence database from Tab. 4 . We want to

discover all closed multidimensional sequential patterns with minsup equal to 2.

B1 〈{(a1, b2, c3)}{(a1, b1, c1), (a1, b3, c2)}〉
B2 〈{(a1, b2, c2)(a1, b2, c3)}{(a1, b1, c1), (a1, b3, c4)}{(a1, b1, c1)}〉

Table 4 Multidimensional Sequence Database DB

The main algorithm CMSP Cand calls routine SequenceGrowing with the

empty sequence 〈〉, DB and minsup = 2 as parameters.

The first step aims at discovering all the frequent items on DB thanks to routine

getFrequentItems:

{(a1, b1, c1)2, (a1, b2, c3)2, (a1, b1, ∗)2, (a1, b2, ∗)2, (a1, b3, ∗)2, (a1, ∗, c1)2, (a1, ∗, c2)2,

(a1, ∗, c3)2, (∗, b1, c1)2,

(∗, b2, c3)2, (a1, ∗, ∗)2, (∗, b1, ∗)2, (∗, b2, ∗)2, (∗, b3, ∗)2, (∗, ∗, c1)2, (∗, ∗, c2)2, (∗, ∗, c3)2}

The sequences are mined with a depth-first strategy according to the order LGS.

The prefix sequence 〈(a1, b1, c1)〉 is examined. All sequences with prefix 〈(a1, b1, c1)〉

are searched on DB|〈(a1, b1, c1)〉.

Sequences 〈{(a1, b1, c1), (a1, b3, ∗)}〉 and 〈{(a1, b1, c1), (∗, b3, ∗)}〉 are discovered.

There is no frequent item on the projected database according to 〈{(a1, b1, c1), (a1, b3, ∗)}〉

et 〈{(a1, b1, c1), (∗, b3, ∗)}〉.

The discovery of frequent sequences continue with the examination of the prefix

sequence 〈(a1, b2, c3)〉.

When prefix sequence 〈{(a1 , b2, c3)}{(a1 , b1, c1)}〉 is considered. Algorithm Sequence-

Growing detects that 〈{(a1, b2, c3)}{(a1, b1, c1)}〉 and 〈(a1, b1, c1)〉 share the same pro-

jected database. Thus, the exploration of the prefix sequence 〈{(a1, b2, c3)}{(a1 , b1, c1)}〉
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can be stopped. Indeed, sequences 〈{(a1, b2, c3)}, {(a1, b1, c1), (a1, b3, ∗)}〉 and 〈{(a1, b2, c3)}-

{(a1, b1, c1), (∗, b3, ∗)}〉 are discovered without scanning the projected database DB〈(a1,b1,c1)〉.

The discovery of frequent sequences goes on with the examination of the prefix

sequence 〈(a1, b1, ∗)〉.

The process is iterated untill the extraction of all the sequences with prefix equal

to 〈(∗, ∗, c3)〉.

Finally, closed sequences are retrieved from the closed candidates set. Only se-

quences 〈{(a1, b2, c3)}{(a1, b1, c1), (a1, b3, ∗)}〉 and 〈{(a1, ∗, b2)}〉 are closed.

4.3 CMSP Free: Mining CLosed Multidimensional Sequential Patterns Without

Candidate Set Maintenance

The previous algorithm, CMSP Cand Algorithm 1, needs to maintain a set of poten-

tially closed sequences (set L). In post-processing, it has to compute closed sequences

among candidate sequences of this set. This maintenance is expensive (quadratic in

the size of the set) even if optimization techniques allow to reduce this cost. In this

section, we propose an algorithm without candidate-set-maintenance. This approach is

based on Bide [18]. We first detail some preliminar definitions (Sequence extensions)

then we present the associated algorithm.

4.3.1 Sequence Extensions

According to the definition of closed multidimensional sequential pattern, if a g-k-

sequence S = s1, . . . , sg is not closed then there exists a sequence S′ with the same

support of S such that S ⊂S S′. Definition 10 enumerates the five possible ways to

have a more specific sequence from a g-k-sequence.

Definition 10 A more specific sequence can be built in five different ways from a g-k-

sequence 〈s1, s2, . . . , sg〉:

– inter itemset forward extension S′ = 〈s1, s2, . . . , sg , {e′}〉;

– intra itemset forward extension S′ = 〈s1, s2, . . . sg ∪ {e′}〉;

– inter itemset backward extension S′ = 〈s1, s2, . . . , si, {e
′}, si+1, . . . , sg〉;

– intra itemset backward extension S′ = 〈s1, s2, . . . si ∪ {e′}, si+1, . . . , sg〉;

– specialization of an item ∃i ∈ {1, . . . , g},∃e,∃e′ s.t. e ⊂S e′ : S′ = 〈s1, s2, . . . , si−1,-

si[e
′/e], si+1, . . . , sg〉 where si[e

′/e] is the substitution of e by e′ in si.

We will notice that the last point can easily be detected thanks to the order of

sequence we consider as soon as the four ones (extensions) are detected.

Theorem 1 (Bi-Directional Extension) A sequence S is closed if and only if there

does not exist neither any backward or forward extension nor any specialization that

preserves the support of S.

The proof trivially comes from the definition of closed multidimensional sequential pat-

terns.

In order to check if a sequence is closed, we have to check if there exists some

backward or forward extension or specialization of an item, thanks to theorem 1.

It is easy to find the forward extensions of a sequence:
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Lemma 1 (Forward Extension) Let S be a sequence, the complete set of forward

extensions of S is equivalent to the set of locally frequent items on the projected database

according to S such that their support is equal to support(S).

Proof Locally frequent items are discovered by scanning the projected database accord-

ing to prefix sequence Sp. Since each event occurs during or after the prefix sequence

Sp, if an item e occurs in all data sequence from the projected database, then e is a

forward extension.

All events (items) that occur after the first instance of the sequence Sp is included in

the projected database DB|Sp
, which means that the complete set of forward extensions

can be extracted by scanning the projected database DBSp
.

It is harder to detect the backward extensions of a sequence than forward exten-

sions. There are two types of backward extension:

– S′ = s1, s2, . . . , si, {e
′}, si+1, . . . , sg

– S′ = s1, s2, . . . si ∪ {e′}, si+1, . . . , sg

An item can be inserted in a new itemset between two itemsets si and si+1 (inter

itemset backward extension). An item can also be inserted in an already defined itemset.

As a sequence can appear several times within a block data sequence, we can

identify g intervals to localize the potential backward extension of a g-k sequence.

Figure Fig. 3 describes the g intervals of a multidimensional prefix sequence in a

multidimensional data sequence.

Data S1 S2 S3 Sg−1 Sg

...

I1 I2 I3 Ig

...

Sequence

Fig. 3 The g intervals that may contained backward extensions of prefix g-k-sequence Sp =
〈s1, s2, . . . , sg〉 in a block data sequence

We have to maximize these intervals in order to detect all backward extension

items.

Definition 11 (ith Maximal Interval) Let Sp = 〈s1, s2, . . . , sg〉 be a g-k prefix se-

quence and S be a block data sequence, the ith maximal interval of S according to Sp

is defined as follow:

– if i = 1: the subsequence from the beginning of S to la(s1) excluded where la(s1) is

the last appearance of the itemset s1 in S such that la(s1) < la(s2) < . . . < la(g).

– if 1 < i ≤ g: the subsequence between the first appearance of the sequence 〈s1, s2,-

. . . , si−1〉 (denoted by fa(〈s1, s2, . . . , si−1〉)) and la(si) excluded such that la(si) <

la(si+1) < . . . < la(g).

As an example, the first maximal interval of the sequence s = 〈{(1, 1)}{(1, 2)}〉

in the data sequence S = 〈{(1, 1)}{(1, 2)}{(1, 1)}{(1, 2)}{(1, 1)}{(1, 2)}〉 is the sub-

sequence 〈{(1, 1)}{(1, 2)}{(1, 1)}{(1, 2)}〉. The second maximal interval of s in S is

〈{(1, 2)}{(1, 1)}{(1, 2)}{(1, 1)}〉.



15

Lemma 2 (Backward Extension Checking) Let Sp = 〈s1, s2, . . . , sg〉 be a g-k

prefix sequence, if there exists an item e that appears in each ith maximal intervals

of Sp in DB, then e is a backward extension.

Otherwise, if there is no item e that appears in each ith maximal interval of Sp in

DB, then Sp cannot have a backward extension.

Proof Let Sp = 〈s1, s2, . . . , sg〉 be a g-k-prefix sequence, if there exists an item e that

appears in each ith maximal interval of Sp in DB (each ith maximal interval of Sp in

each data sequence of DB), then we can build the sequence S′
p = 〈s1, s2, . . . , si−1 ∪

{e}, si, . . . , sg〉 or S′ = 〈s1, s2, . . . , si−1, {e}, si, . . . , sg〉 such that Sp ⊂S S′
p and su-

pport(S′
p) = support(Sp). Thus, e is a backward extension of Sp in DB.

Suppose that there exists a sequence S′
p = 〈s1, s2, . . . , si−1∪{e}, si, . . . , sg〉 or S′

p =

〈s1, s2, . . . , si−1, {e}, si, . . . , sg〉 such that Sp ⊂S S′
p and support(S′

p) = support(Sp).

In each data sequence of DB that contain Sp, item e must appear after the first appear-

ance of 〈s1, . . . , si−1〉 and before the last appearance of the subsequence 〈si, . . . , sg〉.

That means that e must appear in each ith maximal interval of Sp in DB. Thus, if we

cannot find an item that appears in each ith maximal interval of Sp then there is no

backward extension of the sequence Sp in DB.

A prefix sequence cannot be closed if there exists a specialization of an item of the

sequence; LGS order allows us to extract closed sequences by considering sequences

that contain the most specific items (no or few ∗). Thus, if there exists a specialization of

an item of a sequence, then the specialized sequence” that contains at least one more

specific items is already extracted and added in the set of closed multidimensional

sequential patterns. As a consequence, if a sequence is potentially closed (no backward

and forward extension), it is sufficient to check if there is no more specific sequence in

the set of already mined closed sequence. It should be noted that this set is significantly

smaller than the set of frequent sequences. In the worst case, it is necessary to consider

all already mined closed sequences that have the same support of the current examined

prefix sequence.

4.3.2 Pruning The Search Space

While seeking new sequences with frequent sequence enumeration algorithm , we can

use the bidirectional closure property (theorem 1) to check if the current prefix sequence

is closed in order to generate a set of non-redundant knowledge. Although this property

allows to return a more compact set, it does not allow to retrieve sequences more

efficiently. For instance, there is no closed sequence prefixed by a sequence s, therefore

it is useless to continue to search such sequences in this case. We define a pruning

method to reduce space search by not considering unpromising sequence.

As noticed previously, a sequence may appear several times in a data sequence. In

Definition 11, we introduced the notion of maximal interval to detect all the backward

extensions. Now, we want to minimize these intervals in order to detect the unpromising

sequences. We thus define the notion of ith minimal interval.

Definition 12 (ith Minimal Interval) Let S be a data sequence that supports a g-

k-sequence prefix sequence Sp = 〈s1, s2, . . . , sg〉, the ith minimal interval of Sp in S is

defined as follow:

– if i = 1: it is the subsequence before the fa(s1).
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– if 1 < i ≤ g: it is the subsequence from fa(〈s1, . . . , si−1〉) to fa(si) excluded such

that fa(si) < fa(si+1) ≤ . . . ≤ fa(sg).

Theorem 2 (Pruning) Let Sp = 〈s1, s2, . . . , sg〉 be a g-k prefix sequence, if there

exists an integer i such that there is an item e that appears in each ith minimal interval

of Sp in DB, then there does not exist closed sequence with prefix Sp.

Proof If an item e appears in each ith minimal interval of Sp, then we can use the new

prefix sequence S′
p that contains e. Indeed, Sp ⊂S S′

p and support(S′
p) = support(Sp).

Thus, all locally frequent items on DB|Sp
are also frequent on DB|S′

p
. Therefore, Sp is

an unpromising sequence. There is no closed sequence with prefix Sp. The examination

of Sp can thus be interrupted.

Let us consider the multidimensional sequence database from Tab. 4. We can stop the

exploration of the prefix sequence 〈(a1, b1, c1)〉 because item (a1, b2, c3) appears in each

first interval of 〈(a1, b1, c1)〉 in DB. Thus, there is no hope to discover frequent closed

sequence from prefix 〈(a1, b1, c1)〉.

Thanks to theorems and definitions, we can now define the algorithm for mining

closed multidimensional sequential patterns without candidate set maintenance.

4.3.3 Algorithm CMSP Free

Algorithms 4 and 5 describe the extraction of closed sequential patterns without candi-

date set maintenance. These algorithms follow the same structure for mining frequent

multidimensional sequences in depth first. Indeed, in the worst case (each frequent

sequence is closed), the search spaces are the same. However, we introduce a pruning

condition to efficiently reduce the search space. Algorithm 5 describes the key part of

the extraction. First, if the number of backward and forward extensions of the current

prefix sequence Sp is 0, then Sp is potentially closed and we have to check if there

is no more specific sequence in set FCS that contains the already discovered closed

multidimensional sequential patterns. If there is no such sequence with same support,

then Sp is added to FCS. Set FCS is partitioned into subsets according to the support

of the closed sequences. Thus, the search of more specific closed sequence than Sp is

carried out on a subset of FCS. In the worst case, the complexity of this verification

is O(lσ) where lσ is the number of already mined closed sequences which support is

equal to σ. Finally, each locally frequent item e on projected database is taking into

account. The algorithm checks if it is possible to prune the search space according to

the prefix sequence Sp.e (e is added in the last itemset of Sp or in a new one). If it is

not possible, the algorithm computes the number of backward extensions of Sp.e and

continue the discovery of closed sequences with this new prefix sequence Sp.e.

5 Experiments

In this section, we report experiments performed on synthetic data and real data.

5.1 Synthetic Data

We generated a database thanks to IBM Quest Market-Basket Synthetic Data Genera-

tor (100, 000 tuples). Items (1 dimension) were then transformed into multidimensional
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Algorithm 4: CMSP Free

Data: Database DB, minimal support threshold minsup

Result: The set of closed multidimensional sequential patterns FCS

begin

FCS = ∅;
F1 = getF requentItems(DB, minsup);
foreach 1-sequence f1 ∈ F1 do

if Pruning of f1 is not possible) then

/*Counting the backward extensions.*/
BEI = #backward extensions of sequence f1 in DB ;
Call subroutine CMSP F (DB|f1, f1, minsup, BEI, FCS);

return FCS;

end

Algorithm 5: routine CMSP F

Data: Projected Database DB|Sp
, prefix sequence Sp, minimal support threshold

minsup, number of backward extensions BEI

Result: The current set of closed multidimensional sequential patterns FCS

begin

/*Search for frequent items and forward extensions*/

LFI = getF requentItems(DB|Sp
, minsup);

FEI = |{z ∈ LFI / support(z) = support(SP )}|;
if (BEI + FEI) = 0 then

/*Checking for specialization*/
if (∄α ∈ FCS | Sp ⊂S α ∧ support(α) = support(Sp)) then

FCS = FCS ∪ {SP };

foreach i ∈ LFI do

/*Adding frequent item to the prefix sequence (intra or inter itemset) and
compute the projected database*/
S′

p = 〈Sp.i〉;
DB|S′

p
= DB|S′

p
;

foreach i ∈ LFI do

/*Checking for pruning */
if Pruning of S′

p is not possible then

BEI = #backward extensions of sequence S′
p in DB ;

call subroutine CMSP F (DB|Spi, S′
p, minsup, BEI, FCS);

end

items (5 dimensions). Since approach without candidate maintenance has to compute

backward and forward extension to determine if a sequence is closed, we suppose that

an approach with candidate set maintenance is more efficient in sparse data (number of

frequent sequences similar to number of closed ones). Experiments reported here con-

firm it. As soon as the minimal support threshold is low, the approach with candidate

set maintenance is adapted. Indeed, the runtime of such approach is very sensitive

to the number of frequent sequences since frequent sequences are potentially closed

and retrieving all closed sequences is quadratic in the size of the set of candidate se-

quences. An approach without candidate set maintenance is more robust since it does

not consider any set of candidates. Furthermore, an approach without candidate set

maintenance provides efficient search space pruning properties. Figure 4(c) reports the

behavior of CMSP according to the size of de database (number of data sequences).
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The runtime increases with the size of the database. Thus we can consider that CMSP

is scalable according to this parameter.
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Fig. 4 Experiments carried out on synthetic data

5.2 Real Data Cube

We report experiments performed on real data. They aim at showing the representative

power of closed multidimensional patterns. They were performed on data cube issued

from EDF (Electricité De France, the main French energy supplier and electricity

producer) marketing context. This data cube describes the marketing activity on a very

large EDF customer database (about 30 million of residential customers). We consider

five analysis dimensions. As soon as the number of frequent sequences becomes too

important, an approach with candidate set maintenance is not adapted whereas CMSP

allows the knowledge discovery with low support. We also notice the representative

power of closed multidimensional sequential patterns. Indeed, a small number of closed

sequences provides the representation of all frequent sequences without any loss of

information on the support. As an example, 100, 000 sequences can be retrieved thanks

to only about 100 closed sequences.
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Fig. 5 Experiments carried out on real data

6 Conclusion

In this paper, we propose a novel framework (definitions and algorithms) for mining

closed multidimensional sequential patterns. Mining closed patterns leads to a con-

densed representation of the patterns without any loss of information. This advantage

allows the computation of several measures (e.g. confidence for sequential rules) with-

out any extra-scan of the database as all support values are known. Some works had

been done on closed patterns and on closed sequential patterns. But we show in this

paper that they cannot be directly applied to the multidimensional framework because

of the wild-carded items we consider, leading to a non-easy lexical order. This pa-

per introduces a new challenge with the inference of wild-carded items which are not

directly materialized in the data sequences. Two approaches have been investigated,

extending the pattern growth framework, with or without candidate maintenance and

they are compared. Experiments on synthetic data and real data show the interest of

our proposition.

In future work, we plan to consider time constraints and hierarchies which could

be easily considered according to the definitions in this framework. It would be inter-

esting to compare CMSP algorithms against an adaptation of work on closed item-

set generation using FCA. However, it is necessary to provide an closure operator

on multidimensional sequence. The use of more condensed representations could al-

low a more efficient multidimensional sequential pattern mining. These representations

(non-derivable [4], k-free [3]) exist in itemset framework but they do not exist yet for

sequential or multidimensional patterns. This work presents thus a great challenge for

future work.
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