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Abstract

We consider a class of backward stochastic differential equations (BSDEs) driven

by Brownian motion and Poisson random measure, and subject to constraints on the

jump component. We prove the existence and uniqueness of the minimal solution for

the BSDEs by using a penalization approach. Moreover, we show that under mild

conditions the minimal solutions to these constrained BSDEs can be characterized as

the unique viscosity solution of quasi-variational inequalities (QVIs), which leads to a

probabilistic representation for solutions to QVIs. Such a representation in particular

gives a new stochastic formula for value functions of a class of impulse control problems.

As a direct consequence we obtain a numerical scheme for the solution of such QVIs

via the simulation of the penalized BSDEs.
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1 Introduction and summary

Consider a parabolic quasi-variational inequality (QVI for short) of the following form:

min
[

− ∂v

∂t
− Lv − f , v −Hv

]

= 0, on [0, T ) × R
d, v(T, ·) = g on R

d, (1.1)

where L is the second order local operator

Lv(t, x) = 〈b(x),Dxv(t, x)〉 +
1

2
tr(σσ⊺(x)D2

xv(t, x)) (1.2)

and H is the nonlocal operator

Hv(t, x) = sup
e∈E

[v(t, x+ γ(x, e)) + c(x, e)]. (1.3)

In the above, Dxv and D2
xv are the partial gradient and the Hessian matrix of v with respect

to its second variable x, respectively; ⊺ stands for the transpose; 〈·, ·〉 denotes the scalar

product in R
d; S

d is the set of all symmetric d× d matrices; and E is some compact subset

of R
q.

It is well-known (see, e.g., [3]) that the QVI (1.1) is the dynamic programming equation

associated to the impulse control problems whose value function is defined by:

v(t, x) = sup
α=(τi,ξi)i

E
[

g(Xt,x,α
T ) +

∫ T

t

f(Xt,x,α
s )ds+

∑

t<τi≤T

c(Xt,x,α

τ−
i

, ξi)
]

. (1.4)

More precisely, given a filtered probability space (Ω,F ,P,F) where F = {Ft}t, we define

an impulse control α as a double sequence (τi, ξi)i in which {τi} is an increasing sequence

of F-stopping times, and each ξi is an Fτi
-measurable random variable taking values in E.

For each impulse control α = (τi, ξi)i, the controlled dynamics starting from x at time t,

denoted by Xt,x,α, is a càdlàg process satisfying the following SDE:

Xt,x,α
s = x+

∫ s

t

b(Xt,x,α
u )du+

∫ s

t

σ(Xt,x,α
u )dWu +

∑

t<τi≤s

γ(Xt,x,α

τ−
i

, ξi), (1.5)

where W is a d-dimensional F-Brownian motion. In other words, the controlled process

Xt,x,α evolves according to a diffusion process between two successive intervention times τi
and τi+1, and at each decided intervention time τi, the process jumps with size ∆Xt,x,α

τi :=

Xt,x,α
τi −Xt,x,α

τ−
i

= γ(Xt,x,α

τ−
i

, ξi).

We note that the impulse control problem (1.4) may be viewed as a sequence of optimal

stopping problems combined with jumps in state due to impulse values. Moreover, the QVI

(1.1) is the infinitesimal derivation of the dynamic programming principle, which means

that at each time, the controller may decide either to do nothing and let the state process

diffuse, or to make an intervention on the system via some impulse value. The former is

characterized by the linear PDE in (1.1), while the latter is expressed by the obstacle (or

reflected) part in (1.1). From the theoretical and numerical point of view, the main difficulty

of the QVI (1.1) lies in that the obstacle contains the solution itself, and it is nonlocal (see
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(1.3)) due to the jumps induced by the impulse control. These features make the classical

approach of numerically solving such impulse control problems particular challenging.

An alternative method to attack the QVI (1.1) is to find the probabilistic representation

of the solution using the Backward Stochastic Differential Equations (BSDEs), namely the

so-called nonlinear Feynman-Kac formula. One can then hope to use such a representation

to derive a direct numerical procedure for the solution of QVIs, whence the impulse control

problems. The idea is the following. We consider a Poisson random measure µ(dt, de) on

R+ × E associated to a marked point process (Ti, ζi)i. Assume that µ is independent of

W and has intensity λ(de)dt, where λ is a finite measure on E. Consider a (uncontrolled)

jump-diffusion process

Xs = X0 +

∫ s

0
b(Xu)du+

∫ s

0
σ(Xu)dWu +

∑

Ti≤s

γ(XT−
i
, ζi). (1.6)

Assume that v is a “smooth” solution to (1.1), and define Yt = v(t,Xt). Then, by Itô’s

formula we have

Yt = g(XT ) +

∫ T

t

f(Xs)ds +KT −Kt −
∫ T

t

〈Zs, dWs〉

−
∫ T

t

∫

E

(Us(e) − c(Xs− , e))µ(ds, de), (1.7)

where Zt = σ⊺(Xt−)Dxv(t,Xt−), Ut(e) = v(t,Xt− + γ(Xt− , e)) − v(t,Xt−) + c(Xt− , e), and

Kt =
∫ t

0 (−∂v
∂t

− Lv − f)(s,Xs)ds. Since v satisfies (1.1), we see that K is a continuous

(hence predictable), nondecreasing process, and U satisfies the constraint:

− Ut(e) ≥ 0, (1.8)

The idea is then to view (1.7) and (1.8) as a BSDE with jump constraints, and we expect to

retrieve v(t,Xt) by solving the “minimal” solution (Y,Z,U,K) to this constrained BSDE.

We can also look at the BSDE above slightly differently. Let us denote dK̄t = dKt −
∫

E
Us(e)µ(dt, de), t ≥ 0. Then K̄ is still a nondecreasing process, and the equation (1.7)

can now be rewritten as

Yt = g(XT ) +

∫ T

t

f(Xs)ds+

∫ T

t

∫

E

c(Xs− , e)µ(ds, de) −
∫ T

t

〈Zs, dWs〉 + K̄T − K̄t. (1.9)

We shall prove that v(t,Xt) can also be retrieved by looking at the minimal solution

(Y,Z, K̄) to this BSDE. In fact, the following relation holds (assuming t = 0):

v(0,X0) = inf {y ∈ R : ∃Z, (1.10)

y +

∫ T

0
〈Zs, dWs〉 ≥ g(XT ) +

∫ T

0
f(Xs)ds+

∫ T

0

∫

E

c(Xs− , e)µ(ds, de)}.

We should mention that (1.10) also has a financial interpretation. That is, v(0, x) is

the minimal capital allowing to superhedge the payoff ΠT (X) = g(XT ) +
∫ T

0 f(Xs)ds +
∫ T

0 c(Xs− , e)µ(ds, de) by trading only the asset W . Here, the market is obviously incom-

plete, since the jump part of the underlying asset X is not hedgeable.
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Inspired by the above discussion, we now introduce the following general BSDE:

Yt = g(XT ) +

∫ T

t

f(Xs, Ys, Zs)ds +KT −Kt (1.11)

−
∫ T

t

〈Zs, dWs〉 −
∫ T

t

∫

E

(Us(e) − c(Xs− , Ys− , Zs, e))µ(ds, de), 0 ≤ t ≤ T,

with constraints on the jump component in the form:

h(Ut(e)) ≥ 0, ∀e ∈ E, 0 ≤ t ≤ T, (1.12)

where h is a given nonincreasing function. The solution to the BSDE is a quadruple

(Y,Z,U,K) where, besides the usual the component (Y,Z,U), the fourth component K is

a nondecreasing, càdlàg, adapted process, null at zero, which makes the constraint (1.12)

possible. We note that without the constraint (1.12), the BSDE with K = 0 was studied

by Tang and Li [21] and Barles, Buckdahn and Pardoux [2]. However, with the presence

of the constraint, we may not have the uniqueness of the solution. We thus look only

for the minimal solution (Y,Z,U,K), in the sense that for any other solution (Ỹ , Z̃, Ũ , K̃)

satisfying (1.11)-(1.12), it must hold that Y ≤ Ỹ . Clearly, this BSDE is a generalized version

of (1.7)-(1.8), where the functions f and c are independent of y and z, and h(u) = −u.
We can also consider the counterpart of (1.9), namely finding the minimal solution

(Y,Z,K) of the BSDE:

Yt = g(XT ) +

∫ T

t

f(Xs, Ys, Zs)ds +

∫ T

t

∫

E

c(Xs− , Ys− , Zs, e)µ(ds, de)

−
∫ T

t

〈Zs, dWs〉 +KT −Kt, 0 ≤ t ≤ T. (1.13)

It is then conceivable, as we shall prove, that this problem is a special case of (1.11)-(1.12)

with h(u) = −u.
It is worth noting that if the generator f and the cost function c do not depend on y, z,

which we refer to as the impulse control case, the existence of a minimal solution to the

constrained BSDEs (1.7)-(1.8) may be directly obtained by supermartingale decomposition

method in the spirit of El Karoui and Quenez [11] for the dual representation of the super-

replication cost of ΠT (X). In fact, the results could be extended easily to the case where

f is linear in z, via a simple application of the Girsanov transformation. In our general

case, however, we shall follow a penalization method, as was done in El Karoui et al. [10].

Namely, we construct a suitable sequence (Y n, Zn, Un,Kn) of BSDEs with jumps, and

prove that it converges to the minimal solution that we are looking for, by using a weak

compactness argument of Peng [18].

Our next task of this paper is to relate the minimal solution to the BSDE with con-

strained jumps to the viscosity solutions to the following general QVI:

min
[

− ∂v

∂t
− Lv − f(·, v, σ⊺Dxv) , h(Hv − v)

]

= 0, (1.14)

where H is the nonlocal semilinear operator

Hv(t, x) = sup
e∈E

[v(t, x+ γ(x, e)) + c(x, v(t, x), σ⊺(x)Dxv(t, x), e)].
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Under suitable assumptions, we shall also prove the uniqueness of the viscosity solution,

leading to a new probabilistic representation for this parabolic QVI.

We should point out that the BSDEs constraints have been studied by many authors.

For example, El Karoui et al. [10] studied the reflected BSDEs, in which the component Y is

forced to stay above a given obstacle; Cvitanic, Karatzas and Soner [8], and later Buckdahn

and Hu [6] considered the case where the constraints are imposed on the component Z.

Recently Peng [18] (see also [19]) studied the the general case where constraints are given on

both Y and Z, which relates these constrained BSDEs to variational inequalities. The main

feature of this work is to consider constraints on the jump component (U) of the solution,

and to relate these jump-constrained BSDEs to quasi-variational inequalities. On the other

hand, the classical approach in the theory and numerical approximation of impulse control

problems and QVIs is to consider them as obstacle problems and iterated optimal stopping

problems. However, our penalization procedure for jump-constrained BSDEs suggests a

non-iterative approximation scheme for QVIs, which, to our best knowledge, is new.

The rest of the paper is organized as follows: In Section 2 we give a detailed formulation

of BSDEs with constrained jumps, and show how it includes problem (1.13) as special

case. Moreover, in the special case of impulse control, we directly construct and show the

existence of a minimal solution. In Section 3 we develop the penalization approach for

studying the existence of a minimal solution to our constrained BSDE for general f , c, and

h. We show in Section 4 that the minimal solution to this constrained BSDE provides a

probabilistic representation for the unique viscosity solution to a parabolic QVI. In Section

5 we discuss numerical issues for approximating QVIs by a penalization procedure. Finally,

in Section 6 we provide some examples of sufficient conditions under which our general

assumptions are satisfied.

2 BSDEs with constrained jumps

2.1 General formulation

Throughout this paper we assume that (Ω,F ,P) is a complete probability space on which

are defined a d-dimensional standard Brownian motion W = (Wt)t≥0, and a Poisson random

measure µ on R+ × E, where E is a compact set of R
q, endowed with its Borel field E .

We assume that the Poisson random measure µ is independent of W , and has the intensity

measure λ(de)dt for some finite measure λ on (E, E). We shall often assume that the

support of λ is the whole space E, i.e.

∀e ∈ E, ∃O open neighborhood of e, λ(O) > 0.

We set µ̃(dt, de) = µ(dt, de)−λ(de)dt, the compensated measure associated to µ; and denote

by F = (Ft)t≥0 the augmentation of the natural filtration generated by W and µ, and by

P the σ-algebra of predictable subsets of Ω × [0, T ].

Given Lipschitz functions b : R
d → R

d, σ : R
d → R

d×d, and a measurable map γ :

R
d × E → R

d, satisfying for some positive constants C and kγ ,

sup
e∈E

|γ(x, e)| ≤ C, and sup
e∈E

|γ(x, e) − γ(x′, e)| ≤ kγ |x− x′|, x, x′ ∈ R
d,
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we consider the forward SDE:

dXs = b(Xs)ds + σ(Xs)dWs +

∫

E

γ(Xs− , e)µ(ds, de). (2.1)

Existence and uniqueness of (2.1) given an initial condition X0 ∈ R
d, is well-known under

the above assumptions, and for any 0 ≤ T < ∞, we have the standard estimate

E
[

sup
0≤t≤T

|Xt|2
]

< ∞. (2.2)

In what follows we fix a finite time duration [0, T ]. Let us introduce some additional

notations. We denote by

• S2 the set of real-valued càdlàg adapted processes Y = (Yt)0≤t≤T such that ‖Y ‖
S2

:=
(

E
[

sup0≤t≤T |Yt|2
])

1
2
< ∞.

• Lp(0,T), p ≥ 1, the set of real-valued processes (φt)0≤t≤T such that E
[

∫ T

0 |φt|pdt
]

<

∞; and Lp
F
(0,T) is the subset of Lp(0,T) consisting of adapted processes.

• Lp(W), p ≥ 1, the set of R
d-valued P-measurable processes Z = (Zt)0≤t≤T such that

‖Z‖
Lp(W)

:=
(

E
[

∫ T

0 |Zt|pdt
])

1
p
<∞.

• Lp(µ̃), p ≥ 1, the set of P ⊗ E-measurable maps U : Ω × [0, T ] × E → R such that

‖U‖
Lp(µ̃)

:=
(

E[
∫ T

0

∫

E
|Ut(e)|pλ(de)dt

])
1
p
<∞.

• A2 the closed subset of S2 consisting of nondecreasing processes K = (Kt)0≤t≤T with

K0 = 0.

We are given four objects: (i) a terminal function, which is a measurable function

g : R
d 7→ R satisfying a growth linear condition

sup
x∈Rd

|g(x)|
1 + |x| < ∞, (2.3)

(ii) a generator function f , which is a measurable function f : R
d × R × R

d → R satisfying

a growth linear condition

sup
(x,y,z)∈Rd×R×Rd

|f(x, y, z)|
1 + |x| + |y| + |z| < ∞, (2.4)

and an uniform Lipschitz condition on (y, z), i.e. there exists a constant kf such that for

all x ∈ R
d, y, y′ ∈ R, z, z′ ∈ R

d,

|f(x, y, z) − f(x, y′, z′)| ≤ kf (|y − y′| + |z − z′|), (2.5)

(iii) a cost function, which is a measurable function c : R
d × R × R

d × E → R satisfying a

growth linear condition

sup
(x,y,z,e)∈Rd×R×Rd×E

|c(x, y, z, e)|
1 + |x| + |y| + |z| < ∞, (2.6)
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and an uniform Lipschitz condition on (y, z), i.e. there exists a constant kc such that for

all x ∈ R
d, y, y′ ∈ R, z, z′ ∈ R

d, e ∈ E,

|c(x, y, z, e) − c(x, y′, z′, e)| ≤ kc(|y − y′| + |z − z′|), (2.7)

(iv) a constraint function, which is a measurable map h : R × E → R s.t for all e ∈ E,

u 7−→ h(u, e) is nonincreasing, (2.8)

and satisfying a Lipschitz condition on u i.e. there exists a constant kh such that for all

u, u′ ∈ R, e ∈ E,

|h(u, e) − h(u′, e)| ≤ kh|u− u′|. (2.9)

Let us now introduce our BSDE with constrained jumps: find a quadruple (Y,Z,U,K)

∈ S2 × L2(W) × L2(µ̃) × A2 satisfying

Yt = g(XT ) +

∫ T

t

f(Xs, Ys, Zs)ds+KT −Kt (2.10)

−
∫ T

t

〈Zs, dWs〉 −
∫ T

t

∫

E

(Us(e) − c(Xs− , Ys− , Zs, e))µ(ds, de), 0 ≤ t ≤ T, a.s.

with

h(Ut(e), e) ≥ 0, dP ⊗ dt ⊗ λ(de) a.e. (2.11)

and such that for any other quadruple (Ỹ , Z̃, Ũ , K̃) ∈ S2 ×L2(W)×L2(µ̃)×A2 satisfying

(2.10)-(2.11), we have

Yt ≤ Ỹt, 0 ≤ t ≤ T, a.s.

We say that Y is the minimal solution to (2.10)-(2.11). In the formulation of Peng, one

may sometimes say that Y is the smallest supersolution to (2.10)-(2.11). We shall also say

that (Y,Z,U,K) is a minimal solution to (2.10)-(2.11), and we discuss later the uniqueness

of such quadruple.

Remark 2.1 Since we are originally motivated by probabilistic representation of QVI’s,

we put the BSDE with constrained jumps in a Markovian framework. But all the results

of Section 3 about the existence and approximation of a minimal solution hold true in a

general non Markovian framework with the following standard modifications : the terminal

condition g(XT ) is replaced by a square integrable random variable ξ ∈ L2(Ω,FT), the

generator is a map f from Ω × [0, T ] × R × R
d into R, satisfying a uniform Lipschitz

condition in (y, z), and f(·, y, z) ∈ L2
F
(0,T) for all (y, z) ∈ R× R

d, and the cost coefficient

is a map c from Ω× [0, T ]×R×R
d ×E into R, satisfying a uniform Lipschitz condition in

(y, z), and c(·, y, z, e) ∈ L2
F
(0,T) for all (y, z, e) ∈ R × R

d × E.
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Remark 2.2 Without the h-constraint condition (2.11) on jumps, we have existence and

uniqueness of a solution (Y,Z,U,K) with K = 0 to (2.10), from results on BSDE with

jumps in [21] and [2]. Here, under (2.11) on jumps, it is not possible in general to have

equality in (2.10) with K = 0, and as usual in the BSDE literature with constraint, we

consider a nondecreasing process K to have more freedom. The problem is then to find a

minimal solution to this constrained BSDE, and the nondecreasing condition (2.8) on h is

crucial for stating comparison principles needed in the penalization approach. The primary

example of constraint function is h(u, e) = −u, i.e. nonpositive jumps constraint, which is

actually equivalent to consider minimal solution to BSDE (1.13) as showed later.

2.2 The case of nonpositive jump constraint

Let us recall the BSDE defined in the introduction: find a triplet (Y,Z,K) ∈ S2×L2(W)×
A2 such that

Yt = g(XT ) +

∫ T

t

f(Xs, Ys, Zs)ds +KT −Kt (2.12)

−
∫ T

t

〈Zs, dWs〉 +

∫ T

t

∫

E

c(Xs− , Ys− , Zs, e)µ(ds, de), 0 ≤ t ≤ T, a.s.

such that for any other triplet (Ỹ , Z̃, K̃) ∈ S2×L2(W)×A2 satisfying (2.12), it holds that

Yt ≤ Ỹt, 0 ≤ t ≤ T, a.s.

We will call such Y (and, by a slight abuse of notation, (Y,Z,K)) the minimal solution to

(2.12). We claim that this problem is actually equivalent to problem (2.10)-(2.11) in the

case h(u, e) = −u, corresponding to nonpositive jump constraint condition:

Ut(e) ≤ 0, dP ⊗ dt ⊗ λ(de) a.e. (2.13)

Indeed, let (Y,Z,U,K) be any solution of (2.10) and (2.13). Define a process K̄ by dK̄t =

dKt −
∫

E
Us(e)µ(dt, de), 0 ≤ t ≤ T , then K̄ is nondecreasing, and the triplet (Y,Z, K̄)

satisfies (2.12). It follows that the minimal solution to (2.12) is smaller than the minimal

solution to (2.10) and (2.13). We shall see in the next section, by using comparison principles

and penalization approach, that equality holds, i.e.

minimal solution Y to (2.12) = minimal solution Y to (2.10), (2.13).

We shall illustrate this result by considering a special: when the functions f and c do

not depend on y, z (i.e., the impulse control case). In this case, one can obtain directly the

existence of a minimal solution to (2.10)-(2.13) and (2.12) by duality methods involving

the following set of probability measures. Let V be the set of P ⊗ E-measurable essentially

bounded processes valued in (0,∞), and given ν ∈ V, consider the probability measure Pν

equivalent to P on (Ω,FT ) with Radon-Nikodym density :

dPν

dP
= ET

(

∫ .

0

∫

E

(νt(e) − 1)µ̃(dt, de)
)

, (2.14)
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where Et(.) is the Doléans-Dade exponential. Notice that the Brownian motion W remains

a Brownian motion under Pν , which can then be interpreted as an equivalent martingale

measure for the “asset” price process W . The effect of the probability measure Pν , by

Girsanov’s theorem, is to change the compensator λ(de)dt of µ under P to νt(e)λ(de)dt

under Pν .

In order to ensure that the problem is well-defined, we need to assume :

(H1) There exists a triple (Ỹ , Z̃, K̃) ∈ S2 × L2(W) × A2 satisfying (2.12).

This assumption is standard and natural in the literature on BSDE with constraints, and

means equivalently here (when f and c do not depend on y, z) that one can find some

constant ỹ ∈ R, and Z̃ ∈ L2(W) such that

ỹ +

∫ T

0
〈̃Zs, dWs〉 ≥ g(XT ) +

∫ T

0
f(Xs)ds+

∫ T

0

∫

E

c(Xs− , e)µ(ds, de) a.s.

This equivalency can be proved by same arguments as in [8]. Notice that Assumption (H1)

may be not satisfied as shown in Remark 3.1, in which case the problem (2.12) is ill-posed.

Theorem 2.1 Suppose that f and c do not depend on y, z, and (H1) holds. Then, there

exists a unique minimal solution (Y,Z,K,U) ∈ S2 × L2(W) × L2(µ̃) × A2, with K pre-

dictable, to (2.10)-(2.13). Moreover, (Y,Z, K̄) is the unique minimal solution to (2.12) with

K̄t = Kt −
∫ t

0

∫

E
Us(e)µ(ds, de), and Y has the explicit functional representation :

Yt = ess sup
ν∈V

Eν
[

g(XT ) +

∫ T

t

f(Xs)ds+

∫ T

t

∫

E

c(Xs− , e)µ(ds, de)
∣

∣

∣
Ft

]

, 0 ≤ t ≤ T.

Proof. First, observe that for any (Ỹ , Z̃, Ũ , K̃) ∈ S2×L2(W)×L2(µ̃)×A2 (resp. (Ỹ , Z̃, K̃)

∈ S2 × L2(W) × A2) satisfying (2.10)-(2.13) (resp. (2.12)), the process

Q̃t := Ỹt +

∫ t

0
f(Xs)ds+

∫ t

0

∫

E

c(Xs− , e)µ(ds, de), 0 ≤ t ≤ T,

is a Pν -supermartingale, for all ν ∈ V, where the probability measure Pν was defined in

(2.14). Indeed, from (2.10)-(2.13) (resp. (2.12)), we have

Q̃t = Q̃0 +

∫ t

0
〈Z̃s, dWs〉 − K̄t, with K̄t = K̃t −

∫ t

0
Us(e)µ(ds, de),

( resp. Q̃t = Q̃0 +

∫ t

0
〈Z̃s, dWs〉 − K̃t), 0 ≤ t ≤ T.

Now, by Girsanov’s theorem, W remains a Brownian motion under Pν , while from the

boundedness of ν ∈ V, the density dPν/dP lies in L2(P). Hence, from Cauchy-Schwarz

inequality, the condition Z̃ ∈ L2(W), and Burkholder-Davis-Gundy inequality, we get the

Pν -martingale property of the stochastic integral
∫

〈Z̃, dW 〉, and so the Pν -supermartingale

property of Q̃ since K̄ (resp. K̃) is nondecreasing. This implies

Ỹt ≥ Eν
[

ỸT +

∫ T

t

f(Xs)ds +

∫ T

t

∫

E

c(Xs− , e)µ(ds, de)
∣

∣

∣
Ft

]

,
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and thereby, from the arbitrariness of Pν , ν ∈ V, and since ỸT = g(XT ),

Yt := ess sup
ν∈V

Eν
[

g(XT ) +

∫ T

t

f(Xs)ds +

∫ T

t

∫

E

c(Xs− , e)µ(ds, de)
∣

∣

∣
Ft

]

≤ Ỹt.(2.15)

To show the converse, let us consider the process Y defined in (2.15). By standard

arguments as in [11], the process Y can be considered in its càd-làg modification, and we

also notice that Y ∈ S2. Indeed, by observing that the choice of ν = 1 corresponds to

the probability Pν = P, we have Ŷ ≤ Y ≤ Ỹ , where (Ỹ , Z̃, K̃) ∈ S2 × L2(W) × A2 is a

solution to (2.12), and

Ŷt = E
[

g(XT ) +

∫ T

t

f(Xs)ds+

∫ T

t

∫

E

c(Xs− , e)µ(ds, de)
∣

∣

∣
Ft

]

.

Thus, since Ŷ lies in S2 from the linear growth conditions on g, f , and c, and the estimate

(2.2), we deduce that Y ∈ S2. Now, by similar dynamic programming arguments as in [11],

we see that the process

Qt = Yt +

∫ t

0
f(Xs)ds+

∫ t

0

∫

E

c(Xs− , e)µ(ds, de), 0 ≤ t ≤ T, (2.16)

lies in S2, and is a Pν-supermartingale, for all ν ∈ V. Then, from the Doob-Meyer decom-

position of Q under each Pν , ν ∈ V, we obtain :

Qt = Y0 +Mν −Kν , (2.17)

where Mν is a Pν -martingale, Mν = 0, and Kν is a Pν nondecreasing predictable càd-làg

process with Kν
0 = 0. Recalling that W is a Pν-Brownian motion, and since µ̃ν(ds, de)

:= µ(ds, de) − νs(e)λ(de)ds is the compensated measure of µ under Pν , the martingale

representation theorem for each Mν , ν ∈ V gives the existence of predictable processes Zν

and Uν such that

Qt = Y0 +

∫ t

0
〈Zν

s , dWs〉 +

∫ t

0

∫

E

Uν
s (e)µ̃ν(ds, de) −Kν

t , 0 ≤ t ≤ T. (2.18)

By comparing the decomposition (2.18) under Pν and P corresponding to ν = 1, and

identifying the martingale parts and the predictable finite variation parts, we obtain that

Zν = Z1 =: Z, Uν = U1 =: U for all ν ∈ V, and

Kν
t = K1

t −
∫ t

0

∫

E

Us(e)(νs(e) − 1)λ(de)ds, 0 ≤ t ≤ T. (2.19)

Now, by writing the relation (2.18) with ν = ε > 0, substituting the definition of Q in

(2.16), and since YT = g(XT ), we obtain :

Yt = g(XT ) +

∫ T

t

f(Xs)ds−
∫ T

t

〈Zs, dWs〉 −
∫ T

t

∫

E

(Us(e) − c(Xs− , e))µ(ds, de)

+

∫ T

t

∫

E

Us(e)ελ(de)ds +Kε
T −Kε

t , 0 ≤ t ≤ T. (2.20)
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From (2.19), the process Kε has a limit as ε goes to zero, which is equal to K0 =

K1 +
∫ .

0

∫

E
Us(e)λ(de)ds, and inherits from Kε, the nondecreasing path and predictability

properties. Moreover, since Q ∈ S2, in the decomposition (2.17) of Q under P = Pν for ν

= 1, the process M1 lies in S2 and K1 ∈ A2. This implies that Z ∈ L2(W), U ∈ L2(µ̃),

and also that K0 ∈ A2. By sending ε to zero into (2.20), we obtain that (Y,Z,U,K0) ∈
S2 × L2(W) × L2(µ̃) ×A2 is a solution to (2.10). Let us finally check that U satisfies the

constraint :

Ut(e) ≤ 0, dP ⊗ dt ⊗ λ(de). (2.21)

We argue by contradiction by assuming that the set F = {(ω, t, e) ∈ Ω×[0, T ]×E : Ut(e) >

0} has a strictly positive measure for dP× dt× λ(de). For any k > 0, consider the process

νk = 1F c + (k + 1)1F , which lies in V. From (2.19), we have

E[Kνk

T ] = E[K1
T ] − kE

[

∫ T

0

∫

E

1FUt(e)λ(de)dt
]

< 0,

for k large enough. This contradicts the fact that Kνk

T ≥ 0, and so (2.21) is satisfied.

Therefore (Y,Z,U,K0) is a solution to (2.10)-(2.13), and it is a minimal solution from

(2.15). Y is unique by definition. The uniqueness of Z follows by identifying the Brownian

parts and the finite variation parts, and the uniqueness of (U,K0) is obtained by identifying

the predictable parts by recalling that the jumps of µ are inacessible. By denoting K̄0 =

K0 −
∫ t

0

∫

E
Us(e)µ(ds, de), which lies in A2, we see that (Y,Z, K̄0) is a solution to (2.12),

and it is minimal by (2.15). Uniqueness follows by identifying the Brownian parts and the

finite variation parts. 2

Remark 2.3 In Section 4, we shall relate rigorously the constrained BSDEs (2.10)-(2.11)

to QVIs. In particular, the minimal solution Yt to (2.10)-(2.13) or (2.12) is Yt = v(t,Xt)

where v is the value function of the impulse control problem (1.4). Together with the

functional representation of Y in Theorem 2.1, we then have the following relation at time

t = 0 :

v(0,X0) = sup
ν∈V

Eν
[

g(XT ) +

∫ T

0
f(Xs)ds+

∫ T

0

∫

E

c(Xs− , e)µ(ds, de)
]

. (2.22)

We then recover a recent result obtained by Bouchard [4], who related impulse controls to

stochastic target problems in the case of a finite set E. We may also interpret this result as

follows. Recall that the effect of the probability measure Pν is to change the compensator

λ(de)dt of µ under P to νt(e)λ(de)dt under Pν . Hence, by taking the supremum over all

Pν , we formally expect to retrieve in distribution law all the dynamics of the controlled

process in (1.5) when varying the impulse controls α, which is confirmed by the equality

(2.22).

Finally, we mention that the above duality and martingale methods may be extended

when the generator function f is linear in z by using Girsanov’s transformation. Our main

purpose is now to study the general case of h-constraints on jumps, and nonlinear functions

f and c depending on y, z.
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3 Existence and approximation by penalization

In this section, we prove the existence of a minimal solution to (2.10)-(2.11), based on

approximation via penalization. For each n ∈ N, we introduce the penalized BSDE with

jumps

Y n
t = g(XT ) +

∫ T

t

f(Xs, Y
n
s , Z

n
s )ds + n

∫ T

t

∫

E

h−(Un
s (e), e)λ(de)ds (3.1)

−
∫ T

t

〈Zn
s , dWs〉 −

∫ T

t

∫

E

(Un
s (e) − c(Xs− , Y

n
s− , Z

n
s , e))µ(ds, de), 0 ≤ t ≤ T,

where h−(u, e) = max(−h(u, e), 0) is the negative part of the function h. Under the

Lipschitz conditions on the coefficients f , c and h, we know from the theory of BS-

DEs with jumps, see [21] and [2], that there exists a unique solution (Y n, Zn, Un) ∈
S2 × L2(W) × L2(µ̃) to (3.1). We define for each n ∈ N,

Kn
t = n

∫ t

0

∫

E

h−(Un
s (e), e)λ(de)ds, 0 ≤ t ≤ T,

which is a nondecreasing process in A2. The rest of this section is devoted to the conver-

gence of the sequence (Y n, Zn, Un,Kn)n to the minimal solution we are interested in.

3.1 Comparison results

We first state that the sequence (Y n)n is nondecreasing. This follows from a comparison

theorem for BSDEs with jumps whose generator is of the form f̃(x, y, z, u) = f(x, y, z) +
∫

E
h̃(u(e), e)λ(de) for some nondecreasing function h̃, which covers our situation from the

nonincreasing condition on the constraint function h.

Lemma 3.1 The sequence (Y n)n is nondecreasing, i.e. for all n ∈ N, Y n
t ≤ Y n+1

t , 0 ≤
t ≤ T , a.s.

Proof. Define the sequence (V n)n of P ⊗ E-measurable processes by

V n
t (e) = Un

t (e) − c(Xt− , Y
n
t− , Z

n
t , e), (t, e) ∈ (0, T ] × E and

V n
0 (e) = Un

0 (e) − c(X0, Y
n
0 , Z

n
0 , e), e ∈ E,

From (3.1) and recalling that X and Y are càd-làg, we see that (Y n, Zn, V n) is the unique

solution in S2 × L2(W) × L2(µ̃) of the BSDE with jumps :

Y n
t = g(XT ) +

∫ T

t

Fn(Xs, Y
n
s , Z

n
s , V

n
s )ds−

∫ T

t

〈Zn
s , dWs〉 −

∫ T

t

∫

E

V n
s (e)µ̃(ds, de),

with Fn(x, y, z, v) = f(x, y, z) +
∫

E
(v(e) + nh−(v(e) + c(x, y, z, e), e))λ(de). Since h− is

nondecreasing, we have

Fn(t, x, y, z, v) − Fn(t, x, y, z, v′) =

∫

E

{

(v(e) − v′(e)) + n[h−(v(e) + c(x, y, z, e), e)

− h−(v′(e) + c(x, y, z, e), e)]
}

λ(de)

≤
∫

E

{

(1 + 1{v(e)≥v′(e)}nkh)(v(e) − v′(e))
}

λ(de).
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Moreover, since Fn+1 ≥ Fn, we can apply the comparison theorem 2.5 of [20], and obtain

that Y n
t ≤ Y n+1

t , 0 ≤ t ≤ T , a.s. 2

The next result shows that the sequence (Y n)n is upper-bounded by any solution to the

constrained BSDE. Arguments in the proof involve suitable change of probability measures

Pν , ν ∈ V, introduced in (2.14).

Lemma 3.2 For any quadruple (Ỹ , Z̃, Ũ , K̃) ∈ S2×L2(W)×L2(µ̃)×A2 satisfying (2.10)-

(2.11), and for all n ∈ N, we have

Y n
t ≤ Ỹt, 0 ≤ t ≤ T, a.s. (3.2)

Moreover, in the case : h(u, e) = −u, the inequality (3.2) also holds for any triple (Ỹ , Z̃, K̃)

∈ S2 × L2(W) ×A2 satisfying (2.12).

Proof. We state the proof for quadruple (Ỹ , Z̃, Ũ , K̃) satisfying (2.10)-(2.11). Same argu-

ments are used in the case : h(u, e) = −u and (Ỹ , Z̃, K̃) ∈ S2 × L2(W) × A2 satisfying

(2.12).

Denote Ȳ = Ỹ−Y n, Z̄ = Z̃−Zn, f̄ = f(X, Ỹ , Z̃)−f(X,Y n, Zn) and c̄= c(X.− , Ỹ.− , Z̃, e)−
c(X.− , Y

n
.−
, Zn, e). Fix some ν ∈ V (to be chosen later). We then have :

Ȳt =

∫ T

t

f̄sds +

∫ T

t

∫

E

c̄sµ(ds, de) −
∫ T

t

〈Z̄s, dWs〉 −
∫ T

t

∫

E

{

Ũs(e) − Un
s (e)

}

µ̃ν(ds, de)

−
∫ T

t

∫

E

{

Ũs(e) − Un
s (e)

}

νs(e)λ(de)ds − n

∫ T

t

∫

E

h−(Un
s (e), e)λ(de)ds + K̃T − K̃t,

where µ̃ν(dt, de) = µ(dt, de) − νt(e)λ(de)dt denotes the compensated measure of µ under

Pν . Let us then define the following adapted processes:

at =
f(Xt, Ỹt, Z̃t) − f(Xt, Y

n
t , Z̃t)

Ȳt

1{Ȳt 6=0},

and b the R
d-valued process defined by its i-th components, i = 1, . . . , d:

bit =
f(Xt, Y

n
t , Z

(i−1)
t ) − f(Xt, Y

n
t , Z

(i)
t )

V i
t

1{V i
t 6=0},

where Z
(i)
t is the R

d-valued random vector whose i first components are those of Z̃ and

whose (d − i) lasts are those of Zn, and V i
t is the i-th component of Z

(i−1)
t − Z

(i)
t . Let us

also define the P ⊗ E-measurable processes δ in R and ℓ in R
d by:

δt(e) =
c(Xt− , Ỹt− , Z̃t) − c(Xt− , Y

n
t−
, Z̃t, e)

Ȳr

1{Ȳ
t−

6=0},

and

ℓir(e) =
c(Xt− , Y

n
t−
, Z

(i−1)
t , e) − c(Xt− , Y

n
t−
, Z

(i)
t , e)

V i
t

1{V i
t 6=0}.
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Notice that the processes a, b, δ and ℓ are bounded by the Lipschitz conditions on f and c.

Define also αν
t = at +

∫

E
δt(e)νt(e)λ(de), βν

t = bt +
∫

E
ℓt(e)νt(e)λ(de), which are bounded

processes since a, b, δ, ℓ are bounded and λ is a finite measure on E, and denote V n
t (e) =

Ũt(e) − Un
t (e) − δt(e)Ȳt − ℓt(e) · Z̄t. With these notations, and recalling that h−(Ũs(e)) =

0 from the constraint condition (2.11), we rewrite the BSDE for Ȳ as:

Ȳt =

∫ T

t

(αν
s Ȳs + βν

s .Z̄s)ds−
∫ T

t

〈Z̄s, dWs〉 −
∫ T

t

∫

E

V n
s (e)µ̃ν(ds, de) + K̃T − K̃t

+

∫ T

t

∫

E

{

n[h−(Ũs(e), e) − h−(Un
s (e), e)] − νs(e)[Ũs(e) − Un

s (e)]
}

λ(de)ds.

Consider now the positive process Γν solution to the s.d.e.:

dΓν
t = Γν

t (α
ν
t dt+ 〈βν

t , dWt〉), Γν
0 = 1,

and notice that Γν lies in S2 from the boundeness condition on αν and βν . By Itô’s formula,

we have

dΓν
t Ȳt = −Γν

t

∫

E

{

n[h−(Ũt(e), e) − h−(Un
t (e), e)] − νt(e)[Ũt(e) − Un

t (e)]
}

λ(de)ds

−Γν
t dK̃t + Γν

t 〈Z̄t, dWt〉 + Γν
t Ȳt−〈βt, dWt〉 − Γν

t

∫

E

V n
t (e)µ̃ν(dt, de),

which shows that the process

Γν
t Ȳt +

∫ t

0
Γν

s

∫

E

{

n[h−(Ũs(e), e) − h−(Un
s (e), e)] − νs(e)[Ũs(e) − Un

s (e)]
}

λ(de)ds

is a Pν -supermartingale as soon as n[h−(Ũt(e), e)−h−(Un
t (e), e)]−νt(e)[Ũt(e)−Un

t (e)] ≥ 0

for all (t, e) ∈ [0, T ] ×E, and so

Γν
t Ȳt ≥ Eν

[
∫ T

t

Γν
s

∫

E

{

n[h−(Ũs(e), e) − h−(Un
s (e), e)] − νε

s(e)[Ũs(e) − Un
s (e)]

}

λ(de)ds

∣

∣

∣

∣

Ft

]

.

Now, from the Lipschitz condition on h, we see that the process νε defined by

νε
t (e) =

{

n[h−(Ũs(e),e)−h−(Un
s (e),e)]

Ũs(e)−Un
s (e)

if Un
t (e) > Ũs(e) and h−(Un

s (e), e) > 0

ε else

is bounded and so lies in V, and therefore by taking ν = νε, we obtain :

Γνε

t Ȳt ≥ −εEνε

[
∫ T

t

Γνε

s

∫

E

[Ũs(e) − Un
s (e)]1{Ũs(e)≥Un

s (e)}∪{h−(Un
s (e),e)=0}λ(de)ds

∣

∣

∣

∣

Ft

]

.

From Bayes formula, this is written as :

Γνε

t Ȳt (3.3)

≥ −εE
[

Zνε

T

Zνε

t

∫ T

t

Γνε

s

∫

E

[Ũs(e) − Un
s (e)]1{Ũs(e)≥Un

s (e)}∪{h−(Un
s (e),e)=0}λ(de)ds

∣

∣

∣

∣

Ft

]

,
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where Zνε
is the Doléans-Dade exponential :

Zνε

t = exp

(

−
∫ t

0

∫

E

(νε
s(e) − 1)λ(de)ds

)

exp

(
∫ t

0
log(νε

s(e))µ(ds, de)

)

.

By definition of νε, we have

Zνε

T

Zνε

t

≤ Zn
T

Zn
t

exp

(
∫ T

t

(nkh − 1)λ(de)ds

)

exp

(

−
∫ T

t

∫

E

(ε− 1)λ(de)ds

)

,

where Zn is the solution to dZn
t = Zn

t−

∫

E
(nkh − 1) µ̃(dt, de), Zn

0 = 1. This shows that

E

[

(

Zνε

T

Zνε

t

)2
∣

∣

∣

∣

∣

Ft

]

is uniformly bounded for ε in the neighborhood of 0+. Notice also that the family (Γνε
)0≤ε≤n

is uniformly bounded in S2 so that

E

[

(
∫ T

t

Γνε

s

∫

E

[Ũs(e) − Un
s (e)]1{Ũs(e)≥Un

s (e)}∪{h−(Un
s (e),e)=0}λ(de)ds

)2
∣

∣

∣

∣

∣

Ft

]

is again uniformly bounded for ε in the neighborhood of 0+. From the conditional Cauchy-

Schwartz inequality, we deduce that

E

[

Zνε

T

Zνε

t

∫ T

t

Γνε

s

∫

E

[Ũs(e) − Un
s (e)]1{Ũs(e)≥Un

s (e)}∪{h−(Un
s (e),e)=0}λ(de)ds

∣

∣

∣

∣

Ft

]

is uniformly bounded for ε in the neighborhood of 0+. Finally, since limε→0 Γνε

t = Γν0

t >

0, by sending ε to zero into (3.3), we conclude that Ȳt ≥ 0. 2

3.2 Convergence of the penalized BSDEs

We impose the following analogue of Assumption (H1).

(H2) There exists a quadruple (Ỹ , Z̃, K̃, Ũ ) ∈ S2 × L2(W) × L2(µ̃) × A2 satisfying

(2.10)-(2.11).

Assumption (H2) ensures that the problem (2.10)-(2.11) is well-posed. As indicated in

paragraph 2.2, Assumption (H2) in the case h(u, e) = −u, is stronger than Assumption

(H1). We provide in Section 6 some discussion and sufficient conditions under which (H2)

holds.

Remark 3.1 The following example shows that conditions (H1) and (H2) may be not

satisfied : consider the BSDEs

Yt = −
∫ T

t

〈Zs, dWs〉 +

∫ T

t

∫

E

cµ(ds, de) +KT −Kt, (3.4)

and
{

Yt = −
∫ T

t
〈Zs, dWs〉 −

∫ T

t

∫

E
[Us(e) − c]µ(ds, de) +KT −Kt

−Us(e) ≥ 0
(3.5)
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where c is a strictly positive constant, c > 0. Then, there does not exist any solution to

(3.4) or (3.5) with component Y ∈ S2. On the contrary, we would have

Y0 ≥ −
∫ T

0
〈Zs, dWs〉 + cµ([0, T ] ×E), a.s.

which implies that for all n ∈ N
∗, ν ≡ n ∈ V,

Y0 ≥ Eν

[

−
∫ T

0
〈Zs, dWs〉 + cµ([0, T ] × E)

]

= cnλ(E)T.

By sending n to infinity, we get the contradiction : ‖Y ‖S2 = ∞.

We now establish a priori estimates, uniform on n, on the sequence (Y n, Zn, Un,Kn)n.

Lemma 3.3 Under (H2) (or (H1) in the case : h(u, e) = −u), there exists some constant

C such that

‖Y n‖
S2

+ ‖Zn‖
L2(W)

+ ‖Un‖
L2(µ̃)

+ ‖Kn‖
S2

≤ C, ∀n ∈ N. (3.6)

Proof. In what follows we shall denote C > 0 to be a generic constant depending only on

T , the coefficients f , c, the process X, and the bound for Ỹ in (H1) or (H2), and which

may vary from line to line.

Applying Itô’s formula to |Y n
t |2, and observing that Kn is continuous and ∆Y n

t =
∫

E
Un

s (e) − c(Xs− , Y
n
s−
, Zn

s , e)µ({t}, de), we have

E|g(XT )|2 = E|Y n
t |2 − 2E

∫ T

t

Y n
s f(Xs, Y

n
s , Z

n
s )ds − 2E

∫ T

t

Y n
s dK

n
s + E

∫ T

t

|Zn
s |2ds

+ E

∫ T

t

∫

E

{

|Y n
s− + Un

s (e) − c(Xs− , Y
n
s− , Z

n
s , e)|2 − |Y n

s−|2
}

λ(de)ds

From the linear growth condition on f and the inequality Y n
t ≤ Ỹt by Lemma 3.2 under

(H2) (and also under (H1) in the case h(u, e) = −u), and using the inequality 2ab ≤ 1
α
a2

+ αb2 for any constant α > 0, we have:

E|Y n
t |2 + E

∫ T

t

|Zn
s |2ds+ E

∫ T

t

∫

E

|Un
s (e) − c(Xs− , Y

n
s− , Z

n
s , e)|2λ(de)ds

≤ E|g(XT )|2 + 2CE

∫ T

t

|Y n
s | (1 + |Xs| + |Y n

s | + |Zn
s |) ds

−2E

∫ T

t

∫

E

Y n
s−(Un

s (e) − c(Xs− , Y
n
s− , Z

n
s , e))λ(de)ds +

1

α
E
[

sup
t∈[0,T ]

|Ỹt|2
]

+ αE|Kn
T −Kn

t |2.

Using again the inequality 2ab ≤ 1
α
a2 + αb2, in particular for α = 2, yields

E|Y n
t |2 + E

∫ T

t

|Zn
s |2ds+

1

2
E

∫ T

t

∫

E

|Un
s (e) − c(Xs− , Y

n
s− , Z

n
s , e)|2λ(de)ds

≤ E|g(XT )|2 + 2CE

∫ T

t

|Y n
s | (1 + |Xs| + |Y n

s | + |Zn
s |) ds

+ 2λ(E)E

∫ T

t

|Y n
s |2ds+

1

α
E
[

sup
t∈[0,T ]

|Ỹt|2
]

+ αE|Kn
T −Kn

t |2

≤ C
(

1 + E

∫ T

t

|Y n
s |2ds

)

+
1

2
E

∫ T

t

|Zn
s |2ds+ αE|Kn

T −Kn
t |2.
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Then, by using the inequality (a− b)2 ≥ a2/2 − b2, we get

E|Y n
t |2 +

1

2
E

∫ T

t

|Zn
s |2ds+

1

4
E

∫ T

t

∫

E

|Un
s (e)|2λ(de)ds

≤ 1

2
E

∫ T

t

∫

E

|c(Xs− , Y
n
s− , Z

n
s , e)|2λ(de)ds

+ C
(

1 + E

∫ T

t

|Y n
s |2ds

)

+ αE|Kn
T −Kn

t |2

≤ C
(

1 + E

∫ T

t

|Y n
s |2ds

)

+
1

4
E

∫ T

t

|Zn
s |2ds + αE|Kn

T −Kn
t |2, (3.7)

from the linear growth condition on c. Now, from the relation

Kn
T −Kn

t = Y n
t − g(XT ) −

∫ T

t

f(Xs, Y
n
s , Z

n
s )ds

+

∫ T

t

∫

E

(Un
s (e) − c(Xs− , Y

n
s− , Z

n
s ))µ(ds, de) +

∫ T

t

Zn
s .dWs,

and the linear growth condition on f , c, there exists some positive constant C1 s.t.

E|Kn
T −Kn

t |2

≤ C1

(

1 + E|Y n
t |2 + E

∫ T

t

|Y n
s |2 + |Zn

s |2ds+ E

∫ T

t

∫

E

|Un
s (e)|2λ(de)ds

)

. (3.8)

Hence, by choosing α > 0 s.t. C1α < 1/4, and plugging into (3.7), we get

E|Y n
t |2 + E

∫ T

t

|Zn
s |2ds+ E

∫ T

t

∫

E

|Un
s (e)|2λ(de)ds ≤ C

(

1 + E

∫ T

t

|Y n
s |2ds

)

.

By applying Gronwall’s lemma to t 7→ E|Y n
t |2 and (3.8), we obtain

sup
0≤t≤T

E|Y n
t |2 + E

∫ T

0
|Zn

s |2ds+ E

∫ T

0

∫

E

|Un
s (e)|2λ(de)ds + E|Kn

T |2 ≤ C. (3.9)

Finally, by writing from (3.1) that

sup
0≤t≤T

|Y n
t | ≤ |g(XT )| +

∫ T

0
|f(Xs, Ys, Zs)|ds +Kn

T

+ sup
s∈[0,T ]

∣

∣

∣

∣

∫ T

0
〈Zs, dWs〉

∣

∣

∣

∣

+

∫ T

0

∫

E

|Un
s (e) − c(Xs− , Ys− , Zs, e)|µ(ds, de),

we obtain the required result from the Burkholder-Davis-Gundy inequality, the linear

growth condition on f , c, and (3.9). 2

Remark 3.2 A closer look at the proof leading to the estimate in (3.6) shows that there ex-

ists a universal constant C, depending only on T , and the linear growth condition constants

of f , c, such that for each n ∈ N :

sup
t∈[0,T ]

E[Y n
t ]2 ≤ C

(

1 + E|g(XT )|2 + E
[

∫ T

0
|Xt|2dt

]

+ E
[

sup
t∈[0,T ]

|Ỹt|2
])

. (3.10)
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Lemma 3.4 Under (H2) (or (H1) in the case : h(u, e) = −u), the sequence of processes

(Y n
t ) converges increasingly to a process (Yt) with Y ∈ S2. The convergence also holds in

L2
F
(0,T) and for every stopping time τ ∈ [0, T ], the sequence of random variables (Y n

τ )

converges to Yτ in L2(Ω,Fτ ), i.e.

lim
n→∞

E
[

∫ T

0
|Y n

t − Yt|2dt
]

= 0 and lim
n→∞

E
[

|Y n
τ − Yτ |2

]

= 0. (3.11)

Proof. From Lemmas 3.1 and 3.2, the (nondecreasing) limit

Yt := lim
n→∞

Y n
t , 0 ≤ t ≤ T, (3.12)

exists almost surely, and this defines an adapted process Y . Moreover, by Lemma 3.3 and

convergence monotone theorem, we have

E
[

sup
0≤t≤T

|Yt|2
]

< ∞.

From the dominated convergence theorem, we also get the convergences (3.11). It remains

to check that the process Y has a càdlàg modification. We first show that (Y n)n are quasi-

martingales with uniformly bounded conditional variations. That is, there exists a constant

C such that, for any partition π : 0 = t0 < t1 < · · · < tn = T ,

E
{

|Y n
T | +

n−1
∑

i=0

|E{Y n
ti+1

|Fti} − Y n
ti
|
}

≤ C, ∀π, ∀n. (3.13)

In fact, by (3.1) we have

E
{

n−1
∑

i=0

|E{Y n
ti+1

|Fti} − Y n
ti
|
}

= E
{

n−1
∑

i=0

∣

∣

∣
E
[

∫ ti+1

ti

f(Xs, Y
n
s , Z

n
s )ds

+n

∫ ti+1

ti

∫

E

h−(Un
s (e), e)λ(de)ds −

∫ ti+1

ti

∫

E

(Un
s (e) − c(Xs− , Y

n
s− , Z

n
s , e))λ(de)ds

∣

∣

∣
Fti

]
∣

∣

∣

}

≤ E
[

∫ T

0
|f(Xs, Y

n
s , Z

n
s )|ds+

∫ T

0

∫

E

|Un
s (e) − c(Xs− , Y

n
s− , Z

n
s , e)|λ(de)ds +Kn

T

]

.

Recall (2.3), (2.4), and (2.6), we have

E
{

|Y n
T | +

n−1
∑

i=0

|E{Y n
ti+1

|Fti} − Y n
ti
|
}

≤ CE
{

1 + |XT | +
∫ T

0
[1 + |Xs| + |Y n

s | + |Zn
s |]ds+

∫ T

0

∫

E

|Un
s (e)|λ(de)ds +Kn

T

}

.

Applying (2.2) and Lemma 3.3, we obtain (3.13) immediately. Now by Meyer-Zheng [15]

(or see [14]), there exists a subsequence (Y nk)k and a càdlàg process Ỹ such that (Y nk)k
converges to Ỹ in distribution. On the other hand, by (3.12), (Y nk)k converges to Y , P-a.s.

Then Y and Ỹ have the same distribution, and thus Y is also càdlàg. 2

We now focus on the convergence of the diffusion and jump components (Zn, Un). In

our context, we cannot prove the strong convergence of (Zn, Un) in L2(W)×L2(µ̃), and so
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the strong convergence of
∫ t

0 Z
ndW and

∫ t

0

∫

E
Un(s, e)µ(ds, de) in L2(Ω,Ft), see Remark

3.3. Instead, we follow and extend arguments of Peng [18], and we shall prove that (Zn, Un)

converge in Lp(W)×Lp(µ̃), for 1 ≤ p < 2. First, we show the following weak convergence

and decomposition result.

Lemma 3.5 Under (H2) (or (H1) in the case: h(u, e) = −u), there exist φ ∈ L2
F
(0,T),

Z ∈ L2(W), V ∈ L2(µ̃) and K ∈ A2 predictable, such that the limit Y in (3.12) has the

form

Yt = Y0 −
∫ t

0
φsds−Kt +

∫ t

0
〈Zs, dWs〉 +

∫ t

0

∫

E

Vs(e)µ(ds, de), 0 ≤ t ≤ T.(3.14)

Moreover, in the above decomposition of Y , the components Z and V are unique, and

are respectively the weak limits of (Zn) in L2(µ̃) and of (V n) in L2(µ̃) where V n
t (e) =

Un
t (e) − c(Xt− , Y

n
t−
, Zn

t , e), φ is the weak limit in L2
F
(0,T) of a subsequence of (fn) :=

(f(X,Y n, Zn)), and K is the weak limit in L2
F
(0,T) of a subsequence of (Kn).

Proof. By Lemma 3.3, and the linear growth conditions on f , c together with (2.2),

the sequences (fn), (Zn), (V n) are weakly compact, respectively in L2
F
(0,T), L2(W) and

L2(µ̃). Then, up to a subsequence, (fn), (Zn), (V n) converge weakly to φ, Z and V . By

Itô representation of martingales, we then get the following weak convergence in L2(Ω,Fτ )

for each stopping time τ ≤ T :
∫ τ

0
fn

s ds ⇀

∫ τ

0
φsds,

∫ τ

0
〈Zn

s , dWs〉 ⇀

∫ τ

0
〈Zs, dWs〉,

∫ τ

0

∫

E

V n
s (e)µ(ds, de) ⇀

∫ τ

0

∫

E

Vs(e)µ(ds, de).

Since, we have from (3.1):

Kn
τ = −Y n

τ + Y n
0 −

∫ τ

0
fn

s ds +

∫ τ

0
〈Zn

s , dWs〉 +

∫ τ

0

∫

E

V n
s (e)µ(ds, de), (3.15)

we also have the weak convergence in L2(Ω,Fτ ) :

Kn
τ ⇀ Kτ := −Yτ + Y0 −

∫ τ

0
φsds+

∫ τ

0
〈Zs, dWs〉 +

∫ τ

0

∫

E

Vs(e)µ(ds, de). (3.16)

The process K inherits from Kn the nondecreasing path property, is square integrable,

càd-làg and adapted from (3.16), and so lies in A2. Moreover, by dominated convergence

theorem, we see that Kn converges weakly to K in L2(0,T). Since Kn is continuous, and

so predictable, we deduce that K is also predictable, and we obtain the decomposition

(3.14) for Y . The uniqueness of Z follows by identifying the Brownian parts and finite

variation parts, and the uniqueness of V is then obtained by identifying the predictable

parts and by recalling that the jumps of µ are inacessible. We conclude that (Z, V ) is

uniquely determined in (3.14), and thus the whole sequence (Zn, V n) converges weakly to

(Z, V ) in L2(W) × L2(µ̃). 2

The sequence (Un) is bounded in L2(µ̃), and so, up to a subsequence, converges weakly

to some U ∈ L2(µ̃). The next step is to show that the whole sequence (Un) converges
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to U and to identify in the decomposition (3.14) φt with f(Xt, Yt, Zt), and Vt(e) with

Ut(e)−c(Xt− , Yt− , Zt, e). Since f and c are nonlinear, we need a result of strong convergence

for (Zn) and (Un) to enable us to pass the limit in f(Xt, Y
n
t , Z

n
t ) as well as in Un

t (e) −
c(Xt− , Y

n
t−
, Zn

t , e), and to eventually prove the convergence of the penalized BSDEs to the

minimal solution of our jump-constrained BSDE. We shall borrow a useful technique of

Peng [18] to carry out this task.

Theorem 3.1 Under (H2), there exists a unique minimal solution (Y,Z,U,K) ∈ S2 ×
L2(W)×L2(µ̃)×A2 with K predictable, to (2.10)-(2.11). Y is the increasing limit of (Y n)

in (3.12) and also in L2
F
(0,T), K is the weak limit of (Kn) in L2

F
(0,T), and for any p ∈

[1, 2),

‖Zn − Z‖
Lp(W)

+ ‖Un − U‖
Lp(µ̃)

−→ 0,

as n goes to infinity. Moreover, in the case : h(u, e) = −u, (Y,Z, K̄) is the unique minimal

solution to (2.12) with K̄t = Kt −
∫ t

0

∫

E
Us(e)µ(ds, de), and this holds true under (H1).

Consequently, the minimal solution Y to (2.12) and to (2.10)-(2.13) are the same.

Proof. We apply Itô’s formula to |Y n
t − Yt|2 on a subinterval (σ, τ ], with 0 ≤ σ < τ ≤ T ,

two stopping times. Recall the decomposition (3.14), (3.15) of Y , Y n, and observe that Kn

is continuous, and ∆(Y n
t − Yt) = ∆Kt +

∫

E
(V n

s (e) − Vs(e))µ({t}, de). We then have :

E|Y n
τ − Yτ |2 = E|Y n

σ − Yσ|2 + E

∫ τ

σ

|Zn
s − Zs|2ds+ 2E

∫ τ

σ

[Y n
s − Ys][φs − fn

s ]ds

− 2E

∫ τ

σ

[Y n
s − Ys]dK

n
s + 2E

∫

(σ,τ ]
[Y n

s− − Ys−]dKs + E
∑

t∈(σ,τ ]

|∆Kt|2

+ E

∫

(σ,τ ]

∫

E

[|Y n
s− − Ys− + V n

s (e) − Vs(e)|2 − |Y n
s− − Ys− |2]µ(ds, de)

= E|Y n
σ − Yσ|2 + E

∫ τ

σ

|Zn
s − Zs|2ds+ 2E

∫ τ

σ

[Y n
s − Ys][φs − fn

s ]ds

− 2E

∫ τ

σ

[Y n
s − Ys]dK

n
s + 2E

∫

(σ,τ ]
[Y n

s− − Ys− + ∆Ks]dKs

− E
∑

t∈(σ,τ ]

|∆Kt|2 + E

∫ τ

σ

∫

E

|V n
s (e) − Vs(e)|2λ(de)ds

+ 2E

∫ τ

σ

∫

E

(Y n
s − Ys)(V

n
s (e) − Vs(e))λ(de)ds.

Since (Y n
s −Ys)dK

n
s ≤ 0, and by using the inequality 2ab ≥ −a2

2 −2b2 with a = V n
s (e)−Vs(e)

and b = Y n
s − Ys, we obtain :

E

∫ τ

σ

|Zn
s − Zs|2ds +

1

2
E

∫ τ

σ

∫

E

|V n
s (e) − Vs(e)|2ds

≤ E|Y n
τ − Yτ |2 + 2E

∫ τ

σ

|Y n
s − Ys|2ds+ 2E

∫ τ

σ

|Y n
s − Ys||φs − fn

s |ds

+ 2E

∫

(σ,τ ]
|Y n

s− − Ys− + ∆Ks|dKs + E
∑

t∈(σ,τ ]

|∆Kt|2. (3.17)
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The two first terms of the right side of (3.17) converge to zero by (3.11) in Lemma 3.4. The

third term also tends to zero since (φ − fn)n is bounded in L2(0,T), and so by Cauchy-

Schwarz inequality:

E

∫ T

0
|Y n

s − Ys||φs − fn
s |ds ≤ C

(

E

∫ T

0
|Y n

s − Ys|2ds
)

1
2 → 0. (3.18)

For the fourth term, we notice that the jumps of Y n are inacessible since they are determined

by the Poisson random measure µ. Thus, the predictable projection of Y n is pY n
t = Y n

t−
.

Similarly, from (3.14), and since K is predictable, we see that pYt = Yt− − ∆Kt. Since

Y n increasingly converges to Y , then pY n also increasingly converges to pY , and by the

dominated convergence theorem, we obtain:

lim
n→∞

E

∫

(0,T ]
|Y n

s− − Ys− + ∆Ks|dKs = 0. (3.19)

For the last term in (3.17), we apply Lemma 2.3 in [18] to the predictable nondecreasing

process K: for any δ, ε > 0, there exist a finite number of pairs of stopping times (σk, τk),

k = 0, . . . , N , with 0 < σk ≤ τk ≤ T , such that all the intervals (σk, τk] are disjoint and

E
N
∑

k=0

(τk − σk) ≥ T − ε

2
, E

N
∑

k=0

∑

σk<t≤τk

(∆Kt)
2 ≤ εδ

3
. (3.20)

We should note that in [18] the filtration is Brownian, therefore it is continuous, and hence

each stopping time σk can be approximated by a sequence of announceable stopping times

In our case the stopping times σk’s are constructed as the successive times of jumps of the

predictable process K with size bigger than some given positive level, the approximation of

σk by announceable stopping times is again possible. We can thus argue exactly the same

way as in Lemma 2.3 in [18] to derive both estimates in (3.20).

We now apply estimate (3.17) for each σ = σk and τ = τk, and then take the sum over

k = 0, . . . , N . It follows that

N
∑

k=0

E

∫ τk

σk

|Zn
s − Zs|2ds+

1

2

N
∑

k=0

E

∫ τk

σk

∫

E

|V n
s (e) − Vs(e)|2ds

≤
N
∑

k=0

E|Y n
τk

− Yτk
|2 + 2E

∫ T

0
|Y n

s − Ys|2ds + 2E

∫ T

0
|Y n

s − Ys||φs − fn
s |ds

+ 2E

∫

(0,T ]
|Y n

s− − Ys− + ∆Ks|dKs +

N
∑

k=0

E
∑

t∈(σk ,τk]

|∆Kt|2.

From the convergence results in Lemma 3.4, (3.18) and (3.19), we deduce that

lim sup
n→∞

N
∑

k=0

E

∫ τk

σk

|Zn
s − Zs|2ds+

1

2

N
∑

k=0

E

∫ τk

σk

∫

E

|V n
s (e) − Vs(e)|2λ(de)ds

≤
N
∑

k=0

E
∑

t∈(σk ,τk]

|∆Kt|2 ≤ εδ

3
.
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Thus, there exists an integer ℓεδ > 0 such that for all n ≥ ℓεδ, we have

N
∑

k=0

E

∫ τk

σk

|Zn
s − Zs|2ds+

1

2

N
∑

k=0

E

∫ τk

σk

∫

E

|V n
s (e) − Vs(e)|2λ(de)ds ≤ εδ

2
.

This implies

dt ⊗ P
[

(s, ω) ∈
N
⋃

k=0

(σk(ω), τk(ω)] × Ω : |Zn
s (ω) − Zs(ω)|2 ≥ δ

]

≤ ε

2
,

and

dt⊗ λ⊗P
[

(s, e, ω) ∈
N
⋃

k=0

(σk(ω), τk(ω)] × Ω × E : |V n
s (e, ω) − Vs(e, ω)|2 ≥ δ

]

≤ ε.

Together with (3.20), it follows that dt⊗P
[

(s, ω) ∈ [0, T ] × Ω : |Zn
s (ω) − Zs(ω)|2 ≥ δ

]

≤ ε,

and

dt⊗ λ× P
[

(s, e, ω) ∈ [0, T ] × E × Ω : |V n
s (e, ω) − Vs(e, ω)|2 ≥ δ

]

≤ ε(1 + λ(E)).

We deduce that for all δ > 0,

lim
n→∞

dt⊗ P
[

(s, ω) ∈ [0, T ] × Ω : |Zn
s (ω) − Zs(ω)|2 ≥ δ

]

= 0

and

lim
n→∞

dt ⊗ λ⊗ P
[

(s, e, ω) ∈ [0, T ] × E × Ω : |V n
s (e, ω) − Vs(e, ω)|2 ≥ δ

]

= 0.

This means that the sequences (Zn)n and (V n)n converge in measure respectively to Z

and V . Since they are bounded respectively in L2(W) and L2(µ̃), they are uniformly

integrable in Lp(W) and Lp(µ̃) for any p ∈ [1, 2), respectively. Thus, (Zn) and (V n)

converge strongly to Z and V in Lp(W) and Lp(µ̃), respectively. Recalling that Un
t (e)

= V n
t (e) + c(Xt− , Y

n
t−
, Zn

t , e), and by the Lipschitz condition on c, we deduce that the

sequence (Un) converges strongly in Lp(µ̃), for p ∈ [1, 2), to U defined by :

Ut(e) = Vt(e) + c(Xt− , Yt− , Zt, e), 0 ≤ t ≤ T, e ∈ E.

By the Lipschitz condition on f , we also have the strong convergence in Lp

F
(0,T) of (fn)

= (f(X,Y n, Zn)) to f(X,Y,Z). Since φ is the weak limit of (fn) in L2
F
(0,T) , we deduce

that φ = f(X,Y,Z). Therefore, with the decomposition (3.14) and since YT = limn Y
n
T =

g(XT ), we obtain immediately that (Y,Z,U,K) satisfies the BSDE (2.10). Moreover, from

the strong convergence in L1(µ̃) of (Un) to U , and the Lipschitz condition on h, we have

E

∫ T

0

∫

E

h−(Un
s (e), e)λ(de)ds → E

∫ T

0

∫

E

h−(Us(e), e)λ(de)ds,

as n goes to infinity. Since Kn
T = n

∫ T

0

∫

E
h−(Un

s (e), e)λ(de)ds is bounded in L2(Ω,FT),

this implies

E

∫ T

0

∫

E

h−(Us(e), e)λ(de)ds = 0,
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and so the constraint (2.11) is satisfied. Hence, (Y,Z,K,U) is a solution to the constrained

BSDE (2.10)-(2.11), and by Lemma 3.2, Y = limY n is the minimal solution. The unique-

ness of Z follows by identifying the Brownian parts and the finite variation parts, and then

the uniqueness of (U,K) is obtained by identifying the predictable parts and by recalling

that the jumps of µ are inacessible.

Finally, in the case h(u, e) = −u, the process

K̄t = Kt −
∫ t

0

∫

E

Us(e)µ(ds, de), 0 ≤ t ≤ T,

lies in A2, and the triple (Y,Z, K̄) is solution to (2.12). Again, by Lemma 3.2, this shows

that Y is the minimal solution to (2.10) and to (2.12). The uniqueness of (Y,Z, K̄) is

immediate by identifying the Brownian part and the finite variation part. 2

Remark 3.3 From the estimate (3.17), it is clear that once the process K is continuous,

i.e. ∆Kt = 0, then (Zn, Un) converges strongly to (Z,U) in L2(W) × L2(µ̃). This occurs

in reflected BSDE’s as in [10] or [12], see also Remark 4.3. In the case of constraints on

jump component U as in (2.10)-(2.11), the situation is more complicated, and the process

K is in general only predictable. The same feature also occurs for constraints on Z as in

[18]. To overcome this difficulty, we use the estimations (3.20) of the contribution of the

jumps of K, which allow to obtain the strong convergence of (Zn, Un) in Lp(W) × Lp(µ̃)

for p ∈ [1, 2). Finally, notice that for the minimal solution (Y,Z, K̃) to the BSDE (2.12),

the process K̃ is not predictable.

3.3 The case of impulse control

In the impulse control case (i.e. f and c depend only on X and h(u, e) = −u), we have

seen in Theorem 2.1 that the minimal solution to our constrained BSDE has the following

functional explicit representation :

Yt = ess sup
ν∈V

Eν
[

g(XT ) +

∫ T

t

f(Xs)ds+

∫ T

t

∫

E

c(Xs− , e)µ(ds, de)
∣

∣

∣
Ft

]

.

In this case, we also have a functional explicit representation of the solution Y n to the

penalized BSDE (3.1) :

Y n
t = ess sup

ν∈Vn

Eν
[

g(XT ) +

∫ T

t

f(Xs)ds+

∫ T

t

∫

E

c(Xs−)µ(ds, de)
∣

∣

∣
Ft

]

, (3.21)

where Vn = {ν ∈ V ; νs(e) ≤ n ∀(s, e) ∈ [0, T ] × E a.s.}. Indeed, denote by Ȳ n the right

side of (1.4). By writing that (Y n, Zn, Un) is the solution of the penalized BSDE (3.1),

taking the expectation under Pν , for ν ∈ Vn, and recalling that W is a Pν-Brownian

motion, and νλ(de) is the intensity measure of µ under Pν , we obtain :

Y n
t = Eν

[

g(XT ) +

∫ T

t

f(Xs)ds+

∫ T

t

∫

E

c(Xs− , e)µ(ds, de)
∣

∣

∣
Ft

]

+ Eν
[

∫ T

t

∫

E

{n[Un
s (e)]+ − νs(e)U

n
s (e)} λ(de)ds

∣

∣

∣
Ft

]

. (3.22)
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Since this equality holds for any ν ∈ Vn, and observing that n[Un
s (e)]+ − νs(e)U

n
s (e) ≥ 0,

for all ν ∈ Vn, we have

Ȳ n
t ≤ Y n

t ≤ Ỹ n
t + Eν

[

∫ T

t

∫

E

{n[Un
s (e)]+ − νs(e)U

n
s (e)}λ(de)ds

∣

∣

∣
Ft

]

. (3.23)

Let us now consider the family (νε)ε of Vn defined by

νε
s(e) =

{

n[Un
s (e)]+

Un
s (e) if Un

s (e) > 0

ε otherwise.

Then, by using the same argument as in the proof of Lemma 3.2, we show that

Eνε
[

∫ T

t

∫

E

{n[Un
s (e)]+ − νs(e)U

n
s (e)}λ(de)ds

∣

∣

∣
Ft

]

→ 0 as ε→ 0,

which proves with (3.23) that Y n
t = Ȳ n

t .

The representation (3.21) has a nice interpretation. It means that the value function of

an impulse control problem can be approximated by the value function of the same impulse

control problem but with strategies whose numbers of orders are bounded on average by

nTλ(E). This has to be compared with the classical approximation by iterated optimal

stopping problems, where the n-th iteration corresponds to the value of the same impulse

control problem but where the number of orders is smaller than n. The numerical advantage

of the penalized approximation is that it does not require iterations.

4 Relation with quasi-variational inequalities

In this section, we show that minimal solutions to the jump-constrained BSDEs provide a

probabilistic representation of solutions to parabolic QVIs of the form:

min
[

− ∂v

∂t
− Lv − f(·, v, σ⊺Dxv) , inf

e∈E
h(Hev − v, e)

]

= 0, on [0, T ) × R
d, (4.1)

where L is the second order local operator

Lv(t, x) = 〈b(x),Dxv(t, x)〉 −
1

2
tr(σσ⊺(x)D2

xv(t, x)),

and He, e ∈ E, are the nonlocal operators

Hev(t, x) = v(t, x+ γ(x, e)) + c(x, v(t, x), σ⊺(x)Dxv(t, x), e).

For such nonlocal operators, we denote for q ∈ R
d :

He[t, x, q, v] = v(t, x+ γ(x, e)) + c(x, v(t, x), σ⊺(x)q, e).

Note that when h(u) does not depend on e, and since it is nonincreasing in u, the QVI

(4.1) may be written equivalently in

min
[

− ∂v

∂t
− Lv − f(·, v, σ⊺Dxv) , h(Hv − v)

]

= 0, on [0, T ) × R
d,
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with Hv = supe∈E Hev. In particular, this includes the case of QVI associated to impulse

controls for h(u) = −u, and f , c independent of y, z.

We shall use the penalized parabolic integral partial differential equation (IPDE) asso-

ciated to the penalized BSDE (3.1), for each n ∈ N:

− ∂vn

∂t
−Lvn − f(·, vn, σ

⊺Dxvn) − n

∫

E

h−(Hevn − vn, e)λ(de) = 0, (4.2)

on [0, T ) × R
d.

To complete the PDE characterization of the function v, we need to provide a suitable

boundary condition. In general, we can not expect to have v(T−, .) = g, and we shall

consider the relaxed boundary condition given by the equation:

min
[

v(T−, ·) − g , inf
e∈E

h(Hev(T−, ·) − v(T−, ·), e)
]

= 0, on R
d, (4.3)

In the sequel, we shall assume in addition to the conditions of paragraph 2.1 that the

functions γ, f , c, and h are continuous with respect to all their arguments.

4.1 Viscosity properties

Solutions of (4.1), (4.2) and (4.3) are considered in the (discontinuous) viscosity sense, and

it will be convenient in the sequel to define the notion of viscosity solutions in terms of

sub- and super-jets. For a locally bounded function u on [0, T ] × R
d, we define its lower

semicontinuous (lsc in short) u∗, and upper semicontinuous (usc in short) envelope u∗ by

u∗(t, x) = lim inf
(t′,x′)→(t,x),t′<T

u(t′, x′), u∗(t, x) = lim sup
(t′,x′)→(t,x),t′<T

u(t′, x′).

Definition 4.1 (Subjets and superjets)

(i) For a function u : [0, T ]×R
d → R, lsc (resp. usc), we denote by J−u(t, x) the parabolic

subjet (resp. J+u(t, x) the parabolic superjet) of u at (t, x) ∈ [0, T ]×R
d, as the set of triples

(p, q,M) ∈ R × R
d × S

d satisfying

u(t′, x′) ≥ (resp. ≤) u(t, x) + p(t′ − t) + 〈q, x′ − x〉 +
1

2
〈x′ − x,M(x′ − x)〉

+ o(|t′ − t| + |x′ − x|2).

(ii) For a function u : [0, T )×R
d → R, lsc (resp. usc), we denote by J̄−u(t, x) the parabolic

limiting subjet (resp. J̄+u(t, x) the parabolic limiting superjet) of u at (t, x) ∈ [0, T ] × R
d,

as the set of triples (p, q,M) ∈ R × R
d × S

d such that

(p, q,M) = lim
n

(pn, qn,Mn), (t, x) = lim
n

(tn, xn),

with (pn, qn,Mn) ∈ J−u(tn, xn) (resp. J+u(tn, xn)), u(t, x) = lim
n
u(tn, xn).

We now give the definition of viscosity solutions to (4.1), (4.2) and (4.3).
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Definition 4.2 (Viscosity solutions to (4.1))

(i) A function u, lsc (resp. usc) on [0, T ) × R
d, is called a viscosity supersolution (resp.

subsolution) to (4.1) if for each (t, x) ∈ [0, T ) × R
d, and any (p, q,M) ∈ J̄−u(t, x) (resp.

J̄+u(t, x)), we have

min
[

− p− 〈b(x), q〉 − 1

2
tr(σσ⊺(x)M) − f(x, u(t, x), σ⊺(x)q) ,

inf
e∈E

h(He[t, x, q, u] − u(t, x), e)
]

≥ ( resp. ≤) 0.

(ii) A locally bounded function on [0, T ) × R
d is called a viscosity solution to (4.1) if u∗ is

a viscosity supersolution and u∗ is a viscosity subsolution to (4.1).

Definition 4.3 (Viscosity solutions to (4.2))

(i) A function u, lsc (resp. usc) on [0, T ) × R
d, is called a viscosity supersolution (resp.

subsolution) to (4.2) if for each (t, x) ∈ [0, T ) × Rd, and any (p, q,M) ∈ J̄−u(t, x) (resp.

J̄+u(t, x)), we have

−p− 〈b(x), q〉 − 1

2
tr(σσ⊺(x)M) − f(x, u(t, x), σ⊺(x)q)

−n
∫

E

h−(He[t, x, q, u] − u(t, x), e)λ(de) ≥ ( resp. ≤) 0.

(ii) A locally bounded function u on [0, T ) × R
d is called a viscosity solution to (4.2) if

u∗ is a viscosity supersolution and u∗ is a viscosity subsolution to (4.2).

Definition 4.4 (Viscosity solutions to (4.3))

(i) A function u, lsc (resp. usc) on [0, T ] × R
d, is called a viscosity supersolution (resp.

subsolution) to (4.3) if for each (x ∈ R
d, and any (p, q,M) ∈ J̄−u(T, x) (resp. J̄+u(T, x)),

we have

min
[

u(T, x) − g(x), inf
e∈E

h(He[T, x, q, u] − u(T, x), e)
]

≥ ( resp. ≤) 0.

(ii) A locally bounded function u on [0, T ] × R
d is called a viscosity solution to (4.3) if u∗

is a viscosity supersolution and u∗ is a viscosity subsolution to (4.3).

Remark 4.1 An equivalent definition of viscosity super and subsolution to (4.3), which

shall be used later, is the following in terms of test functions : a function u, lsc (resp. usc)

on [0, T ]×R
d, is called a viscosity supersolution (resp. subsolution) to (4.3) if for each (t, x)

∈ [0, T )×R
d, and any ϕ ∈ C1,2([0, T ]×R

d) such that (t, x) is a minimum (resp. maximum)

global of u− ϕ, we have

min
[

u(T, x) − g(x), inf
e∈E

h(He[T, x,Dxϕ(T, x), u] − u(T, x), e)
]

≥ ( resp. ≤) 0.

We have similar equivalent definitions of viscosity super and subsolution to (4.1) in terms

of test functions.
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From the Markov property of the jump-diffusion processX, and uniqueness of a minimal

solution Y to the BSDE (2.10), we see that Yt = v(t,Xt), 0 ≤ t ≤ T , where

v(t, x) := Y t,x
t , (t, x) ∈ [0, T ] × R

d, (4.4)

is a deterministic function of (t, x), {Xt,x
s , t ≤ s ≤ T} is the solution to (2.1) starting from

x at time t, and {Y t,x
s , t ≤ s ≤ T} is the minimal solution to (2.10)-(2.11) with Xs = Xt,x

s ,

t ≤ s ≤ T . Similarly, we define the function

vn(t, x) := Y n,t,x
t , (t, x) ∈ [0, T ] × R

d, (4.5)

where {(Y n,t,x
s , Zn,t,x

s , Un,t,x
s (.)), t ≤ s ≤ T} is the unique solution to (3.1) with Xs = Xt,x

s ,

t ≤ s ≤ T . The relation between the penalized BSDE (3.1) and the penalized IPDE (4.2)

is well-known from the results of [2]. Although our framework does not fit exactly into the

one of [2], by mimicking closely the arguments in this paper and using comparison theorem

in [20], we obtain the following result.

Proposition 4.1 The function vn in (4.5) is a continuous viscosity solution to (3.1).

We slightly strengthen Assumption (H1) or (H2) by

(H1’) There exists a quadruple (Ỹ , Z̃, K̃) ∈ S2×L2(W)×A2 satisfying (2.12), with Ỹt =

ṽ(t,Xt), 0 ≤ t ≤ T , for some function deterministic ṽ satisfying a linear growth condition

sup
(t,x)∈[0,T ]×Rd

|ṽ(t, x)|
1 + |x| < +∞

(H2’) There exists a quadruple (Ỹ , Z̃, K̃, Ũ ) ∈ S2 × L2(W) × L2(µ̃) × A2 satisfying

(2.10)-(2.11), with Ỹt = ṽ(t,Xt), 0 ≤ t ≤ T , for some function deterministic ṽ satisfying a

linear growth condition

sup
(t,x)∈[0,T ]×Rd

|ṽ(t, x)|
1 + |x| < +∞

Remark 4.2 Assumption (H2’) (or (H1’) which is weaker than (H2’) in the case h(u, e)

= −u) ensures that the function v in (4.4) satisfies a linear growth condition, and is in

particular locally bounded. Indeed, from (3.10) and by passing to the limit by Fatou’s

lemma for v(t, x) = Y t,x
t = lim Y n,t,x

t , we have

sup
t∈[0,T ]

|v(t, x)|2 ≤ C
(

1 + E|g(Xt,x
T )|2 + E

[

∫ T

t

|Xt,x
s |2dt

]

+ E[ sup
s∈[t,T ]

|ṽ(s,Xt,x
s |2

])

.

The result follows from the standard estimate

E[ sup
t≤s≤T

|Xt,x
s |2] ≤ C(1 + |x|2),

and the linear growth conditions on g and ṽ.

By adapting stability arguments for viscosity solutions to our context, we now prove

the viscosity property of the function v to (4.1).
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Theorem 4.1 Under (H2’) (or (H1’) in the case : h(u, e) = −u), the function v in (4.4)

is a viscosity solution to (4.1).

Proof. From the results of the previous section, we know that v is the pointwise limit of

the nondecreasing sequence of functions (vn). By continuity of vn, we then have (see e.g.

[1] p. 91) :

v = v∗ = lim
n→∞

inf∗vn, where lim
n→∞

inf∗vn(t, x) := lim inf
n → ∞

t′ → t, x′ → x

vn(t′, x′), (4.6)

v∗ = lim
n→∞

sup∗vn, where lim
n→∞

sup∗vn(t, x) := lim sup
n → ∞

t′ → t, x′ → x

vn(t′, x′). (4.7)

(i) We first show the viscosity supersolution property for v = v∗. Let (t, x) a point in

[0, T )×R
d, and (p, q,M) ∈ J̄−v(t, x). By (4.6) and Lemma 6.1 in [7], there exists sequences

nj → ∞, (pj , qj,Mj) ∈ J−vnj
(tj , xj),

such that

(tj , xj, vnj
(tj , xj), pj , qj,Mj) → (t, x, v(t, x), p, q,M). (4.8)

We also have by definition of v = v∗ and continuity of γ :

v(t, x+ γ(x, e)) ≤ lim inf
j→∞

vnj
(tj , xj + γ(xj , e)), ∀e ∈ E. (4.9)

Moreover, from the viscosity supersolution property for vnj
, we have for all j

− pj − 〈b(xj), qj〉 −
1

2
tr(σσ⊺(xj)Mj) − f(xj, vnj

(tj , xj), σ
⊺(xj)qj)

−nj

∫

E

h−(He[tj , xj , qj, vnj
] − vnj

(tj , xj), e)λ(de) ≥ 0. (4.10)

Let us check that the following inequality holds :

inf
e∈E

h(He[t, x, q, v] − v(t, x), e) ≥ 0. (4.11)

We argue by contradiction, and assume there exists some e0 ∈ E s.t.

h(v(t, x + γ(x, e0)) + c(x, v(t, x), σ⊺(x)q, e0) − v(t, x), e0) < 0.

Then, by continuity of σ, h, γ, c in all their variables, (4.8), (4.9), and the nonincreasing

property of h, one may find some ε > 0 and some open neighborhood O0 of e0 such that

for all j large enough :

h(vnj
(tj, xj + γ(xj , e)) + c(xj , vnj

(tj , xj), σ
⊺(xj)qj, e) − vnj

(tj , xj), e) ≤ −ε, ∀e ∈ O0.

Since the support of λ is E, this implies
∫

E

h−(He(tj, xj , qj , vnj
) − vnj

(tj, xj), e)λ(de) ≥ ελ(O0) > 0.
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By sending j to infinity into (4.10), we get the required contradiction. On the other hand,

by (4.10), we have

−pj − 〈b(xj), qj〉 −
1

2
tr(σσ⊺(xj)Mj) − f(xj, vnj

(tj , xj), σ
⊺(xj)qj) ≥ 0,

so that by sending j to infinity:

−p− 〈b(x), q〉 − 1

2
tr(σσ⊺(x)M) − f(x, v(t, x), σ⊺(x)q) ≥ 0,

which proves, together with (4.11), that v is a viscosity supersolution to (4.1).

(ii) We conclude by showing the viscosity subsolution property for v∗. Let (t, x) a point in

[0, T ) × R
d, and (p, q,M) ∈ J̄+v∗(t, x) such that

inf
e∈E

h(He[t, x, q, v∗] − v∗(t, x), e) > 0. (4.12)

From (4.7) and Lemma 6.1 in [7], there exists sequences

nj → ∞, (pj , qj,Mj) ∈ J+vnj
(tj , xj),

such that

(tj , xj , vnj
(tj, xj), pj , qj ,Mj) → (t, x, v∗(t, x), p, q,M). (4.13)

By continuity of the functions c, γ, and definition of v∗, we also have

lim sup
j→∞

He[tj , xj , qj, vnj
] ≤ He[t, x, q, v∗], ∀ e ∈ E. (4.14)

Now, from the viscosity subsolution property for vnj
, we have for all j

− pj − 〈b(xj), qj〉 −
1

2
tr(σσ⊺(xj)Mj) − f(xj, vnj

(tj , xj), σ
⊺(xj)qj)

−nj

∫

E

h−(He[tj , xj , qj, vnj
] − vnj

(tj , xj), e)λ(de) ≤ 0. (4.15)

From (4.12)-(4.13)-(4.14), continuity assumptions on h, c, and the nonincreasing property

of h, we have for j large enough

h(He[tj , xj, qj , vnj
] − vnj

(tj, xj), e) > 0, ∀e ∈ E,

and so
∫

E

h−(He[tj, xj , qj , vnj
] − vnj

(tj , xj), e)λ(de) = 0.

Hence, by taking the limit as j goes to infinity, into (4.15), we conclude that

−p− 〈b(x), q〉 − 1

2
tr(σσ⊺(x)M) − f(x, v∗(t, x), σ⊺(x)q) ≤ 0,

which shows the viscosity subsolution property for v∗ to (4.1). 2

We next turn to the boundary condition.
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Theorem 4.2 Under (H2’) (or (H1’) in the case : h(u, e) = −u), the function v in (4.4)

is a viscosity solution to (4.3).

In order to deal with the possible jump at the terminal condition, we need the following

dynamic programming caracterization of the minimal solution.

Lemma 4.1 Let (t, x) ∈ [0, T ) × R
d, and (Y t,x, Zt,x, U t,x,Kt,x) be a minimal solution to

(2.10)-(2.11) on [t, T ] with Xs = Xt,x
s . Then for any stopping time θ valued in [t, T ],

(Y t,x
s , Zt,x

s , U t,x
s ,Kt,x

s )s∈[t,θ] is a minimal solution to :

Ys = v(θ,Xt,x
θ ) +

∫ θ

s

f(Xt,x
r , Yr, Zr)dr +Kt,x

θ −Kt,x
s (4.16)

−
∫ θ

s

〈Zr, dWr〉 −
∫ θ

s

∫

E

(

Ur(e) − c(Xt,x

r−
, Yr− , Zr, e)

)

µ(dr, de)

with

h(Us(e), e) ≥ 0 dP ⊗ dt⊗ λ(de) a.e. on Ω × [t, θ] × E. (4.17)

Proof. Let Y 1 be the minimal solution on [t, θ] of (4.16)-(4.17) (the existence of a minimal

solution in the case of a random terminal time is obtained by similar arguments to those

used in the case of a deterministic terminal time). For each ω ∈ Ω, there exists a minimal

solution Y 2,ω on [θ(ω), T ] to (2.10)-(2.11). We then have from the Markov property of X

that Y 2,ω

θ(ω)
= v

(

θ(ω),Xt,x

θ(ω)
(ω)
)

for all ω ∈ Ω. By a measurable selection theorem, there

exists Y 2 ∈ S2 such that for all ω ∈ Ω we have Y 2
θ(ω)(ω) = Y 2,ω

θ(ω) = v
(

θ(ω),Xt,x
θ(ω)(ω)

)

and Y 2
s (ω) = Y 2,ω

s (ω) for s ∈ [θ(ω), T ]. We then define the process Ỹ by Ỹ |[t,θ] = Y 1 and

Ỹ |(θ,T ] = Y 2. Hence, Ỹ is a solution on [t, T ] to (2.10)-(2.11), which implies Ỹ ≥ Y t,x.

Moreover, since Y t,x
θ = v(θ,Xt,x

θ ), it follows that (Y t,x
s , Zt,x

s , U t,x
s ,Kt,x

s )s∈[t,θ] is a solution

on [t, θ] to (4.16)-(4.17). Hence Y 1 ≤ Y t,x on [t, θ], and therefore Y 1 = Y t,x on [t, θ]. 2

Proof of Theorem 4.2 (i) We first prove the supersolution property of v∗ to (4.3). Let

x ∈ R
d, and (p, q,M) ∈ J̄−v∗(T, x). By same arguments as in (4.11), we have

inf
e∈E

h(He[T, x, q, v∗] − v∗(T, x), e) ≥ 0. (4.18)

Moreover, since the sequence of continuous functions (vn)n in nondecreasing and vn(T, .) =

g, we deduce that v∗(T, .) ≥ g, which combined with (4.18), proves the viscosity supersolu-

tion property for v∗ to (4.3).

(ii) We next prove the subsolution property of v∗ to (4.3). We argue by contradiction and

asume that there exist x0 ∈ R
n, ϕ ∈ C1,2([0, T ] × R

n) such that

0 = (v∗ − ϕ)(T, x0) = max
[0,T ]×Rd

(v∗ − ϕ) (4.19)

and

min

[

ϕ(T, x0) − g(x0) , inf
e∈E

h(He[T, x0,Dxϕ(T, x0), v
∗] − ϕ(T, x0), e)

]

=: 2ε > 0.
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By the upper semicontinuity of v∗, the continuity of ϕ and its derivative, and the nonin-

creasing property of h, there exists an open neighbohood O of (T, x0) in [0, T ] × R
d, and

A, r > 0 such that for all (t, x, α, β) ∈ O × (−A,A) ×B(0, r), we have

ε ≤ min
[

ϕ(t, x) − α− g(x) , (4.20)

inf
e∈E

h(v∗(t, x+ γ(x, e)) + c(x, ϕ(t, x) − α, σ⊺(x)[Dxϕ(t, x) + β]) − [ϕ(t, x) − α], e)
]

.

Let (tk, xk)k be a sequence in [0, T ) × R
d such that

(tk, xk) → (T, x0) and v(tk, xk) → v∗(T, x0). (4.21)

Fix then δ > 0 such that for k large enough: [tk, T ] × B(xk, δ) ⊂ O, and let us define the

functions ϕk by

ϕk(t, x) = ϕ(t, x) + ζ
|x− xk|2

δ2
+ Ckφ

(

x− xk

δ

)

+
√
T − t,

where 0 < ζ < A ∧ δr, φ ∈ C2(Rd) satisfies φ|B̄(0,1) ≡ 0, φ|B̄(0,1)c > 0 and lim|x|→∞
φ(x)
1+|x| =

∞, and Ck > 0 is a constant to be chosen below. By (4.19), we notice that

(v∗ − ϕk)(t, x) ≤ −ζ for (t, x) ∈ [tk, T ] × ∂B(xk, δ),

and from the conditions on φ, we can choose Ck (large enough) so that

(v∗ − ϕk)(t, x) ≤ −ζ
2

for (t, x) ∈ B(xk, δ)
c × [tk, T ]. (4.22)

Since ∂
∂t

(
√
T − t) → −∞ as tր T , we have for k large enough :

−∂ϕk

∂t
− Lϕk(t, x) − f(x, ϕk(t, x) − α, σ⊺(x)Dxϕk(t, x))

≥ 0 for (t, x, α) ∈ [tk, T ) ×B(xk, δ) × (−A+ ζ,A). (4.23)

Fix now α∗ ∈ (0, A ∧ ζ
2 ∧ ε), and let us denote τk = inf

{

s ≥ tk ; Xk
s 6= Xk

s−

}

, θk =

inf
{

s ≥ tk ; Xk
s /∈ B(xk, δ)

}

∧τk∧T where Xk = Xtk ,xk . Let us then define the quadruples

(Y k, Zk, Uk,Kk) on [tk, θk] by :

Y k
s =

[

ϕk(s,X
k
s ) − α∗

]

1{s∈[tk,θk)} + v(θk,X
k
θk

)1{s=θk} , Z
k
s = σ⊺(Xk

s−)Dxϕk(s,X
k
s−) ,

Uk
s (e) = v∗(s,Xk

s− + γ(Xk
s− , e)) + c(Xk

s− , ϕk(s,X
k
s−) − α∗, σ⊺(Xk

s−)Dxϕk(s,X
k
s−))

− [ϕk(s,Xk
s−) − α∗],

and

Kk
s = −

∫ s

tk

{

∂ϕk

∂t
(r,Xk

r ) + Lϕk(r,X
k
r ) + f(Xk

r , ϕk(r,Xk
r ) − α∗, σ⊺(Xk

r )Dxϕk(r,X
k
r ))

}

dr

−
∫ s

tk

∫

E

(ϕk − α∗ − v∗)(r,Xk
r− + γ(Xk

r− , e))µ(dr, de)

+
(

ϕk(θk,X
k
θk

) − α∗ − v(θk,X
k
θk

)
)

1{s=θk}.
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By construction and from Itô’s formula on ϕk(s,X
k
s ), we see that (Y k, Zk, Uk,Kk) satisfies

(4.16) on [tk, θk]. From (4.20), it is clear that the process Uk satisfies the constraint :

h(Uk
t (e), e) ≥ 0, dP ⊗ dt⊗ λ(de) a.e. on Ω × [tk, θk] × E.

Observe also that

ϕk(θk,X
k
θk

) − α∗ ≥ v(θk,X
k
θk

) (4.24)

Indeed, we have two cases:

• θk < T : in this case (θk,X
k
θk

) /∈ O, and since α∗ < ζ
2 , we have by (4.22),

ϕk(θk,X
k
θk

) − α∗ ≥ v∗(θk,X
k
θk

) ≥ v(θk,X
k
θk

).

• θk = T : in this case (θk,X
k
θk

) = (T,Xk
T ) ∈ O. Since α∗ ≤ ε, we have by (4.20)

ϕk(θk,X
k
θk

) − α∗ ≥ ϕ(θk,X
k
θk

) − ε ≥ g(Xk
T ) = v(θk,X

k
θk

).

Let us then check that Kk is nondecreasing on [tk, θk]. First, on [tk, θk), we notice that Kk

consists only in the Lebesgue term dr, and so is nondecreasing by (4.23). Moreover, we see

that Kk
θk

≥ Kk
θ−
k

. Indeed, there are two possible cases:

• θk < τk: then Kk
θk

= Kk
θ−
k

+ϕk(θk,X
k
θk

)−α∗− v(θk,X
k
θk

), and by (4.24), we have Kk
θk

≥ Kk
θ−
k

.

• θk = τk: then Kk
θk

= Kk
θ−
k

− (ϕk(θk,X
k
θk

) − α∗ − v∗(θk,X
k
θk

)) + (ϕk(θk,X
k
θk

) − α∗ −
v(θk,X

k
θk

)), and so Kk
θk

≥ Kk
θ−
k

.

Therefore, the quadruple (Y k, Zk, Uk,Kk) is a solution on [tk, θk] to (4.16)-(4.17), and by

Lemma 4.1, we deduce that for all k,

ϕk(tk, xk) − α∗ = ϕ(tk, xk) +
√

T − tk − α∗ ≥ v(tk, xk).

We finally obtain a contradiction by sending k to ∞. 2

4.2 Uniqueness result

This paragraph is devoted to a uniqueness result for the QVI (4.1)-(4.3). We need to impose

some additional assumptions.

(H3) There exists a nonnegative function Λ ∈ C2(Rd) and a positive constant ρ satisfying

(i) LΛ + f(.,Λ, σ⊺DΛ) ≤ ρΛ,

(ii) infe∈E h(HeΛ(x) − Λ(x), e) > 0 for all x ∈ R
d,

(iii) Λ(x) ≥ g(x) for all x ∈ R
d,

(iv) lim|x|→∞
Λ(x)
1+|x| = ∞.
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Assumption (H3) essentially ensures the existence of a suitable strict supersolution

to (4.1). We shall give in paragraph 6 some sufficient conditions for (H3). This strict

supersolution allows to control the nonlocal term in QVI (4.1)-(4.3) via some convex small

perturbation. Thus, to deal with the dependence of f , c on y, z, we also require some

convexity conditions.

(H4)

(i) The function f(x, ., .) is convex in (y, z) ∈ R × R
d for all x ∈ R

d.

(ii) The function h(., e) is concave in u ∈ R a for all e ∈ E.

(iii) The function c(x, ., ., e) is convex in (y, z) ∈ R × R
d for all (x, e) ∈ R

d × E.

(iv) The function c(x, ., z, e) is decreasing in y ∈ R for all (x, z, e) ∈ R
d × R

d × E.

Theorem 4.3 Assume that (H3) and (H4) hold, and let U (resp. V ) be a lsc (resp.

usc) viscosity supersolution (resp. subsolution) to (4.1)-(4.3) satisfying a linear growth

condition :

sup
x∈Rd

|U(t, x)| + |V (t, x)|
1 + |x| < ∞, ∀t ∈ [0, T ].

Then, U ≥ V on [0, T ]×R
d. Consequently, under (H2’) (or (H1’) in the case : h(u, e) =

−u), (H3) and (H4), the function v in (4.4) is the unique viscosity solution to (4.1)-(4.3)

satisfying a linear growth condition, and v is continuous on [0, T ) × R
d.

Proof. • Comparison principle. As usual, we shall argue by contradiction by assuming

that

sup
[0,T ]×Rd

(V − U) > 0. (4.25)

1. For some λ > 0 to be chosen below, let

Ũ(t, x) = e(ρ+λ)tU(t, x) , Ṽ (t, x) = e(ρ+λ)tV (t, x) and Λ̃(t, x) = e(ρ+λ)tΛ(x).

A straightforward derivation shows that Ũ (resp. Ṽ ) is a viscosity supersolution (resp.

subsolution) to

min
[

ρw − ∂w

∂t
− Lw − f̃ (·, w, σ⊺Dxw) , (4.26)

inf
e∈E

h̃
(

·, H̃ew − w, e
) ]

= 0, on [0, T ) × R
d

min
[

w(T−, ·) − g̃ , inf
e∈E

h̃(T, H̃ew(T−, ·) − w(T−, ·), e)
]

= 0 on R
d (4.27)

where

f̃(t, x, r, q) = e(ρ+λ)tf
(

x, re−(ρ+λ)t, qe−(ρ+λ)t
)

− λr

h̃(t, r, e) = e(ρ+λ)th(e−(ρ+λ)tr, e), g̃(x) = e(ρ+λ)T g(x)
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and

H̃w(t, x) = w(t, x+ γ(x, e)) + c̃ (x,w(t, x), σ⊺(x)Dxw(t, x), e)

with

c̃(t, x, r, q, e) = e(ρ+λ)tc(x, e−(ρ+λ)tr, e−(ρ+λ)tq, e)

for all (t, x, r, q, e) ∈ [0, T ] × R
d × R × R

d × E. Since f is Lipschitz, we can choose λ large

enough so that f̃ is nonincreasing in r. Denote W̃ = (1 − µ)Ũ + µΛ̃ with µ > 0. By (4.25)

and the growth condition (H3)(iv) of Λ, we have for µ small enough

sup
[0,T ]×Rd

(Ṽ − W̃ ) = (Ṽ − W̃ )(t0, x0) > 0. (4.28)

for some (t0, x0) ∈ [0, T ] × R
d. Moreover from the viscosity supersolution property (4.26)-

(4.27) of Ũ , and the conditions (H3)(i), (ii), (H4)(i), (ii), (iii), we see that W̃ is a viscosity

supersolution to

ρw − ∂w

∂t
− Lw − f̃ (·, w, σ⊺Dxw) ≥ 0, on [0, T ) × R

d, (4.29)

inf
e∈E

h̃
(

·, H̃ew − w, e
)

≥ µq̃, on [0, T ] × R
d, (4.30)

where q̃(t, x) = e(ρ+λ)t infe∈E h(HeΛ(x) − Λ(x), e) is positive on [0, T ] × R
d by (H3)(ii).

2. Denote for all (t, x, y) ∈ [0, T ] × R
d × R

d and n ≥ 1

Θn(t, x, y) = Ṽ (t, x) − W̃ (t, y) − ϕn(t, x, y),

with

ϕn(t, x, y) = n|x− y|2 + |x− x0|4 + |t− t0|2.

By the growth assumption on U and V and (H3)(iii), for all n, there exists (tn, xn, yn) ∈
[0, T ]×R

d ×R
d attaining the maximum of Θn on [0, T ]×R

d ×R
d. By standard arguments,

we have :

(tn, xn, yn) → (t0, x0, x0), (4.31)

n|xn − yn|2 → 0, (4.32)

Ṽ (tn, xn) − W̃ (tn, yn) → Ṽ (t0, x0) − W̃ (t0, x0). (4.33)

3. We now show that for n large enough

inf
e∈E

h̃(tn, H̃e[tn, xn,Dxϕn(tn, xn, yn), Ṽ ] − Ṽ (tn, xn), e) > 0. (4.34)

On the contrary, up to a subsequence, we would have for all n,

inf
e∈E

h̃(tn, H̃e[tn, xn,Dxϕn(tn, xn, yn), Ṽ ] − Ṽ (tn, xn), e) ≤ 0,
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and so by uppersemicontinuity of Ṽ , compactness of E, there would exist a sequence (en)

in E such that

h̃(tn, H̃en [tn, xn,Dxϕn(tn, xn, yn), Ṽ ] − Ṽ (tn, xn), en) ≤ 0.

Moreover, by the viscosity supersolution property of W̃ to (4.30), we have

h̃(tn, H̃en [tn, yn,−Dyϕn(tn, xn, yn), W̃ ] − W̃ (tn, yn), en) ≥ µq̃(tn, yn).

From the nonincreasing and the Lipschitz property of h(., e), we deduce from the two

previous inequalities that there exists a positive constant η such that

H̃en [tn, yn,−Dyϕn(tn, xn, yn), W̃ ] − W̃ (tn, yn) + ηq̃(tn, yn)

≤ H̃en [tn, xn,Dxϕn(tn, xn, yn), Ṽ ] − Ṽ (tn, xn),

which is rewritten as

Ṽ (tn, xn) − W̃ (tn, yn) + ηq̃(tn, yn)

≤ Ṽ (tn, xn + γ(xn, en)) − W̃ (tn, yn + γ(yn, en)) + ∆Cn (4.35)

where

∆Cn = c̃
(

tn, xn, Ṽ (tn, xn), σ⊺(xn)Dxϕn(tn, xn, yn), en

)

− c̃
(

tn, yn, W̃ (tn, yn),−σ⊺(yn)Dyϕn(tn, xn, yn)
)

.

Now, we write ∆Cn = ∆C1
n + ∆C2

n, with

∆C1
n = c̃

(

tn, xn, Ṽ (tn, xn), σ⊺(xn)Dxϕn(tn, xn, yn), en

)

− c̃
(

tn, xn, W̃ (tn, yn), σ⊺(xn)Dxϕn(tn, xn, yn), en

)

,

∆C2
n = c̃

(

tn, xn, W̃ (tn, yn), σ⊺(xn)Dxϕn(tn, xn, yn), en

)

− c̃
(

tn, xn, W̃ (tn, yn),−σ⊺(yn)Dyϕn(tn, xn, yn), en

)

,

∆C3
n = c̃

(

tn, xn, W̃ (tn, yn),−σ⊺(yn)Dyϕn(tn, xn, yn), en

)

− c̃
(

tn, yn, Ũ (tn, yn),−σ⊺(yn)Dyϕn(tn, xn, yn), en

)

.

We have Ṽ (tn, xn) − W̃ (tn, yn) → (Ṽ − W̃ )(t0, x0) > 0 by (4.28) and (4.33). Hence, for

n large enough, Ṽ (tn, xn) ≥ W̃ (tn, yn), and so from the nonincreasing condition (H4)(iv)

of c, we have ∆C1
n ≤ 0. Since σ⊺(xn)Dxϕn(tn, xn, yn) + σ⊺(yn)Dyϕn(tn, xn, yn) → 0 by

the Lipschitz condition on σ and (4.32), we deduce with the Lipschitz condition on c that

lim supn→∞ ∆C2
n ≤ 0. By (4.31) and continuity of c, we have limn→∞ ∆C3

n = 0. Therefore,

we obtain

lim sup
n→∞

∆Cn ≤ 0.
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Up to a subsequence, we may assume that (en) converges to e0 in E. Hence, by sending n

to infinity into (4.35), it follows with (4.33) and the upper (resp. lower)-semicontinuity of

Ṽ (resp. W̃ ) that :

(Ṽ − W̃ )(t0, x0 + γ(x0, e0), x0 + γ(x0, e0)) ≥ (Ṽ − W̃ )(t0, x0) + ηq̃(t0, x0)

> (Ṽ − W̃ )(t0, x0),

a contradiction with (4.28).

4. Let us check that, up to a subsequence, tn < T for all n. On the contrary, tn = t0 = T

for n large enough, and from (4.34), and the viscosity subsolution property of Ṽ to (4.27),

we would get

Ṽ (T, xn) ≤ g̃(xn).

On the other hand, by the viscosity supersolution property of Ũ to (4.27) and (H3)(iii),

we have W̃ (T, yn) ≥ g̃(yn), and so

Ṽ (T, xn) − W̃ (T, yn) ≤ g̃(xn) − g̃(yn).

By sending n to infinity, and from continuity of g̃, this would imply (Ṽ − W̃ )(t0, x0) ≤ 0,

a contradiction with (4.28).

5. We may then apply Ishii’s lemma (see Theorem 8.3 in [7]) to (tn, xn, yn) ∈ [0, T )×R
d×

R
d that attains the maximum of Θn, for all n ≥ 1 : there exist (pn

Ṽ
, qn

Ṽ
,Mn) ∈ J̄2,+Ṽ (tn, xn)

and (pn
W̃
, qn

W̃
, Nn) ∈ J̄2,−W̃ (tn, yn) such that

pn
Ṽ
− pn

W̃
= ∂tϕn(tn, xn, yn) = 2(tn − t0),

qn
Ṽ

= Dxϕn(tn, xn, yn), qn
W̃

= −Dyϕn(tn, xn, yn),

and
(

Mn 0

0 −Nn

)

≤ An +
1

2n
A2

n, (4.36)

where An = D2
(x,y)ϕn(tn, xn, yn). From the viscosity supersolution property of W̃ to (4.29),

we have

ρW̃ (tn, yn) − pn
W̃

− 〈b(yn),Dyϕ(tn, xn, yn)〉 − 1

2
tr(σ(yn)σ⊺(yn)Nn)

−f̃(tn, yn, W̃ (tn, yn),−σ⊺(yn)Dyϕ(tn, xn, yn)) ≥ 0.

On the other hand, from (4.34) and the viscosity subsolution property of Ṽ to (4.26), we

have

ρṼ (tn, xn) − pn
Ṽ

+ 〈b(xn),Dxϕ(tn, xn, yn)〉 − 1

2
tr(σ(xn)σ⊺(xn)Mn)

−f̃(tn, xn, Ṽ (tn, xn), σ⊺(xn)Dxϕ(tn, xn, yn)) ≤ 0.
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By subtracting the two previous inequalities, we obtain

ρ(Ṽ (tn, xn) − W̃ (tn, yn)) ≤ pn
Ṽ
− pn

W̃
+ ∆Fn

− 〈b(xn),Dxϕn(tn, xn, yn)〉 + 〈b(yn),Dyϕn(tn, xn, yn)〉

+
1

2
tr (σ(xn)σ⊺(xn)Mn − σ(yn)σ⊺(yn)Nn) , (4.37)

where

∆Fn = f̃(tn, xn, Ṽ (tn, xn), σ⊺(xn)Dxϕn(tn, xn, yn))

− f̃(tn, yn, W̃ (tn, yn),−σ⊺(yn)Dyϕn(tn, xn, yn)).

From (4.31), we have pn
Ṽ
− pn

W̃
→ 0 as n goes to infinity. From the Lipschitz property of b,

and (4.32), we have

lim
n→∞

(

〈b(xn),Dxϕn(tn, xn, yn)〉 + 〈b(yn),Dyϕn(tn, xn, yn)
)

= 0.

As usual, from (4.36), (4.31), (4.32), and the Lipschitz property of σ, we have

lim sup
n→∞

tr (σ(xn)σ⊺(xn)Mn − σ(yn)σ⊺(yn)Nn) ≤ 0.

Moreover, by the same arguments as for c̃, using the nonincreasing property of f̃ in its

third variable, and the Lipschitz property of f̃ , we have

lim sup
n→∞

∆Fn ≤ 0.

Therefre, by sending n→ ∞ into (4.37), we conclude with (4.33) that ρ(Ṽ − W̃ )(t0, x0) ≤
0, a contradiction with (4.28).

• Uniqueness for v. The uniqueness result is then a direct consequence of the comparison

principle, and the continuity of v on [0, T )×R
d follows from the fact that in this case v∗ =

v∗. 2

Remark 4.3 As a byproduct of the comparison principle in Theorem 4.3, we get the

continuity of the value function v on [0, T ) × R
d. Since the jump-diffusion process X is

quasi-left continuous, then so is the minimal solution Yt = v(t,Xt) to the BSDE with

constrained jumps, and the penalized approximation Y n
t = vn(t,Xt). This implies that the

predictable projections pY and pY n, respectively of Y and Y n, are equal to pYt = Yt− and
pY n

t = Y n
t−

. Therefore, Yt− = limn→∞ Y n
t−

. From the weak version of Dini’s theorem, see [9]

p. 202, this yields the uniform convergence of Y n on [0, T ], i.e. limn→∞ supt∈[0,T ] |Y n
t − Yt|

= 0, and so by the dominated convergence theorem, the convergence of Y n to Y in S2 :

lim
n→∞

‖Y n − Y ‖
S2

= 0. (4.38)

Then, by applying Itô’s formula to |Y n+p
t − Y n

t |2, and by using similar arguments as in

Lemma 3.3, one can show that

‖Zn+p − Zn‖2

L2(W)
+ ‖Un+p − Un‖2

L2(µ̃)
+ ‖Kn+p −Kn‖2

S2
≤ C‖Y n+p − Y n‖2

S2
.
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Together with (4.38), this implies that (Zn)n (Un)n and (Kn)n are Cauchy sequences

respectively in the Banach spaces L2(W), L2(µ̃) and S2. Therefore, under the additional

conditions (H3) and (H4) with respect to Theorem 3.1, we obtain the strong convergence

of (Zn, Un) in L2(W)×L2(µ̃). Notice also that in this case, the limiting process K of Kn

in S2 is not only predictable but inherits the continuity property of Kn, see also Remark

3.3.

5 Numerical issues

In this section, we formally discuss the numerical implications of our representation results

and approximation by penalization for QVIs (4.1). We first briefly recall the classical

approach for numerically solving the QVI (1.1) arising from the impulse control problem

(1.4). This is based on an approximation by iterated free boundary or optimal stopping

problems : Starting from the function

u0(t, x) = E[g(X0,t,x
T ) +

∫ T

t

f(X0,t,x
s )],

solution to the Cauchy problem :

−∂u0

∂t
− Lu0 − f = 0, on [0, T ) × R

d, u0(T, .) = g on R
d,

we construct the sequence of functions (un) by induction as the solution to the optimal

stopping problem :

u
n+1(t, x) = sup

τ∈Tt,T

E[Hun(τ,X0,t,x
τ )],

which satisfies the obstacle PDE :

min
[

− ∂un+1

∂t
− Lu

n+1 − f , u
n+1 −Hun

]

= 0, on [0, T ) × R
d, u

n+1(T, .) = Hun on R
d,

where H is the nonlocal operator defined in (1.3). We refer to the book [16] for a more

detailed description of this approximation scheme. Such an numerical approach is com-

putationally demanding, since it requires at each induction step n, the resolution of an

optimal stopping problem. Moreover, at step n + 1, for determining the function un+1 at

one point, one needs to compute the function un in the whole space due to the nonlocal

term in the obstacle Hun.

We consider the general QVI (4.1) and we propose here a numerical approach based on

the probabilistic representation of the solution to this QVI by the constrained BSDE (2.10).

We only describe the steps of the algorithm and postpone the analysis of the convergence

to a future research.

Step 1. Approximation by penalized BSDE. That is, we use (3.1) to approximate

(2.10). The convergence of (Y n, Zn, Un,Kn) to (Y,Z,U,K) is due to Lemma 3.4 and
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Theorem 3.1. We note that, by denoting V n
s (e) := Un

s (e)−c(Xs−, Y
n
s−, Z

n
s−, e), (Y n, Zn, V n)

satisfies the following BSDE:

Y n
t = g(XT ) +

∫ T

t

∫

E

fn(Xs, Y
n
s , Z

n
s , V

n
s (e), e)λ(de)ds (5.1)

−
∫ T

t

Zn
s dWs −

∫ T

t

∫

E

V n
s (e)µ̃(de, ds),

where

fn(x, y, z, v, e) :=
1

λ(E)
f(x, y, z) − v + nh−(v + c(x, y, z, e), e). (5.2)

Step 2. Discretization in E. For each m, let Em
1 , · · · , Em

m be a partition of E the

state space of the jump size. Denote emj := 1
λ(Em

j )

∫

Em
j
eλ(de). Let (Xm, Y n,m, Zn,m, V n,m)

denote the solution to the following BSDE:

Xm
t = x+

∫ t

0
b(Xm

s )ds+

∫ t

0
σ(Xm

s )dWs +

m
∑

j=1

∫ t

0
γ(Xm

s−, e
m
j )µ(ds,Em

j );

Y n,m
t = g(XT ) +

m
∑

j=1

λ(Em
j )

∫ T

t

fn(Xs, Y
n,m
s , Zn,m

s ,Γn,m
s (j), emj )ds (5.3)

−
∫ T

t

Zn,m
s dWs −

∫ T

t

∫

E

V n,m
s (e)µ̃(ds, de),

where

Γn,m
s (j) :=

1

λ(Em
j )

∫

Em
j

V n,m
s (e)λ(de).

By the Lipschitz conditions, one can easily see that (5.3) is well-posed. Moreover, one can

show that once max1≤j≤m diam(Em
j ) → 0 where diam(Em

j ) := sup{|e1 − e2| : e1, e2 ∈ Em
j },

then

lim
m→∞

[

‖X −Xm‖S2 + ‖Y n − Y n,m‖S2 + ‖Zn − Zn,m‖L2(W) + ‖V n − V n,m‖L2(µ̃)

]

= 0.

Step 3. Discretization in time. This is an extension of the work by Bouchard and Elie

[5], which studies the case m = 1. For any N , let h := T
N

and ti := ih, i = 0, · · · , N . First,

define Xm,N
t0

:= x, and for i = 0, · · · , N − 1,

Xm,N
ti+1

:= Xm,N
ti

+ b(Xm,N
ti

)h+ σ(Xm,N
ti

)[Wti+1 −Wti ] +
m
∑

j=1

γ(Xm,N
ti

, emj )µ((ti, ti+1] × Em
j ).

Next, define Y n,m,N
tN

:= g(Xm,N
tN

), and for i = N − 1, · · · , 0,

Zn,m,N
ti

:=
1

h
Eti

[

Y n,m,N
ti+1

(Wti+1 −Wti)
]

; (5.4)

Γn,m,N
ti

(j) :=
1

hλ(Em
j )

Eti

[

Y n,m,N
ti+1

µ̃((ti, ti+1] × Em
j )
]

, j = 1, · · · ,m; (5.5)

Y n,m,N
ti

= Eti [Y
n,m,N
ti+1

] + h
m
∑

j=1

λ(Em
j )fn(Xm,N

ti
, Y n,m,N

ti
, Zn,m,N

ti
,Γn,m,N

ti
(j), emj ).(5.6)
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Here Eti denotes the conditional expectation under Fti . Notice that Y n,m,N
ti

is defined via

implicit scheme. One can also define it via explicit scheme by replacing the Y n,m,N
ti

inside

fn with Y n,m,N
ti+1

. Following the arguments in [5], one can prove the convergence of this

time-discretization approximation :

lim
N→∞

{

max
0≤i≤N−1

E
[

sup
ti≤t≤ti+1

|Y n,m
t − Y n,m,N

ti
|2
]

+

N−1
∑

i=0

E
[

∫ ti+1

ti

[|Zn,m
t − Zn,m,N

ti
|2 +

m
∑

j=1

λ(Em
j )|Γn,m

t (j) − Γn,m,N
ti

(j)|2]dt
]}

= 0.

Step 4. Approximation of the conditional expectations. The last step consists in

the approximation of the conditional expectations arising in (5.4)-(5.5)-(5.6). There are

several approaches proposed in the literature. We adopt here the Longstaff-Schwarz [13]

method by least square projection and Monte Carlo simulations. By induction one can

easily see that

Y n,m,N
ti

= vn,m,N
i (Xm,N

ti
), Zn,m,N

ti
= φn,m,N

i (Xm,N
ti

),Γn,m,N
ti

= ψn,m,N
i (Xm,N

ti
),

for some deterministic functions vn,m,N
i , φn,m,N

i , ψn,m,N
i . For any L, choose some basis

functions (vL
l , φ

L
l , ψ

L
l ), l = 1, · · · , L. For any M , simulate M independent copies of W k

ti+1
−

W k
ti

and µ̃k((ti, ti+1] ×Em
j ), k = 1, · · · ,M .

First, for each k, define Xm,N,M
k,t0

:= x, and for i = 0, · · · , N − 1,

Xm,N,M
k,ti+1

:= Xm,N,M
k,ti

+ b(Xm,N
k,ti

)h+ σ(Xm,N,M
k,ti

)[W k
ti+1

−W k
ti
]

+

m
∑

j=1

γ(Xm,N,M
k,ti

, emj )µ((ti, ti+1] × Em
j ).

Next, define Y n,m,N,L,M
k,tN

:= g(Xm,N,M
k,tN

) for each k, and for i = N − 1, · · · , 0, we define

(Zn,m,N,L,M
k,ti

,Γn,m,N,L,M
k,ti

, Y n,m,N,L,M
k,ti

) as follows.

(α̂1, · · · , α̂L) := arg min
α1,···,αL

1

M

M
∑

k=1

∣

∣

∣

1

h
Y n,m,N,L,M

k,ti+1
[W k

ti+1
−W k

ti
] −

L
∑

l=1

αlφ
L
l (Xm,N,M

k,ti
)
∣

∣

∣

2
;

Zn,m,N,L,M
k,ti

:=
L
∑

l=1

α̂lφ
L
l (Xm,N,M

k,ti
);

(β̂1(j), · · · , β̂L(j)) := arg min
β1,···,βL

1

M
×

M
∑

k=1

∣

∣

∣

1

hλ(Em
j )
Y n,m,N,L,M

ti+1
µ̃k((ti, ti+1] × Em

j ) −
L
∑

l=1

βlψ
L
l (Xm,N,M

k,ti
)
∣

∣

∣

2
;

Γn,m,N,L,M
k,ti

(j) :=
L
∑

l=1

β̂l(j)ψ
L
l (Xm,N,M

k,ti
);

(γ̂1, · · · , γ̂L) := arg min
γ1,···,γL

1

M

M
∑

k=1

∣

∣

∣
Y n,m,N,L,M

k,ti+1
−

L
∑

l=1

γlv
L
l (Xm,N,M

k,ti
)
∣

∣

∣

2
;
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Ỹ n,m,N,L,M
k,ti

:=

L
∑

l=1

γ̂lv
L
l (Xm,N,M

k,ti
);

Finally we solve the following equation for Y n,m,N,L,M
k,ti

via Picard iteration:

Y n,m,N,L,M
k,ti

= Ỹ n,m,N,L,M
k,ti

+h

m
∑

j=1

λ(Em
j )fn(Xm,N,M

k,ti
, Y n,m,N,L,M

k,ti
, Zn,m,N,L,M

k,ti
,Γn,m,N,L,M

k,ti
(j), emj ).

6 Some sufficient conditions for (H2’) and (H3)

In this section, we provide various explicit conditions on the coefficients model, which ensure

that the general assumptions (H2’) and (H3) hold true.

6.1 Existence of the solution to BSDE with jump constraint

We first consider a case where we have upper bounds for the coefficients and h(u, e) = −u.

Proposition 6.1 Suppose that h(u, e) = −u, and assume that there exist real constants

C1, C2 and η ∈ R
d such that

g(x) ≤ C1 + 〈η, x〉 , c(x, y, z, e) + 〈η, γ(x)〉 ≤ 0 and f(x, y, z) + 〈η, b(x)〉 ≤ C2, (6.7)

for all (x, y, z, e) ∈ R
d × R × R

d × E. Then (H2’) holds true.

Proof. Let us define a quadruple (Ỹ , Z̃, K̃, Ũ) by : Ỹt = C1 + C2(T − t) + 〈η,Xt〉 for t <

T , ỸT = g(XT ), Z̃t = σ(Xt−).η, Ũt(e) = 0 and

K̃t =

∫ t

0

{

C2 − η · b(Xs) − f(Xs, Ỹs, Z̃s)
}

ds

−
∫ t

0

∫

E

{

c(Xs−, Ỹs−, Z̃s, e) + 〈η, γ(Xs−)〉
}

µ(ds, de), t < T,

K̃T = K̃T− + C1 + 〈η,XT 〉 − g(XT ).

From (6.7), the process K̃ is clearly nondecreasing. Moreover, from the dynamics of X,

and by construction, we see that the quadruple (Ỹ , Z̃, K̃, Ũ) satisfies (2.10)-(2.13) and the

function ṽ(t, x) = C1 + C2(T − t) + η.x clearly satisfies a linear growth condition. 2

We next give an example inspired by [4] where the jumps of X vanish as X goes out of

a ball centered in zero in the case of impulse control.

Proposition 6.2 Suppose that h(u, e) = −u, f, c does not depend on y, z, and assume that

c ≤ 0, γ = 0 on {x ∈ R
d : |x| ≥ C1} × E for some C1 > 0. Then, (H2’) holds true.

Proof. We consider the function v :

v(t, x) = sup
ν∈V

Eν
[

g(Xt,x
T ) +

∫ T

t

f(Xt,x
s )ds+

∫ T

t

∫

E

c(Xt,x

s−
, e)µ(ds, de)

]

.
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Since c ≤ 0, and the choice of ν = 1 corresponds to the probability measure P1 = P, we

see that v̂ ≤ v ≤ v̄ where

v̂(t, x) = E
[

g(Xt,x
T ) +

∫ T

t

f(Xt,x
s )ds+

∫ T

t

∫

E

c(Xt,x

s−
, e)µ(ds, de)

]

v̄(t, x) = sup
ν∈V

Eν
[

g(Xt,x
T ) +

∫ T

t

f(Xt,x
s )ds

]

.

The function v̂ clearly satisfies a linear growth condition by the linear growth conditions

on g, f, c and the standard estimate for X. Moreover, under the assumptions on the jump

coefficient γ, it is shown in [4] that v̄ satisfies a linear growth condition. Therefore, v̂ also

satisfies a linear growth condition.

Let us now define the process Yt = v(t,Xt), which is then equal to

Yt = ess sup
ν∈V

Eν
[

g(XT ) +

∫ T

t

f(Xs)ds+

∫ T

t

∫

E

c(Xs− , e)µ(ds, de)
∣

∣

∣
Ft

]

,

and lies in S2 from the linear growth condition, ad the estimate (2.2) for X. From Theorem

2.1, we then know that there exists (Z,U,K) ∈ L2(W)×L2(µ̃)×A2 such that (Y,Z,U,K)

is the minimal solution to (2.10)-(2.13), and so (H2’) is satisfied. 2

We finally consider a case for general constraint function h.

Proposition 6.3 Assume that there exists a Lipschitz function w ∈ C2(Rd) satisfying a

linear growth condition, supersolution to (4.3), and such that

〈b,Dw〉 +
1

2
tr(σσ⊺D2w) + f(·, w, σ⊺Dw) ≤ C, on R

d,

for some constant C. Then (H2’) holds true.

Proof. Let us define a quadruple (Ỹ , Z̃, Ũ , K̃) by

Ỹt = w(Xt) + C(T − t), t < T, ỸT = g(XT ),

Z̃t = σ⊺(Xt−)Dw(Xt−), Ũt(e) = w(Xt− + γ(Xt− , e)) + c(Xt− , Ỹt− , Z̃t, e) −w(Xt−), and

K̃t =

∫ t

0
[C − 〈b(Xs),Dw(Xs〉) −

1

2
tr{σ(Xs)σ

⊺(Xs)D
2w(Xs)} − f(Xs, Ỹs, Z̃s)]ds, t < T,

K̃T = K̃T− + w(XT ) − g(XT ).

From the conditions on w, we see that (Ỹ , Z̃, K̃, Ũ) lies in S2 × L2(W) × L2(µ̃) × A2.

Moreover, by Itô’s formula to w(Xt) and the supersolution property of w to (4.3), we

conclude that (Ỹ , Z̃, K̃, Ũ ) is solution to (2.10)-(2.11), and ṽ(t, x) = w(t, x) + C(T − t)

satisfies a linear growth condition. 2
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6.2 The strict supersolution condition (H3)

We give a sufficient condition for (H3) in the usual case where f and c do not depend

neither on y nor on z.

Proposition 6.4 Consider the case where h is given by

h(u, e) = −u.

Assume that there exists a constant α > 0 such that

−α < |x+ γ(x, e)|2 − |x|2 ∀(x, e) ∈ R
d × E

β := inf
(x,e)∈Rd×E

−c(x, e)
|x+ γ(x, e)|2 − |x|2 + α

> 0

Then assumption (H3) holds true.

Proof. We set Λ(x) := β|x|2 + ζ with ζ large enough so that Λ ≥ g, i.e. (H3)(iii) is

satisfied. A straightforward computation shows that

inf
e∈E

h(HeΛ(x) − Λ(x), e) ≥ αβ > 0

and hence (H3) (ii) is satisfied. Clearly, (H3) (iv) holds as well. Finally, it follows from the

linear growth assumption on b and σ that (H3) (i) holds for a sufficiently large parameter

ρ. 2

References

[1] Barles G. (1994) : Solutions de viscosité des équations d’Hamilton-Jacobi,
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