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Abstract. The aim of this paper is to provide a general framework allowing to use exact observ-
ability of infinite dimensional systems to solve a class of inverse source problems. More precisely, we
show that if a system is exactly observable, then we can identify a source term in this system by know-
ing the corresponding intensity and appropriate observations which often correspond to the measure
of some boundary traces. This abstract theory is then applied to a system governed by the Euler-
Bernoulli plate equation. Using a different methodology, we show that exact observability can be used
to identify both the locations and the intensities of combinations of point sources in the plate equation.
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1 Introduction

In this paper we consider the problem of determining sources in infinite dimensional systems by
using appropriate observation operators. In the case of systems governed by PDE’s these observation
operators often correspond to the measure of some boundary traces. As it has been remarked in Puel
and Yamamoto [18] this inverse problem is closely related to exact controllability properties (see also
El Badia and Ha Duong in [8]).

One of our aims is to give a general framework, in terms of functional analysis, of the connection
between exact observability (which is dual to exact controllability) and identifiability (possibly stable)
of sources. In the case of sources of the form A(¢)f with A : [0,00) — C given and f unknown,
this approach can be used to derive most of known results and some new ones, in particular for the
Euler-Bernoulli plate equation.

In order to describe this abstract framework and our general results, let X, Y be Hilbert spaces
and D(A), D(C) two subspaces of X. Let A : D(A) — X be a generator of a strongly continuous
group in X and let C': D(C) — Y be an observation operator. In this paper we study inverse source



problems for the differential equation

2(t) = Az(t)+g(t) (t € (0,7)), (1.1)
z2(0) = zo,
y(t) = Cz(t)  (te(0,7),

where 7 > 0, 29 € X are given and ¢ : [0,7] — Z’ is (partially) unknown. Above Z’ D X is the dual
space of a space Z C X containing D(A), as it will be made precise in Section 2. More precisely, we
consider the problem of determining ¢ from appropriate measurements y and the following classical
questions associated to it:

e Identifiability: is the mapping g — y one-to-one?

e Stability: assume that we have two sources ¢(!) and ¢ and let y™) and y® be the corresponding
observations. Can we find a positive constant K such that

lg™ = g < Kly® - 4@,
with appropriate norms?

e Reconstruction: is it possible to “reconstruct”, in some sense, g from the observation y?

We will focus just on the first two topics and study them using a method that relies on the exact
observability of the system

2(t) = Az(t), 2(0) = zo, (1.4)
y(t) = Cz(t). (1.5)
Recall that system (1.4)-(1.5) is exactly observable in time 7 > 0 if there exists k, > 0 such that

lémm%w>wm@ Vzo € D(A). (1.6)

One of our main results, Theorem 3.3, states that the exact observability in time 7 > 0 of (1.4)—
(1.5) implies the stability (and identifiability) for the inverse source problem of (1.1)—(1.3) in the case
where g(t) = A(t)f, with A € H*(0,7) known, and f € Z’ to be determined.

As an example of application of this result, consider the following initial value problem for the
Euler-Bernoulli plate equation

82w 2 .

52 + A%w = A(t)d¢ in (0,7) x €,

w=Aw=0 on (0,7) x 09, (1.7)
w(0,2) = wo(a), 22(0,0) = wi(x) w0,

where Q2 C R? is a bounded domain, 7 > 0, A € H*(0,7) with A\(0) # 0, £ € Q and & is the Dirac
mass concentrated in €. As a consequence of Theorem 3.3 below we will show that the mapping

Q= 120,75 L), €my=__ : (1.8)
(0,7)xT

where T' is a nonempty open subset of 912, is well-defined and that if 2 is a rectangle (0,a) x (0,b)
and I' contains both a horizontal and a vertical segment of nonzero length or if € is smooth and I’



satisfies the geometric optics condition of Bardos, Lebeau, Rauch [3], then for all £ W, ¢@ ¢ Q, there
exists K > 0 such that
ow®  9w®

(1) _ @) < N
€W - @ < K| S -

L2(0,m5L2(T))

In this inequality w) and w® are the solutions of (1.7) corresponding to £ and ¢, respectively,
with suitable assumptions on the initial data.

We would like to emphasize that, since the only assumption on A in (1.1)—(1.3) is that it generates a
C° semigroup, our results can be applied, not only to the plate equations, but to a variety of problems
including, for instance, the Schrodinger equation, the wave equation and the Maxwell system, by using
appropriate exact observability results.

Another application of exact observability of the plates equation is shown in Theorem 5.2 which
establishes identifiability for the inverse source problem

0*w .
e + Aw = Z)\ )0¢; in (0,7) x €,
w=Aw=0 on (0,7) x 09, (1.9)

0
w(0,2) = wo(), - (0.2) = wi(x) zeQ,
with 2 as above, &; € Q, and \; € H%(0,7) satisfying \;(0) = A;(0) = 0 and A = 0 after some time
71. More precisely, we show that the conditions

owM  9w® . oAw®  9Aw@
o  Ov n (0,7) x T, )

on (0,7‘1) X Fl,

with I' as above and I'; a nonempty open subset of I', imply that the completely unknown corresponding
sources ZN( ) 5 )(75)5§<1 and ZN( Y\ )(t)5§<z) are equal.

J

The case of more regular sources, namely g(t) = A(t)f, with f € H}(Q), will be treated in two

situations: the usual plate equation (Theorem 4.4) and the plate equation with a potential (Theorem

4.5). In the first one, we establish stability by knowing either gtali)/ or aat%w In the last situation, we

JAw
ov °

consider measurements of %—f and

In the above applications, the restrictions on the geometry of the domain ) are necessary to have
the exact observability for the plate equation. We will make use of results due to Lebeau [14] and to
Tenenbaum and Tucsnak [21].

In the case where the intensity A in g(t) = A(¢)f is known, our method is inspired by the work of
Puel and Yamamoto [18] where they consider the wave equation and determine a source which is in
L?(Q) provided that the domain of T' of observation satisfies the geometric optics condition. Other
works treating sources of the form g(¢) = A(t) f with f a sum of Dirac masses at points located inside
the equations domain are due to Komornik and Yamamoto [11, 12] for the wave equation and the heat
equation, respectively, and to Nicaise and Zair [16, 15] for the beam equation and the wave equation
in heterogeneous trees, respectively.

As regards the problem of finding more regular sources, we refer to Yamamoto [27, 28] for the
wave equation and a source of the form g(t) = \(¢)f with f € L?(£2), Wang [24] for the plate equation
and a source of the form g(t) = A(t)f with f € H}(Q). Let us mention that in [24], the condition
A € C3([0,7]) and of constant sign is needed and the stability result is based on five boundary
observations on

{zedQ; (x—xo) v(z) >0}, x0eR



Our contribution in Theorem 4.4 consists in the fact that we obtain a stability result with only two
boundary observations and under assumptions which are weaker than those in [24].

Concerning our identifiability result for the problem (1.9) with the number of sources, their location
and their intensity all unknown, the approach we use follows the method of El Badia and Ha Duong
in [8], which is based on Fourier analysis and appropriate uniqueness results. The identifiability and
reconstruction of linear combinations of point sources has also been studied for the heat equation in
El Badia and Ha Duong [7] and for the Stokes equations in Alves and Silvestre [2].

The paper is organized as follows. In Section 2, we present some concepts and preliminary results
about exact observability and exact controllability, and then collect the available known results con-
cerning the exact observability for the plate equation. Section 3 is devoted to the new results for the
stability of sources in the general system (1.1)—(1.3). In Section 4, we apply the results of Section 3
to the plates equation with known intensity and consider the corresponding problem with a potential.
Finally, in Section 5, we consider the identifiability of an unknown linear combination of point sources
in the plate equation.

2 Some background on exact observability and exact controllability

2.1 Basic concepts and auxiliary results

In this section we gather, for the convenience of the reader, some known results on functional analysis
and, in particular, on exact observability and on exact controllability of infinite dimensional systems.
At the end of the section we prove a result, which seems new, concerning an observability inequality
involving weakened norms.

The following lemma is a consequence of the closed graph theorem (see, for instance, Douglas [6]).

Lemma 2.1. Suppose that Vi and Vy are Hilbert spaces, let V{ and Vy be the corresponding dual spaces
and let F € L(V,V1). Then the following statements are equivalent:

(a) F' maps Vo onto Vi;

(b) There exists a constant ¢ > 0 such that

1F 2l 2 cllzllvy (2 € V).

In the next results, the notations H, H; and Hs stand for Hilbert spaces which will be identified
with their duals. We give below two technical results which are slight variations of those from [23,
Section 2.9].

Lemma 2.2. Let V;, Hj, j € {1,2} be Hilbert spaces such that V; C H; with continuous and dense
embeddings. Let L € L(Hy, Hy) such that L(V1) C Va. Then the restriction of L to Vi is in L(Vi, Va).

Proof. We notice that as an operator from Vj to V3, L is closed (we have used the continuous embedding
of V; into H; for j € {1,2}). Therefore, by the closed graph theorem, L is bounded as an operator
from Vi to Vs. ]

Proposition 2.3. Let V;, H;, j € {1,2} be Hilbert spaces such that V; C H; with continuous and
dense embeddings. Let L € L(Hy, Hs) be such that L*(Va) C Vi. Then L can be extended to an
operator L € L(V{, V), where V| (respectively V3 ) is the dual of Vi (respectively of Va) with respect to
the pivot space Hy (respectively Hy). Moreover, if L*(Va) = Vi, then there exists m > 0 such that

ILfllvg = mlflvy  (f€W). (2.10)



Proof. To avoid confusion, we use a different notation, namely L%, for the restriction of L* to V. We
use Lemma 2.2 to conclude that L¢ € L£(Va, V). Hence, L% € L(V/, V). We claim that L% is an
extension of L, i.e., that L™z = Lz holds for all z € H;. For this, it will be enough to show that

(L%2,0)vivy = (L2, Q)viy, (2 € Hi, 9 € Va). (2.11)

Since both the right-hand side and the left-hand side of (2.11) can be written as (Lz, ) m,, the above
identity is obviously true. Thus, L = L% is an extension of L.

The uniqueness of L follows from the density of Hy in V.

Finally, if L*(V5) = Vi then estimate (2.10) follows by applying Proposition 2.1, with F' = L4, [

We also need the following known result (see, for instance [23, Proposition 2.10.3]).

Proposition 2.4. Let A : D(A) — X be a densely defined operator with resolvent set p(A) # 0, let
B € p(A), let X1 be D(A) with the graph norm and let X_1 be the completion of X with respect to the
norm

[2]|-1 = [|(BI — A)~ 2| (z € X). (2.12)

Then A € L(X1,X) and A has a unique extension to an operator in L(X,X_1), also denoted by A.
Moreover,
(BI — A~ e L(X, Xy), (BI — A e £(X_4,X)

and these two operators are unitary.

Remark 2.5. In the construction of X; we may replace A with A* and 3 with 3, obtaining a space
denoted X ii. Note that X_1 is the dual of X f with respect to the pivot space X.

In the sequel, X, Y and U are complex Hilbert spaces which are identified with their duals.
T = (T¢)>0 is a strongly continuous semigroup on X, with generator A : D(A) — X and X; is D(A)
with the norm ||z||1 = ||(B] — A)z||, where 8 € p(A) is fixed. We denote by X_; the completion
of X with respect to the norm ||z||_; = ||[(8 — A)~'z|| and we use the notation A and T; also for
the extension of the original generator to X and for the extension of the original semigroup to X_;.
Denoting by A* the adjoint of A, X{ is the space D(A*) with the norm ||z|¢ = ||(8] — A*)z| and X¢,
is the completion of X with respect to the norm ||z||, = ||(B — A*)~!z||. Then X _; is the dual of
X f with respect to the pivot space X.

Let C € £(X1,Y). For each 7 > 0, we define the operator ¥, € £(X1, L*(0,7;Y)) by

(Ur20)(t) = CTyzp for te€[0,7] and for zp € X;. (2.13)

Note that, for every zg € D(A), we have ¥, 2y = y, where zy and y are related by (1.4)—(1.5). We next
recall a definition which is by now classical in infinite dimensional systems theory (see, for instance,
Salamon [19, 20], Weiss [25, 26]).

Definition 2.6. The operator C' € £(X1,Y) is called an admissible observation operator for T if for
some (and hence for all) 7 > 0, ¥, has a continuous extension to X.

Equivalently, the operator C' € £(X1,Y) is an admissible observation operator for T if and only if
there exists a positive constant K such that the solution (z,y) of (1.4)—(1.5) satisfies

/0 ly@I3 dt < K2lz0ll%.  Yzo € D(A).



Definition 2.7. Let 7 > 0. The pair (A, C) is ezactly observable in time 7 if ¥, is bounded from
below.

In other words, the pair (A, C) is exactly observable in time 7 if and only if there exists a positive
constant k; such that the solution (z,y) of (1.4)—(1.5) satisfies

[ 11 a > K20l v € D).
Let B € L(U, X_1). For each 7 > 0 we define the operator ®, € L(L?(0,7;U), X _1) by
O ou= / T,_-Bu(o)do. (2.14)
0

Note that ®,u = z(7) where z is the solution in X_; of the differential equation
2(t) = Az(t) + Bu(t), z(0)=0.

Definition 2.8. The operator B € L(U; X_1) is called an admissible control operator for T if for some
(and hence for all) 7 > 0, Ran ®, C X.

From Lemma 2.2, if B € L(U, X_;) is admissible then for every 7 > 0 we have
®, € L(L*0,7;U), X).
Definition 2.9. Let 7 > 0. The pair (A, B) is exactly controllable in time T if Ran ®, = X.

If B € £(U,X_1) then, using the duality between X¢ (which is D(A*) with the graph norm) and
X _1 and identifying U with its dual, we have B* € £(X{,U). The adjoint of ®, from (2.14), which
is in £(X{, L?(0,00;U)), can be expressed using B* and the exact controllability of the pair (A, B) is
equivalent to the exact observability of the pair (A*, B*). This type of results goes back to Dolecki and
Russell [5] and we state them below in a form borrowed from [23, Proposition 4.4.1,Theorem 10.2.1]

Proposition 2.10. If B € L(U, X_1), then for every 7 > 0 and every zo € X{,

B*T:_,zg for t€[0,7],

(2.15)
0 for t>T.

(®720)(t) = {

If B is an admissible control operator for T, so that ®, can also be regarded as an operator in
L(L?(0,00;U), X), then its adjoint in L(X, L%(0,00;U)) is given, for zg € D(A*), by the same formula
(2.15).

Proposition 2.11. Suppose that B € L(U,X_1). Then B is an admissible control operator for T if
and only if B* is an admissible observation operator for T*.

The pair (A, B) is exactly controllable in time 7 if and only if (A*, B*) is exactly observable in
time T.

If a pair (A, B) is exactly controllable in a time 7y, a natural question is the characterization of
the states which can be reached by more regular inputs. Before stating a result in this direction, we
introduce additional notations. For a Hilbert space V', and for 7 > 0 we set

H}(0,7;V) = {ue H'(0,7;V) | u(0) =0},
HL(0,7;V) = {uEHl(OTV ) | u(r) =0}.
The following result has been proved in Tucsnak and Weiss [22] in the case of a finite dimensional

input space U and in the general form below in [23, Theorem 10.3.6].

6



Proposition 2.12. Suppose that B € L(U, X_1) is an admissible control operator for T. Then for all
T>0,
(I)T € ‘C(Hll/(oa 75 U)7 Z)a

where

Z =X+ (Bl —A)~'BU = (I — A)"(X + BU), (2.16)

for some [ € p(A).

Suppose moreover that the pair (A, B) is exactly controllable in time 19. Then for all T > 19, @
s onto from H%/(O,T; U) to Z and there exists M, > 0 such that, for every zo € Z, the minimal norm
control u with ®,u = zy satisfies

lull 1 (0,m0) < M| 20] - (2.17)

Remark 2.13. Note that the space Z defined by (2.16) does not depend on the choice of 3. The
norm of Z is defined by

HzH2Z = inf {HxH_ZX + HuHQU s reX uel z= (81 — A)fl(x + Bu)} .

If E is a dense subspace of X we denote by E’ the dual of E with respect to the pivot space
X. Moreover, we denote by [Hi(O,T;U)]/ (respectively by [H}{(O,T;U)]/) the dual of Hi(0,7;U)
(respectively HL(0,7;U)) with respect to the pivot space L?(0,7;U).

Let (A,C) be exactly observable in time 79. Another natural question, which is dual to that in
Proposition 2.12; is to find a lower bound of ||V, z||,, where || - ||, is a norm which is weaker than the
norm in L2(0,7;Y). A partial answer is given by the result below.

Proposition 2.14. Let A : D(A) — X be a densely defined operator and let C € L(X1,Y) be an
admissible observation operator for T. For v > 0 let W, be the output map corresponding to the

pair (A,C), as defined in (2.13). Then, for each T > 0, ¥, has a unique continuous extension
U, e L((ZY, [H}%(O,T;Y)]/), where

Z% = (BI — A")"L(X + C*Y). (2.18)

Moreover, assume that (A, C) is exactly observable in some time 19 > 0. Then, for each T > 19, there
exists a constant m, > 0 such that, for every f € (Z%), we have

R I o (219)

Proof. Since C is an admissible observation operator for T, Proposition 2.11 yields that C* is an
admissible control operator for T*. By applying Proposition 2.12, it follows that ®Z maps H3 (0, 7;Y)
to Z9. As a consequence ®251, maps H5(0,7;Y) to Z%, with I, defined by

(A-f)(s) = f(r—s)  (s€0,7]).
On the other hand, by using Proposition 2.10 we have
i, = U,

so that the conclusion follows from Proposition 2.3.

If (A, C) is exactly observable in time 79, we can apply Proposition 2.11 to obtain that (A*, C*)
is exactly controllable in time 79. Let 7 > 79. By applying again Proposition 2.12, it follows that ®¢
maps H} (0,7;Y) onto Z% and the conclusion follows again from Proposition 2.3. O

Remark 2.15. In (2.18), A* is extended to X as a skew-adjoint operator from X to X%, (the com-
pleted space of X for the norm z +— H(ﬁ[ - A*)_le (see Proposition 2.4).



2.2 Exact observability for the plate equation

In this subsection, we collect some known results for the Euler-Bernoulli plate equation and obtain a
new result concerning the observability for a problem with a potential term.

Let © be a smooth domain of R? and I' a nonempty open subset of 9. We first assume that T’
satisfies the following geometric optics condition: for all x € €, any ray coming from z at initial time,
propagating at velocity one and following the geometric optics laws, meets I in finite time.

This condition is sufficient and almost necessary to have the exact observability of the wave equa-
tion. Lebeau proved in [14] that this condition is also sufficient for the plate equation

2
%TZU—FAQ@U:O, in (0,7) x Q,
w=Aw=0 on (0,7) x 09, (2.20)

ow

E(O,x) =wi(z) =€

w(0, ) = wo(x),

More precisely, the following result has been proved in [14].

Theorem 2.16. Let 7 > 0, let Q be a smooth bounded domain of R? and assume that T' satisfies the
geometric optics condition. Then, for any initial data

wy € H‘r’(Q)7 wo = Awy = A%wy =0 on 09, and
wy € H3(Q), w1 = Awy = 0 on 012,

the system (2.20) has a unique solution w € C°([0,7]; H?(2)) N CL([0, 7]; H3(Q)) that satisfies

-
J

More recently, in [21], it has been proved that the geometric optics condition is not necessary in
the case of a rectangle. More precisely a result in [21] states that:

2
d*w

otov

dt > k2 (||w0||§{3(9) + Ilellélm)) :

L2(T)

Theorem 2.17. Let 7 > 0 and let Q@ = (0,a) x (0,b) (a,b > 0). Assume that I is an open subset of
09 containing both a horizontal and a vertical segment of nonzero length. Then, for any

wo € H5(Q), wo = Awy = A?wg =0 on 8Q, and
w, € H3(Q), w1 = Aw; =0 on 99,

the system (2.20) has a unique solution w € C°([0,7]; H>(2)) N CL([0, 7]; H3(Y)) that satisfies

r

Moreover, the above inequality is false if I' does not contain a vertical or an horizontal subset.

2
d*w

otov

At > k2 <||w0||§{3(9) + ||w1||?{1<m) :

LA(T)

Using classical arguments, we deduce from the two above theorems the following observability
result:

Corollary 2.18. Assume that Q is a bounded domain of R? and I' is an open subset of 02 such that
one of the following assertions holds:



1. 99 is smooth and I satisfies the geometric optics conditions;

2. Qs a rectangle (0,a) x (0,b) and I' contains both a horizontal and a vertical segment of nonzero
length.

Suppose that
wo € H5(Q), wo = Awy = A?wg =0 on 8Q, and

wy € H3(Q), w1 = Awy = 0 on 0N.
Then, the solution w € CO([0,7]; H>(Q)) N CL([0,7]; H3()) of the system (2.20) satisfies

r

Now we consider the exact observability of the problem with potential

oAw ||
ov

At = kr (flwoll%s ) + lwil% ) -
o ( H3(Q) H (Q)>

82
o2
w=Aw=0 on (0,7) x 09, (2.21)

w(0, ) = wo(z), 85;(0,:1:) =wi(z) =€,

+ A%w + dw = 0, in (0,7) x Q,

with d € H'7%(Q), with > 0. We can deduce from Theorems 2.16 and 2.17 the following result.

Theorem 2.19. Let Q and I' satisfy the assumptions of Corollary 2.18. Assume that I'y is an open
nonempty subset of I'. and assume that d € H'**(Q), with o > 0. Then, for any

wo € H5(Q), wo = Awy = A?wg =0 on 8Q, and
wy € H3(Q), w1 = Awy = 0 on 012,

the system (2.21) has a unique solution w € C°([0,7]; H?(2)) N CL([0,7]; H3()) and this solution
ow||?

satisfies
dt > k; 2H + 2H .
( '3’/ L2(F1)> <”w0” ") ] I(Q))

To prove Theorem 2.19, we use a strategy borrowed from [23, Section 6.3]. Let us first set

0Aw

H=H§(Q), D(A)={pecH(Q)]|p=2~0p=A2%=0o0n00},

Y =L*I) x L*(T'1), Agp =A% Vo e D(Ap).
Then we have
D(Ay%) = {p € HY(Q) | = Ap = 0 on 90},

and if we set

X =D(A?) x H, D(A) = D(Ag) x D(AL?),

0 I
4= [—Ao 0}’



the operator A is skew-adjoint and thus, by Stone’s theorem, is the generator of a strongly continuous
group of isometries T in X. The operator C' € L(D(A),Y) is defined by

o[- [ai] ([]em)

v

and it can be checked that C' is an admissible operator for T.
We also define the following operators:

Py e L(D(AY?), H), Pof=—df (feH),

P = [go 8] € L(X),

Ap = A+ P with D(Ap) = D(A)
Since Ap is a bounded perturbation of A, according to [17, Theorem 1.1, p.76], Ap is the generator of
a strongly continuous semigroup Tp on X. We remark that Py € L(H). Moreover, we can check that
Ap — Py is a self-adjoint operator with compact resolvents. In particular, it is diagonalisable with an

orthonormal basis (¢ )ren+ of eigenvectors and the corresponding family of real eigenvalues (Ag)gen=
satisfies A, > — || Pollz(g) for all k& € N*, and

k—o0

We can assume that the sequence (A;)ren+ is non decreasing. We extend the sequence (¢x)ken+ to
a sequence indexed by Z* by setting pr = —p_j for every k € Z*. We introduce the real sequence

(px)kez~ by
pr =\ | Ak if £ >0 and pux = —p_ if £ <O.

We denote

1
WO = span { [ngn(k)gpk:| ; k c Z*7 Wi = 0} s
Pk

1
Wy = SPan{[’“;(pk] s ke€Z, |kl <N, w # 0},
k

with N € N* such that Ay > 0, and
YN =Wy + Wy
We also set .
VN = closspan { [Wspk] s keZr, |kl > N} .
Pk
It is not difficult to check that X = Yy @ Vi and that Yy and Vy are invariant under Tp. Let us
consider the restriction Py, € L(Vn,X) of P to Viy. We have

Lemma 2.20. Let € > 0. Then there exists a positive constant K depending on Q0 and on € such that

]l 1 ()
1Pyl v, x) <KW'
N

10



Proof. Assume that z = [ﬂ € X. Then

1Pusv 2l = 4 3 0 -

Using Holder’s inequality, we deduce from the above inequality

1Py 2l < el oy 1 lwnoe e -

From Sobolev embedding theorem, we deduce that for € > 0, there exists a positive constant K such
that

[Py 2l < KNIl a0y 1] 2ae o - (2.22)

On the other hand, there exists a positive constant K such that
HfHHQJF‘IE(Q) < K ||f||D(Aé/4+E) =K ||f||D(A},/4+E) .

In particular, if z € Vi, then

1 1
11| przvae () < KW Hf”D(A}J?) = KW HfHD(Aé/Q) '

The above equation and (2.22) yield the desired result. O
We are now in position to prove Theorem 2.19:

Proof of Theorem 2.19. We know from Corollary 2.18 (A‘VN, Cy) is exactly observable in any time

7 > 0. Denote Ay = Ap!VN and Cy = C{VN. By using the fact that, according to Lemma 2.20 we
have

i 1 Pvy ll 2(v,x) =0,

and Proposition 5.3.3 from [23] it follows that the pair (Ayx,Cn) is also exactly observable for all
7 > 0, provided that N is large enough.

On the other hand, if ¢ = [;‘Z] € D(Ap) is an eigenvector of Ap associated to the eigenvalue

ip such that C¢ = 0 then an easy calculation shows that ¢ € D(Ap) is an eigenvector of Ag — Py
associated to the eigenvalue p°:
A%p+dp=p?p inQ, (2.23)

=0 and Ap=0 on 0. (2.24)
Moreover the condition C'¢ = 0 implies that

A
%:0 and 02y

= Ii.
ov v 0 only

From a unique continuation result for the bilaplacian, we deduce that ¢ = 0 and therefore that ¢ = 0.
By Hautus lemma (see [9]), we conclude that (A p|YN, C ‘YN) is exactly observable for all 7 > 0. Finally,

since Ay and AP‘YN have no common eigenvalues, we can apply Theorem 3.3 of [22] to deduce that
(Ap, C) is exactly observable in any time 7 > 0. O
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3 Stability for an inverse source problem with known intensity

Throughout this section we continue to use notation introduced in the previous ones. More precisely,
X,Y are Hilbert spaces, A : D(A) — X is the generator of a strongly continuous semigroup T on X
and C € L(D(A),Y) is an admissible observation operator for T.

We consider the differential equation

2(t) = Az(t) + MN2t) f, 2(0) = 29 (3.1)
where zp € X and f € Z', with Z = (8] — A*)"1(X +C*Y). Assume 7 > 0 and that we are measuring
y(t) = Cz(t) (t €10,7)). (3.2)

Our aim is to study the mapping f — y, assuming that A and zy are given. It is convenient to
recall that, in the case where f € X and zy € D(A), the solution of (3.1) satisfies z € C°([0, 7]; D(4))N
C1([0,7]; X) and, by Duhamel formula, y satisfies

t t
y(t) = /0 A(t = s)CTyfds + CTyzg = /0 At — 8)T, f(s)ds + Tyrz0(t).

Proposition 3.1. Let 7 > 0, let Y be a Hilbert space and A € H'(0,7) with A(0) # 0. Let S :
L*0,7;Y) — HL(0,7;Y) be defined by

(Sg)(t) = /0 A(t — 5)g(s)ds. (3.3)

Then S is an isomorphism from L*(0,7;Y) onto H}(0,7;Y). Moreover, the operator S admits a
unique extension to an isomorphism S from [H}%(O,T; Y)]/ onto L*(0,7;Y).

Proof. The fact that S is an isomorphism is well-known from the the theory of Volterra integral
operators (see, for instance, Kress [13, pp.33-34]). Denote X = L?(0,7;Y), X1 = H;(0,7;Y) and let
A € L(X;,X) be the inverse of S. Then A can be seen as an unbounded densely defined operator
in X so that A* = (S*)7!. It is easy to check that S* maps L?(0,7;Y) onto HL(0,7;Y) so that
D(A*) = HK(0,7;Y). By applying Proposition 2.4 and Remark 2.5 to A, we obtain that A has a
unique extension to an isomorphism A € £(L2(0,7;Y), [HE(0,7; Y)}/). Consequently, S := A~!is an
isomorphism from [Hy(0,7; Y)]/ onto L2(0,7;Y) and it is an extension of S. O

Now we can show that for less regular data, the mapping f — y associated with system (3.1)—(3.2)
is still well defined.

Proposition 3.2. Assume that A\ € H'(0,7), A(0) # 0. Assume that f € Z' and that z0 € X. Then
equation (3.1) admits a unique solution z € C°([0,7]; X) such that y € L*(0,7;Y).

Proof. The first conclusion follows from [23, Theorem 4.1.6], by using the fact that the right-hand side
of (3.1) belongs to H'(0,7; X_1)

On the other hand, y = (S o U,)f + W, 2y € L2(0,7;Y) where S : [HL(0,7; Y)]/ — L2(0,7;Y) is
the extension of S defined in Proposition 3.1 and ¥, : Z/ — [H}%(O,T; Y)]/ is defined in Proposition
2.14. O

12



In order to study the stability for the inverse source problem, we have to consider two sources
M and f@ and the corresponding solutions z(!) and z(?) and observations y™) and y®. Due to the
linearity of the problem, it is enough to consider the system

Ht) = Az(t) + A1) f, 2(0) =0, (3.4)

y(t) = Cz(t) (t €[0,7]). (3.5)

Assume that C' € £(X1,Y) is an admissible observation operator for T and that A € H'(0, 7) with
A(0) # 0. For each 7 > 0, we introduce the operator E; € £(X, H] (0,7;Y)) defined by

B0 = (SN0 = [ A=W, f)ds (e [0.7).
By using Proposition 3.1 we extend E, to an operator F, € £(Z’,L?(0,7;Y)) defined by
F ) = (SoT)f)(t)  (te[0,7)),

where S is the operator constructed in Proposition 3.1. The main result of this section is

Theorem 3.3. Let X, Y be Hilbert spaces and assume that the pair (A,C) is exactly observable in
some time o > 0 and that A\ € H'(0,7) with A(0) # 0. Then, the following properties hold:

1. for every T = 19, E; is one-to-one from X to Hi(O,T; Y) and there exists a positive constant k,
such that
1l < mr 1B flligy 0wy s VF € X (3.6)

2. for every T > 19, F, is one-to-one from Z' to L?>(0,7;Y) and there exists a positive constant f,
such that
1l < & lB Al p2ory.  VF € 2. (3.7)

Proof. In the first case, since A(0) # 0, S : L2(0,7;Y) — H3(0,7;Y) is an isomorphism and we have
HEfHHl(OTY =[[(So¥,) f”H1 (0,7;Y) = MSH\IITfHL2(0TY)
From the exact observability of (A, C) in time 7, we deduce

17 fll 20,75y 2= Krll fllx-

Combining the two above inequalities yields
1Bl rvy = mellflx (F € X).

For the second case the proof is similar. By using Propositions 3.1 and 2.14, we have

¥ 51 20,7y = ||(S 0 ¥ ] > Mgl v f|

L2(0,r Y) I’I1 OTY)]

and
1 gy vy = el 12

Thus,
IFfllL20,my) = Mgme\flz (f€Z).
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4 Inverse source problems for the plate equation with known inten-
sity

In this section we apply the general results obtained in the previous sections to the inverse source
problem for the plate equation, assuming that the intensity A is known and that the domain €2 satisfies
the geometric conditions already mentioned.

4.1 Recovery of point sources

We first introduce some notation. Consider the following Hilbert spaces
X=Hj(Q)x H'(Q), W={peH Q)| ¢=Ap=0o0n0Q} (4.8)
and the skew-adjoint operator defined by

D(A) =W x H}(Q)

il =[]  ([]erm) 4

It is easy to check that the dual of X (i.e., of D(A) endowed with the graph topology) with respect
to the pivot space X is
X =H Q) x W, (4.10)

where W’ is the dual of W with respect to the pivot space L?().
Let T be an open subset of 99, denote Y = L?(T') and let C € £(X1,Y) be defined by

ol =2k (Eer@).

| v
It is well known that the C' is an admissible observation operator for the semigroup T generated by A.
Finally, for £ € Q we define f € X_; by
0
/= [55} ‘

By applying Proposition 3.2 with the above choice of spaces and operators we obtain

Proposition 4.1. Let wy € H}(Q) and wy € H1(Q). Let T be an open subset of 9Q. Then, for any
7> 0 and A € H(0,7), A(0) # 0, the system (1.7) admits a unique solution

w € CO([0, 7); Hy (2)) N CH([0, 7]; H (%)),
such that y defined by (1.8) is in L*(0,7; L*(T)).
The main result of the section is the following

Theorem 4.2. Let 7 > 0, let Q C R? and let T be a nonempty open subset of O satisfying one of
following conditions:

1. 9%) is smooth and I' satisfies the geometric optics conditions;

2. Q is a rectangle and I' contains both a horizontal and a vertical segment of nonzero length.
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Let ¢ > 0 and let €V, €@ € Q be two points in Q, each one at distance at least £ from OQ. Assume
that X € HY(0,7) with A(0) # 0, wy € H}(Q), w1 € H71(Q) and denote

y(j) _ )
o |p

Je{1,2},

where w9 is the solution of (1.7) with € = ¢9), j e {1,2}.
Then there exists K > 0, depending only on ), T', € and T such that

Iy — 4@ L2072y = K€V — @),

where | - | stands for the standard norm in R2.

w 0
o [%f} » = LSW - 5<2J '

Then, with the above choice of spaces and operators, (1.7) and (1.8) can be written in the form (3.4),
(3.5).

On the other hand, applying Theorems 2.16 and 2.17 we know that the pair (A4,C) is exactly
observable in any time 7 > 0 if condition 1 (respectively condition 2) in the statement of the theorem
is satisfied.

To apply Theorem 3.3, it remains to determine Z and Z’. We can take 8 = 0 in (2.16) so that

Proof. We write

Z=AYX+C*).

To obtain the adjoint of C, we consider the operator D € £(L?(T); L?(2)) defined by

A(Dg) =0 inQ,
(Dg) =0 on 0N\ T,
(Dg) =g on I,

for all g € L(T). In other words, Dg is the unique element of L?(f2) such that

/(Dg)Acp dz = / — do (p € H*(Q) N HE(Q)).
We also define by Ag the operator
Ag: D(Ag) = HX Q)N HYQ) — H=L*Q), ¢~ —Ap.
The above operator is definite positive and invertible and we can consider its square root
AY? DA = HY () — H,

which is also invertible.
It is easy to check that the H& norm is equivalent to the norm

o 1450l 2o
Let us consider (¢,%) € D(A) and g € L*(T') = Y. By definition of C, we have

el] > - [o5
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Therefore,

<C m ,g> = / (Dg)A¢ dz = — (Aop, Dg) -
L2(I) Q
Now, we notice that for f € D(Ay),

<A0(p7 f>H = <907 f>D(A(1)/2) = (907 f>D(Ag/2),D(AO_1/2),D(A(1)/2) = <907 f)WyH—l(Q)’Hol(Q) )

where (-, )y, g denotes the duality product of an element of V' and of an element of V', with respect

to the pivot space H. By density, for f € H we have

<A0<p, f)H = (% f>I/V,H—1(Q),H&(Q) )

LD = L2

We deduce from the above relation that for all g € L*(T),

« Dy]
Cg:[og.

and thus

This implies that
Z =X, +{0} x DY C W x L*(9Q).

In particular, H~1(Q) x W' C Z’, with continuous imbedding.
Consequently Theorem 3.3 yields

1y =y L2y = Erllde) — e
for some k, > 0. This, together with
I8¢ = Secar lwr = 1M — €3],

imply the conclusion. The inequality (4.11) is proven in the Lemma 4.3.

(4.11)
OJ

The following result is very similar to results used and proved in [11, 12|, but we cannot apply
directly their results. However the proof of the next lemma is based on the same kind of arguments

than in [11, 12].

Lemma 4.3. If ¢ > 0 is small enough then there exists a positive constant v = v(€2,¢) such that, for

all a,b € Q, with dist(a,0Q) > € and dist(b, 02) > ¢,
|la = 0] <[00 — dpllyy -
Proof. We denote by (). the open set defined by
Q. ={z € Q; dist(z,00) > e} .
For e small enough, €2, is not empty. There exists a function ¢; € W such that
p1(z1,22) =21 ((21,72) € Qe).
Since a, b € €., we have
(00 — bp, 1) = a1 — br.
Thus,
a1 — b1 < 71(Q,€) [[0a — Gl

We can use a similar argument for the second coordinate to conclude the proof of the lemma.
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4.2 Recovery of sources in H} ()

We consider the initial value problem

9*w

5zt APw = \t)f in (0,7) x Q,
w=Aw=0 on (0,7) x 09, (4.12)
w(0,2) = wo(a), SL(0,2) = wn(x) w0

where ) is given and satisfies A € H*(0,7) and A(0) # 0. We aim to find f € H}(2) by knowing either

0w ) 0% Aw
otor ' otow

In this case, we obtain the following stability results.

Theorem 4.4. Let Q, T', wo, w1, 7 and X satisfy the conditions of Theorem 4.2. Suppose that w9 is
the solution of (1.7) with f = fU) € HY(Q), j € {1,2}. Then there exists K > 0, depending only on
Q, I' and 7 such that

2D 522
otov  otov

> K Hf(l) _ f(Q)‘
L2(0,7;L2(T"))

Hi(Q)'

and
2AwD  92Aw®@
otov  otdv

> |-

L2(0,7;L2(T)) Hé @)

Proof. We set
H=Hj(Q), DA)={peHQ)|p=A0Ap=A%%=0 ondQ},

Y =I*T), Aop =A% VYoeD(A).

With this choice of spaces and operators, one can easily check that Ag is self-adjoint, positive and
boundedly invertible and that

1
D(AZ)={p e H* Q)| p=Ap=0 ondQ}.

1 1
We set X =D(A;) x H, D(A) = D(Ap) x D(Aj) and
0o I
A=
The observation operator is given by
el _ o [90' 3
C = — 4 € D(Ap) x D(AE).
|:,¢:| By - w_ ( 0) ( O)
and )
0
F= e X.
i




The system (4.12) can be written as (3.4)—(3.5) and from Theorems 2.16 and 2.17, the couple
(A, C) is exactly observable for all 7 > 0. Using Theorem 3.3, we deduce

1 _

15 =y 0rvy = £l FD = £ -

To treat the other case, we consider the observation operator given by

C m _ aaAf v m € D(Ao) x D(A?)

and we apply Corollary 2.18 to deduce that the couple (A4, C) is exactly observable for all 7 > 0. [

4.3 Recovery of H}(2) sources in the problem with potential

We can also deduce some stability results for the inverse source problem for the plate equation with
a potential d € H%(Q), with a > 0. Let us consider the system
P
ot?
w=Aw=0 on (0,7) x 09, (4.13)

w(0, ) = wo(z), 881:(0,37) =wi(z) ze€Q;

A%w + dw = \(t) f in (0,7) x Q,

where ) is a given function satisfying A € H'(0,7) and A(0) # 0. We aim to find f € H(Q) by
knowing

oAw - ow
Ov an ov’

Combining Theorems 3.3 and 2.19, we get the following result.

Theorem 4.5. Let 7 > 0, A € H'(0,7), A(0) # 0 and T an open subset of Q0 satisfying one of the
following assumptions:

1. 09 is smooth and I satisfies the geometric optics condition;

2. Q is a rectangle and I' contains both a horizontal and a vertical segment of nonzero lengtht.
Let fO, @ ¢ H(Q) and suppose that w9 is the solution of (4.13) with f = fU), j € {1,2}. Then
there exists K > 0, depending only on Q, T" and T such that

OAw®  9Aw?)
oy Ov

ow® @
o v

> K10 =1y

L2(0,7;L2(T))

L2(0,7;L2(T)) ‘
5 Inverse source problems for the plate equation with unknown in-
tensities

In this section, we establish an identifiability result for the unknown source term Zjvzl Aj(t)dg; in the
plates equation

00 | Aty = 0 i 0
W+ w—Z)\j(t) ¢; IH(O,T)X s
j=1
w=Aw=0 on (0,7) x 99, (5.14)
w(0, z) = wo(z), %1;)(0,3;) =wi(xz) forx e,



where now the number N of point sources, their locations §; € {2 and the functions A; are all unknown.
The problem involves now more unknowns and therefore we consider further boundary measurements
than those used to solve the problem of Subsection 4.1. The method employed here is different from
the method used in the previous section. This explains that the assumptions are quite different. In
particular, we assume that A\;(0) = 0 and that there exists a time 7 € (0, 7) such that

N =0 (t=m). (5.15)

To deal with the corresponding inverse problem, we follow a method inspired by [8], based on the
Fourier transformation.
We first present a regularity result for (5.14). In what follows, for € > 0, we set

O ={z € Q| dist(z,09) < e}
and we use the notation from Subsection 4.1 for the spaces X, W and the operator A, i.e.

X =Hy(Q)x H'(Q), W={peH Q)] ¢=Ap=0on0Q} (5.16)

()

] ,g(t) = Z;V:1 Aj(t)f; and zg = [lwuo} , the function w is the solution
1

D(A) =W x H}(Q)

A= s

0

We recall that, if we set f; = [5
3

J

of (5.14) if and only if z = [;ﬁ,} is the solution of
ot

(t) = Az(t) +g(t) (t=0)
(5.18)
Henceforth, we will use also the notation G(t) := Zé\le Aj(t)d¢; -
Proposition 5.1. Let
wo € H5(Q), wo = Awy = A%wy =0 on 8, and
wy € Hg(Q), w1 = Awy; = 0 on 0N.

Let {&1,..,6n} C Q and ¢ = minjey;  ny{dist(§;,0Q)}. Let I' be a nonempty open subset of O€.
Then, for any 7 > 0 and \; € C*([0,7]) (j = 0,..., N) with X\;(0) = X\;(0) = 0, the system (5.14)
admits a unique solution

w € C°([0,7]; Hy () N C°([0,7]; H*(2°)) N C*([0, 7]; H*(€)) (5.19)
such that
?j € L*(0,7; L*(T)), 8?:” € L*(0,7; L*(I)).

Proof. We consider the spaces and the operator defined by (5.16)—(5.17). A simple calculation shows
that

D(A2)2{¢6H5(Q)|¢:A¢:A2¢:Oon89}x{g0€H3(Q)|g0:A<p:00naQ}
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and zp = [ZO] € D(A?). Moreover, g € H?*(0,7,X_1) (recall that X 1 = H~1(Q) x W’). Then
1

z= [ ;Z,} € C°([0,7]; X). The additional assumptions on the data will allow to improve this result.

ot
Since the problem is linear we can analyse separately the problem (5.14) with G = 0 and the

problem (5.14) with wg = w; = 0.
In the first case, we get from classical theory on semigroups that z = { ;1;] € C°([0,7]; D(A?)) and

ot
therefore %w and aaA—Vw have the stated summability properties. In the second case, we note that each

Aj can be written in the form
t S
() = / ( / )\j(H)d0> ds,
0 0

and that the unique solution of (5.14) is given by

w(t, z) = /Ot (/Osu(ﬁ,x)d9> ds,

where u € C°((0,7]; Hg () N C* ([0, 7]; H~1(Q)) solves (5.14) when wy = w; = 0 and the source term
is G(t) = ZN Xj(t)fj. Therefore, w € C%([0,7]; H'(Q)) and we deduce that

82
o2

From equation (5.14) and classical regularity results for the elliptic problem associated with the bi-
laplacian, we obtain

e C°([0, 7] H' ().

w € CO([0, 7]; H(2)),
which implies the desired trace properties. O

Based on Proposition 5.1 we will consider measurements of ‘?9“’ nd 8Aw

71 and continue the measurement of %w until time 7. In accordance w1th the operator formulation
(5.18) with (5.16)—(5.17) and zy € D(A?), we introduce the following observation operators for the
inverse source problem for (5.14). The output spaces are Y = L?(I") x L?(I';) and Y = L%(T), and

the operators C; € £(V1,Y7), with

on parts of Q) until time

Vi ={ue Hj(Q) | ulo: € H ()} (5.20)
and Cy € L(X1,Y3) are defined by
8g0’
@ r ©
C = eV |, 5.21
B (e -
IR}

Cy m 89% < Lﬂ € D(A) ) (5.22)

Hence, the output function corresponding to the measured data in this case is given by

. { Cix). (e o)),
TN cnw), e lm ).

The main result of this section is the following
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Theorem 5.2. Consider the sources G = ZM ) /\(l)5§<z), l € {1,2}, in the plate equation (5.14) and
assume that )\g-l) € C%([0,7]), j € {1,..., N} and I € {1,2}, satisfy )\j ( ) = )\y)( ) =0 and )\5-)( t) =0,
fort > 7. Let w) and w® be the corresponding solutions of (5.14) with initial condition
wo € H5(Q)7 wo = Awy = A%wy =0 on 99, and
wy € H?’(Q), w1 = Awy; = 0 on 0f).

Let T, Ty be two nonempty open subset of O with I' C 'y and assume that one of the following
assumptions hold:

1. 09 is smooth and T satisfies the geometric optics conditions;

2. Q is a rectangle and I' contains both a horizontal and a vertical segment of nonzero length.

If
ow®  Gw® OAw®  dAw®
= on (0,7) x T, 5 = 5

n (0,7) x I'y
then ¢ = g2,

Proof. We denote by z(1), 2 the solutions of (5.18) for g()(t) = Z;V:(? Ag-l)(t)f;l) and ¢®(t) =
Z;V:(i) )\;2) (t) f]@), respectively, and by y(1), () the corresponding observations given by (5.21)—(5.22).

We assume that y()(t) = y@(¢), for t € (0,7). Let us write z(t) := 20 (t) — 2 (¢) and y(t) :
yD(t) — y@(t). Since gV (t) =0, for t > 71, (I € {1,2}) the functions z and y satisfy

i(t) = Az(t) (t € (m1,7)),
z(m1) € X
y(t) = (t € (11,7)).

We notice that y(t) = [Vr—r2(71)] (t — 71). We set 79 = 7 — 71 > 0. Since the pair (A4,Cs), with A
defined by (5.17) and C3 defined by (5.22), is exactly observable in time 79 > 0, we have
||yHL2(7’1,T;Y) > RTHZ(Tl)HX’

and therefore z(71) = 0. Thus, z satisfies

Extending )\g.l), z and y by zero outside (0, 71), and then applying Fourier transformation in the variable
t yield
N N®@

(iwl — A)2 Z )\(1) )Y~ Z Al 2> @), vweR.
where the notation * indicates the Fourier transform of the extended function. Setting z(w) = [g],

we conclude that v satisfies R
A%y —w?v =G in Q, (5.23)

where we have set G = G — g2,
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Since G € & (R?) (distribution with compact support) with support contained in €2 we can extend
the left hand side of (5.23) by zero outside Q and get

A%y — %5 = G in R?, (5.24)

where the notation ~ indicates the extension to R? with respect to the variable . The next lemma
gives a relation between A2y and A%%. This result is an easy extension of a well-known result (see for
instance Theorem 5.4.13 in [4]) so we omit the proof.

Lemma 5.3. Let v € V; be such that Av =0 on 0). Letv and A2y be the extensions by zero outside
Q of v and Av, respectively. Then

0Av

M=oty 2 Ov

Al =— in D' (R?).
doq + <8V5BQ> in D'(R?)

14

In the above lemma, we have used the notation
(0002, ©) D' (R2) D(R2) =/ @ dr.
o

Now we go back to (5.24) and use Lemma 5.3 to conclude that v satisfies the following relation in
the distributional sense

- -~ 0Awv ov .
A - =G+ % don + A (8V539> in R?, (w € R). (5.25)
Let 1
®o(z) = o—lz*In(lz)) (v € R*\{0}) (5.26)

and for each w € R\ {0}, let

(@) = o (B (Viwlla) - B GVI=l2)) (@ e B2\ {0)), (5.27)

8|eo|

where Hl(o) denotes the the first kind Hénkel function of order 0. Then, as shown in Kitahara [10,
pg.211], we have
(A? — )P, = &y in R?,
i.e. ®, is a fundamental solution of A% — w2 in R%2. We recall (see, for instance, Abramowitz and
Stegun [1, pg.358]) that
HV(y) = Jo(y) +Yoly) (v €R),

where Jy (Bessel function of the first kind and of order zero) and Yy (Bessel function of the second
kind and of order zero). The function Jy is analytic in R with series expansion
> -1 kka
Jo(y) = Z (kzk,)g (y €R), (5.28)
p !

22
=0

whereas Yy(y) can be represented as

Yot) = 2 (1n () +7) Do) + 23 ((}C.))H (i ;) (Z)k (y€R\{0}),  (529)
m=1



with v the Euler-Mascheroni constant; see [1, pg.360]. Therefore each ®, is analytic in R? \ {0}.

We note that
N N(®2)

=3 A5m— > A5
J=1 ! J=1 !
can be written
N N
G =) md, sothat G=> 70, (5.30)
j=1 j=1

by taking N = max{N® N®},
Using the fundamental solutions (5.27)—(5.26) and the relation (5.25), we can write v as

v ==y % §+8Av5aQ+A @539 ;
ov ov

from which we obtain the representation

al A dAv
v(z) = WP (x— &)+ —(y)AD(z — y) doy, +
(z) jz;/i] ( §J) o OV (v) ( Y) Yy 00 OV

(Y)Pm(z — y) doy.

Since

Ow® Ow®@
ov  Ov

OAw®  9Aw?)
ov  Ov

on (0,7) x T, on (0,71) x I'y

it follows that 9 9A
v v
v~ av oonh

which, in turn, implies that

N A A
() — 0o (z— & —(NADL(z —y) d b, (r—vy) do,. (5.31
v(x) ;:1 1P (x —&5) + /8 o ay(y) (x —y) doy + /6 or, O (y)Pm(z —y) doy,.  (5.31)

Since @, is analytic in R?\ {0}, (5.31) shows that ¥ is analytic in the connected domain

W= [R*\ ({&, -, EnF U0 UTy.

From the fact that v vanishes outside €2, it follows that v = 0 in W.
Our aim now is to show that 71; = 0. Based on the expansions (5.28) and (5.29), we can show that

23



each function @ (z) (w # 0) satisfies

O (x)

Vo, (x)

AD ()

and therefore

when w # 0. Moreover,

51z (6" VIl — H Il
mOn(\/HM/Q — In( \/7|w|/2)+0|x‘) (|| — 0)

(1) (|| —0)
'(VIzllel) - i1 (/[ lla))

1
8!\

8F\$| <

z (278; P (Tl /2) + 0<\x!>) (2] = 0),

16
WLH( '(VIzllel) - i1 i/ [=lla))
+5 (B (Villal) + D GVl

72;1 — & oo (y/[@lel/2) + Ollel) (] - 0)

lim o (2 — &) = —

z—E; 8l |’

lim V& (x —&;) =0,
z—E;

lim |A®,(z — &) = oo,
—E;

lim ®g(x — &) = O,

z—&;
lim V‘I)(](x —fj) = 0,
x—E;
lim |[A®g(x — &) = oo,
x—E;

Now, we multiply Av by m and let x — ¢;, which, from (5.31) yields

for all j € {1,..., N}, since

and since

is finite.

—

AT
py; = lim o(z)

- ~Z = 0’
—E; AD (ZL’ — f])

1
Iim — =0

z—&; AD (x — fj)

ov DAV
( /aﬂ\m ey () APy (z —y) doy + /8 o, O ()P (z — y) d0y>

Applying the inverse Fourier transformation, we deduce p; = 0 for all j € {1,..., N}, and conclude

that ¢ = g2,

O]
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