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Abstract. The aim of this paper is to provide a general framework allowing to use exact observ-
ability of infinite dimensional systems to solve a class of inverse source problems. More precisely, we
show that if a system is exactly observable, then we can identify a source term in this system by know-
ing the corresponding intensity and appropriate observations which often correspond to the measure
of some boundary traces. This abstract theory is then applied to a system governed by the Euler-
Bernoulli plate equation. Using a different methodology, we show that exact observability can be used
to identify both the locations and the intensities of combinations of point sources in the plate equation.
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1 Introduction

In this paper we consider the problem of determining sources in infinite dimensional systems by
using appropriate observation operators. In the case of systems governed by PDE’s these observation
operators often correspond to the measure of some boundary traces. As it has been remarked in Puel
and Yamamoto [18] this inverse problem is closely related to exact controllability properties (see also
El Badia and Ha Duong in [8]).

One of our aims is to give a general framework, in terms of functional analysis, of the connection
between exact observability (which is dual to exact controllability) and identifiability (possibly stable)
of sources. In the case of sources of the form λ(t)f with λ : [0,∞) → C given and f unknown,
this approach can be used to derive most of known results and some new ones, in particular for the
Euler-Bernoulli plate equation.

In order to describe this abstract framework and our general results, let X, Y be Hilbert spaces
and D(A), D(C) two subspaces of X. Let A : D(A) → X be a generator of a strongly continuous
group in X and let C : D(C)→ Y be an observation operator. In this paper we study inverse source
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problems for the differential equation

ż(t) = Az(t) + g(t) (t ∈ (0, τ)), (1.1)
z(0) = z0, (1.2)
y(t) = Cz(t) (t ∈ (0, τ)), (1.3)

where τ > 0, z0 ∈ X are given and g : [0, τ ] → Z ′ is (partially) unknown. Above Z ′ ⊃ X is the dual
space of a space Z ⊂ X containing D(A), as it will be made precise in Section 2. More precisely, we
consider the problem of determining g from appropriate measurements y and the following classical
questions associated to it:

• Identifiability: is the mapping g 7→ y one-to-one?

• Stability: assume that we have two sources g(1) and g(2) and let y(1) and y(2) be the corresponding
observations. Can we find a positive constant K such that

‖g(1) − g(2)‖ 6 K‖y(1) − y(2)‖,

with appropriate norms?

• Reconstruction: is it possible to “reconstruct”, in some sense, g from the observation y?

We will focus just on the first two topics and study them using a method that relies on the exact
observability of the system

ż(t) = Az(t), z(0) = z0, (1.4)

y(t) = Cz(t). (1.5)

Recall that system (1.4)–(1.5) is exactly observable in time τ > 0 if there exists kτ > 0 such that∫ τ

0
‖y(t)‖2Y dt > k2

τ‖z0‖2X ∀z0 ∈ D(A). (1.6)

One of our main results, Theorem 3.3, states that the exact observability in time τ > 0 of (1.4)–
(1.5) implies the stability (and identifiability) for the inverse source problem of (1.1)–(1.3) in the case
where g(t) = λ(t)f , with λ ∈ H1(0, τ) known, and f ∈ Z ′ to be determined.

As an example of application of this result, consider the following initial value problem for the
Euler-Bernoulli plate equation

∂2w

∂t2
+ ∆2w = λ(t)δξ in (0, τ)× Ω,

w = ∆w = 0 on (0, τ)× ∂Ω,

w(0, x) = w0(x),
∂w

∂t
(0, x) = w1(x) x ∈ Ω,

(1.7)

where Ω ⊂ R2 is a bounded domain, τ > 0, λ ∈ H1(0, τ) with λ(0) 6= 0, ξ ∈ Ω and δξ is the Dirac
mass concentrated in ξ. As a consequence of Theorem 3.3 below we will show that the mapping

Ω→ L2(0, τ ;L2(Γ)), ξ 7→ y =
∂w

∂ν

∣∣∣∣
(0,τ)×Γ

, (1.8)

where Γ is a nonempty open subset of ∂Ω, is well-defined and that if Ω is a rectangle (0, a) × (0, b)
and Γ contains both a horizontal and a vertical segment of nonzero length or if Ω is smooth and Γ
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satisfies the geometric optics condition of Bardos, Lebeau, Rauch [3], then for all ξ(1), ξ(2) ∈ Ω, there
exists K > 0 such that

|ξ(1) − ξ(2)| 6 K

∥∥∥∥∥∂w(1)

∂ν
− ∂w(2)

∂ν

∥∥∥∥∥
L2(0,τ ;L2(Γ))

.

In this inequality w(1) and w(2) are the solutions of (1.7) corresponding to ξ(1) and ξ(2), respectively,
with suitable assumptions on the initial data.

We would like to emphasize that, since the only assumption on A in (1.1)–(1.3) is that it generates a
C0 semigroup, our results can be applied, not only to the plate equations, but to a variety of problems
including, for instance, the Schrödinger equation, the wave equation and the Maxwell system, by using
appropriate exact observability results.

Another application of exact observability of the plates equation is shown in Theorem 5.2 which
establishes identifiability for the inverse source problem

∂2w

∂t2
+ ∆2w =

N∑
j=1

λj(t)δξj in (0, τ)× Ω,

w = ∆w = 0 on (0, τ)× ∂Ω,

w(0, x) = w0(x),
∂w

∂t
(0, x) = w1(x) x ∈ Ω,

(1.9)

with Ω as above, ξj ∈ Ω, and λj ∈ H2(0, τ) satisfying λj(0) = λ′j(0) = 0 and λ ≡ 0 after some time
τ1. More precisely, we show that the conditions

∂w(1)

∂ν
=
∂w(2)

∂ν
on (0, τ)× Γ,

∂∆w(1)

∂ν
=
∂∆w(2)

∂ν
on (0, τ1)× Γ1,

with Γ as above and Γ1 a nonempty open subset of Γ, imply that the completely unknown corresponding
sources

∑N(1)

j=1 λ
(1)
j (t)δ

ξ
(1)
j

and
∑N(2)

j=1 λ
(2)
j (t)δ

ξ
(2)
j

are equal.

The case of more regular sources, namely g(t) = λ(t)f , with f ∈ H1
0 (Ω), will be treated in two

situations: the usual plate equation (Theorem 4.4) and the plate equation with a potential (Theorem
4.5). In the first one, we establish stability by knowing either ∂2w

∂t∂ν or ∂2∆w
∂t∂ν . In the last situation, we

consider measurements of ∂w
∂ν and ∂∆w

∂ν .
In the above applications, the restrictions on the geometry of the domain Ω are necessary to have

the exact observability for the plate equation. We will make use of results due to Lebeau [14] and to
Tenenbaum and Tucsnak [21].

In the case where the intensity λ in g(t) = λ(t)f is known, our method is inspired by the work of
Puel and Yamamoto [18] where they consider the wave equation and determine a source which is in
L2(Ω) provided that the domain of Γ of observation satisfies the geometric optics condition. Other
works treating sources of the form g(t) = λ(t)f with f a sum of Dirac masses at points located inside
the equations domain are due to Komornik and Yamamoto [11, 12] for the wave equation and the heat
equation, respectively, and to Nicaise and Zäır [16, 15] for the beam equation and the wave equation
in heterogeneous trees, respectively.

As regards the problem of finding more regular sources, we refer to Yamamoto [27, 28] for the
wave equation and a source of the form g(t) = λ(t)f with f ∈ L2(Ω), Wang [24] for the plate equation
and a source of the form g(t) = λ(t)f with f ∈ H1

0 (Ω). Let us mention that in [24], the condition
λ ∈ C3([0, τ ]) and of constant sign is needed and the stability result is based on five boundary
observations on

{x ∈ ∂Ω ; (x− x0) · ν(x) > 0} , x0 ∈ R2.
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Our contribution in Theorem 4.4 consists in the fact that we obtain a stability result with only two
boundary observations and under assumptions which are weaker than those in [24].

Concerning our identifiability result for the problem (1.9) with the number of sources, their location
and their intensity all unknown, the approach we use follows the method of El Badia and Ha Duong
in [8], which is based on Fourier analysis and appropriate uniqueness results. The identifiability and
reconstruction of linear combinations of point sources has also been studied for the heat equation in
El Badia and Ha Duong [7] and for the Stokes equations in Alves and Silvestre [2].

The paper is organized as follows. In Section 2, we present some concepts and preliminary results
about exact observability and exact controllability, and then collect the available known results con-
cerning the exact observability for the plate equation. Section 3 is devoted to the new results for the
stability of sources in the general system (1.1)–(1.3). In Section 4, we apply the results of Section 3
to the plates equation with known intensity and consider the corresponding problem with a potential.
Finally, in Section 5, we consider the identifiability of an unknown linear combination of point sources
in the plate equation.

2 Some background on exact observability and exact controllability

2.1 Basic concepts and auxiliary results

In this section we gather, for the convenience of the reader, some known results on functional analysis
and, in particular, on exact observability and on exact controllability of infinite dimensional systems.
At the end of the section we prove a result, which seems new, concerning an observability inequality
involving weakened norms.

The following lemma is a consequence of the closed graph theorem (see, for instance, Douglas [6]).

Lemma 2.1. Suppose that V1 and V2 are Hilbert spaces, let V ′1 and V ′2 be the corresponding dual spaces
and let F ∈ L(V2, V1). Then the following statements are equivalent:
(a) F maps V2 onto V1;
(b) There exists a constant c > 0 such that

‖F ∗z‖V ′2 > c‖z‖V ′1 (z ∈ V ′1).

In the next results, the notations H, H1 and H2 stand for Hilbert spaces which will be identified
with their duals. We give below two technical results which are slight variations of those from [23,
Section 2.9].

Lemma 2.2. Let Vj , Hj, j ∈ {1, 2} be Hilbert spaces such that Vj ⊂ Hj with continuous and dense
embeddings. Let L ∈ L(H1, H2) such that L(V1) ⊂ V2. Then the restriction of L to V1 is in L(V1, V2).

Proof. We notice that as an operator from V1 to V2, L is closed (we have used the continuous embedding
of Vj into Hj for j ∈ {1, 2}). Therefore, by the closed graph theorem, L is bounded as an operator
from V1 to V2.

Proposition 2.3. Let Vj , Hj, j ∈ {1, 2} be Hilbert spaces such that Vj ⊂ Hj with continuous and
dense embeddings. Let L ∈ L(H1, H2) be such that L∗(V2) ⊂ V1. Then L can be extended to an
operator L̃ ∈ L(V ′1 , V

′
2), where V ′1 (respectively V ′2) is the dual of V1 (respectively of V2) with respect to

the pivot space H1 (respectively H2). Moreover, if L∗(V2) = V1, then there exists m > 0 such that

‖L̃f‖V ′2 > m‖f‖V ′1 (f ∈ V ′1). (2.10)
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Proof. To avoid confusion, we use a different notation, namely Ld, for the restriction of L∗ to V2. We
use Lemma 2.2 to conclude that Ld ∈ L(V2, V1). Hence, Ld∗ ∈ L(V ′1 , V

′
2). We claim that Ld∗ is an

extension of L, i.e., that Ld∗z = Lz holds for all z ∈ H1. For this, it will be enough to show that

〈Ld∗z, ϕ〉V ′2 ,V2
= 〈Lz, ϕ〉V ′2 ,V2

(z ∈ H1, ϕ ∈ V2). (2.11)

Since both the right-hand side and the left-hand side of (2.11) can be written as 〈Lz, ϕ〉H2 , the above
identity is obviously true. Thus, L̃ = Ld∗ is an extension of L.

The uniqueness of L̃ follows from the density of H1 in V ′1 .
Finally, if L∗(V2) = V1 then estimate (2.10) follows by applying Proposition 2.1, with F = Ld.

We also need the following known result (see, for instance [23, Proposition 2.10.3]).

Proposition 2.4. Let A : D(A) → X be a densely defined operator with resolvent set ρ(A) 6= ∅, let
β ∈ ρ(A), let X1 be D(A) with the graph norm and let X−1 be the completion of X with respect to the
norm

‖z‖−1 =
∥∥(βI −A)−1z

∥∥ (z ∈ X). (2.12)

Then A ∈ L(X1, X) and A has a unique extension to an operator in L(X,X−1), also denoted by A.
Moreover,

(βI −A)−1 ∈ L(X,X1), (βI −A)−1 ∈ L(X−1, X)

and these two operators are unitary.

Remark 2.5. In the construction of X1 we may replace A with A∗ and β with β, obtaining a space
denoted Xd

1 . Note that X−1 is the dual of Xd
1 with respect to the pivot space X.

In the sequel, X, Y and U are complex Hilbert spaces which are identified with their duals.
T = (Tt)t>0 is a strongly continuous semigroup on X, with generator A : D(A)→ X and X1 is D(A)
with the norm ‖z‖1 = ‖(βI − A)z‖, where β ∈ ρ(A) is fixed. We denote by X−1 the completion
of X with respect to the norm ‖z‖−1 = ‖(βI − A)−1z‖ and we use the notation A and Tt also for
the extension of the original generator to X and for the extension of the original semigroup to X−1.
Denoting by A∗ the adjoint of A, Xd

1 is the space D(A∗) with the norm ‖z‖d1 = ‖(βI −A∗)z‖ and Xd
−1

is the completion of X with respect to the norm ‖z‖d−1 = ‖(βI − A∗)−1z‖. Then X−1 is the dual of
Xd

1 with respect to the pivot space X.
Let C ∈ L(X1, Y ). For each τ > 0, we define the operator Ψτ ∈ L(X1, L

2(0, τ ;Y )) by

(Ψτz0)(t) = CTtz0 for t ∈ [0, τ ] and for z0 ∈ X1. (2.13)

Note that, for every z0 ∈ D(A), we have Ψτz0 = y, where z0 and y are related by (1.4)–(1.5). We next
recall a definition which is by now classical in infinite dimensional systems theory (see, for instance,
Salamon [19, 20], Weiss [25, 26]).

Definition 2.6. The operator C ∈ L(X1, Y ) is called an admissible observation operator for T if for
some (and hence for all) τ > 0, Ψτ has a continuous extension to X.

Equivalently, the operator C ∈ L(X1, Y ) is an admissible observation operator for T if and only if
there exists a positive constant Kτ such that the solution (z, y) of (1.4)–(1.5) satisfies∫ τ

0
‖y(t)‖2Y dt 6 K2

τ ‖z0‖2X , ∀z0 ∈ D(A).
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Definition 2.7. Let τ > 0. The pair (A,C) is exactly observable in time τ if Ψτ is bounded from
below.

In other words, the pair (A,C) is exactly observable in time τ if and only if there exists a positive
constant kτ such that the solution (z, y) of (1.4)–(1.5) satisfies∫ τ

0
‖y(t)‖2Y dt > k2

τ‖z0‖2X , ∀z0 ∈ D(A).

Let B ∈ L(U,X−1). For each τ > 0 we define the operator Φτ ∈ L(L2(0, τ ;U), X−1) by

Φτu =
∫ τ

0
Tτ−σBu(σ)dσ. (2.14)

Note that Φτu = z(τ) where z is the solution in X−1 of the differential equation

ż(t) = Az(t) +Bu(t), z(0) = 0.

Definition 2.8. The operator B ∈ L(U ;X−1) is called an admissible control operator for T if for some
(and hence for all) τ > 0, Ran Φτ ⊂ X.

From Lemma 2.2, if B ∈ L(U,X−1) is admissible then for every τ > 0 we have

Φτ ∈ L(L2(0, τ ;U), X).

Definition 2.9. Let τ > 0. The pair (A,B) is exactly controllable in time τ if Ran Φτ = X.

If B ∈ L(U,X−1) then, using the duality between Xd
1 (which is D(A∗) with the graph norm) and

X−1 and identifying U with its dual, we have B∗ ∈ L(Xd
1 , U). The adjoint of Φτ from (2.14), which

is in L(Xd
1 , L

2(0,∞;U)), can be expressed using B∗ and the exact controllability of the pair (A,B) is
equivalent to the exact observability of the pair (A∗, B∗). This type of results goes back to Dolecki and
Russell [5] and we state them below in a form borrowed from [23, Proposition 4.4.1,Theorem 10.2.1]

Proposition 2.10. If B ∈ L(U,X−1), then for every τ > 0 and every z0 ∈ Xd
1 ,

(Φ∗τz0)(t) =

{
B∗T∗τ−tz0 for t ∈ [0, τ ],
0 for t > τ.

(2.15)

If B is an admissible control operator for T, so that Φτ can also be regarded as an operator in
L(L2(0,∞;U), X), then its adjoint in L(X,L2(0,∞;U)) is given, for z0 ∈ D(A∗), by the same formula
(2.15).

Proposition 2.11. Suppose that B ∈ L(U,X−1). Then B is an admissible control operator for T if
and only if B∗ is an admissible observation operator for T∗.

The pair (A,B) is exactly controllable in time τ if and only if (A∗, B∗) is exactly observable in
time τ .

If a pair (A,B) is exactly controllable in a time τ0, a natural question is the characterization of
the states which can be reached by more regular inputs. Before stating a result in this direction, we
introduce additional notations. For a Hilbert space V , and for τ > 0 we set

H1
L(0, τ ;V ) =

{
u ∈ H1(0, τ ;V ) | u(0) = 0

}
,

H1
R(0, τ ;V ) =

{
u ∈ H1(0, τ ;V ) | u(τ) = 0

}
.

The following result has been proved in Tucsnak and Weiss [22] in the case of a finite dimensional
input space U and in the general form below in [23, Theorem 10.3.6].
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Proposition 2.12. Suppose that B ∈ L(U,X−1) is an admissible control operator for T. Then for all
τ > 0,

Φτ ∈ L(H1
L(0, τ ;U), Z),

where
Z = X1 + (βI −A)−1BU = (βI −A)−1(X +BU), (2.16)

for some β ∈ ρ(A).
Suppose moreover that the pair (A,B) is exactly controllable in time τ0. Then for all τ > τ0, Φτ

is onto from H1
L(0, τ ;U) to Z and there exists Mτ > 0 such that, for every z0 ∈ Z, the minimal norm

control u with Φτu = z0 satisfies
‖u‖H1

L(0,τ ;U) 6 Mτ‖z0‖Z . (2.17)

Remark 2.13. Note that the space Z defined by (2.16) does not depend on the choice of β. The
norm of Z is defined by

‖z‖2Z = inf
{
‖x‖2X + ‖u‖2U ; x ∈ X, u ∈ U, z = (βI −A)−1(x+Bu)

}
.

If E is a dense subspace of X we denote by E′ the dual of E with respect to the pivot space
X. Moreover, we denote by

[
H1
L(0, τ ;U)

]′ (respectively by
[
H1
R(0, τ ;U)

]′) the dual of H1
L(0, τ ;U)

(respectively H1
R(0, τ ;U)) with respect to the pivot space L2(0, τ ;U).

Let (A,C) be exactly observable in time τ0. Another natural question, which is dual to that in
Proposition 2.12, is to find a lower bound of ‖Ψτz0‖w, where ‖ · ‖w is a norm which is weaker than the
norm in L2(0, τ ;Y ). A partial answer is given by the result below.

Proposition 2.14. Let A : D(A) → X be a densely defined operator and let C ∈ L(X1, Y ) be an
admissible observation operator for T. For τ > 0 let Ψτ be the output map corresponding to the
pair (A,C), as defined in (2.13). Then, for each τ > 0, Ψτ has a unique continuous extension
Ψτ ∈ L((Zd)′,

[
H1
R(0, τ ;Y )

]′), where

Zd = (βI −A∗)−1(X + C∗Y ). (2.18)

Moreover, assume that (A,C) is exactly observable in some time τ0 > 0. Then, for each τ > τ0, there
exists a constant mτ > 0 such that, for every f ∈ (Zd)′, we have

‖Ψτf‖[H1
R(0,τ ;Y )]′ > mτ‖f‖(Zd)′ . (2.19)

Proof. Since C is an admissible observation operator for T, Proposition 2.11 yields that C∗ is an
admissible control operator for T∗. By applying Proposition 2.12, it follows that Φd

τ maps H1
L(0, τ ;Y )

to Zd. As a consequence Φd
τ Rτ maps H1

R(0, τ ;Y ) to Zd, with Rτ defined by

( Rτf) (s) = f(τ − s) (s ∈ [0, τ ]).

On the other hand, by using Proposition 2.10 we have

Φd
τ Rτ = Ψ∗τ ,

so that the conclusion follows from Proposition 2.3.
If (A,C) is exactly observable in time τ0, we can apply Proposition 2.11 to obtain that (A∗, C∗)

is exactly controllable in time τ0. Let τ > τ0. By applying again Proposition 2.12, it follows that Φd
τ

maps H1
L(0, τ ;Y ) onto Zd and the conclusion follows again from Proposition 2.3.

Remark 2.15. In (2.18), A∗ is extended to X as a skew-adjoint operator from X to Xd
−1 (the com-

pleted space of X for the norm z 7→
∥∥(βI −A∗)−1z

∥∥ (see Proposition 2.4).
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2.2 Exact observability for the plate equation

In this subsection, we collect some known results for the Euler-Bernoulli plate equation and obtain a
new result concerning the observability for a problem with a potential term.

Let Ω be a smooth domain of R2 and Γ a nonempty open subset of ∂Ω. We first assume that Γ
satisfies the following geometric optics condition: for all x ∈ Ω, any ray coming from x at initial time,
propagating at velocity one and following the geometric optics laws, meets Γ in finite time.

This condition is sufficient and almost necessary to have the exact observability of the wave equa-
tion. Lebeau proved in [14] that this condition is also sufficient for the plate equation

∂2w

∂t2
+ ∆2w = 0, in (0, τ)× Ω,

w = ∆w = 0 on (0, τ)× ∂Ω,

w(0, x) = w0(x),
∂w

∂t
(0, x) = w1(x) x ∈ Ω.

(2.20)

More precisely, the following result has been proved in [14].

Theorem 2.16. Let τ > 0, let Ω be a smooth bounded domain of R2 and assume that Γ satisfies the
geometric optics condition. Then, for any initial data

w0 ∈ H5(Ω), w0 = ∆w0 = ∆2w0 = 0 on ∂Ω, and

w1 ∈ H3(Ω), w1 = ∆w1 = 0 on ∂Ω,

the system (2.20) has a unique solution w ∈ C0([0, τ ];H5(Ω)) ∩ C1([0, τ ];H3(Ω)) that satisfies∫ τ

0

∥∥∥∥ ∂2w

∂t∂ν

∥∥∥∥2

L2(Γ)

dt > k2
τ

(
‖w0‖2H3(Ω) + ‖w1‖2H1(Ω)

)
.

More recently, in [21], it has been proved that the geometric optics condition is not necessary in
the case of a rectangle. More precisely a result in [21] states that:

Theorem 2.17. Let τ > 0 and let Ω = (0, a) × (0, b) (a, b > 0). Assume that Γ is an open subset of
∂Ω containing both a horizontal and a vertical segment of nonzero length. Then, for any

w0 ∈ H5(Ω), w0 = ∆w0 = ∆2w0 = 0 on ∂Ω, and

w1 ∈ H3(Ω), w1 = ∆w1 = 0 on ∂Ω,

the system (2.20) has a unique solution w ∈ C0([0, τ ];H5(Ω)) ∩ C1([0, τ ];H3(Ω)) that satisfies∫ τ

0

∥∥∥∥ ∂2w

∂t∂ν

∥∥∥∥2

L2(Γ)

dt > k2
τ

(
‖w0‖2H3(Ω) + ‖w1‖2H1(Ω)

)
.

Moreover, the above inequality is false if Γ does not contain a vertical or an horizontal subset.

Using classical arguments, we deduce from the two above theorems the following observability
result:

Corollary 2.18. Assume that Ω is a bounded domain of R2 and Γ is an open subset of ∂Ω such that
one of the following assertions holds:
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1. ∂Ω is smooth and Γ satisfies the geometric optics conditions;

2. Ω is a rectangle (0, a)× (0, b) and Γ contains both a horizontal and a vertical segment of nonzero
length.

Suppose that
w0 ∈ H5(Ω), w0 = ∆w0 = ∆2w0 = 0 on ∂Ω, and

w1 ∈ H3(Ω), w1 = ∆w1 = 0 on ∂Ω.

Then, the solution w ∈ C0([0, τ ];H5(Ω)) ∩ C1([0, τ ];H3(Ω)) of the system (2.20) satisfies∫ τ

0

∥∥∥∥∂∆w
∂ν

∥∥∥∥2

L2(Γ)

dt > kτ

(
‖w0‖2H3(Ω) + ‖w1‖2H1(Ω)

)
.

Now we consider the exact observability of the problem with potential
∂2w

∂t2
+ ∆2w + dw = 0, in (0, τ)× Ω,

w = ∆w = 0 on (0, τ)× ∂Ω,

w(0, x) = w0(x),
∂w

∂t
(0, x) = w1(x) x ∈ Ω,

(2.21)

with d ∈ H1+α(Ω), with α > 0. We can deduce from Theorems 2.16 and 2.17 the following result.

Theorem 2.19. Let Ω and Γ satisfy the assumptions of Corollary 2.18. Assume that Γ1 is an open
nonempty subset of Γ. and assume that d ∈ H1+α(Ω), with α > 0. Then, for any

w0 ∈ H5(Ω), w0 = ∆w0 = ∆2w0 = 0 on ∂Ω, and

w1 ∈ H3(Ω), w1 = ∆w1 = 0 on ∂Ω,

the system (2.21) has a unique solution w ∈ C0([0, τ ];H5(Ω)) ∩ C1([0, τ ];H3(Ω)) and this solution
satisfies ∫ τ

0

(∥∥∥∥∂∆w
∂ν

∥∥∥∥2

L2(Γ)

+
∥∥∥∥∂w∂ν

∥∥∥∥2

L2(Γ1)

)
dt > kτ

(
‖w0‖2H3(Ω) + ‖w1‖2H1(Ω)

)
.

To prove Theorem 2.19, we use a strategy borrowed from [23, Section 6.3]. Let us first set

H = H1
0 (Ω), D(A0) =

{
ϕ ∈ H5(Ω) | ϕ = ∆ϕ = ∆2ϕ = 0 on ∂Ω

}
,

Y = L2(Γ)× L2(Γ1), A0ϕ = ∆2ϕ ∀ϕ ∈ D(A0).

Then we have
D(A1/2

0 ) =
{
ϕ ∈ H3(Ω) | ϕ = ∆ϕ = 0 on ∂Ω

}
,

and if we set
X = D(A1/2

0 )×H, D(A) = D(A0)×D(A1/2
0 ),

A =
[

0 I
−A0 0

]
,

9



the operator A is skew-adjoint and thus, by Stone’s theorem, is the generator of a strongly continuous
group of isometries T in X. The operator C ∈ L(D(A), Y ) is defined by

C

[
ϕ
ψ

]
=

[ ∂ϕ
∂ν

∂(A
1/2
0 ϕ)
∂ν

] ([
ϕ
ψ

]
∈ D(A)

)
and it can be checked that C is an admissible operator for T.

We also define the following operators:

P0 ∈ L(D(A1/2
0 ), H), P0f = −df (f ∈ H),

P =
[

0 0
P0 0

]
∈ L(X),

AP = A+ P with D(AP ) = D(A).

Since AP is a bounded perturbation of A, according to [17, Theorem 1.1, p.76], AP is the generator of
a strongly continuous semigroup TP on X. We remark that P0 ∈ L(H). Moreover, we can check that
A0 − P0 is a self-adjoint operator with compact resolvents. In particular, it is diagonalisable with an
orthonormal basis (ϕk)k∈N∗ of eigenvectors and the corresponding family of real eigenvalues (λk)k∈N∗

satisfies λk > −‖P0‖L(H) for all k ∈ N∗, and

lim
k→∞

λk = +∞.

We can assume that the sequence (λk)k∈N∗ is non decreasing. We extend the sequence (ϕk)k∈N∗ to
a sequence indexed by Z∗ by setting ϕk = −ϕ−k for every k ∈ Z∗−. We introduce the real sequence
(µk)k∈Z∗ by

µk =
√
|λk| if k > 0 and µk = −µ−k if k < 0.

We denote

W0 = span
{[ 1

i sgn(k)ϕk
ϕk

]
; k ∈ Z∗, µk = 0

}
,

WN = span
{[ 1

iµk
ϕk

ϕk

]
; k ∈ Z∗, |k| < N, µk 6= 0

}
,

with N ∈ N∗ such that λN > 0, and
YN = W0 +WN .

We also set

VN = clos span
{[ 1

iµk
ϕk

ϕk

]
; k ∈ Z∗, |k| > N

}
.

It is not difficult to check that X = YN ⊕ VN and that YN and VN are invariant under TP . Let us
consider the restriction PVN

∈ L(VN , X) of P to VN . We have

Lemma 2.20. Let ε > 0. Then there exists a positive constant K depending on Ω and on ε such that

‖PVN
‖L(VN ,X) 6 K

‖d‖H1(Ω)

λ
1/4−ε
N

.
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Proof. Assume that z =
[
f
g

]
∈ X. Then

‖PVN
z‖X = ‖df‖H1

0 (Ω) .

Using Hölder’s inequality, we deduce from the above inequality

‖PVN
z‖X 6 ‖d‖H1(Ω) ‖f‖W 1,∞(Ω) .

From Sobolev embedding theorem, we deduce that for ε > 0, there exists a positive constant K such
that

‖PVN
z‖X 6 K ‖d‖H1(Ω) ‖f‖H2+4ε(Ω) . (2.22)

On the other hand, there exists a positive constant K such that

‖f‖H2+4ε(Ω) 6 K ‖f‖
D(A

1/4+ε
0 )

= K ‖f‖
D(A

1/4+ε
P )

.

In particular, if z ∈ VN , then

‖f‖H2+4ε(Ω) 6 K
1

|λN |1/4−ε
‖f‖

D(A
1/2
P )

= K
1

|λN |1/4−ε
‖f‖

D(A
1/2
0 )

.

The above equation and (2.22) yield the desired result.

We are now in position to prove Theorem 2.19:

Proof of Theorem 2.19. We know from Corollary 2.18 (A
∣∣
VN
, CN ) is exactly observable in any time

τ > 0. Denote AN = AP
∣∣
VN

and CN = C
∣∣
VN

. By using the fact that, according to Lemma 2.20 we
have

lim
N→∞

‖PVN
‖L(VN ,X) = 0,

and Proposition 5.3.3 from [23] it follows that the pair (AN , CN ) is also exactly observable for all
τ > 0, provided that N is large enough.

On the other hand, if φ =
[
ϕ
ψ

]
∈ D(AP ) is an eigenvector of AP associated to the eigenvalue

iµ such that Cφ = 0 then an easy calculation shows that ϕ ∈ D(A0) is an eigenvector of A0 − P0

associated to the eigenvalue µ2:
∆2ϕ+ dϕ = µ2ϕ in Ω, (2.23)

ϕ = 0 and ∆ϕ = 0 on ∂Ω. (2.24)

Moreover the condition Cφ = 0 implies that

∂ϕ

∂ν
= 0 and

∂∆ϕ
∂ν

= 0 on Γ1.

From a unique continuation result for the bilaplacian, we deduce that ϕ = 0 and therefore that φ = 0.
By Hautus lemma (see [9]), we conclude that (AP

∣∣
YN
, C
∣∣
YN

) is exactly observable for all τ > 0. Finally,
since AN and AP

∣∣
YN

have no common eigenvalues, we can apply Theorem 3.3 of [22] to deduce that
(AP , C) is exactly observable in any time τ > 0.
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3 Stability for an inverse source problem with known intensity

Throughout this section we continue to use notation introduced in the previous ones. More precisely,
X,Y are Hilbert spaces, A : D(A) → X is the generator of a strongly continuous semigroup T on X
and C ∈ L(D(A), Y ) is an admissible observation operator for T.

We consider the differential equation

ż(t) = Az(t) + λ(t)f, z(0) = z0 (3.1)

where z0 ∈ X and f ∈ Z ′, with Z = (βI−A∗)−1(X+C∗Y ). Assume τ > 0 and that we are measuring

y(t) = Cz(t) (t ∈ [0, τ ]). (3.2)

Our aim is to study the mapping f 7→ y, assuming that λ and z0 are given. It is convenient to
recall that, in the case where f ∈ X and z0 ∈ D(A), the solution of (3.1) satisfies z ∈ C0([0, τ ];D(A))∩
C1([0, τ ];X) and, by Duhamel formula, y satisfies

y(t) =
∫ t

0
λ(t− s)CTsfds+ CTtz0 =

∫ t

0
λ(t− s)Ψτf(s)ds+ Ψτz0(t).

Proposition 3.1. Let τ > 0, let Y be a Hilbert space and λ ∈ H1(0, τ) with λ(0) 6= 0. Let S :
L2(0, τ ;Y )→ H1

L(0, τ ;Y ) be defined by

(Sg)(t) =
∫ t

0
λ(t− s)g(s)ds. (3.3)

Then S is an isomorphism from L2(0, τ ;Y ) onto H1
L(0, τ ;Y ). Moreover, the operator S admits a

unique extension to an isomorphism S̃ from
[
H1
R(0, τ ;Y )

]′ onto L2(0, τ ;Y ).

Proof. The fact that S is an isomorphism is well-known from the the theory of Volterra integral
operators (see, for instance, Kress [13, pp.33-34]). Denote X = L2(0, τ ;Y ), X1 = H1

L(0, τ ;Y ) and let
A ∈ L(X1,X ) be the inverse of S. Then A can be seen as an unbounded densely defined operator
in X so that A∗ = (S∗)−1. It is easy to check that S∗ maps L2(0, τ ;Y ) onto H1

R(0, τ ;Y ) so that
D(A∗) = H1

R(0, τ ;Y ). By applying Proposition 2.4 and Remark 2.5 to A, we obtain that A has a
unique extension to an isomorphism Ã ∈ L(L2(0, τ ;Y ),

[
H1
R(0, τ ;Y )

]′). Consequently, S̃ := Ã−1 is an
isomorphism from

[
H1
R(0, τ ;Y )

]′ onto L2(0, τ ;Y ) and it is an extension of S.

Now we can show that for less regular data, the mapping f 7→ y associated with system (3.1)–(3.2)
is still well defined.

Proposition 3.2. Assume that λ ∈ H1(0, τ), λ(0) 6= 0. Assume that f ∈ Z ′ and that z0 ∈ X. Then
equation (3.1) admits a unique solution z ∈ C0([0, τ ];X) such that y ∈ L2(0, τ ;Y ).

Proof. The first conclusion follows from [23, Theorem 4.1.6], by using the fact that the right-hand side
of (3.1) belongs to H1(0, τ ;X−1)

On the other hand, y = (S̃ ◦ Ψτ )f + Ψτz0 ∈ L2(0, τ ;Y ) where S̃ :
[
H1
R(0, τ ;Y )

]′ → L2(0, τ ;Y ) is
the extension of S defined in Proposition 3.1 and Ψτ : Z ′ →

[
H1
R(0, τ ;Y )

]′ is defined in Proposition
2.14.
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In order to study the stability for the inverse source problem, we have to consider two sources
f (1) and f (2) and the corresponding solutions z(1) and z(2) and observations y(1) and y(2). Due to the
linearity of the problem, it is enough to consider the system

ż(t) = Az(t) + λ(t)f, z(0) = 0, (3.4)

y(t) = Cz(t) (t ∈ [0, τ ]). (3.5)

Assume that C ∈ L(X1, Y ) is an admissible observation operator for T and that λ ∈ H1(0, τ) with
λ(0) 6= 0. For each τ > 0, we introduce the operator Eτ ∈ L(X,H1

L(0, τ ;Y )) defined by

(Eτf)(t) = [(S ◦Ψτ )f ](t) =
∫ t

0
λ(t− s)Ψτf(s)ds (t ∈ [0, τ ]).

By using Proposition 3.1 we extend Eτ to an operator Fτ ∈ L(Z ′, L2(0, τ ;Y )) defined by

(Fτf)(t) = [(S̃ ◦Ψτ )f ](t) (t ∈ [0, τ ]),

where S̃ is the operator constructed in Proposition 3.1. The main result of this section is

Theorem 3.3. Let X, Y be Hilbert spaces and assume that the pair (A,C) is exactly observable in
some time τ0 > 0 and that λ ∈ H1(0, τ) with λ(0) 6= 0. Then, the following properties hold:

1. for every τ > τ0, Eτ is one-to-one from X to H1
L(0, τ ;Y ) and there exists a positive constant κτ

such that
‖f‖X 6 κτ ‖Eτf‖H1

L(0,τ ;Y ) , ∀f ∈ X; (3.6)

2. for every τ > τ0, Fτ is one-to-one from Z ′ to L2(0, τ ;Y ) and there exists a positive constant κ̃τ
such that

‖f‖Z′ 6 κ̃τ ‖Fτf‖L2(0,τ ;Y ) , ∀f ∈ Z ′. (3.7)

Proof. In the first case, since λ(0) 6= 0, S : L2(0, τ ;Y )→ H1
L(0, τ ;Y ) is an isomorphism and we have

‖Ef‖H1
L(0,τ ;Y ) = ‖(S ◦Ψτ )f‖H1

L(0,τ ;Y ) > MS‖Ψτf‖L2(0,τ ;Y ).

From the exact observability of (A,C) in time τ , we deduce

‖Ψτf‖L2(0,τ ;Y ) > kτ‖f‖X .

Combining the two above inequalities yields

‖Ef‖H1
L(0,τ ;Y ) > κτ‖f‖X (f ∈ X).

For the second case the proof is similar. By using Propositions 3.1 and 2.14, we have

‖Ff‖L2(0,τ ;Y ) =
∥∥∥(S̃ ◦Ψτ )f

∥∥∥
L2(0,τ ;Y )

> M
S̃
‖Ψτf‖[H1

R(0,τ ;Y )]′ ,

and
‖Ψτf‖[H1

R(0,τ ;Y )]′ > mτ‖f‖Z′ .

Thus,
‖Ff‖L2(0,τ ;Y ) > M

S̃
mτ‖f‖Z′ (f ∈ Z ′).
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4 Inverse source problems for the plate equation with known inten-
sity

In this section we apply the general results obtained in the previous sections to the inverse source
problem for the plate equation, assuming that the intensity λ is known and that the domain Ω satisfies
the geometric conditions already mentioned.

4.1 Recovery of point sources

We first introduce some notation. Consider the following Hilbert spaces

X = H1
0 (Ω)×H−1(Ω), W =

{
ϕ ∈ H3(Ω)| ϕ = ∆ϕ = 0 on ∂Ω

}
(4.8)

and the skew-adjoint operator defined by

D(A) = W ×H1
0 (Ω)

A

[
ϕ
ψ

]
=
[

ψ
−∆2ϕ

] ( [
ϕ
ψ

]
∈ D(A)

)
.

(4.9)

It is easy to check that the dual of X1 (i.e., of D(A) endowed with the graph topology) with respect
to the pivot space X is

X−1 = H−1(Ω)×W ′, (4.10)

where W ′ is the dual of W with respect to the pivot space L2(Ω).
Let Γ be an open subset of ∂Ω, denote Y = L2(Γ) and let C ∈ L(X1, Y ) be defined by

C

[
ϕ
ψ

]
=
∂ϕ

∂ν

∣∣∣∣
Γ

( [
ϕ
ψ

]
∈ D(A)

)
.

It is well known that the C is an admissible observation operator for the semigroup T generated by A.
Finally, for ξ ∈ Ω we define f ∈ X−1 by

f =
[

0
δξ

]
.

By applying Proposition 3.2 with the above choice of spaces and operators we obtain

Proposition 4.1. Let w0 ∈ H1
0 (Ω) and w1 ∈ H−1(Ω). Let Γ be an open subset of ∂Ω. Then, for any

τ > 0 and λ ∈ H1(0, τ), λ(0) 6= 0, the system (1.7) admits a unique solution

w ∈ C0([0, τ ];H1
0 (Ω)) ∩ C1([0, τ ];H−1(Ω)),

such that y defined by (1.8) is in L2(0, τ ;L2(Γ)).

The main result of the section is the following

Theorem 4.2. Let τ > 0, let Ω ⊂ R2 and let Γ be a nonempty open subset of ∂Ω satisfying one of
following conditions:

1. ∂Ω is smooth and Γ satisfies the geometric optics conditions;

2. Ω is a rectangle and Γ contains both a horizontal and a vertical segment of nonzero length.
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Let ε > 0 and let ξ(1), ξ(2) ∈ Ω be two points in Ω, each one at distance at least ε from ∂Ω. Assume
that λ ∈ H1(0, τ) with λ(0) 6= 0, w0 ∈ H1

0 (Ω), w1 ∈ H−1(Ω) and denote

y(j) =
∂w(j)

∂ν

∣∣∣∣
Γ

j ∈ {1, 2},

where w(j) is the solution of (1.7) with ξ = ξ(j), j ∈ {1, 2}.
Then there exists K > 0, depending only on Ω, Γ, ε and τ such that

‖y(1) − y(2)‖L2(0,τ ;L2(Γ)) > K|ξ(1) − ξ(2)|,

where | · | stands for the standard norm in R2.

Proof. We write

z =
[
w
∂w
∂t

]
, f =

[
0

δξ(1) − δξ(2)

]
.

Then, with the above choice of spaces and operators, (1.7) and (1.8) can be written in the form (3.4),
(3.5).

On the other hand, applying Theorems 2.16 and 2.17 we know that the pair (A,C) is exactly
observable in any time τ > 0 if condition 1 (respectively condition 2) in the statement of the theorem
is satisfied.

To apply Theorem 3.3, it remains to determine Z and Z ′. We can take β = 0 in (2.16) so that

Z = A−1(X + C∗Y ).

To obtain the adjoint of C, we consider the operator D ∈ L(L2(Γ);L2(Ω)) defined by
−∆(Dg) = 0 in Ω,
(Dg) = 0 on ∂Ω \ Γ,
(Dg) = g on Γ,

for all g ∈ L2(Γ). In other words, Dg is the unique element of L2(Ω) such that∫
Ω

(Dg)∆ϕ dx =
∫

Γ
g
∂ϕ

∂ν
dσ (ϕ ∈ H2(Ω) ∩H1

0 (Ω)).

We also define by A0 the operator

A0 : D(A0) = H2(Ω) ∩H1
0 (Ω)→ H = L2(Ω), ϕ 7→ −∆ϕ.

The above operator is definite positive and invertible and we can consider its square root

A
1/2
0 : D(A1/2

0 ) = H1
0 (Ω)→ H,

which is also invertible.
It is easy to check that the H1

0 norm is equivalent to the norm

ϕ 7→ ‖A1/2
0 ϕ‖L2(Ω).

Let us consider (ϕ,ψ) ∈ D(A) and g ∈ L2(Γ) = Y . By definition of C, we have〈
C

[
ϕ
ψ

]
, g

〉
L2(Γ)

=
∫

Γ
g
∂ϕ

∂ν
dσ.
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Therefore, 〈
C

[
ϕ
ψ

]
, g

〉
L2(Γ)

=
∫

Ω
(Dg)∆ϕ dx = −〈A0ϕ,Dg〉H .

Now, we notice that for f ∈ D(A0),

〈A0ϕ, f〉H = 〈ϕ, f〉
D(A

1/2
0 )

= 〈ϕ, f〉
D(A

3/2
0 ),D(A

−1/2
0 ),D(A

1/2
0 )

= 〈ϕ, f〉W,H−1(Ω),H1
0 (Ω) ,

where 〈·, ·〉V,V ′,H denotes the duality product of an element of V and of an element of V ′, with respect
to the pivot space H. By density, for f ∈ H we have

〈A0ϕ, f〉H = 〈ϕ, f〉W,H−1(Ω),H1
0 (Ω) ,

and thus 〈
C

[
ϕ
ψ

]
, g

〉
L2(Γ)

=
〈[
ϕ
ψ

]
,

[
Dg
0

]〉
D(A),D(A)∗

.

We deduce from the above relation that for all g ∈ L2(Γ),

C∗g =
[
Dg
0

]
.

This implies that
Z = X1 + {0} ×DY ⊂W × L2(Ω).

In particular, H−1(Ω)×W ′ ⊂ Z ′, with continuous imbedding.
Consequently Theorem 3.3 yields

‖y(1) − y(2)‖L2(Γ) > κτ‖δξ(1) − δξ(2)‖W ′ ,

for some κτ > 0. This, together with

‖δξ(1) − δξ(2)‖W ′ > γ|ξ(1) − ξ(2)|, (4.11)

imply the conclusion. The inequality (4.11) is proven in the Lemma 4.3.

The following result is very similar to results used and proved in [11, 12], but we cannot apply
directly their results. However the proof of the next lemma is based on the same kind of arguments
than in [11, 12].

Lemma 4.3. If ε > 0 is small enough then there exists a positive constant γ = γ(Ω, ε) such that, for
all a, b ∈ Ω, with dist(a, ∂Ω) > ε and dist(b, ∂Ω) > ε,

|a− b| 6 γ ‖δa − δb‖W ′ .

Proof. We denote by Ωε the open set defined by

Ωε = {x ∈ Ω ; dist(x, ∂Ω) > ε} .

For ε small enough, Ωε is not empty. There exists a function ϕ1 ∈W such that

ϕ1(x1, x2) = x1 ((x1, x2) ∈ Ωε).

Since a, b ∈ Ωε, we have
〈δa − δb, ϕ1〉 = a1 − b1.

Thus,
|a1 − b1| 6 γ1(Ω, ε) ‖δa − δb‖W ′

We can use a similar argument for the second coordinate to conclude the proof of the lemma.
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4.2 Recovery of sources in H1
0 (Ω)

We consider the initial value problem
∂2w

∂t2
+ ∆2w = λ(t)f in (0, τ)× Ω,

w = ∆w = 0 on (0, τ)× ∂Ω,

w(0, x) = w0(x),
∂w

∂t
(0, x) = w1(x) x ∈ Ω;

(4.12)

where λ is given and satisfies λ ∈ H1(0, τ) and λ(0) 6= 0. We aim to find f ∈ H1
0 (Ω) by knowing either

∂2w

∂t∂ν
or

∂2∆w
∂t∂ν

.

In this case, we obtain the following stability results.

Theorem 4.4. Let Ω, Γ, w0, w1, τ and λ satisfy the conditions of Theorem 4.2. Suppose that w(j) is
the solution of (1.7) with f = f (j) ∈ H1

0 (Ω), j ∈ {1, 2}. Then there exists K > 0, depending only on
Ω, Γ and τ such that ∥∥∥∥∥∂2w(1)

∂t∂ν
− ∂2w(2)

∂t∂ν

∥∥∥∥∥
L2(0,τ ;L2(Γ))

> K
∥∥∥f (1) − f (2)

∥∥∥
H1

0 (Ω)
,

and ∥∥∥∥∥∂2∆w(1)

∂t∂ν
− ∂2∆w(2)

∂t∂ν

∥∥∥∥∥
L2(0,τ ;L2(Γ))

> K
∥∥∥f (1) − f (2)

∥∥∥
H1

0 (Ω)
.

Proof. We set

H = H1
0 (Ω), D(A0) =

{
ϕ ∈ H5(Ω) | ϕ = ∆ϕ = ∆2ϕ = 0 on ∂Ω

}
,

Y = L2(Γ), A0ϕ = ∆2ϕ ∀ϕ ∈ D(A0).

With this choice of spaces and operators, one can easily check that A0 is self-adjoint, positive and
boundedly invertible and that

D(A
1
2
0 ) =

{
ϕ ∈ H3(Ω) | ϕ = ∆ϕ = 0 on ∂Ω

}
.

We set X = D(A
1
2
0 )×H, D(A) = D(A0)×D(A

1
2
0 ) and

A =
[

0 I
−A0 0

]
.

The observation operator is given by

C

[
ϕ
ψ

]
=
∂ψ

∂ν

∣∣∣∣
Γ

∀
[
ϕ
ψ

]
∈ D(A0)×D(A

1
2
0 ).

and

F =
[

0
f

]
∈ X.
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The system (4.12) can be written as (3.4)–(3.5) and from Theorems 2.16 and 2.17, the couple
(A,C) is exactly observable for all τ > 0. Using Theorem 3.3, we deduce

‖y(1) − y(1)‖H1
L(0,τ ;Y ) > κτ‖f (1) − f (2)‖H1

0 (Ω).

To treat the other case, we consider the observation operator given by

C

[
ϕ
ψ

]
=
∂∆ϕ
∂ν

∣∣∣∣
Γ

∀
[
ϕ
ψ

]
∈ D(A0)×D(A

1
2
0 )

and we apply Corollary 2.18 to deduce that the couple (A,C) is exactly observable for all τ > 0.

4.3 Recovery of H1
0 (Ω) sources in the problem with potential

We can also deduce some stability results for the inverse source problem for the plate equation with
a potential d ∈ H1+α(Ω), with α > 0. Let us consider the system

∂2w

∂t2
+ ∆2w + dw = λ(t)f in (0, τ)× Ω,

w = ∆w = 0 on (0, τ)× ∂Ω,

w(0, x) = w0(x),
∂w

∂t
(0, x) = w1(x) x ∈ Ω;

(4.13)

where λ is a given function satisfying λ ∈ H1(0, τ) and λ(0) 6= 0. We aim to find f ∈ H1
0 (Ω) by

knowing
∂∆w
∂ν

and
∂w

∂ν
.

Combining Theorems 3.3 and 2.19, we get the following result.

Theorem 4.5. Let τ > 0, λ ∈ H1(0, τ), λ(0) 6= 0 and Γ an open subset of Ω satisfying one of the
following assumptions:

1. ∂Ω is smooth and Γ satisfies the geometric optics condition;

2. Ω is a rectangle and Γ contains both a horizontal and a vertical segment of nonzero lengtht.

Let f (1), f (2) ∈ H1
0 (Ω) and suppose that w(j) is the solution of (4.13) with f = f (j), j ∈ {1, 2}. Then

there exists K > 0, depending only on Ω, Γ and τ such that∥∥∥∥∥∂∆w(1)

∂ν
− ∂∆w(2)

∂ν

∥∥∥∥∥
L2(0,τ ;L2(Γ))

+

∥∥∥∥∥∂w(1)

∂ν
− ∂w(2)

∂ν

∥∥∥∥∥
L2(0,τ ;L2(Γ))

> K
∥∥∥f (1) − f (2)

∥∥∥
H1

0 (Ω)
.

5 Inverse source problems for the plate equation with unknown in-
tensities

In this section, we establish an identifiability result for the unknown source term
∑N

j=1 λj(t)δξj in the
plates equation 

∂2w

∂t2
+ ∆2w =

N∑
j=1

λj(t)δξj in (0, τ)× Ω,

w = ∆w = 0 on (0, τ)× ∂Ω,

w(0, x) = w0(x),
∂w

∂t
(0, x) = w1(x) for x ∈ Ω,

(5.14)
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where now the number N of point sources, their locations ξj ∈ Ω and the functions λj are all unknown.
The problem involves now more unknowns and therefore we consider further boundary measurements
than those used to solve the problem of Subsection 4.1. The method employed here is different from
the method used in the previous section. This explains that the assumptions are quite different. In
particular, we assume that λj(0) = 0 and that there exists a time τ1 ∈ (0, τ) such that

λj(t) = 0 (t > τ1). (5.15)

To deal with the corresponding inverse problem, we follow a method inspired by [8], based on the
Fourier transformation.

We first present a regularity result for (5.14). In what follows, for ε > 0, we set

Ωε = {x ∈ Ω | dist(x, ∂Ω) < ε}

and we use the notation from Subsection 4.1 for the spaces X, W and the operator A, i.e.

X = H1
0 (Ω)×H−1(Ω), W =

{
ϕ ∈ H3(Ω)| ϕ = ∆ϕ = 0 on ∂Ω

}
(5.16)

D(A) = W ×H1
0 (Ω)

A

[
ϕ
ψ

]
=
[

ψ
−∆2ϕ

] ( [
ϕ
ψ

]
∈ D(A)

)
.

(5.17)

We recall that, if we set fj =
[

0
δξj

]
, g(t) =

∑N
j=1 λj(t)fj and z0 =

[
w0

w1

]
, the function w is the solution

of (5.14) if and only if z =
[
w
∂w
∂t

]
is the solution of

ż(t) = Az(t) + g(t) (t > 0)

z(0) = z0.
(5.18)

Henceforth, we will use also the notation G(t) :=
∑N

j=1 λj(t)δξj .

Proposition 5.1. Let

w0 ∈ H5(Ω), w0 = ∆w0 = ∆2w0 = 0 on ∂Ω, and

w1 ∈ H3(Ω), w1 = ∆w1 = 0 on ∂Ω.

Let {ξ1, ..., ξN} ⊂ Ω and ε = minj∈{1,...,N}{dist(ξj , ∂Ω)}. Let Γ be a nonempty open subset of ∂Ω.
Then, for any τ > 0 and λj ∈ C2([0, τ ]) (j = 0, ..., N) with λj(0) = λ̇j(0) = 0, the system (5.14)
admits a unique solution

w ∈ C0([0, τ ];H1
0 (Ω)) ∩ C0([0, τ ];H5(Ωε)) ∩ C1([0, τ ];H3(Ωε)) (5.19)

such that
∂w

∂ν
∈ L2(0, τ ;L2(Γ)),

∂∆w
∂ν

∈ L2(0, τ ;L2(Γ)).

Proof. We consider the spaces and the operator defined by (5.16)–(5.17). A simple calculation shows
that

D(A2) =
{
ϕ ∈ H5(Ω) | ϕ = ∆ϕ = ∆2ϕ = 0 on ∂Ω

}
×
{
ϕ ∈ H3(Ω) | ϕ = ∆ϕ = 0 on ∂Ω

}
19



and z0 =
[
w0

w1

]
∈ D(A2). Moreover, g ∈ H2(0, τ,X−1) (recall that X−1 = H−1(Ω) × W ′). Then

z =
[
w
∂w
∂t

]
∈ C0([0, τ ];X). The additional assumptions on the data will allow to improve this result.

Since the problem is linear we can analyse separately the problem (5.14) with G ≡ 0 and the
problem (5.14) with w0 ≡ w1 ≡ 0.

In the first case, we get from classical theory on semigroups that z =
[
w
∂w
∂t

]
∈ C0([0, τ ];D(A2)) and

therefore ∂w
∂ν and ∂∆w

∂ν have the stated summability properties. In the second case, we note that each
λj can be written in the form

λj(t) =
∫ t

0

(∫ s

0
λ̈j(θ)dθ

)
ds,

and that the unique solution of (5.14) is given by

w(t, x) =
∫ t

0

(∫ s

0
u(θ, x)dθ

)
ds,

where u ∈ C0([0, τ ];H1
0 (Ω)) ∩C1([0, τ ];H−1(Ω)) solves (5.14) when w0 ≡ w1 ≡ 0 and the source term

is G(t) =
∑N

j=1 λ̈j(t)fj . Therefore, w ∈ C2([0, τ ];H1(Ω)) and we deduce that

∂2w

∂t2
∈ C0([0, τ ];H1(Ω)).

From equation (5.14) and classical regularity results for the elliptic problem associated with the bi-
laplacian, we obtain

w ∈ C0([0, τ ];H5(Ωε)),

which implies the desired trace properties.

Based on Proposition 5.1 we will consider measurements of ∂w
∂ν and ∂∆w

∂ν on parts of ∂Ω until time
τ1 and continue the measurement of ∂w

∂ν until time τ . In accordance with the operator formulation
(5.18) with (5.16)–(5.17) and z0 ∈ D(A2), we introduce the following observation operators for the
inverse source problem for (5.14). The output spaces are Y1 = L2(Γ) × L2(Γ1) and Y2 = L2(Γ), and
the operators C1 ∈ L(V1, Y1), with

V1 =
{
u ∈ H1

0 (Ω) | u|Ωε ∈ H5(Ωε)
}

(5.20)

and C2 ∈ L(X1, Y2) are defined by

C1

[
ϕ
ψ

]
=


∂ϕ

∂ν

∣∣
Γ

∂∆ϕ
∂ν

∣∣
Γ1

 ( [
ϕ
ψ

]
∈ V1

)
, (5.21)

C2

[
ϕ
ψ

]
=
∂ϕ

∂ν

∣∣
Γ

( [
ϕ
ψ

]
∈ D(A)

)
. (5.22)

Hence, the output function corresponding to the measured data in this case is given by

y(t) =

{
C1z(t), (t ∈ [0, τ1]),

C2z(t), (t ∈ [τ1, τ ]).

The main result of this section is the following
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Theorem 5.2. Consider the sources G(l) =
∑N(l)

j=1 λ
(l)
j δξ(l)j

, l ∈ {1, 2}, in the plate equation (5.14) and

assume that λ(l)
j ∈ C2([0, τ ]), j ∈ {1, ..., N} and l ∈ {1, 2}, satisfy λ(l)

j (0) = λ̇
(l)
j (0) = 0 and λ(l)

j (t) = 0,
for t > τ1. Let w(1) and w(2) be the corresponding solutions of (5.14) with initial condition

w0 ∈ H5(Ω), w0 = ∆w0 = ∆2w0 = 0 on ∂Ω, and

w1 ∈ H3(Ω), w1 = ∆w1 = 0 on ∂Ω.

Let Γ, Γ1 be two nonempty open subset of ∂Ω with Γ ⊆ Γ1 and assume that one of the following
assumptions hold:

1. ∂Ω is smooth and Γ satisfies the geometric optics conditions;

2. Ω is a rectangle and Γ contains both a horizontal and a vertical segment of nonzero length.

If
∂w(1)

∂ν
=
∂w(2)

∂ν
on (0, τ)× Γ,

∂∆w(1)

∂ν
=
∂∆w(2)

∂ν
on (0, τ1)× Γ1

then G(1) = G(2).

Proof. We denote by z(1), z(2) the solutions of (5.18) for g(1)(t) =
∑N(1)

j=1 λ
(1)
j (t)f (1)

j and g(2)(t) =∑N(2)

j=1 λ
(2)
j (t)f (2)

j , respectively, and by y(1), y(2) the corresponding observations given by (5.21)–(5.22).
We assume that y(1)(t) = y(2)(t), for t ∈ (0, τ). Let us write z(t) := z(1)(t) − z(2)(t) and y(t) :=
y(1)(t)− y(2)(t). Since g(l)(t) = 0, for t > τ1, (l ∈ {1, 2}) the functions z and y satisfy

ż(t) = Az(t) (t ∈ (τ1, τ)),
z(τ1) ∈ X,
y(t) = 0 (t ∈ (τ1, τ)).

We notice that y(t) = [Ψτ−τ1z(τ1)] (t − τ1). We set τ0 = τ − τ1 > 0. Since the pair (A,C2), with A
defined by (5.17) and C2 defined by (5.22), is exactly observable in time τ0 > 0, we have

‖y‖L2(τ1,τ ;Y ) > κτ‖z(τ1)‖X ,

and therefore z(τ1) = 0. Thus, z satisfies

ż(t) = Az(t) + g(1) − g(2) (t ∈ (0, τ1))
z(0) = 0, z(τ1) = 0.

Extending λ(l)
j , z and y by zero outside (0, τ1), and then applying Fourier transformation in the variable

t yield

(i$I −A)ẑ($) =
N(1)∑
j=1

λ̂
(1)
j ($)f (1)

j −
N(2)∑
j=1

λ̂
(2)
j ($)f (2)

j , ∀$ ∈ R.

where the notation ·̂ indicates the Fourier transform of the extended function. Setting ẑ($) =
[
v
ϑ

]
,

we conclude that v satisfies
∆2v −$2v = Ĝ in Ω, (5.23)

where we have set G = G(1) − G(2).
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Since Ĝ ∈ E ′(R2) (distribution with compact support) with support contained in Ω we can extend
the left hand side of (5.23) by zero outside Ω and get

∆̃2v −$2ṽ = Ĝ in R2, (5.24)

where the notation ·̃ indicates the extension to R2 with respect to the variable x. The next lemma
gives a relation between ∆̃2v and ∆2ṽ. This result is an easy extension of a well-known result (see for
instance Theorem 5.4.13 in [4]) so we omit the proof.

Lemma 5.3. Let v ∈ V1 be such that ∆v = 0 on ∂Ω. Let ṽ and ∆̃2v be the extensions by zero outside
Ω of v and ∆2v, respectively. Then

∆̃2v = ∆2ṽ +
∂∆v
∂ν

δ∂Ω + ∆
(
∂v

∂ν
δ∂Ω

)
in D′(R2).

In the above lemma, we have used the notation

〈δ∂Ω, ϕ〉D′(R2),D(R2) =
∫
∂Ω
ϕ dΓ.

Now we go back to (5.24) and use Lemma 5.3 to conclude that ṽ satisfies the following relation in
the distributional sense

∆2ṽ −$2ṽ = Ĝ +
∂∆v
∂ν

δ∂Ω + ∆
(
∂v

∂ν
δ∂Ω

)
in R2, ($ ∈ R). (5.25)

Let
Φ0(x) =

1
8π
|x|2 ln(|x|) (x ∈ R2 \ {0}) (5.26)

and for each $ ∈ R \ {0}, let

Φ$(x) =
i

8|$|

(
H

(1)
0 (
√
|$||x|)−H(1)

0 (i
√
|$||x|)

)
(x ∈ R2 \ {0}), (5.27)

where H(0)
1 denotes the the first kind Hänkel function of order 0. Then, as shown in Kitahara [10,

pg.211], we have
(∆2 −$2)Φ$ = δ0 in R2,

i.e. Φ$ is a fundamental solution of ∆2 − $2I in R2. We recall (see, for instance, Abramowitz and
Stegun [1, pg.358]) that

H
(1)
0 (y) = J0(y) + iY0(y) (y ∈ R),

where J0 (Bessel function of the first kind and of order zero) and Y0 (Bessel function of the second
kind and of order zero). The function J0 is analytic in R with series expansion

J0(y) =
∞∑
k=0

(−1)ky2k

22k(k!)2
(y ∈ R), (5.28)

whereas Y0(y) can be represented as

Y0(y) =
2
π

(
ln
(y

2

)
+ γ
)
J0(y) +

2
π

∞∑
k=1

(−1)k+1

(k!)2

(
k∑

m=1

1
m

)(
y2

2

)k
(y ∈ R \ {0}), (5.29)
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with γ the Euler-Mascheroni constant; see [1, pg.360]. Therefore each Φ$ is analytic in R2 \ {0}.
We note that

G :=
N(1)∑
j=1

λ
(1)
j δ

ξ
(1)
j

−
N(2)∑
j=1

λ
(2)
j δ

ξ
(2)
j

.

can be written

G =
N∑
j=1

µjδξj , so that Ĝ =
N∑
j=1

µ̂jδξj , (5.30)

by taking N = max{N (1), N (2)}.
Using the fundamental solutions (5.27)–(5.26) and the relation (5.25), we can write ṽ as

ṽ = Φ$ ∗
(
Ĝ +

∂∆v
∂ν

δ∂Ω + ∆
(
∂v

∂ν
δ∂Ω

))
,

from which we obtain the representation

ṽ(x) =
N∑
j=1

µ̂jΦ$(x− ξj) +
∫
∂Ω

∂v

∂ν
(y)∆Φ$(x− y) dσy +

∫
∂Ω

∂∆v
∂ν

(y)Φ$(x− y) dσy.

Since
∂w(1)

∂ν
=
∂w(2)

∂ν
on (0, τ)× Γ,

∂∆w(1)

∂ν
=
∂∆w(2)

∂ν
on (0, τ1)× Γ1

it follows that
∂v

∂ν
=
∂∆v
∂ν

= 0 on Γ1

which, in turn, implies that

ṽ(x) =
N∑
j=1

µ̂jΦ$(x− ξj) +
∫
∂Ω\Γ1

∂v

∂ν
(y)∆Φ$(x− y) dσy +

∫
∂Ω\Γ1

∂∆v
∂ν

(y)Φ$(x− y) dσy. (5.31)

Since Φ$ is analytic in R2 \ {0}, (5.31) shows that ṽ is analytic in the connected domain

W :=
[
R2 \ ({ξ1, · · · , ξN} ∪ ∂Ω)

]
∪ Γ1.

From the fact that ṽ vanishes outside Ω, it follows that ṽ ≡ 0 in W.
Our aim now is to show that µ̂j ≡ 0. Based on the expansions (5.28) and (5.29), we can show that

23



each function Φ$(x) ($ 6= 0) satisfies

Φ$(x) =
i

8|$|

(
H

(1)
0 (
√
|$||x|)−H(1)

0 (i
√
|$||x|)

)
=

−1
4π|$|

(
ln(
√
|$||x|/2)− ln(i

√
|$||x|/2)

)
+O(|x|) (|x| → 0)

=
i

8|$|
+O(|x|) (|x| → 0)

∇Φ$(x) =
i

8
√
|$|

x

|x|

(
Ḣ

(1)
0 (
√
|$||x|)− iḢ(1)

0 (i
√
|$||x|)

)
= x

(
2γ − 3

8π
− i

16
+

1
4π

ln(
√
|$||x|/2) +O(|x|)

)
(|x| → 0),

∆Φ$(x) =
i

8
√
|$||x|

(
Ḣ

(1)
0 (
√
|$||x|)− iḢ(1)

0 (i
√
|$||x|)

)
+
i

8

(
Ḧ

(1)
0 (
√
|$||x|) + Ḧ

(1)
0 (i

√
|$||x|)

)
=

γ − 1
2π

− i

8
+

1
2π

ln(
√
|$||x|/2) +O(|x|) (|x| → 0),

and therefore
lim
x→ξj

Φ$(x− ξj) =
i

8|$|
,

lim
x→ξj

∇Φ$(x− ξj) = 0,

lim
x→ξj

|∆Φ$(x− ξj)| =∞,

when $ 6= 0. Moreover,
lim
x→ξj

Φ0(x− ξj) = 0,

lim
x→ξj

∇Φ0(x− ξj) = 0,

lim
x→ξj

|∆Φ0(x− ξj)| = ∞.

Now, we multiply ∆ṽ by 1
∆Φ$(x−ξj) and let x→ ξj , which, from (5.31) yields

µ̂j = lim
x→ξj

∆ṽ(x)
∆Φ$(x− ξj)

= 0,

for all j ∈ {1, ..., N}, since

lim
x→ξj

1
∆Φ$(x− ξj)

= 0

and since

lim
x→ξj

∆

(∫
∂Ω\Γ1

∂v

∂ν
(y)∆Φ$(x− y) dσy +

∫
∂Ω\Γ1

∂∆v
∂ν

(y)Φ$(x− y) dσy

)
is finite.

Applying the inverse Fourier transformation, we deduce µj = 0 for all j ∈ {1, ..., N}, and conclude
that G(1) = G(2).

24



References

[1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs,
and mathematical tables, Reprint of the 1972 edition, Dover Publications, Inc., New York, 1992.

[2] C. J. S. Alves and A. L. Silvestre, On the determination of point-forces on a stokes system,
Math. Comput. Simulation, 66 (2004), pp. 385–397.

[3] C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient conditions for the observation, control,
and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), pp. 1024–1065.

[4] J.-M. Bony, Cours d’analyse. Thorie des distributions et analyse de Fourier, Les Éditions de
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