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Analytical Calculation of Static Leakage Inductances
of HF Transformers Using PEEC Formulas

Xavier Margueron, Jean-Pierre Keradec, Member, IEEE, and David Magot

Abstract—When the total current going through a transformer
window is equal to zero, only a negligible part of the magnetic
energy reaches its core. This is shown by finite-element-method
simulations carried out on several two-winding transformers
having different shapes. Moreover, induction and energy-density
values obtained by 3-D simulations and by 2-D approximations
are very close to each other. These two key observations justify
the use of formulas that give the induction created by straight
rectangular cross-sectional wires, as used in the partial-element-
equivalent-circuit method, to compute the window field and, thus,
to value the leakage inductances. To refine this approach, weak
magnetic-core effects are accounted for by introducing the mag-
netic images of currents that flow in the windings. A comparison
between the calculated values and measured ones is provided.

Index Terms—Analytical calculation, equivalent circuit, leakage
inductance, partial-element-equivalent-circuit (PEEC) method,
transformer.

I. INTRODUCTION

IN SWITCHING power electronics, transformer leakage in-
ductances have a major impact on switching power losses

and switches’ reliability. Thus, it is important to find their
values, before transformer assembling, in order to avoid, or at
least to reduce, an expensive prototyping.

Among the parameters needed to run electronic simulations,
the leakage inductances of a transformer are not the easiest to
forecast. At first sight, there are two ways of computing them:
simulation and analytical calculation. Assuming that a device
description is detailed enough, simulation leads to accurate
results. Unfortunately, device description and modification, as
well as simulation itself, are time consuming. Moreover, finite-
element-method (FEM) simulation is difficult to manage when
running an automatic optimization process, involving the whole
circuit [1]. For all these reasons, analytical calculations are
welcome.

In the literature, there are mainly two analytical methods
proposed for leakage-inductance calculation. The first one is
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the most commonly used [2], [3]. It neglects one induction
component inside the winding window, and it deduces the other
one from Ampere’s theorem, assuming that current density
is uniform in the rectangular cross-sectional windings. This
method gives quite good results for windings having very
simple geometries. Unfortunately, its extension, even to slightly
different layouts, is impossible. In particular, it cannot be
applied if some windings or layers have different heights, or
when they are not aligned.

The second method uses double Fourier’s series expansions
[4] to solve Laplace and Poisson’s equations inside a rec-
tangular window. This method assumes an induction to be
normal to window edges that cannot be fully justified when
windings are not completely surrounded by the core. Moreover,
because current density is square shaped, the convergence of
this expansion is slow. A lot of terms are required to reach a
sufficient accuracy.

This paper aims to compute the leakage inductance in a
different way. In this goal, magnetic field and energy den-
sity in the window are calculated by superposing inductions
created by a few straight rectangular wires. Generally, two
to five “wires,” each accounting for a winding or a part of
a winding, lead to accurate values. Obviously, this approach
relies on the same basic formulas as partial-element-equivalent-
circuit (PEEC) method [5], [6] does. The weak magnetic-
core effect is also taken into account, by adding one or eight
magnetic images of the windings. One image is used if only
one side of the winding window is lined up by the core,
and eight images are used, if it is entirely surrounded by
the core. Finally, an integration of energy density over space
is done analytically. It is investigated for planar and axial
geometries. Two industrial transformers are studied in detail in
order to check these methods. Obtained results are compared to
measurements.

II. BASIC DEFINITIONS AND FORMULAS

A. Low Frequency Equivalent Circuit of a Transformer

Fig. 1 shows a low-frequency equivalent circuit of a two-
winding transformer. This circuit is general, and it avoids
splitting the leakage arbitrarily into two parts [7]. If coupling is
strong, transformation ratio η is very close to the turn number
ratio, and leakage inductance Lf is far smaller than magnetizing
one Lm. Studying the input impedance of this circuit when
its output is short-circuited shows that Lf is the imaginary
part of its HF value. In practice, Lf is read directly on the

0093-9994/$25.00 © 2007 IEEE
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Fig. 1. Low-frequency equivalent circuit of a transformer.

Ls–Rs decomposition of this impedance, at a frequency high
enough to avoid the Lm influence and low enough to avoid the
stray capacitance effects (not accounted for in this paper) [8].
A measured example is given in Fig. 9. When, exceptionally,
coupling is weak, the given circuit is still applicable, but the
two-port circuit must be fully characterized to access the Lf

value [8].
Now, let us look again to the equivalent circuit (Fig. 1). It

appears that supplying the transformer with two currents whose
ratio is equal to the transformation ratio cancels the current
flowing in Lm if they are correctly orientated. In this case,
magnetic energy is entirely stored in Lf . When coupling is
strong, the chosen assumptions lead to null the total Ampere
turns or, more simply, to null the total current that flows through
the window. To sum up, when current Ip is input in the primary
and assuming that a total current flowing through the window
is null, the energy W stored in the transformer is given by (1).
This is the way we will access Lf

W =
1
2
Lf · I2

p . (1)

As mentioned in the title, in this paper, we only look for the
static values of leakage inductances, that is to say, values that
are obtained at frequencies that are low enough for the eddy
currents to be negligible. In practice, as frequency grows, the
leakage inductances slightly decrease and the series resistances
increase. We have already investigated these phenomenon ex-
perimentally, and we introduced parallel cells Lp–Rp to ac-
count for them in the equivalent circuit [8]. Indeed, relative
variations of leakage inductances are quite small. Therefore,
the calculation presented here supplies the designer with a first
approximation which is accurate as long as the eddy-current
effects remain weak.

B. Leakage Energy Calculation

As justified previously, Lf is computed by identifying the
energy stored in the transformer to that stored by the Lf , when
the total Ampere turns is null. The whole calculation process
can be split into several stages, which are presented next.

To begin, induction and vector potential are computed inside
the transformer window. This will be detailed further on. Be-
cause we only consider devices such that any plan normal to
the wires is a symmetry plan, the induction is parallel to this
plan and the vector potential is normal to this plan. None of
these fields varies along wire direction.

At this stage, the energy per unit of length parallel to the
wires wl is deduced from expressions (2) or (3). It is a relevant

Fig. 2. Energy density in an EP 13 ferrite core transformer.

parameter to check field accuracy

wl =
1

2µ0

∫ ∫
B2(x, y)dxdy (2)

wl =
1
2

∫ ∫
−→
A
−→
J dxdy. (3)

Theoretically, the first integral (2) must extend to infinity.
In practice, we bound it to the window area to save computer
memory. The second integral (3) is bounded to the current area,
and that is more convenient. Supposing that the current density
is constant in every rectangular winding or wire cross section,
this parameter can be placed in factor of the integral. Thus, the
integral can be analytically calculated.

The energy stored in the whole component is found by
integrating its energy density wl. If wires are straight, then
the energy per unit of length given by formulas (2) and (3) is
simply multiplied by the mean turn length. However, if left and
right windows are different, one half of the mean turn length
is supposed to store each of the calculated energy densities.
For cylindrical windings, energy densities are first integrated
parallel to symmetry axis (Oy). Then, a second integration
accounts for real wire length, which is proportional to polar
radius r. This way, (2) leads to (4). For complex geometries,
straight sections can be mixed with cylindrical ones

W =
1

2µ0

∫ [∫
B2(r, y)dy

]
2πrdr. (4)

C. Observations and Induced Approximations

An EP core is mainly a cylindrical pot having internal and
external legs. However, this core is cut tangentially to the
internal leg. Consequently, windings are only partly surrounded
by the core. An EP 13 ferrite core transformer, with an external
winding that is eight times thicker than the internal one, has
been studied with FEM software [9]. Fig. 2 shows the energy
density obtained when the total current in the window is null.
Only the upper half of this transformer is presented. Two
perpendicular cross sections are shown. On the left-hand side,
windings are outside the core, whereas they are inside on the
right-hand side.
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Fig. 3. Analytical calculation of energy density of a pair of straight rectangu-
lar cross-sectional wires carrying uniform current densities.

Fig. 4. Rectangular wire.

Two interesting properties appear. First, energy density is
negligible in the core. Referring to color scale, it is, at least, 20
times lower in the core than at its maximum. Second, densities
on the two orthogonal cross sections are almost equal, despite
that one is surrounded by the core and the other is not. This
observation suggests that core is not of significant importance
in the leakage-inductance computation.

Moreover, when the thickness of a winding is smaller than
its mean radius, the induction it creates is logically close to that
which would exist if it was unwound. This simpler description
allows analytical calculation to be carried out. The energy
density due to the two rectangular wires carrying a null total
current (Fig. 3) looks like that shown in Fig. 2. This reinforces
the two previous hypotheses.

In the following, we will assume that the winding window
includes a few rectangular areas carrying homogenous current
densities.

D. PEEC Formulas

Our elementary field source is an infinite straight wire, hav-
ing a rectangular cross section (Fig. 4), in which a homogenous
current flows.

Vector potential (5) can be obtained by integrating that of
a thin wire, from x = −a to +a and from y = −b to +b.
However, this potential is among the more widely involved by
the PEEC method [5], [6], except that source wire is assumed

here to be infinitely long. Rectangular components of induction
(6) and (7) are deduced from the vector potential (5) through
proper derivatives.

Az(x, y)

=
−µ0 · I

4 · π · (2 · a · 2 · b)

·
[[[

XY ln(X2 + Y 2) + X2 arctan
(
Y

X

)

+ Y 2 arctan
(
X

Y

)]X=x−a

X=x+a

]Y =y−b

Y =y+b

]
(5)

Bx(x, y)

=
µ0I

16 · π · a · b

×
[
2(y−b)

(
arctan

(
x+a

y−b

)
−arctan

(
x−a

y−b

))]

− 2(y + b)
(

arctan
(
x + a

y + b

)
− arctan

(
x− a

y + b

))

+ (x + a) ln
[
(x + a)2 + (y − b)2

(x + a)2 + (y + b)2

]

+ (x− a) ln
[
(x− a)2 + (y + b)2

(x− a)2 + (y − b)2

]
(6)

By(x, y)

=
−µ0I

16 · π · a · b

×
[
2(x−a)

(
arctan

(
y+b

x−a

)
−arctan

(
y − b

x− a

))]

− 2(x− a)
(

arctan
(
y+b

x+a

)
−arctan

(
y−b

x+a

))

+(y+b) ln
[
(x−a)2+(y+b)2

(x+a)2+(y+b)2

]

+ (y − b) ln
[
(x + a)2 + (y − b)2

(x− a)2 + (y − b)2

]
. (7)

When Nc wires are considered together, resulting induction
is computed as the sum of all individual fields properly shifted
by (xk, yk), according to (8) and (9)

Bx(x, y) =
Nc∑
k=1

[Bxk
(x− xk, y − yk)] (8)

By(x, y) =
Nc∑
k=1

[Byk
(x− xk, y − yk)] . (9)

From (8) and (9), it can be shown that, for flat windings stuck
by their small side, energy is not located close to the common
side, so that the one component (common) approximation of
the induction [2], [3] is no longer justified.

E. Magnetic Images

Let us consider a thin straight wire (Fig. 5) that carries a
current I , parallel to the plane interface bounding two materials
of respective relative permeability 1 and µr.
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Fig. 5. Induction created by a thin wire located above a magnetic material.

In the magnetic material, excitation Ht is simply multiplied
by coefficient (10). In the air, it is now the sum of the one (Hi)
created by the wire alone and another (Hr) created by another
wire, which is called “image wire” [10], symmetrically located
on the other side of this interface, and through which a current
given by (11) flows

2
µr + 1

(10)

I
µr − 1
µr + 1

. (11)

If µr is far greater than 1, the current carried by the im-
age wire is equal to that of the initial wire. In this case, at
the interface, tangential component of the induction vanishes,
whereas perpendicular one doubles. When µr is not very high,
the density of image current is a little bit smaller: it must be
tuned according to (11). Extension to a set of parallel wires
and to a parallel continuous current distribution is obvious, and
induction in air is the sum of those created by both the initial
current distribution and its images.

It must be underlined that, despite the vector-potential field
created by a symmetrical current distribution is symmetrical to
the initial one, this is not true for the induction field. It is due
to the pseudovector nature of the flux density. Adding initial
and image inductions requires, therefore, to add the normal
components and to subtract the tangential ones.

F. Numerical Integration

In order to check the realism of our calculated fields, we will
compare them to those obtained by the FEM simulations. This
introduced some special constraints. Because FEM simulation
only gives numerical values of fields, energy evaluation must
be carried out by the way of a numerical integration. In order to
compare the FEM simulation to the analytical calculation and to
get an information about the numerical precision achieved, we
used the same algorithm in both cases. A fixed grid is therefore
applied to the rectangular area of interest. Then, the energy per
length unit is computed as the sum of the energies stored in
every grid element. In each elementary rectangular element of
surface dS = dx · dy, the energy density is chosen equal to the
mean of the four values that are taken at the corners of this

Fig. 6. 2-D representation of an EP core transformer.

element. Then, Nx and Ny being the numbers of elements in the
x-and y-directions, the energy per unit of length is expressed as
(12) rather than (2)

wl =
dS

2µ0

Nx∑
i=1


 Ny∑

j=1

B2
i,j + B2

i−1,j + B2
i,j−1 + B2

i−1,j−1

4


 .

(12)

III. EP FERRITE CORE TRANSFORMER

Now, let us return to our EP core transformer. As stated
before, Fig. 2 suggests several approximations. We are now
going to check each of them carefully.

A. Device Description

This device (Fig. 6) is an insulation transformer, which is
built from an EP13 core made of 3C90 ferrite. Both windings
have 46 turns. The primary is wound on a little bit more than
one layer, with an enameled copper. The wire diameter is
0.15 mm, with a copper diameter of 0.125 mm. The secondary
is made of about three layers of polyamide insulated copper.
Wire and copper diameters are 0.4 and 0.2 mm, respectively.
As already mentioned, windings are outside the core on the
left-hand side of Fig. 2, despite that they are inside it on the
right-hand side.

For this component, windings are simply described as ad-
jacent rectangular homogenous current densities, with zero
total current for the leakage-inductance evaluation. This sim-
plified description has been used for the 2-D simulations
presented next.

B. Calculation of Energy Per Length Unit

Two formulas (2) and (3) are available to calculate this value.
The integration of (2) will be extended to the window area,
and the left window area boundaries will be assumed to be
symmetrical to that of the right window. Calculation is carried
out according to (12). Unlike the use of (3), using (2) does not
require any grid update when the conductor sizes or numbers
are changed.

However, in order to check the reliability of values found
this way, we applied both formulations to the 2-D simulated
fields. Table I shows that the two computations lead to almost
the same results. The value coming from

−→
A
−→
J integration (3),
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TABLE I
COMPARING THE TWO METHODS OF ENERGY CALCULATION

TABLE II
ENERGY PER LENGTH UNIT EVALUATED IN 2-D AND 3-D

which is the energy in the whole space, is a little bit larger
than that based on

−→
B
−→
H integration (2), and due to the lack of

surrounding ferrite, energy is a little bit more spread in the left
window.

C. Impact of Core and Winding Curvature

This transformer has been simulated in 3-D, and its windings
have been described as the adjacent rectangular homogenous
current densities with opposite but equal currents in both wind-
ings. As in Fig. 2, the left window is outside the core. In order to
evaluate a curvature impact, we also carried out 2-D simulations
(Fig. 6) with the same software.

Table II shows the energies per length unit, which are com-
puted according to (12). The presented results justify our main
assumptions. Indeed, by comparing the two columns, it appears
that the magnetic-core impact is within 3.5% in 3-D as in 2-D.
Comparing now the two lines also shows that the relative
curvature effect is about (5%).

D. Comparison With PEEC and Standard Evaluations

Because core and curvature play minor roles, PEEC formulas
seem to be usable. Indeed, Fig. 3 looks like Fig. 2, and ac-
cording to (6) and (7), the energy per length unit is equal to
63.0 µJ/m that is not so far from the values in Table I. For this
standard geometry, the common “one component approxima-
tion” [2], [3] leads also to a rather good result: 79.8 µJ/m. Fig. 7
shows the vertical (main) induction component on two paths:
at the interface (a) between the two windings and (b) along
the horizontal symmetry plane. In Fig. 8(a), windings end at
3.75 mm, and in Fig. 8(b), winding limits are at −0.75 and
0.6 mm.

Despite a rather good curve shape agreement, the analytical
model fails in calculating the values that are close to the window
edges, and this leads to a downshift of the whole curve. This
slight discrepancy is due to the magnetic core that pulls the
tangential component toward zero against the window edges.

E. Accounting for Magnetic Core

In our tables, accounting for the magnetic core is referred
to as PEEC+, and this is done differently for both windows

Fig. 7. Induction (in mT) versus coordinates (in mm) in the right window.
Dotted line: 2-D simulation. Solid line: Analytical. Dashed line: “One compo-
nent” approximation. (a) At the interface between the windings. (b) Along a
horizontal line in the middle of the window.

(Fig. 6). For the left-hand side, only one magnetic image is
introduced on the right-hand side of the window

Bcx(x, y) = Bx(x, y) + Bx(2 · xrw − x, y)

Bcy(x, y) = By(x, y) −By(2 · xrw − x, y). (13)

Above, B and Bc refer to the initial induction and to the
global induction, respectively. We also introduced xrw as the x
coordinate of the right edge of the window.

Because the right window is surrounded by the core, multiple
reflections occur, which result in an infinity of images. Fortu-
nately, each one is flown by currents, whose sum is equal to
zero. The first term of the multipolar expansion is thus dipolar
and, as a consequence, induction decreases fast with distance.
For this reason, we only keep the eight closest images. This is
carried out through two steps, with formulas similar to (13). We
first add two vertical images to the initial current distribution.
Then, we add two horizontal images of the previously obtained
system.

Fig. 8 shows the improvement brought by this add-on, par-
ticularly evident close to the edges of the window. Everywhere
on the window edges, the agreement is as good as it appears
in Fig. 8(b). The energy per length unit (Table III) shows that
the value for left window is now quite perfect, but that a slight
overevaluation appears for the right window.
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Fig. 8. Same as Fig. 7, but accounting for the magnetic core.

TABLE III
ENERGY PER LENGTH UNIT. COMPARISON BETWEEN THE FEM

SIMULATION AND THE ANALYTICAL CALCULATIONS

F. Leakage-Inductance Evaluation and Measurement

Owing to the previous field calculation, the energy stored in
the whole device can be computed, and the leakage inductance
can be evaluated. In order to have a reference value, we first
measured (Fig. 9) its value as explained in Section II-A. We
found 3.4 µH. This measurement was carried out with an
HP4194A impedance analyzer [11].

Because EP cores have a cylindrical central leg, the energy
W stored by the device is computed using cylindrical coor-
dinates. Let r0 be the radius to the origin of the rectangular
coordinates used before. According to (4), the energy is given
by (14)

Bm2
i,j =

B2
i,j + B2

i−1,j + B2
i,j−1 + B2

i−1,j−1

4

W =
1

2µ0

Nx∑
i=1

Ny∑
j=1

Bm2
i,j2π

(
r0 +

xi + xi−1

2

)
dS.

(14)

Fig. 9. Series inductance in microhenrys versus frequency in hertz.

TABLE IV
CALCULATED INDUCTANCES. COMPARISON OF SEVERAL EVALUATIONS

FOR THE STUCK AND SEPARATED WINDINGS

EP cores are closed on a large part of their circumference. For
this reason, we used the induction in the right window, which
should lead to a value slightly too high. The results are given in
column 2 of Table IV. Despite that fields are accurate compared
to simulations, the inductance values are too low, compared to
the measurements (3.4 µH). A conclusion arises: The model of
the device is too rough. In particular, it neglects the insulator
thickness of both wires which introduces an air gap between
the two windings.

To check the impact of this air gap, we removed, accord-
ingly to the insulator thickness, 0.1 mm all around the thicker
winding and 12.5 µm around the other one, without any other
changes. Results are given in column 3 of Table IV. This small
change induces a 10% change on the final value. Obviously,
this air-gap thickness has a great impact on final precision and
PEEC+ calculation is now close to measurement. The common
one component approximation, which overestimates induction
except on symmetry plan [Fig. 8(a)], gives a value too high in
both cases.

The study of this device shows, therefore, that the proposed
approach gives accurate results, provided that the winding
shapes are precisely described, particularly where the energy
density is the highest.

IV. PLANAR TRANSFORMER

A. Device Description and Measured Leakage Inductance

The other studied device is a 250-VA planar transformer
working at 200 kHz. It owns three windings and is about
7-mm thick. Its left window is shown in Fig. 11. All wires are
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Fig. 10. Left window of the planar transformer.

Fig. 11. Induction along the test path. Solid line: 2-D simulated. Dotted line:
Calculated. (a) Tangential component. (b) Normal component.

made of copper, have rectangular cross sections, and are parts
of a printed circuit board. Primary is made of 17 turns; each
is composed of two wires connected in parallel. Secondary,
which is not considered in this paper, is not represented for
industrial reasons. Third winding, which is the auxiliary, has
three turns. We now focus on the leakage inductance between
the primary and auxiliary windings. For such a layout, one
component approximation is unusable to compute the field.
Searched leakage inductance has been measured as 112 nH
(±8 nH due to the measurement precision).

B. PEEC Field Computation

While the secondary remains open, the primary is supplied
with a current Ip = 1 A, and the auxiliary is supplied with
a current Ia = −17/3 A, in order to null the total current in
the window. In this first approach, magnetic field is evaluated
considering each wire as an elementary source of field.

We will now focus on the energy per length unit. A 2-D FEM
simulation gives 28.1 µJ/m, whereas the PEEC calculation
leads to 28.2 µJ/m, before introducing any image. The sum was
computed only in the transformer window. If it is extended to
a larger area, a limit equal to 30 µJ/m appears which coincides
with the value deduced from the vector potential. Therefore,
one can conclude that 93% of the energy is concentrated in the
transformer window.

This quite perfect result is reinforced by the observation
of the induction shape along a significant test path, located
between the primary and auxiliary windings (Fig. 10). The
tangential Bx and normal By components along this path are
given in Fig. 11.

C. Leakage-Inductance Computation Method

As soon as the energy per length unit is known, it remains
to multiply it by the mean turn length to obtain the total
energy, leading to the inductance value. It must be specified

Fig. 12. Distance between the peaks of energy density.

Fig. 13. Mean-turn-length evaluation. P is the core depth.

Fig. 14. Magnetic images of the left window.

that, in this component, the magnetic core fully covers all the
turns. Because energy density exhibits a sharp peak, using the
length corresponding to this peak location, instead of the mean
turn length, seems to be more adequate. This has been done
here. Referring to Figs. 12 and 13, the mean turn length P is
evaluated as P = 2(d + p).

Moreover, because wire layouts are different in the left and
right windows (Fig. 12), they are studied separately before the
total energy computation. Knowing the energy per length unit
in both windows (wll and wlr), we use their average values to
compute the total energy stored in the component and, then, the
leakage inductance value. Because the energy sum is bounded
to the transformer window, this result will likely be slightly
minored. Despite that the measured value is 112 nH (±8 nH),
the aforementioned calculation gives 115 nH.

D. Influence of the Magnetic Core

A 2-D simulation has been carried out. Despite that the field
initially calculated seemed correct, it was not really accurate
at window boundaries when magnetic material is present. To
improve model accuracy, we introduced only four images of
initial wires (Fig. 14). Owing to this, the field became very close
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Fig. 15. Field modulus with magnetic core. (a) 2-D FEM simulation.
(b) Analytical calculation with images.

Fig. 16. Homogeneization of rectangular wires.

Fig. 17. Induction along the test path. Solid line: full analytical. Dotted line:
analytically homogenized. (a) Tangential component. (b) Normal component.

to the simulated one (Fig. 15). For clarity reasons, horizontal
and vertical scales have not been respected in this figure.

E. Geometry Simplification Using Homogeneization

The results presented previously about this transformer rely
on a detailed geometrical description of the device. In order
to shorten both boring data handling and computation time,
we try a geometrical simplification. Wires are gathered in four
rectangular zones (Fig. 16), and the total current crossing each
of them is spread out to obtain homogenous densities.

This smoothens the induction calculated along the test path
(Fig. 11) a little bit (Fig. 17). However, the energy per length
unit keeps almost the same value: 27.5 µJ/m inside the window
compared to 28.2 µJ/m, and 29 µJ/m for the extended area
instead of 30 µJ/m.

F. Vector Potential

Theoretically, the energy density must be integrated over the
whole space to calculate the leakage inductance. Even if we
found that the main part of this energy is stored in the window
area, particularly when the winding is fully surrounded by the
core, the way to easily reach this limit value is to use the

potential vector (5) according to (3). This way of proceeding
has been applied to the left window of our transformer. On
the rectangular cross sections of all wires, the vector potential
is integrated and, then, multiplied by the corresponding cur-
rent. When applied to the simplified geometry, this leads to
29.7 µJ/m which is very close to the value (30.0 µJ/m) obtained
by integrating the induction-based formula over an extended
area. Other tries show similar agreement.

Last but not least, in such a case, the involved basic formulas
(3) are analytically integrated [12].

G. About Calculation-Measurement Agreement

Measuring the leakage inductance of a transformer, which
is always far smaller than the magnetizing one, is sometimes
difficult. In particular, when the studied inductance is seen from
a low voltage winding, it can be 20 nH or less. With such low
values, two questions arise: What is calculated and what is mea-
sured? During the calculation, the wires linking turns (inside
the core) to component terminals are not taken into account.
During the measurement, the wires that are used to connect the
component to the impedance analyzer intervene more or less on
the result, even if careful short-circuit compensation is used.

Measuring this inductance from the other winding requires
null impedance short circuit which is, of course, unavailable.
All these parasitic inductances and their possible couplings lead
to severe discrepancies between calculation and measurement.
As an example, the leakage inductance between the primary
and secondary windings of our planar transformer has been
evaluated to 6 nH from the calculation and to 20 nH from the
measurement. There is still a long way to go before discrepan-
cies disappear durably at this level of inductance.

V. REFINING THE IMAGE TECHNIQUE

In most of the practical cases, the impact of magnetic core
on searched value is weak so the use of image technique, as
presented in Section II-E, allows its evaluation with a sufficient
accuracy. However, this technique relies on an assumption:
Magnetic medium is supposed infinitely thick.

We investigated the influence of magnetic core thickness ep
on the result. To sum up, we can say that magnetic core behaves
as an infinite medium when its thickness is beyond a value
which decreases when its permeability increases.

To get an order of magnitude, as in [13], we studied a simple
system that is composed of a plane finite-thickness magnetic
layer and a thin straight wire parallel to its surface. In the air
surrounding the wire, magnetic field varies from the minimum
obtained without the magnetic layer to the maximum which is
reached, for a given permeability, for an infinite thickness. The
difference between these two values characterizes the impact
of the magnetic layer. When thickness is finite, for µ = 2000,
90% of this impact is obtained for ep = 1 mm. With µr = 40,
this figure reaches 20 mm. Therefore, for a high permeability
material, our simple image approach is reliable, even for mil-
limetric thickness. For a low permeability material, a series of
20 to 30 images is needed to reach the same accuracy.
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When magnetic core does not behave as an infinite media,
the current flowing in the opposite window can modify the
calculated field. In such a situation, one must consider si-
multaneously not only a higher number of images to account
for multiple reflections in core thickness but also all the field
sources located in the two windows.

VI. CONCLUSION

Based on the formulas used for the PEEC method, a new
analytical computation of leakage inductance has been pre-
sented. This calculation method suits to evaluate not only all the
leakage inductances but also any coupling of them. Therefore,
the whole leakage transformer defined in [7] can be studied
this way.

Used alone, PEEC formulas lead to a rather good approxima-
tion of both field shapes and leakage inductances. If necessary,
the magnetic core is taken into account, using the magnetic
image technique. By doing so, the impact of the magnetic
core can be evaluated, whatever its permeability is, and even
if some sides of the winding window are not bounded by the
magnetic material (or if they have different permeabilities). As
with the FEM simulations, the accuracy of final result heavily
relies on the knowledge of some geometrical parameters such
as interwinding air-gap thickness, which are sometimes difficult
to evaluate.

Two transformers have been investigated. Computed fields
are in good agreement with those obtained by the 2-D or 3-D
simulations, and values obtained for leakage inductances are
within a few percent of measured ones. However, for the leak-
age inductances below a few tens of nanohenry, an agreement
with measured values becomes random. Indeed, the measured
values are global, and sharing them between device and wiring
is uncertain. Such a situation often occurs for low-voltage
power transformers.

The investigated method of computation can be used as a
part of an optimization process. Because the vector potential
is analytically integrated, this method really leads to analytical
expressions that are quickly computed. Moreover, the data set
involved can be reduced by using the simple homogenization
technique presented.
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