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stabilization diagrams [7], [8], which exhibit the variation

of modal parameters relative to increments in modal order,

making them an effective tool for spurious mode identifi-

cation. However, they require extensive user interaction as

some numerical spurious modes behave as physical ones,

when the model order is changed making them very difficult

to identify on stabilization diagrams.

In order to reduce computation complexity, recursive

SubID algorithms have been proposed. Mercère et al [9]

and Delgado et al [10] have developed methods that identify

system matrices without extracting state sequence informa-

tion. Whereas, Pongpairoj and Pourboghrat [11] estimated

state sequences from approximated subspace intersection of

sequential updated vector. Methods [12], [13] have been

proposed to reinforce stabilization diagrams but they do

not eliminate spurious modes automatically. Therefore, the

problems of improving the accuracy of modal parameter

estimates and the automatic elimination of spurious modes

using covariance driven output-only SubID methods are

addressed in this paper.

We propose a two step iterative procedure for improv-

ing the accuracy of modal parameter estimation on active

structures, while using covariance based output-only SubID.

In the first step, excitation force is iteratively modified to

have a better estimate of the modal parameters. In the

second step, an attempt is made to eliminate the spurious

modes by using an original stabilization histogram and by

resampling of measured output data. In order to reduce the

complexity of modal testing and to increase the flexibility of

implementation, output-only SubID method was applied.

The paper is organized as follows. A brief introduction to

output-only covariance driven SubID algorithm is given in

section 2. The proposed algorithm is introduced in section 3.

Results from two case studies are demonstrated in section 4

and 5. Section 6 concludes the paper with future prospects.

II. MODAL ANALYSIS BY SUBSPACE IDENTIFICATION

A. State Space Model

It is generally convenient to convert the second order

differential equations of a flexible structure in state-space

form. If 1/τ is the sampling rate then the discrete state-space

model is given by

xk+1 = A
d
xk + B

d
uk + wk (1)

y
k

= C xk + vk (2)

Abstract— Precise identification of structural properties is
a vital step towards detection and localization of damage in
structures. In this paper the problems of improving accuracy
of modal parameter estimates and automatic elimination of
spurious modes in covariance driven output-only subspace
identification method are addressed. An iterative procedure is
proposed, which in the first step, actively modifies the excitation
signal, resulting in improvements in identification results. In
the second step, for spurious mode elimination, an alternative
stabilization histogram is introduced to automatically combine
and extract identified modal parameters. It is shown that use
of measured output signals, of different sampling rates, along
with combination of identified results on a single stabilization
histogram, can enhance the effectiveness of spurious modes
rejection. One numerical and two experimental examples, on
the modal parameter estimation of a composite beam and an
aluminum plate (CACTUS) are presented to demonstrate the
efficacy of the iterative procedure. The proposed algorithm
allows automatic and accurate generation of modal parameter
residuals for structural health monitoring applications.

I. INTRODUCTION

Detecting and localizing damage in smart structures is a

topic of growing interest in Structural Health Monitoring

(SHM) [1], [2], [3]. These structures have built in piezoelec-

tric sensors and actuators, which can be used to identify the

changes caused by damage in structural parameters, such as

modal properties. The sensitivity and use of modal properties

for damage detection have been extensively studied [4],

[5] and many modal parameter identification methods have

been proposed. One of the modal parameter identification

methods, which has gained popularity in recent years, is

Subspace Based Identification (SubID) [6].

SubID methods estimate the state-space sequence using

input/output signals. The original SubID method is non-

iterative and is restricted only to offline implementation

because of computational complexity of robust matrix op-

erations such as singular value decomposition (SVD). More-

over, like many other identification methods, SubID depends

heavily on excitation force. Weak ambient excitations along

with ambient noise have strong influence on the accuracy of

estimates. In order to benefit from ambient excitation, long

samples are used with models of redundant order. However,

using model of redundant order generates spurious modes,

which mix intensively with physical modes, making them

difficult to identify. It has been observed that as the model

order is increased, the physical modes tend to stabilize as

compared to the spurious ones. This is the core idea behind
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where, xk ∈ R
ns , uk ∈ R

nu and y
k
∈ R

ny are respectively

the state-space, input and output vectors at time instant k.

nd is the system order, ns is state-space order, ny is the

number of outputs and nu is the number of inputs. A
d
, B

d
and C are the discrete system, input and the output matrices

respectively. wk and vk are respectively the process and the

measurement noise vectors.

Considering that the system behaves like a stationary linear

dynamics system and that input forces can be modeled as a

non-stationary white noise, the model can be modified as

xk+1 = A
d
xk + wk (3)

y
k

= C xk + vk (4)

Here, the process and the measurement noise are assumed

to be zero-mean Gaussian white noise processes such as

E

[[

wk

vk

]

[

wk vk

]

]

=

[

Q S

ST R

]

δ(t) (5)

where, E is the expectation operator and δ(t) is the Kro-

necker delta. Q and R are process and measurement noise

covariance matrices. S is the cross-covariance between pro-

cess and measurement noise.

B. Output-only Covariance Driven Subspace Identification

Covariance driven SubID is based on the following steps

[14]. Let Λ
i

be output covariance matrix given by

Λ
i
= E

[

y
k+i

yT
k

]

(6)

A Hankel matrix is constructed using p + 1 block rows and

q block columns of the output covariance matrix.

H
p+1,q

=













Λ
1

Λ
2

· · · Λ
q

Λ
2

Λ
3

· · · Λ
q+1

...
...

. . .
...

Λ
p+1

Λ
p+2

· · · Λ
p+q+1













(7)

Considering that the system is stationary and that the process

and measurement noises are white, Gaussian with zero mean,

we can rewrite (6) as

Λ
i
= C Σ CT + R i = 0 (8)

Λ
i
= C Ai−1

d
G i > 0 (9)

where, G is the cross-covariance between state and observed

output. This leads to the factorization of Hankel matrix as

H
p+1,q

= O
p+1

C
q

(10)

where

O
p+1

=
[

C C A
d

· · · C Ap

d

]T
(11)

and

C
q

=
[

G A
d
G · · · Aq−1

d
G

]

(12)

are p + 1 order Observability and q order Controllability

matrices of rank nd respectively.

In order to calculate the system state matrix A
d

the first

block row of the observability matrix O
p+1

is deleted to get

a truncated observability matrix O↑

p+1
given by

O↑

p+1
=

[

C A
d

C A2

d
· · · C Ap

d

]T

(13)

Thus, the system state matrix A
d

can be calculated by

A
d

= O⊕

p
O↑

p+1
(14)

where, O⊕

p
represents the pseudo-inverse of p order observ-

ability matrix. The output state matrix C can be obtained

from the first block row of O
p
. Thus, the state-space model

given in (3) and (4) can be identified.

Modal parameters are estimated by using the output matrix

C and system matrix A
d
. Eigenvalues of A

d
yield the natural

frequencies fi and damping ratios ζi of the system. Mode-

shapes φ
i

are obtained in the dimension of the measured

degrees of freedom from corresponding eigen-vectors.

C. Balanced Realization

For the time being, we use Balanced Realization [15] for

the implementation of SubID, which uses SVD to obtain

observability and controllability matrices. In practice, only

finite number of samples are available. As a result, the output

covariance matrices are calculated by

Λ̂
i
=

1

nτ − i

nτ−i
∑

k=1

y
k+i

yT
k

(15)

where, nτ is the number of samples. Experimental Hankel

matrix Ĥ
p+1,q

is populated using the estimated output co-

variance matrices Λ̂
i
. The SVD of Ĥ

p+1,q
and its truncation

at a desired model order, yields the estimated observability

Ô
p+1

and controllability Ĉ
p+1

matrices

Ĥ
p+1,q

=
[

U
1

U
2

]

[

S
1

0

0 S
2

]

[

V
1

V
2

]T
(16)

Ô
p+1

= U
1
S1/2

1
(17)

Ĉ
p+1

= S1/2

1
V

1
(18)

III. RECURSIVE METHOD

For a damage detection algorithm, using changes in modal

parameters as an indication of damage, underling modal pa-

rameter identification method must be precise and accurate.

To achieve this goal, we propose an alternative recursive

approach using a stabilization histogram.

A. Stabilization Histogram

Order stabilization diagram exhibits variation of modal pa-

rameters estimates with increments in model order. Though

increasing model order reveals stability of physical modes

but it also increases the interference of spurious modes.

There are two types of spurious modes, the ones generated

by noise/weak ambient excitation and others resulting from

numerical inaccuracies. By far, stabilization diagram is the
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most commonly used method for physical mode identifica-

tion [7] but it requires extensive user interaction as some

numerical spurious modes behave like physical ones. In order

to automate modal parameter extraction from SubID method,

an alternative approach using a histogram is proposed.

To construct a stabilization histogram, we propose first,

to categorize the modes in nc categories. The modes are

categorized according to the stability of natural frequencies,

damping ratios and modes shapes, with respect to increments

in model order. For example, here, we define three categories:

stable modes, semi-stable modes and new modes. A mode

calculated for a given order is said to be stable if frequency

varies less than 1% from the previous order and damping

ratio varies less than 5%. Semi-stable modes have stable

frequencies but no stable damping coefficients. New modes

have neither stable frequency nor stable damping coefficients.

Adding a mode shape stability criteria will increase the

number of catagories and might improve results.

Weights are associated with each category. The weight of

a more stable category is selected to be comparatively higher

than all other less stable categories. Considering the previous

stated example, the weight of a stable mode is greater than

that of a semi-stable mode and the weight of semi-stable

mode is greater than the weight of a new mode.

The working frequency band is divided into discrete

intervals. With each interval a counter is associated. For

an estimated mode that falls in a given frequency interval,

the counter is incremented by the weight of the associated

category. As a result stable modes will have higher counts as

compared to less stable modes. Plotting counts with respect

to frequency, results in a histogram that shows higher peaks

for more stable modes.

B. Excitation Signal

Results generated by output-only covariance driven SubID

method depend heavily on the excitation force, which is

considered here to be unknown. In order to improve the

results and yet still retain the simplicity of this algorithm, it is

in our interest to excite a structure with a well defined input

signal but disregard it during the identification process. We

propose an iterative procedure, which actively changes this

input signal based on the results of previous identification

attempts. The procedure is given as follows:

1) Data acquisition from ambient excitation

2) SubID and construction of stabilization histogram

3) Generation of a pseudorandom binary signal having

considerable energy around the identified frequencies

4) Data acquisition from forced excitation

5) SubID and construction of stabilization histogram

6) Going to step 3 till the identified frequencies stabilize

We assume that on an active structure the excitation points

are well optimized to excite the modes in the working

frequency band. We also assume that during the period

of algorithm convergence, the structural properties will not

change. After the stabilization of input signal, spurious

modes should be eliminated so that results can be used for

damage detection algorithm.

Fig. 1. Online Modal Parameter Estimation using Output-only Subspace
Identification.

C. Spurious Mode Rejection

We have observed that as spurious modes generated by

noise do not stabilize while increasing the model order,

however, the numerical spurious modes do tend to stabilize

and can be considered as physical modes of the system.

We have also observed that these numerical spurious modes

depend on the sampling period. In the second step of spurious

mode rejection, we propose to downsample the system

output, which was originally measured at a high sampling

rate and re-estimate the modal parameters. Injecting these

results, from different sampling rates, in a single stabilization

histogram reveals spurious modes because physical modes

remain stable under both conditions of changing sampling

rate and model order. Flow diagram of the proposed algo-

rithms is shown in Fig. 1

IV. CASE STUDIES - ACTIVE COMPOSITE BEAM

The proposed online modal parameter estimation method

is applied to an active composite beam structure (Fig. 2).

The beam consists of a composite filling covered with

two external thin plates. There are three pairs of PZ29

piezoelectric ceramics, bounded symmetrically on both sides

of this beam. They are positioned parallel to the mid plate

surface and are polarized in a way that permits sensing or

generating pure bending motion.

The aim is to accurately and automatically identify the first

five natural modes of the structure, using measurements from

a single piezoelectric pair and one excitation source. Using

output measurements from a single piezoelectric pair restricts

us to only consider the stability of natural frequencies and

damping coefficients. The categories defined in the example

stated in section III will be used for all the results shown in

this paper. Weights selected for stable, semi-stable and new

modes are 8, 2 and 1 respectively and the frequency interval

set to 0.1Hz.

A. Simulation

A finite element model (FEM) of the beam is constructed

using Bernoulli hypothesis, for simulations purposes. The

modeled structure is damped satisfying Caughey’s criteria

[16]. Natural frequencies and the corresponding damping

ratios are shown in Table I.
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Fig. 2. The Active Composite Beam Structure.

TABLE I

FIRST FIVE MODES OF THE MODELED BEAM

Modes 1
st

2
nd

3
rd

4
th

5
th

Natural Frequency (Hz) 6.7 44.8 126.2 273.5 490.5

Damping Ratio ×10
−3 4 6 7 15 11

The dynamic response of piezoelectric pair 2, to a random

signal excitation by piezoelectric pair 1, is simulated using

Newmark Integration method. White noise is added on the

simulated response with signal to noise ratio of 10dB.

Stabilization diagram generated after applying SubID to

the simulated response data, measure at 2500Hz, is shown

in Fig. 3. The corresponding stabilization histogram is shown

in Fig. 4. Both the diagrams show difficulties in identifying

the first two modes of the beam. The histogram shows

high peaks for the two well identified modes at 273Hz and

490Hz. However, counts for the first two modes are lower as

compared to spurious modes. Using the first 15 frequencies,

having the highest count, an input signal is generated by the

proposed algorithm, in order to better excite the structure in

the next iterations.

Five peaks on the stabilization histogram (Fig. 5), obtained

after 3rd iteration, correspond well with the first five modes

of the beam. As there are no spurious modes, the final

estimated values are shown in Table II.

To demonstrate the effectiveness of spurious mode rejec-
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Fig. 3. Stabilization diagram obtained after random excitation of modeled
beam after 1

st Iteration. Stable, semi-stable and new modes are represented
by square, circle and dot respectively. Right y-axis corresponds to Bode
diagram obtained from the FEM model.
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Fig. 4. Stabilization histogram obtained after 1
st Iteration from random

excitation of modeled beam.
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Fig. 5. Stabilization histogram obtained after 3
rd iteration.

tion, the proposed algorithm is implemented on an experi-

mental setup.

B. Experimental Setup

The experimental setup is completed by a control loop:

charge amplifiers for the conditioning of measurement sig-

nals, voltage amplifiers for the actuators and a specialized

dSpace c© card performing the real time measurements and

control. Initially the beam is excited by random signal

using the 1st piezoelectric pair as actuator. Vibration data

is measured from 2nd piezoelectric sensor at a sampling

rate of 10kHz for a duration of 2 minutes. This data is

downsampled to 1250Hz and then used to generate the

stabilization diagram and the corresponding histogram, given

in Fig. 6 and Fig. 7 respectively. These figures reveal that

it is difficult to identify the first and the second modes of

the structure. Moreover, there are spurious modes, which

stabilize with increasing model order.

The advantage of stabilization histogram is that it not only

allows better identification of first mode but also assists in

TABLE II

FIRST FIVE IDENTIFIED MODES OF THE MODELED BEAM

Modes 1
st

2
nd

3
rd

4
th

5
th

Natural Frequency (Hz) 6.7 44.7 126.6 278.4 486.6

Damping Ratio ×10
−3 4.5 3.8 8.0 8.5 10.7
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Fig. 6. Stabilization diagram obtained from experimental data measured at a
sampling rate of 1250Hz with random excitation. Right y-axis corresponds
to Bode diagram obtained from manual identification of the beam.
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Fig. 7. Stabilization histogram obtained from experimental data measured
at a sampling rate of 1250Hz with random excitation.

constructing a richer signal for excitation. Exciting the beam

with a refined input, generated iteratively, yields the final

stabilization diagram shown in Fig. 8

The 4th mode at 257Hz is weakly identified and there

rests a numerical spurious mode, which stabilizes with

increasing model order at 430Hz. To eliminate the spurious

mode, the response is measured at a higher sampling rate

of 10kHz. It shifts the numerical spurious modes to higher

frequencies but the task of identifying the low frequency

modes becomes more difficult (Fig. 9).

Histograms allow the user to analyze extremely large data
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Fig. 8. Stabilization diagram obtained from experimental data measured
at a sampling rate of 1250Hz with improved excitation
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Fig. 9. Stabilization diagram obtained from experimental data measured
at a sampling rate of 10kHz with improved excitation
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Fig. 10. Combined stabilization histogram

sets by reducing them to a single 1-D graph. Plot obtained

by combining the results of both the experiments (Sampling

at 1250Hz and 10kHz) in a single stabilization histogram

is shown in Fig. 10.

Counts of all the first five vibration modes are well above

the selected threshold, allowing them to be automatically

selected. Whereas, the effect of the numerical mode is

cancelled by changing the sampling period. Final estimated

values of the first five modes are shown in Table III.

V. CASE STUDIES - CACTUS

The proposed algorithm is also tested on a thin aluminum

plate like structure called CACTUS (Fig. 11). CACTUS is

2mm thick and is clamped in vertical position. There are nine

pairs of PZ29 piezoelectric ceramics, bounded symmetrically

on both sides of the plate.

The aim is to identify the first seven natural modes of the

structure up to 55Hz. Initially, the structure is excited by

random signal using the 1st piezoelectric pair as actuator.

TABLE III

FIRST FIVE IDENTIFIED MODES OF THE COMPOSITE BEAM

Modes 1
st

2
nd

3
rd

4
th

5
th

Natural Frequency (Hz) 6.2 44.1 126.5 255.5 499.0

Damping Ratio ×10
−3 4.2 5.5 6.9 98.4 26.7
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Fig. 11. CACTUS
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Fig. 12. Stabilization diagram obtained from experimental data obtained
from CACTUS, measured at a sampling rate of 1kHz with random
excitation. Right y-axis corresponds to Bode diagram obtained from manual
identification of CACTUS.

Vibration data is measured from 2nd piezoelectric sensor at

a sampling rate of 1kHz for duration of 1 minute.

Stabilization diagram (Fig. 12) thus obtained, reveals that

2nd, 3rd and 6th modes at 7.7Hz, 13.7Hz and 26.1Hz are

not identified. The stabilization histogram generated by the

proposed algorithm obtained after cancellation of spurious

modes on 4th iteration is shown in Fig. 13. The distinct

peaks allow the first seven modes to be easily distinguished

from the spurious modes.

VI. CONCLUSIONS

Identifiability of modal parameters is enhanced by exciting

the structure with a well defined input signal. Spurious modes

are eliminated by changing the sampling rate of measured

output signal and by combining the results on a single

stabilization histogram. The estimated results have show

that the proposed algorithms not only allowed automatic

selection of excitation signal in small number of iterations

but also removed the spurious modes from the generated

results. The present approach was applied using a SubID

method, which is based on SVD of Hankel matrix, which is

computationally complex. For a real-time SHM applications,

the underlining identification algorithm should have reduced

computational complexity. Next steps in this study are to

observe the performance of the proposed algorithms using

recursive SubID methods and to analyze their robustness in

generating modal parameter residuals for SHM applications.

6 7 10.4 13.7 20 26.1 49.2 55
0

1000

2000

Frequency (Hz)

W
e
ig

h
t 

C
o

u
n

t

6 7 10.4 13.7 20 26.1 49.2 55
−50

0

50

G
a
in

 (
d

B
)

Frequency (Hz)

 

 

Gain 0102

I
6.1
Hz

II
7.4
Hz

III
10.4
Hz

IV
13.7
Hz

V
20.0
Hz

VI
25.9
Hz

VII
49.6
Hz

Fig. 13. Stabilization histogram obtained from experimental data obtained
from CACTUS.
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