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This paper presents necessary and sufficient conditions for uniform exponential trichotomy of nonlinear evolution operators in Banach spaces. Thus are obtained results which extend well-known results for uniform exponential stability in the linear case.

Introduction

One of the most notable results in the theory of stability of linear evolution operators has been proved by Datko in [START_REF] Datko | Uniform asymptotic stability of evolutionary processes in Banach spaces[END_REF]. Generalizations of this result were obtained in [START_REF] Buşe | On nonuniform exponential stability of evolutionary processes[END_REF], [START_REF] Ichikawa | Equivalence of Lp stability for a class of nonlinear semigroups[END_REF], [START_REF] Megan | On (h,k)-stability of evolution operators in Banach spaces[END_REF] and [START_REF] Van Neerven | The asymptotic behavior of linear operators[END_REF] for exponential stability, in [START_REF] Megan | Banach function spaces and exponential instability of evolution operators[END_REF] and [START_REF] Megan | On exponential h-expansiveness of semigroups of operators in Banach spaces[END_REF] for exponential instability and in [START_REF] Megan | Exponential dichotomy of evolution operators in Banach spaces[END_REF], [START_REF] Megan | On nonuniform exponential dichotomy of evolution operators in Banach spaces[END_REF] and [START_REF] Preda | Exponential dichotomy of evolutionary processes in Banach spaces[END_REF] for the case of exponential dichotomy.

In this paper we shall extend these results in two directions. First, we shall consider the case of uniform exponential trichotomy property ( [START_REF] Elaydi | Exponential trichotomy of differential systems[END_REF], [START_REF] Elaydi | Exponential dichotomy and trichotomy of nonlinear differential equations[END_REF], [START_REF] Jianlin | Exponential trichotomies and Fredholm operators[END_REF], [START_REF] Megan | On null uniform exponential trichotomy of evolution operators in Hilbert spaces[END_REF]) and second, we shall not assume the linearity of evolution operators.

A unified treatment for uniform asymptotic behaviors (exponential decay, exponential growth, exponential stability, exponential instability, exponential dichotomy, exponential trichotomy) of nonlinear evolution operators is given. Examples that motivate the extension of the asymptotic behaviors for the nonlinear case are given in [START_REF] Ichikawa | Equivalence of Lp stability for a class of nonlinear semigroups[END_REF]. In our paper we obtain some theorems which extend well-known results for uniform exponential stability established in the linear case.

Let X be a real or complex Banach space. The norm on X will be denoted by • . The set of all mappings from X into itself is denoted by F(X). Let T be the set of all pairs (t, t 0 ) of real numbers with the property t ≥ t 0 ≥ 0. 1 2 Evolution operators Definition 2.1 A mapping E : T → F(X) is called evolution operator on X if it has the property E(t, s)E(s, t 0 ) = E(t, t 0 ), ∀(t, s), (s, t 0 ) ∈ T.

(2.1)

In order to emphasize the necessity of extending the study of evolution operators in the nonlinear setting, we will consider the next Example 2.1 Let us consider the Cauchy problem

v(t) = Av(t), t > 0 v(0) = v 0
on a Banach space X with nonlinear operator A. If A generates a nonlinear strongly continuous semigroup (S(t)) t≥0 , then E(t, s) = S(ts), where t ≥ s ≥ 0, defines an evolution operator on X.

Definition 2.2

The evolution operator E : T → F(X) is said to be with (i) uniform exponential decay if there exist M > 1 and ω > 0 such that

E(s, t 0 )x ≤ M e ω(t-s) E(t, t 0 )x (2.2)
for all t ≥ s ≥ t 0 ≥ 0 and all x ∈ X;

(ii) uniform exponential growth if there are M > 1 and ω > 0 such that

E(t, t 0 )x ≤ M e ω(t-s) E(s, t 0 )x (2.3)
for all t ≥ s ≥ t 0 ≥ 0 and all x ∈ X.

Lemma 2.1 The evolution operator E : T → F(X) has uniform exponential decay if and only if there exists a nondecreasing function

f : [0, ∞) → (1, ∞) with the property lim t→∞ f (t) = ∞ such that E(s, t 0 )x ≤ f (t -s) E(t, t 0 )x
for all t ≥ s ≥ t 0 ≥ 0 and all x ∈ X.

Proof.

Necessity. It follows from Definition 2.2 (i) for f (t) = M e ωt . Sufficiency. If t ≥ s ≥ t 0 ≥ 0 then there exists a natural number n such that n ≤ ts < n + 1. If we denote M = f (1) and ω = ln M , then by hypothesis we have

E(s, t 0 )x ≤ M E(s + 1, t 0 )x ≤ M 2 E(s + 2, t 0 )x ≤ ≤ M n E(s + n, t 0 )x ≤ M n+1 E(t, t 0 )x = = M e nω E(t, t 0 )x ≤ M e ω(t-s) E(t, t 0 )x for all t ≥ s ≥ t 0 ≥ 0 and all x ∈ X.
Finally, we conclude that E has exponential decay.

Lemma 2.2

The evolution operator E : T → F(X) has uniform exponential growth if and only if there exists a nondecreasing function

g : [0, ∞) → (1, ∞) with the property lim t→∞ g(t) = ∞ such that E(t, t 0 )x ≤ g(t -s) E(s, t 0 )x for all t ≥ s ≥ t 0 ≥ 0 and all x ∈ X.
Proof. It is similar with the proof of Lemma 2.1.

Uniform exponential trichotomy of evolution operators

Let E be an evolution operator on the Banach space X.

Definition 3.1 An application P : R + → F(X) is said to be a projection family on X if

P (t) 2 = P (t), ∀t ∈ R + . (3.1)
Definition 3.2 Three projection families P 0 , P 1 , P 2 : R + → F(X) are said to be compatible with the evolution operator

E : T → F(X) if (ct 1 ) P 0 (t) + P 1 (t) + P 2 (t) = I, ∀t ≥ 0 (ct 2 ) P i (t)P j (t) = 0, i, j ∈ {0, 1, 2}, i = j, ∀t ≥ 0 (ct 3 ) E(t, t 0 )P k (t 0 ) = P k (t)E(t, t 0 ), ∀(t, t 0 ) ∈ T and k ∈ {0, 1, 2}.
In what follows we will denote

E k (t, t 0 ) = E(t, t 0 )P k (t 0 ) = P k (t)E(t, t 0 )
for all (t, t 0 ) ∈ T and k ∈ {0, 1, 2}.

Remark 3.1 If E is an evolution operator on X, then E 0 , E 1 and E 2 are also evolution operators on X, fact proved by the following relations

E k (t, s)E k (s, t 0 ) = E(t, s)P k (s)E(s, t 0 )P k (t 0 ) = = P k (t)E(t, t 0 )P k (t 0 ) = E k (t, t 0 ),
for all t ≥ s ≥ t 0 ≥ 0 and k ∈ {0, 1, 2}.

Definition 3.3 An evolution operator E : T → F(X) on a Banach space X is said to be uniformly exponentially trichotomic if there exist N 0 , N 1 , N 2 > 1, ν 0 , ν 1 , ν 2 > 0 and three projection families P 0 , P 1 and P 2 compatible with E such that

(uet 0 ) E 0 (s, t 0 )x ≤ N 0 e ν 0 (t-s) E 0 (t, t 0 )x ≤ N 2 0 e 2ν 0 (t-s) E 0 (s, t 0 )x (uet 1 ) e ν 1 (t-s) E 1 (t, t 0 )x ≤ N 1 E 1 (s, t 0 )x (uet 2 ) e ν 2 (t-s) E 2 (s, t 0 )x ≤ N 2 E 2 (t, t 0 )
x for all t ≥ s ≥ t 0 ≥ 0 and all x ∈ X. Remark 3.2 For P 0 = 0 we obtain the property of uniform exponential dichotomy for evolution operators studied in [START_REF] Megan | Exponential dichotomy of evolution operators in Banach spaces[END_REF], [START_REF] Megan | On nonuniform exponential dichotomy of evolution operators in Banach spaces[END_REF] and [START_REF] Preda | Exponential dichotomy of evolutionary processes in Banach spaces[END_REF]. It is obvious that if the evolution operator E is uniformly exponentially dichotomic then it is uniformly exponentially trichotomic. Remark 3.3 If P 0 = P 2 = 0 the property of uniform exponential stability is obtained, as in [START_REF] Buşe | On nonuniform exponential stability of evolutionary processes[END_REF], [START_REF] Datko | Uniform asymptotic stability of evolutionary processes in Banach spaces[END_REF], [START_REF] Megan | On (h,k)-stability of evolution operators in Banach spaces[END_REF] and [START_REF] Megan | On asymptotic behaviors of evolution operators in Banach spaces[END_REF]. It follows that a uniformly exponentially stable evolution operator is uniformly exponentially dichotomic and, further, uniformly exponentially trichotomic. 

(x 1 , x 2 , x 3 ) = |x 1 | + |x 2 | + |x 3 |, x = (x 1 , x 2 , x 3 ) ∈ X.
Let ϕ : R + → (0, ∞) be a decreasing continuous function with the property that there exists lim t→∞ ϕ(t) = l > 0.

Then the mapping E : T → F(X) defined by

E(t, t 0 )x = (e -t t 0 ϕ(τ )dτ x 1 , e t t 0 ϕ(τ )dτ x 2 , e -(t-t 0 )ϕ(0)+ t t 0 ϕ(τ )dτ x 3 )
is an evolution operator on X.

Let us consider the projections defined by

P 1 (t)(x 1 , x 2 , x 3 ) = (x 1 , 0, 0) P 2 (t)(x 1 , x 2 , x 3 ) = (0, x 2 , 0) P 3 (t)(x 1 , x 2 , x 3 ) = (0, 0, x 3 ).
for all t ≥ 0 and all x = (x 1 , x 2 , x 3 ) ∈ X.

Following relations hold E(t, t 0 )P 1 (t 0 )x) ≤ e -l(t-s) E(s, t 0 )P 1 (t 0 )x) E(t, t 0 )P 2 (t 0 )x) ≥ e l(t-s) E(s, t 0 )P 2 (t 0 )x) E(t, t 0 )P 3 (t 0 )x) ≤ e ϕ(0)(t-s) E(s, t 0 )P 3 (t 0 )x)

E(t, t 0 )P 3 (t 0 )x) ≥ e -ϕ(0)(t-s) E(s, t 0 )P 3 (t 0 )x)
for all t ≥ s ≥ t 0 ≥ 0 and all x ∈ X.

We conclude that E is uniformly exponentially trichotomic.

Theorem 3.1 Let E : T → F(X) be an evolution operator on the Banach space X with the property that there exist three projection families P 0 , P 1 and P 2 compatible with E. Then E is uniformly exponentially trichotomic if and only if there exist two nondecreasing functions f, g

: [0, ∞) → (1, ∞) with the property lim t→∞ f (t) = lim t→∞ g(t) = ∞ such that (uet ′ 0 ) E 0 (s, t 0 )x ≤ f (t -s) E 0 (t, t 0 )x ≤ f 2 (t -s) E 0 (s, t 0 )x (uet ′ 1 ) g(t -s) E 1 (t, t 0 )x ≤ E 1 (s, t 0 )x (uet ′ 2 ) g(t -s) E 2 (s, t 0 )x ≤ E 2 (t, t 0 )
x for all t ≥ s ≥ t 0 ≥ 0 and all x ∈ X.

Proof. Necessity. As the evolution operator E : T → F(X) is uniformly exponentially trichotomic it follows from Definition 3.3 that there exist three projection families P 0 , P 1 and P 2 compatible with E such that E 0 has uniform exponential growth and uniform exponential decay, E 1 is uniformly exponentially stable and E 2 is uniformly exponentially instable.

According to Lemma 2.1 and Lemma 2.2 there exists a nondecreasing function

f : [0, ∞) → (1, ∞) with the property lim t→∞ f (t) = ∞ such that E 0 (s, t 0 )x ≤ f (t -s) E 0 (t, t 0 )x and E 0 (t, t 0 )x ≤ f (t -s) E 0 (s, t 0 )x
for all t ≥ s ≥ t 0 ≥ 0 and all x ∈ X. Hence (uet ′ 0 ) is proved. By a similar proof as in Lemma 2.1 one can characterize the properties of uniform exponential stability for E 1 and uniform exponential instability for E 2 (see [START_REF] Megan | On asymptotic behaviors of evolution operators in Banach spaces[END_REF]) by means of a nondecreasing function g : [0, ∞) → (1, ∞) with the property lim

t→∞ g(t) = ∞ such that g(t -s) E 1 (t, t 0 )x ≤ E 1 (s, t 0 )x respectively g(t -s) E 2 (s, t 0 )x ≤ E 2 (t, t 0 )x
for all t ≥ s ≥ t 0 ≥ 0 and all x ∈ X, which completes the proof of (uet ′ 1 ) and (uet ′ 2 ). Sufficiency. According to Lemma 2.1 and Lemma 2.2, the two inequalities of statement (uet ′ 0 ) imply that E 0 has exponential decay and exponential growth.

The inequality (uet ′ 1 ) characterize the property of uniform exponential stability for E 1 and (uet ′

2 ) shows that E 2 is uniformly exponentially unstable, as in [START_REF] Megan | On asymptotic behaviors of evolution operators in Banach spaces[END_REF]. Thus, according to Definition 3.3, E is uniformly exponentially trichotomic.

Definition 3.4 The evolution operator E : T → F(X) is said to be strongly measurable if for every (t 0 , x) ∈ R + × X the mapping t → E(t, t 0 )x is measurable.

Theorem 3.2 Let E : T → F(X) be an evolution operator on the Banach space X with the property that there exist three projection families P 0 , P 1 and P 2 compatible with E such that the evolution operators E 1 and E 2 are strongly measurable.

Then E is uniformly exponentially trichotomic if and only if (i) E 0 and E 1 have uniform exponential growth;

(ii) E 0 and E 2 have uniform exponential decay;

(iii) there exists M ≥ 1 such that following inequalities hold

t s E 1 (τ, t 0 )x dτ ≤ M E 1 (s, t 0 )x (3.2) and t s E 2 (τ, t 0 )x dτ ≤ M E 2 (t, t 0 )x (3.3)
for all t ≥ s ≥ t 0 ≥ 0 and all x ∈ X.

Proof. The property of uniform exponential trichotomy is equivalent with the existence of three projection families P 0 , P 1 and P 2 compatible with E such that E 0 is with uniform exponential growth and uniform exponential decay, E 1 is uniformly exponentially stable and E 2 is uniformly exponentially instable.

It is sufficient to prove that if the evolution operator E 1 has uniform exponential growth and satisfies (3.2) than it is uniformly stable. Indeed, if we denote by

1 N = 1 0 du g(u)
where function g is given by Lemma 2.2, then

E 1 (t, t 0 )x N = t t-1 E 1 (t, t 0 )x g(t -τ ) dτ ≤ ≤ t s E 1 (τ, t 0 )x dτ ≤ M E 1 (s, t 0 )x and hence E 1 (t, t 0 )x ≤ M N E(s, t 0 )x for all t ≥ s + 1, s ≥ t 0 ≥ 0 and all x ∈ X. If t ∈ [s, s + 1] then E 1 (t, t 0 )x ≤ g(t -s) E 1 (s, t 0 )x ≤ g(1) E 1 (s, t 0 )x
for all s ≥ t 0 ≥ 0 and all x ∈ X.

Finally, we deduce that E 1 is uniformly exponentially stable. Similarly, it is sufficient to prove that if the evolution operator E 2 has uniform exponential decay and satisfies relation (3.3), then it is uniformly instable.

Indeed, if we denote by

1 N = 1 0 du f (u)
where function f is given by Lemma 2.1, then

E 2 (s, t 0 )x N = s+1 s E 2 (s, t 0 )x f (v -s) dv ≤ s+1 s E 2 (v, t 0 )x dv ≤ ≤ t t 0 E 2 (v, t 0 )x dv ≤ M E 2 (t, t 0 )x
and hence E 2 (s, t 0 )x ≤ M N E 2 (t, t 0 )x for all t ≥ s ≥ t 0 ≥ 0 and all x ∈ X and so E 2 is uniformly exponentially instable.

Remark 3.5 Theorem 3.2 can be considered a generalization of a wellknown result due to Datko (Theorem 11 from [START_REF] Datko | Uniform asymptotic stability of evolutionary processes in Banach spaces[END_REF]). We remark that our proofs are not generalizations of Datko's proof for the characterization of the uniform exponential stability property.

Remark 3 . 4 Example 3 . 1

 3431 Without any loss of generality, in Definition 3.4 we can suppose that N 0 = N 1 = N 2 = N and ν 1 = ν 2 = ν because otherwise we can consider N = max{N 0 , N 1 , N 2 } and ν = min{ν 1 , ν 2 }. Let us consider X = R 3 with the norm