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Hamiltonian Principle in Binary Mixtures of Euler Fluids with Applications to the Second Sound Phenomena

In the present paper we compare the theory of mixtures based on Rational Thermomechanics with the one obtained by Hamilton principle. We prove that the two theories coincide in the adiabatic case when the action is constructed with the intrinsic Lagrangian. In the complete thermodynamical case we show that we have also coincidence in the case of low temperature when the second sound phenomena arises for superfluid Helium and crystals.

Introduction

The first mathematical model of homogeneous mixture of fluids in the context of Rational Thermodynamics was due to Truesdell [START_REF] Truesdell | Sulle basi della termomeccanica[END_REF]. The compatibility with the second principle of thermodynamics was well established by Müller in the framework of classical mechanics [START_REF] Müller | A new approach to thermodynamics of simple mixtures[END_REF] and by Hutter and Müller in relativity [START_REF] Hutter | On mixtures of relativistic fluids[END_REF].

In the framework of binary mixture of Euler fluids, Dreyer [START_REF] Dreyer | Zur Thermodynamik von Helium II -Superfluides Helium mit und ohne Wirbellinien als binäre Mischung[END_REF][START_REF] Müller | Thermodynamics[END_REF] was able to revisit the well known Landau model of superfluidity [START_REF] Landau | Mécanique des Fluides[END_REF][START_REF] Putterman | Super Fluid Hydrodynamics[END_REF]. The second sound phenomena in the case of liquid He II is now well explained from a macroscopic point of view. Recently Ruggeri [START_REF] Ruggeri | The binary mixtures of Euler fluids: A unified theory of second sound phenomena in Continuum Mechanics and Applications in Geophysics and the Environment[END_REF] observed that a mixture of two Euler fluids can be regarded as a single heat conducting fluid. This result is advantageous to explain the second sound phenomena of crystals with the same model than for superfluid helium.

A different approach was given by Gavrilyuk et al, [START_REF] Gavrilyuk | Hyperbolic models of homogeneous two-fluid mixtures[END_REF], Gavrilyuk and Gouin [START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF][START_REF] Gavrilyuk | A new form of governing equations of fluids arising from Hamilton's principle[END_REF]. They consider a variational approach to describe two-velocity effects in homogeneous mixtures: a Lagrangian of the system is chosen as a difference of the kinetic energy of the two constituents and a volumic potential which is Galilean invariant depending on the relative velocity of components. The equation of motions of the two components are not in balance form (in fact they are in balance form in Lagrangian variables associated with each component). Nevertheless, the momentum and the energy equations for the total mixture are in the clasical balance form.

The present work compares the previous approaches and proves that the two theories coincide in the mechanical case when the Hamiltonian action is constructed with the intrinsic Lagrangian, i.e. does not depend on the relative velocity. Such is the case with the Lagrangian considered by Gouin in [START_REF] Gouin | Variational theory of mixtures in continuum mechanics[END_REF]. In the thermodynamical case we prove also the coincidence in the case of low temperature and we obtain a complete agreement between the two approaches and the superfluid model considered first by Landau.

The Binary Mixtures of Euler Fluids

The thermodynamics of a homogeneous mixture of n constituents is well codified as a branch of Extended Thermodynamics [START_REF] Müller | Rational Extended Thermodynamics[END_REF]. It is based on the metaphysical principles of Truesdell [START_REF] Truesdell | Sulle basi della termomeccanica[END_REF] which postulates the same balance laws of a single fluid for simple mixtures.

The Balance System

The equations of balance of mass, momentum and energy of the constituents read as follows

∂ρ a ∂t + div (ρ a v a ) = τ a , ∂ρ a v a ∂t + div (ρ a v a ⊗v a -t a ) = m a , (a = 1, 2, . . . n), (1) 
∂ 1 2 ρ a v 2 a + ρ a ε a ∂t + div 1 2 ρ a v 2 a + ρ a ε a v a -t a v a + q a = e a.
These equations have the same form as the balance equations for a single body, except for the non-zero right hand sides which represent the production of masses, momenta and energies. These productions are due to interaction between the different constituents. Of course, since the total mass, momentum and energy of the total mixture is conserved, we must have

n a=1 τ a = 0, n a=1 m a = 0, n a=1 e a = 0.
where ρ a , v a , ε a , t a , q a are the mass density, velocity, internal energy, stress and heat flux respectively of the a-component of the mixture.

If we sum the equations ( 1) over all constituents and introduce the density

ρ = n a=1 ρ a , the velocity v = n a=1 ρ a ρ v a , (2) 
the diffusion velocity

u a = v a -v, (3) 
the stress tensor t = n a=1

(t a -ρ a u a ⊗u a ) , (4) 
the intrinsic energy density ρε

I = n a=1 ρ a ε a , (5) 
the internal energy density ρε

= ρε I + 1 2 n a=1 ρ a u 2 a , (6) 
and the heat flux q = n a=1

q a + ρ a (ε a + 1 2 u 2 a )u a -t a u a , (7) 
we obtain for the total mixture:

The balance mass

∂ρ ∂t + div (ρv) = 0, (8) 
The balance equation of momentum

∂ρv ∂t + div (ρ v ⊗ v -t) = 0, (9) 
The balance of energy

∂ 1 2 ρv 2 + ρε ∂t + div 1 2 ρv 2 + ρε v -tv + q = 0. ( 10 
)
Note that equations [START_REF] Ruggeri | The binary mixtures of Euler fluids: A unified theory of second sound phenomena in Continuum Mechanics and Applications in Geophysics and the Environment[END_REF][START_REF] Gavrilyuk | Hyperbolic models of homogeneous two-fluid mixtures[END_REF][START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF] have the same form as those for a single fluid. Moreover in equation [START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF] for the balance of energy we observe that the total kinetic energy is 1 2 ρv 2 is not the sum of the kinetic energy of the components. In fact we have

1 2 ρv 2 = 1 2 n a=1 ρ a v 2 a - 1 2 n a=1 ρ a u 2 a .
By analogy with the intrinsic internal energy we call intrinsic kinetic energy the expression

E c = 1 2 n a=1 ρ a v 2 a .
As we consider a single absolute temperature T, the aim of extended thermodynamics for fluid mixtures is the determination of the 4n + 1 fields :

mass densities ρ a velocities v a (a = 1, 2, . . . n). temperature T
To determinate these fields we need an appropriate number of equations. They are based on the equations for each constituent of balance of mass (1) 1 , momentum (1) 2 and conservation of energy of the total mixture (10).

The Equations of Binary Mixture of Euler Fluids

We consider a binary mixture of Euler fluids, i.e. fluids that are neither viscous nor heat-conducting : q a ≡ 0, t a = -p a I, (a = 1, 2).

Instead of the mass and momentum balance laws for the second component, we use the equivalent equations of total conservation for mass and momentum. Therefore, associated with the 9 unknown fields (ρ 1 , ρ 2 , v 1 , v 2 , T ), we have the 9 balance equations:

∂ρ ∂t + div (ρv) = 0 ∂ρ 1 ∂t + div (ρ 1 v 1 ) = τ 1 ∂ρv ∂t + div (ρv ⊗ v -t) = 0 ( 11 
)
∂ρ 1 v 1 ∂t + div (ρ 1 v 1 ⊗v 1 + p 1 I) = m 1 ∂ 1 2 ρv 2 + ρε ∂t + div 1 2 ρv 2 + ρε v -tv + q = 0 with q = 2 a=1 ρ a ε a + 1 2 u 2 a + p a u α , t = - 2 a=1 (p a I+ρ a u a ⊗u a ) , (12) p 
= 2 a=1 p α .

The Entropy Principle and Thermodynamical Restrictions

The compatibility between the system (1) and the entropy principle expresses in the form

∂ρS ∂t + div {ρSv + Ψ} ≥ 0, (13) 
which yields several restrictions on the constitutive equations [START_REF] Müller | Rational Extended Thermodynamics[END_REF] :

ρS = ρ 1 S 1 + ρ 2 S 2 (14) 
p 1 ≡ p 1 (ρ 1 , T ); p 2 ≡ p 2 (ρ 2 , T ); ε 1 ≡ ε 1 (ρ 1 , T ); ε 2 ≡ ε 1 (ρ 2 , T ) (15) 
such that

T dS 1 = dε 1 - p 1 ρ 2 1 dρ 1 ; T dS 2 = dε 2 - p 2 ρ 2 2 dρ 2 (16) 
Ψ = q T - 1 T (ρ 1 µ 1 u 1 + ρ 2 µ 2 u 2 ) . ( 17 
)
where

µ a ≡ ε a + p a ρ a -T S a is the chemical potential of constituent a.

The Mixture considered as a Single Heat conducting Fluid

Ruggeri [START_REF] Ruggeri | The binary mixtures of Euler fluids: A unified theory of second sound phenomena in Continuum Mechanics and Applications in Geophysics and the Environment[END_REF] proved that it is possible to write the velocities of the two constituents in terms of mass velocity and heat flux centers :

v 1 = v + α ρ 1 q, v 2 = v - α ρ 2 q where 1 α = ε 1 + p 1 ρ 1 + 1 2 u 2 1 -ε 2 + p 2 ρ 2 + 1 2 u 2 2 . (18) 
Introducing the concentration c = ρ 1 ρ , equations (11) 2 and (11) 4 can be written in terms of ρ, c, v and q and the system (11) becomes:

∂ρ ∂t + div (ρv) = 0 ∂(ρc) ∂t + div (ρcv+αq) = τ ∂ρv ∂t + div ρv ⊗ v + pI+ α 2 ρc(1 -c) q ⊗ q = 0 (19) ∂(ρcv+αq) ∂t + div ρcv ⊗ v+ α 2 ρc q ⊗ q+α (v ⊗ q + q ⊗ v) + ν I = -bq ∂ 1 2 ρv 2 + ρε ∂t + div 1 2 ρv 2 + ρε + p v + α 2 v • q ρc(1 -c) + 1 q = 0.
To eliminate the index 1, we write as in [START_REF] Ruggeri | The binary mixtures of Euler fluids: A unified theory of second sound phenomena in Continuum Mechanics and Applications in Geophysics and the Environment[END_REF], ν = p 1 , τ = τ 1 and m 1 = -bq. In an extended thermodynamic model with 9 fields, the binary mixture can be considered as a single heat conducting fluid with a variable concentration. Equation of evolution (19) 4 is a natural extension of the Cattaneo equation for the heat flux. Thermal inertia term α together with term ν have to be interpreted as new constitutive functions. The advantage of this procedure comes from the fact that the two functions are now understandable in the light of mixture theory: term ν plays the role of one-component pressure while the thermal inertia term α given in [START_REF] Serrin | Mathematical principles of classical fluid mechanics[END_REF] is the inverse of the difference between the non-equilibrium enthalpies of the two constituents.

The Superfluidity and Second Sound

Dreyer [START_REF] Dreyer | Zur Thermodynamik von Helium II -Superfluides Helium mit und ohne Wirbellinien als binäre Mischung[END_REF] proved that the Landau theory of superfluidity is a particular case of simple mixtures with the thermodynamical peculiarities :

S s = 0; µ s -µ n + 1 2 (v s -v n ) 2 = 0, m s = τ s v s , (20) 
where the indexes n and s correspond to normal and the superfluid components. By neglecting the quadratic term in the second equation, in the small diffusion case the two chemical potential µ s and µ n must be equal. Consequently, the relation µ s = µ n allows to obtain one field variable in terms of the others and it is possible to write

ρ s ≡ ρ s (ρ, T )
In this case equation ( 11) 2 evaluates the mass production value τ s and the superfluid helium framework becomes a theory with 8 fields (i.e. the system is formed by equations [START_REF] Gavrilyuk | A new form of governing equations of fluids arising from Hamilton's principle[END_REF] The condition (20) 3 is the most complex. In fact [START_REF] Gavrilyuk | A new form of governing equations of fluids arising from Hamilton's principle[END_REF] 4 with (11) 2 can be rewritten (see [START_REF] Müller | Thermodynamics[END_REF] for details) :

∂v s ∂t + ∇ 1 2 v 2 s + µ s + curl v s × v s = 0.
This equation is in balance form only when the involutive constraint curl v s = 0 holds. In this case the system (19) coincides with the Landau model [START_REF] Landau | Mécanique des Fluides[END_REF] :

∂ρ ∂t + div (ρv) = 0, ∂ρv ∂t + div (ρv ⊗ v -t) = 0, ( 21 
) ∂v s ∂t + ∇ 1 2 v 2 s + µ s = 0, ∂ 1 2 ρv 2 + ρε ∂t + div 1 2 ρv 2 + ρε v -tv + q = 0.
Taking into account (24), ( 17) and (20) 1 , the entropy law reduces to the Clausius form:

∂ρS ∂t + div ρS v + q T = 0. ( 22 
)
where the heat flux (12) 1 is:

q = ρT S u n + 1 2 ρ s u 2 s u s +ρ n u 2 n u n . (23) 
In the diffusion velocity we neglect the third order terms and we obtain the Landau entropy law for the heat flux [START_REF] Landau | Mécanique des Fluides[END_REF]. The entropy flux becomes ρS v n and the entropy is convected by the normal component

∂ρS ∂t + div (ρS v n ) = 0. ( 24 
)
To focus on the thermal wave associated with the second sound we consider a rigid body at rest with constant density. For the superfluid component, the system of energy and momentum equations is :

∂ρε ∂t + div q = 0, ∂v s ∂t + ∇ 1 2 v 2 s + µ s = 0,
with q = ρT S v n . Such a system is in the form (19) for a single fluid :

∂ρε ∂t + div q = 0 ∂(αq) ∂t + ∇ν = -bq
The system coincides with the one deduced by Ruggeri and coworkers for the model of second sound in crystals [START_REF] Ruggeri | A Continuum Approach to Phonon Gas and Shape Changes of Second Sound via Shock Waves Theory[END_REF]. Such a model explains the change of form of the initial square thermal waves both in crystals [START_REF] Ruggeri | A Continuum Approach to Phonon Gas and Shape Changes of Second Sound via Shock Waves Theory[END_REF][START_REF] Ruggeri | Shock Waves and Second Sound in a Rigid Heat Conductor: A Critical Temperature for NaF and Bi[END_REF][START_REF] Ruggeri | Second Sound and Characteristic Temperature in Solids[END_REF] and in the superfluid helium [START_REF] Ruggeri | Second Sound Propagation in Superfluid Helium via Extended Thermodynamics[END_REF].

The Hamiltonian Procedure for Two-Fluid Mixtures

To obtain the equations of motion and energy, the procedure is the following: Let us suppose that the mixture of two miscible fluids is well described by the twocomponent velocities v 1 , v 2 , the densities ρ 1 , ρ 2 and the intrinsic internal energy β = ρε I . The intrinsic internal energy is a Galilean invariant and does not depend on the reference frame. We consider the general case where β depends on ρ 1 , ρ 2 but also of the relative

velocity w = v 1 -v 2 through the norm ω = |v 1 -v 2 | [9].
The intrinsic kinetic energy is

E c = 1 2 ρ 1 v 2 1 + ρ 2 v 2 2 .
Without dissipative effects, chemical reactions and with conservation of masses of the two components, an extended form of Hamilton principle of least action is used in the form

δI = 0 with I = W 0 L dxdt,
where the Lagrangian is L = E cβ(ρ 1 , ρ 2 , ω), W = [t 0 , t 1 ] × D is a time-space cylinder and the variations must vanish on the boundary of W. The virtual motions of the mixture are defined in [START_REF] Gavrilyuk | Hyperbolic models of homogeneous two-fluid mixtures[END_REF][START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF]. From the variations of Hamilton action, we obtain the equations of motions in the form

∂k a ∂t + curl k a × v a + ∇ ∂β ∂ρ a - 1 2 v 2 a + k a v a = 0 (a = 1, 2) (25) 
where

k a = v a -(-1) a 1 ρ a ∂β ∂ω w ω .
The momentum conservation law is obtained by summing on a = 1, 2 equation (25) multiplied by ρ a :

∂ (ρ 1 v 1 + ρ 2 v 2 ) ∂t + ∇ ρ 1 ∂β ∂ρ 1 + ρ 2 ∂β ∂ρ 2 -β + div ρ 1 v 1 ⊗ v 1 + ρ 2 v 2 ⊗ v 2 - ∂β ∂ω w ⊗ w ω = 0 (26) 
Additive terms come from the dependance of β in ω and in the mechanical case ρ 1 ∂β ∂ρ 1 + ρ 2 ∂β ∂ρ 2 β represents the total pressure p.

The conservation of energy is obtained by summing on a = 1, 2 equation (26) multiplied by ρ a v a :

∂ ∂t

1 2 ρ 1 v 2 1 + 1 2 ρ 2 v 2 1 + β + ω ∂β ∂ω + div ρ 1 v 1 ∂β ∂ρ 1 + k 1 v 1 + ρ 2 v 2 ∂W ∂ρ 2 + k 2 v 2 = 0. ( 27 
)
In paragraph 2, we consider the case where β is independent of ω and the entropy principle [START_REF] Ruggeri | Shock Waves and Second Sound in a Rigid Heat Conductor: A Critical Temperature for NaF and Bi[END_REF] presented in [START_REF] Müller | Rational Extended Thermodynamics[END_REF] 

yields β = ρ 1 ε 1 (ρ 1 ) + ρ 2 ε 2 (ρ 2 )
. Then, equation (25) writes

∂v a ∂t + curl v a × v a + ∇ 1 2 v 2 a + µ a = 0, (a = 1, 2). ( 28 
)
Multiplying equation (28) by ρ a straightforward calculations yield equation [START_REF] Gavrilyuk | A new form of governing equations of fluids arising from Hamilton's principle[END_REF] 4 with m a = 0. Equations (26, 27) yield equations [START_REF] Gavrilyuk | A new form of governing equations of fluids arising from Hamilton's principle[END_REF] 3 , (11) 5 and balance of mass equations correspond to τ a = 0 (a = 1, 2). A purely mechanical case is the adiabatic one and we have verified the following results :

In the adiabatic case with intrinsic Lagrangian L = E cρε I difference between the intrinsic kinetic energy and the intrinsic internal energy ρε I = ρ 1 ε 1 (ρ 1 ) + ρ 2 ε 2 (ρ 2 ), the system deduced from Hamilton principle coincides with the system coming from Rational Thermomechanics.

4 The Hamiltonian Procedure for Superfluid Helium

In the case of a binary mixture some change must be done in the definition of virtual motions presented by Serrin in [START_REF] Serrin | Mathematical principles of classical fluid mechanics[END_REF]. Let us consider the motion of Helium II as two diffeomorphisms

z = M (Z) , z = M n (Z n )
where z = t x corresponds to the Eulerian variables time-space and

Z = λ X , Z n =
λ n X n correspond to the Lagrangian variables associated with the barycentric motion and the normal component motion of helium II. In coordinate form,

M (Z) = g (λ, X) φ (λ, X) , M n (Z n ) = g (λ n , X n ) φ n (λ n , X n )
We consider three one-parameter families of virtual motions which are sufficient to obtain the governing equations :

(F )      t = g (λ, X) = g n (λ n , X n ) x = Φ (λ, X, ε) x = φ n (λ n , X n ) with Φ (λ, X, 0) = φ (λ, X), (F n )      t = g (λ, X) = g n (λ n , X n ) x = φ (λ, X) x = Φ n (λ n , X n , ε) with Φ n (λ n , X n , 0) = φ n (λ n , X n ) , (F t )      t = G (λ, X, ε) = G n (λ n , X n , ε) x = φ (λ, X) x = φ n (λ n , X n ) with G (λ, X, 0) = G n (λ n , X n , 0) = g (λ, X) = g n (λ n , X n ).
The three families generate the virtual displacements

ζ =    0 ξ    =     0 ∂Φ ∂ε     ε=0 , ζ n =    0 ξ n    =     0 ∂Φ n ∂ε     ε=0 , ζ t =    τ 0    =     ∂G ∂ε 0     ε=0 .
The virtual motion (F ) generates an associated displacement δZ n of the normal component. Indeed, the relations g (λ, X) = g n (λ n , X 1 )

φ n (λ, X n ) = Φ (λ, X, ε) imply ζ =       ∂g n ∂λ 1 , ∂g n ∂X n ∂φ n ∂λ n , ∂φ n ∂X n       δZ n
By using the definition of the deformation gradient F proposed in Appendix we get

δZ n = C n ζ with C n =    0 , 0 -F -1 V n , F -1 n    (29) 
In the same way, virtual motion (F n ) generates an associated displacement δ n Z of the barycentric motion

δ n Z = C ζ n with C = 0 , 0 -F -1 V , F -1 Now, H (Z, ε) notes a perturbation of h (Z), the variation of h is δh = ∂H ∂ε ε=0
We can also introduce Lagrangian variations corresponding to the families (F n ) and (F t ) :

δ n h n = ∂H n ∂ε ε=0 and δ t h t = ∂H t ∂ε ε=0
The variations of the entropy S is a main step of our model: we make the physical assumption that the entropy S is defined on the Z n -space. This result corresponds to equation (24) proposed by Landau. Consequently, we deduce δ n S = 0 and δ t S = 0. From relation (29) we obtain

δS = ∂S ∂Z n δZ n = ∂S ∂x ξ
Following the Hamiltonian procedure presented in paragraph 3, we consider the Lagrangian L as a function of ρ, v,

ρ n , v n , S (L = L(ρ, v, ρ n , v n , S)). Such is the case for the intrinsic Lagrangian L = 1 2 (ρ n v 2 n + ρ s v 2 s ) -β(ρ, ρ n , S)
where ρ s and v s are given by the relations :

ρ s = ρ -ρ n and v s = ρv -ρ n v n ρ -ρ n . (30) 
Consequently,

∂v s ∂ρ = 1 ρ s (v -v s ), ∂v s ∂ρ n = 1 ρ s (v s -v n ), ∂v s ∂v = ρ ρ s I, ∂v s ∂v n = - ρ n ρ s I
The variation of the Hamilton action corresponding to the first family is : 

δI = W 0 δ (L det B)
= ρ n (v n -v s ) R = ∂L ∂ρ = - 1 2 v 2 s + v s v -β ′ ρ s (ρ n , ρ s , S), (31) 
R n = ∂L ∂ρ n = 1 2 v 2 + 1 2 v 2 s -v s v n -β ′ ρ n (ρ n ,
+ ∂L ∂ρ n ∂ρ n ∂x ξ + L div ξ + ∂L ∂S ∂S ∂x ξ = ρv s dξ dt + ρ n (v n -v s ) ∂v n ∂x ξ -ρR div ξ + R n ∂ρ n ∂x ξ + L div ξ + ∂L ∂S ∂S ∂x ξ
By using the expression 

ρv s dξ dt = ∂ ∂t (ρv s ξ) - ∂ ∂t (ρv s ) ξ + div ρ(v ⊗ v s ) ξ -div (ρv ⊗ v s ) ξ we get δL + L div ξ = ∂ ∂t (ρv s ξ) - ∂ ∂t (ρv s ) ξ + div ρ(v ⊗ v s ) ξ -div (ρv ⊗ v s ) ξ + ρ n v n ∂v n ∂x ξ -div (ρR ξ) + ∇ (ρR) ξ +
+ L Div ζ = - ∂ ∂t (ρv s ) -div (ρv ⊗ v s ) + ∇ (ρR) -R∇ρ -ρ ∂v ∂x * v s ξ + ∂ ∂t (ρv s ξ) + div ρ(v ⊗ v s ) ξ -div (ρ R ξ) + div (L ξ) ,
where * notes the transposition. Consequently, the first equation of momentum is

∂v s ∂t + ∇ 1 2 v 2 s + β ′ ρ s = v s × curl v s (32) 
If we note µ s = β ′ ρ s , when v ≈ 0 , equation (32) yields

∂v s ∂t + ∇ 1 2 v 2 s + µ s = 0 (33)
which is the Landau equation for the superfluid component. In fact Landau pointed out that Helium II lose its superfluidity when the velocity is not small enough and the supplementary term curl v s × v ≈ 0 corresponds to this experimental evidence.

Variations of the Hamilton action are closely the same for the second family. The variation of the entropy is δ n S = 0 and consequently an entropy term is now appearing in the equations of motion. The second equation of momentum is

∂ ∂t (ρ n (v n -v s )) + div (ρ n v n ⊗ (v n -v s )) + ρ n ∂u n ∂x * (v n -v s ) -ρ n ∇R n -ρ T ∇S = 0 (34) 
By summing equations ( 32) and (34), equation (34) can be replaced by the balance of total momentum:

∂ ∂t ρv s + ρ n (v n -v s ) + div ρv ⊗ v s + ρ s v n ⊗ (v n -v s ) -ρ ∂L ∂ρ -ρ n ∂L ∂ρ n + L = 0.
Straightforward calculations yield the equation of momentum

∂ρv ∂t + div (ρv n ⊗ v n + ρv s ⊗ v s + p) = 0, (35) 
where p = ρ s µ s + ρ n µ nβ is the total pressure, with µ n = β ′ ρ n .

Finally, the third family is associated with the vector displacement ζ t = τ 0 . The variations of basic variables are calculated in Appendix :

δ t v = -v dτ dt , δ t ρ = ρ ∇τ v, δ t v n = -v n d n τ dt , δ t ρ n = ρ n ∇τ v n , δ t S = 0.
The variation of the Hamilton action is

δ t I = W 0 δ t L + L ∂τ ∂t det B dw 0 with δ t L = ∂L ∂v δ t v + ∂L ∂v n δ t v n + ∂L ∂ρ δ t ρ + ∂L ∂ρ n δ t ρ n + ∂L ∂s δ t s
Hence,

δ t L + L ∂τ ∂t = -ρv s v ∂τ ∂t + ∇τ v -ρ n (v n -v s )v n ∂τ ∂t + ∇τ v n +ρR∇τ v + ρ n R n ∇τ v n + ∂ ∂t (Lτ ) - ∂L ∂t τ = - ∂ ∂t (ρv s v τ ) + ∂ ∂t (ρv s v) τ -div ρ(v s v) v τ + div ρ(v s v) v τ - ∂ ∂t ρ n (v n -v s )v n τ + ∂ ∂t ρ n (v n -v s )v n τ -div ρ n v n (v n -v s )v n τ + div ρ n (v n -v s )v n v n τ + div (ρRv τ ) -div (ρR v) τ + div (ρ n R n v n τ ) -div (ρ n R n v n ) τ + ∂ ∂t (Lτ ) - ∂L ∂t τ .
Consequently, ∂ ∂t

(ρv s v + ρ n (v n -v s )v n -L) + div {(v s v -R) ρv + [(v n -v s )v n -R n ] ρ n v n } = 0
If we notice that

ρv s v + ρ n (v n -v s )v n -L = 1 2 ρ n v 2 n + 1 2 ρ s v 2 s + β = ρε and (v s v -R)ρv + (v n -v s )v n -R n ρ n v n = ( 1 2 v 2 s + β ′ ρ s )ρ s v s + ( 1 2 v 2 n + β ′ ρ n )ρ n v n =
q, we obtain the equation of balance of the total energy in the form :

∂ρε ∂t + div q = 0. ( 36 
)
We notice that the specific entropy S does not appear explicitly anymore in equations ( 32), ( 35), (36) and we conclude : In the case of superfluid Helium the Hamilton principle yields the Landau model.

Appendix. Variation of Basic Tensorial Quantities

Let (λ, X) be any generalized Lagrangian coordinates and (t, x) the associated Eulerian coordinates t = g (λ, X) x = φ (λ, X) .

The relation dx = v dt + F dX defines simultaneously the velocity vector and the deformation gradient of motion (37) : 

.

  Lett = G (λ, X, ε) x = Φ (λ, X, ε) be a virtual motion. The associated perturbation of the velocity v is given by the formula :For fixed values of Lagrangian coordinates the variation of v in Eulerian coordinates is :

  dw 0 Div ζ) detB dw 0 .

	where B = the λ X -space. Consequently, ∂z is the Jacobian of M and W 0 is the associated Lagrangian domain in ∂Z
	δI = (δL + L Variations of L come from W 0				
	δL =	∂L ∂v	δv +	∂L ∂v n	δv n +	∂L ∂ρ	δρ +	∂L ∂ρ n	δρ n +	∂L ∂S	δS.
	with,										
			∂L ∂v	= ρv s ,	∂L ∂v n			

  ρ s , S) + β ′ ρ s (ρ n , ρ s , S),

							ρT = -	∂L ∂S
	Moreover we have,						
		δv n =	∂v n ∂Z n	C n ζ =	∂v n ∂x	ξ and δρ n =	∂ρ n ∂Z n	C n ζ =	∂ρ n ∂x	ξ
	Since ζ =	0 ξ	, we get (see Appendix for the variations δρ and δv variations),
			δL + L Div ζ =	∂L ∂v	dξ dt	+	∂L ∂v n	∂v n ∂x	ξ -ρ	∂L ∂ρ	div ξ
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Analogous calculation for F is :

Moreover, the Euler-Jacobi identity yields

Hence, the mass conservation law is : ρ det F = ρ 0 (X) and implies

Equation ( 11) 2 is the form of the mass balance for the normal component of Helium. If we assume

which means that ρ n is defined on the Lagrangian space of the normal component, the variation of ρ n with respect to δ n is always in the form :