Hamiltonian Principle in Binary Mixtures of Euler Fluids with Applications to the Second Sound Phenomena

Henri Gouin, Tommaso Ruggeri

To cite this version:
Henri Gouin, Tommaso Ruggeri. Hamiltonian Principle in Binary Mixtures of Euler Fluids with Applications to the Second Sound Phenomena. Rendiconti Lincei. Matematica e Applicazioni, 2003, 14 (s 9), pp.69-83. hal-00283148

HAL Id: hal-00283148
https://hal.science/hal-00283148
Submitted on 29 May 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Hamiltonian Principle
in Binary Mixtures of Euler Fluids
with Applications to the Second Sound Phenomena

Henri Gouin* and Tommaso Ruggeri†
Department of Mathematics and Research Center of Applied Mathematics (C.I.R.A.M.)
University of Bologna, Via Saragozza 8, 40123 Bologna, Italy

Abstract

In the present paper we compare the theory of mixtures based on Rational Thermomechanics with the one obtained by HAMILTON principle. We prove that the two theories coincide in the adiabatic case when the action is constructed with the intrinsic Lagrangian. In the complete thermodynamical case we show that we have also coincidence in the case of low temperature when the second sound phenomena arises for superfluid Helium and crystals.

1 Introduction

The first mathematical model of homogeneous mixture of fluids in the context of Rational Thermodynamics was due to TRUESDELL [1]. The compatibility with the second principle of thermodynamics was well established by MÜLLER in the framework of classical mechanics [2] and by HUTTER and MÜLLER in relativity [3].

In the framework of binary mixture of EULER fluids, DREYER [4, 5] was able to revisit the well known LANDAU model of superfluidity [6, 7]. The second sound phenomena in the case of liquid He II is now well explained from a macroscopic point of view. Recently RUGGERI [8] observed that a mixture of two EULER fluids can be regarded as a single heat conducting fluid. This result is advantageous to explain the second sound phenomena of crystals with the same model than for superfluid helium.

A different approach was given by GAHRILYUK et al, [9], GAHRILYUK and GOUIN [10, 11]. They consider a variational approach to describe two-velocity effects in homogeneous
mixtures: a Lagrangian of the system is chosen as a difference of the kinetic energy of the two constituents and a volumic potential which is Galilean invariant depending on the relative velocity of components. The equation of motions of the two components are not in balance form (in fact they are in balance form in Lagrangian variables associated with each component). Nevertheless, the momentum and the energy equations for the total mixture are in the classical balance form.

The present work compares the previous approaches and proves that the two theories coincide in the mechanical case when the Hamiltonian action is constructed with the intrinsic Lagrangian, i.e. does not depend on the relative velocity. Such is the case with the Lagrangian considered by Gouin in [12]. In the thermodynamical case we prove also the coincidence in the case of low temperature and we obtain a complete agreement between the two approaches and the superfluid model considered first by Landau.

2 The Binary Mixtures of Euler Fluids

The thermodynamics of a homogeneous mixture of \(n \) constituents is well codified as a branch of Extended Thermodynamics [13]. It is based on the metaphysical principles of Truesdell [1] which postulates the same balance laws of a single fluid for simple mixtures.

2.1 The Balance System

The equations of balance of mass, momentum and energy of the constituents read as follows

\[
\begin{align*}
\frac{\partial \rho_a}{\partial t} + \text{div} (\rho_a v_a) &= \tau_a, \\
\frac{\partial \rho_a v_a}{\partial t} + \text{div} (\rho_a v_a \otimes v_a - t_a) &= m_a, \quad (a = 1, 2, \ldots n), \\
\frac{\partial}{\partial t} \left(\frac{1}{2} \rho_a v_a^2 + \rho_a \varepsilon_a \right) + \text{div} \left\{ \left(\frac{1}{2} \rho_a v_a^2 + \rho_a \varepsilon_a \right) v_a - t_a v_a + q_a \right\} &= e_a.
\end{align*}
\]

These equations have the same form as the balance equations for a single body, except for the non-zero right hand sides which represent the production of masses, momenta and energies. These productions are due to interaction between the different constituents. Of course, since the total mass, momentum and energy of the total mixture is conserved, we must have

\[
\sum_{a=1}^{n} \tau_a = 0, \quad \sum_{a=1}^{n} m_a = 0, \quad \sum_{a=1}^{n} e_a = 0.
\]

where \(\rho_a, v_a, \varepsilon_a, t_a, q_a \) are the mass density, velocity, internal energy, stress and heat flux respectively of the \(a \)-component of the mixture.
If we sum the equations (1) over all constituents and introduce

- the density \(\rho = \sum_{a=1}^{n} \rho_a \),
- the velocity \(\mathbf{v} = \sum_{a=1}^{n} \frac{\rho_a}{\rho} \mathbf{v}_a \),
- the diffusion velocity \(\mathbf{u}_a = \mathbf{v}_a - \mathbf{v} \),
- the stress tensor \(\mathbf{t} = \sum_{a=1}^{n} (\mathbf{t}_a - \rho_a \mathbf{u}_a \otimes \mathbf{u}_a) \),
- the intrinsic energy density \(\rho \varepsilon_I = \sum_{a=1}^{n} \rho_a \varepsilon_a \),
- the internal energy density \(\rho \varepsilon = \rho \varepsilon_I + \frac{1}{2} \sum_{a=1}^{n} \rho_a u_a^2 \),
- the heat flux \(\mathbf{q} = \sum_{a=1}^{n} \left\{ \mathbf{q}_a + \rho_a (\varepsilon_a + \frac{1}{2} u_a^2) \mathbf{u}_a - \mathbf{t}_a \mathbf{u}_a \right\} \),

we obtain for the total mixture:

The balance mass
\[
\frac{\partial \rho}{\partial t} + \text{div} (\rho \mathbf{v}) = 0, \tag{8}
\]

The balance equation of momentum
\[
\frac{\partial \rho \mathbf{v}}{\partial t} + \text{div} (\rho \mathbf{v} \otimes \mathbf{v} - \mathbf{t}) = 0, \tag{9}
\]

The balance of energy
\[
\frac{\partial \left(\frac{1}{2} \rho \mathbf{v}^2 + \rho \varepsilon \right)}{\partial t} + \text{div} \left\{ \left(\frac{1}{2} \rho \mathbf{v}^2 + \rho \varepsilon \right) \mathbf{v} - \mathbf{t} \mathbf{v} + \mathbf{q} \right\} = 0. \tag{10}
\]

Note that equations (8, 9, 10) have the same form as those for a single fluid. Moreover in equation (10) for the balance of energy we observe that the total kinetic energy is \(\frac{1}{2} \rho \mathbf{v}^2 \) is not the sum of the kinetic energy of the components. In fact we have
\[
\frac{1}{2} \rho \mathbf{v}^2 = \frac{1}{2} \sum_{a=1}^{n} \rho_a v_a^2 - \frac{1}{2} \sum_{a=1}^{n} \rho_a u_a^2.
\]

By analogy with the intrinsic internal energy we call intrinsic kinetic energy the expression
\[
E_c = \frac{1}{2} \sum_{a=1}^{n} \rho_a v_a^2.
\]

As we consider a single absolute temperature \(T \), the aim of extended thermodynamics for fluid mixtures is the determination of the \(4n + 1 \) fields:

- mass densities \(\rho_a \)
- velocities \(\mathbf{v}_a \) \((a = 1, 2, \ldots n) \)
- temperature \(T \)

3
To determinate these fields we need an appropriate number of equations. They are based on the equations for each constituent of balance of mass (1), momentum (2) and conservation of energy of the total mixture (10).

2.2 The Equations of Binary Mixture of Euler Fluids

We consider a binary mixture of EULER fluids, i.e. fluids that are neither viscous nor heat-conducting:

\[q_a \equiv 0, \quad t_a = -\rho_a I, \quad (a = 1, 2). \]

Instead of the mass and momentum balance laws for the second component, we use the equivalent equations of total conservation for mass and momentum. Therefore, associated with the 9 unknown fields \(\rho_1, \rho_2, v_1, v_2, T \), we have the 9 balance equations:

\[
\frac{\partial \rho}{\partial t} + \text{div} (\rho \mathbf{v}) = 0
\]

\[
\frac{\partial \rho_1}{\partial t} + \text{div} (\rho_1 \mathbf{v}_1) = \tau_1
\]

\[
\frac{\partial \rho \mathbf{v}}{\partial t} + \text{div} (\rho \mathbf{v} \otimes \mathbf{v} - \mathbf{t}) = 0
\]

\[
\frac{\partial \rho_1 \mathbf{v}_1}{\partial t} + \text{div} (\rho_1 \mathbf{v}_1 \otimes \mathbf{v}_1 + p_1 \mathbf{I}) = \mathbf{m}_1
\]

\[
\frac{\partial \left(\frac{1}{2} \rho v^2 + \rho \varepsilon \right)}{\partial t} + \text{div} \left\{ \left(\frac{1}{2} \rho v^2 + \rho \varepsilon \right) \mathbf{v} - \mathbf{t} \mathbf{v} + \mathbf{q} \right\} = 0
\]

with

\[
\mathbf{q} = \sum_{a=1}^{2} \left\{ \rho_a \left(\varepsilon_a + \frac{1}{2} u_a^2 \right) + p_a \right\} \mathbf{u}_a,
\]

\[
\mathbf{t} = -\sum_{a=1}^{2} \left(p_a \mathbf{I} + \rho_a \mathbf{u}_a \otimes \mathbf{u}_a \right),\quad (12)
\]

\[
p = \sum_{a=1}^{2} p_a.
\]

2.3 The Entropy Principle and Thermodynamical Restrictions

The compatibility between the system (I) and the entropy principle expresses in the form

\[
\frac{\partial \rho S}{\partial t} + \text{div} \left\{ \rho S \mathbf{v} + \Psi \right\} \geq 0,
\]

\[
\text{(13)}
\]
which yields several restrictions on the constitutive equations [13]:

\[\rho S = \rho_1 S_1 + \rho_2 S_2 \]

\[p_1 = p_1(\rho_1, T); \quad p_2 = p_2(\rho_2, T); \quad \varepsilon_1 = \varepsilon_1(\rho_1, T); \quad \varepsilon_2 = \varepsilon_1(\rho_2, T) \]

such that

\[T dS_1 = d\varepsilon_1 - p_1 \rho_2 d\rho_1; \quad T dS_2 = d\varepsilon_2 - p_2 \rho_2 d\rho_2 \]

\[\Psi = \frac{q}{T} - \frac{1}{T} (\rho_1 \mu_1 u_1 + \rho_2 \mu_2 u_2). \]

where \(\mu_a = \varepsilon_a + p_a \rho_a - TS_a \) is the chemical potential of constituent \(a \).

2.4 The Mixture considered as a Single Heat conducting Fluid

RUGGERI [8] proved that it is possible to write the velocities of the two constituents in terms of mass velocity and heat flux centers:

\[v_1 = v + \frac{\alpha}{\rho_1} q, \quad v_2 = v - \frac{\alpha}{\rho_2} q \]

where

\[\frac{1}{\alpha} = \left(\varepsilon_1 + \frac{p_1}{\rho_1} + \frac{1}{2} u_1^2 \right) - \left(\varepsilon_2 + \frac{p_2}{\rho_2} + \frac{1}{2} u_2^2 \right). \]

Introducing the concentration \(c = \frac{\rho_1}{\rho} \), equations (11) and (14) can be written in terms of \(\rho, c, v \) and \(q \) and the system (11) becomes:

\[
\frac{\partial \rho}{\partial t} + \text{div} (\rho v) = 0
\]

\[
\frac{\partial (\rho c)}{\partial t} + \text{div} (\rho c v + \alpha q) = \tau
\]

\[
\frac{\partial \rho v}{\partial t} + \text{div} \left(\rho v \otimes v + p I + \frac{\alpha^2}{\rho c (1-c)} q \otimes q \right) = 0
\]

\[
\frac{\partial (\rho c v + \alpha q)}{\partial t} + \text{div} \left\{ \rho c v \otimes v + \frac{\alpha^2}{\rho c} q \otimes q + \alpha (v \otimes q + q \otimes v) + \nu I \right\} = -b q
\]

\[
\frac{\partial (\frac{1}{2} \rho v^2 + \rho \varepsilon)}{\partial t} + \text{div} \left\{ \left(\frac{1}{2} \rho v^2 + \rho \varepsilon + p \right) v + \left(\frac{\alpha^2 v \cdot q}{\rho c (1-c)} + 1 \right) q \right\} = 0.
\]
To eliminate the index 1, we write as in \([8]\), \(\nu = p_1, \tau = \tau_1\) and \(m_1 = -bq\). In an extended thermodynamic model with 9 fields, the binary mixture can be considered as a single heat conducting fluid with a variable concentration.

Equation of evolution \((19)_4\) is a natural extension of the Cattaneo equation for the heat flux. Thermal inertia term \(\alpha\) together with term \(\nu\) have to be interpreted as new constitutive functions. The advantage of this procedure comes from the fact that the two functions are now understandable in the light of mixture theory: term \(\nu\) plays the role of one-component pressure while the thermal inertia term \(\alpha\) given in \([18]\) is the inverse of the difference between the non-equilibrium enthalpies of the two constituents.

2.5 The Superfluidity and Second Sound

Dreyer \([1]\) proved that the Landau theory of superfluidity is a particular case of simple mixtures with the thermodynamical peculiarities:

\[
S_s = 0; \quad \mu_s - \mu_n + \frac{1}{2}(v_s - v_n)^2 = 0; \quad m_s = \tau_s v_s, \tag{20}
\]

where the indexes \(n\) and \(s\) correspond to normal and the superfluid components.

By neglecting the quadratic term in the second equation, in the small diffusion case the two chemical potential \(\mu_s\) and \(\mu_n\) must be equal. Consequently, the relation \(\mu_s = \mu_n\) allows to obtain one field variable in terms of the others and it is possible to write

\[
\rho_s \equiv \rho_s(\rho, T)
\]

In this case equation \((11)_2\) evaluates the mass production value \(\tau_s\) and the superfluid helium framework becomes a theory with 8 fields (i.e. the system is formed by equations \((11)_1, (11)_3, (11)_4, (11)_5\) or equivalently equations \((19)_1, (19)_3, (19)_4, (19)_5\).

The condition \((20)_3\) is the most complex. In fact \((11)_4\) with \((11)_2\) can be rewritten (see \([3]\) for details):

\[
\frac{\partial v_s}{\partial t} + \nabla \left(\frac{1}{2} v_s^2 + \mu_s \right) + \text{curl} \, v_s \times v_s = 0.
\]

This equation is in balance form only when the involutive constraint \(\text{curl} \, v_s = 0\) holds. In this case the system \((19)\) coincides with the Landau model \([3]\):

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \text{div} (\rho v) &= 0, \\
\frac{\partial \rho v}{\partial t} + \text{div} (\rho v \otimes v - t) &= 0, \\
\frac{\partial v_s}{\partial t} + \nabla \left(\frac{1}{2} v_s^2 + \mu_s \right) &= 0, \\
\frac{\partial \left(\frac{1}{2} \rho v^2 + \rho \varepsilon \right)}{\partial t} + \text{div} \left\{ \left(\frac{1}{2} \rho v^2 + \rho \varepsilon \right) v - tv + q \right\} &= 0.
\end{align*}
\]

6
Taking into account (24), (17) and (20), the entropy law reduces to the Clausius form:

\[
\frac{\partial \rho S}{\partial t} + \text{div} \left(\rho S \mathbf{v} + \frac{\mathbf{q}}{T} \right) = 0.
\] (22)

where the heat flux (12) is:

\[
\mathbf{q} = \rho T S \mathbf{u}_n + \frac{1}{2} \left(\rho_s u_s^2 \mathbf{u}_s + \rho_n u_n^2 \mathbf{u}_n \right).
\] (23)

In the diffusion velocity we neglect the third order terms and we obtain the Landau entropy law for the heat flux (24). The entropy flux becomes \(\rho S \mathbf{v}_n\) and the entropy is convected by the normal component

\[
\frac{\partial \rho S}{\partial t} + \text{div} \left(\rho S \mathbf{v}_n \right) = 0.
\] (24)

To focus on the thermal wave associated with the second sound we consider a rigid body at rest with constant density. For the superfluid component, the system of energy and momentum equations is:

\[
\frac{\partial \rho \varepsilon}{\partial t} + \text{div} \mathbf{q} = 0,
\]

\[
\frac{\partial \mathbf{v}_s}{\partial t} + \nabla \left(\frac{1}{2} v_s^2 + \mu_s \right) = 0,
\]

with \(\mathbf{q} = \rho T S \mathbf{v}_n\). Such a system is in the form (19) for a single fluid:

\[
\frac{\partial \rho \varepsilon}{\partial t} + \text{div} \mathbf{q} = 0
\]

\[
\frac{\partial (\alpha \mathbf{q})}{\partial t} + \nabla \nu = -b \mathbf{q}
\]

The system coincides with the one deduced by Ruggeri and coworkers for the model of second sound in crystals [14]. Such a model explains the change of form of the initial square thermal waves both in crystals [14, 15, 16] and in the superfluid helium [17].

3 The Hamiltonian Procedure for Two-Fluid Mixtures

To obtain the equations of motion and energy, the procedure is the following:

Let us suppose that the mixture of two miscible fluids is well described by the two-component velocities \(\mathbf{v}_1, \mathbf{v}_2\), the densities \(\rho_1, \rho_2\) and the intrinsic internal energy \(\beta = \rho \varepsilon_1\). The intrinsic internal energy is a Galilean invariant and does not depend on the reference frame. We consider the general case where \(\beta\) depends on \(\rho_1, \rho_2\) but also of the relative
velocity $w = v_1 - v_2$ through the norm $\omega = |v_1 - v_2| \[9\]$. The intrinsic kinetic energy is $E_c = \frac{1}{2} (\rho_1 v_1^2 + \rho_2 v_2^2)$.

Without dissipative effects, chemical reactions and with conservation of masses of the two components, an extended form of HAMILTON principle of least action is used in the form

$$\delta I = 0 \quad \text{with} \quad I = \int_{W_0} L \, dxdt,$$

where the Lagrangian is $L = E_c - \beta(\rho_1, \rho_2, \omega)$, $W = [t_0, t_1] \times D$ is a time-space cylinder and the variations must vanish on the boundary of W. The virtual motions of the mixture are defined in [9, 10].

From the variations of HAMILTON action, we obtain the equations of motions in the form

$$\frac{\partial k_a}{\partial t} + \text{curl } k_a \times v_a + \nabla \left(\frac{\partial \beta}{\partial \rho_a} - \frac{1}{2} v_a^2 + k_a v_a \right) = 0 \quad (a = 1, 2) \quad (25)$$

where

$$k_a = v_a - (-1)^a \frac{1}{\rho_a} \frac{\partial \beta}{\partial \omega}.$$

The momentum conservation law is obtained by summing on $a = 1, 2$ equation (25) multiplied by ρ_a:

$$\frac{\partial}{\partial t} (\rho_1 v_1 + \rho_2 v_2) + \nabla \left(\rho_1 \frac{\partial \beta}{\partial \rho_1} + \rho_2 \frac{\partial \beta}{\partial \rho_2} - \beta \right) + \text{div} \left(\rho_1 v_1 \otimes v_1 + \rho_2 v_2 \otimes v_2 - \frac{\partial \beta}{\partial \omega} \frac{w \otimes w}{\omega} \right) = 0 \quad (26)$$

Additive terms come from the dependance of β in ω and in the mechanical case $\rho_1 \frac{\partial \beta}{\partial \rho_1} + \rho_2 \frac{\partial \beta}{\partial \rho_2} - \beta$ represents the total pressure p.

The conservation of energy is obtained by summing on $a = 1, 2$ equation (26) multiplied by $\rho_a v_a$:

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \rho_1 v_1^2 + \frac{1}{2} \rho_2 v_2^2 + \beta + \omega \frac{\partial \beta}{\partial \omega} \right) + \text{div} \left(\rho_1 v_1 \frac{\partial \beta}{\partial \rho_1} + k_1 v_1 + \rho_2 v_2 \frac{\partial W}{\partial \rho_2} + k_2 v_2 \right) = 0. \quad (27)$$

In paragraph 2, we consider the case where β is independent of ω and the entropy principle (15) presented in [13] yields $\beta = \rho_1 \varepsilon_1(\rho_1) + \rho_2 \varepsilon_2(\rho_2)$. Then, equation (25) writes

$$\frac{\partial v_a}{\partial t} + \text{curl } v_a \times v_a + \nabla \left(\frac{1}{2} v_a^2 + \mu_a \right) = 0, \quad (a = 1, 2). \quad (28)$$

Multiplying equation (28) by ρ_a straightforward calculations yield equation (11) with $m_a = 0$. Equations (26, 27) yield equations (11)$_3$, (11)$_5$ and balance of mass equations
correspond to \(\tau_a = 0 \) \((a = 1, 2) \).

A purely mechanical case is the adiabatic one and we have verified the following results:

In the adiabatic case with intrinsic Lagrangian \(L = E_c - \rho \varepsilon I \) difference between the intrinsic kinetic energy and the intrinsic internal energy \(\rho \varepsilon I = \rho_1 \varepsilon_1 (p_1) + \rho_2 \varepsilon_2 (p_2) \), the system deduced from Hamilton principle coincides with the system coming from Rational Thermomechanics.

4 The Hamiltonian Procedure for Superfluid Helium

In the case of a binary mixture some change must be done in the definition of virtual motions presented by Serrin in [3]. Let us consider the motion of Helium II as two diffeomorphisms

\[
\mathbf{z} = M (\mathbf{Z}), \quad \mathbf{z} = M_n (\mathbf{Z}_n)
\]

where \(\mathbf{z} = \begin{pmatrix} t \\ \mathbf{x} \end{pmatrix} \) corresponds to the Eulerian variables in time-space and \(\mathbf{Z} = \begin{pmatrix} \lambda \\ \mathbf{X} \end{pmatrix}, \mathbf{Z}_n = \begin{pmatrix} \lambda_n \\ \mathbf{X}_n \end{pmatrix} \) correspond to the Lagrangian variables associated with the barycentric motion and the normal component motion of helium II. In coordinate form,

\[
M (\mathbf{Z}) = \begin{pmatrix} g (\lambda, \mathbf{X}) \\ \phi (\lambda, \mathbf{X}) \end{pmatrix}, \quad M_n (\mathbf{Z}_n) = \begin{pmatrix} g (\lambda_n, \mathbf{X}_n) \\ \phi_n (\lambda_n, \mathbf{X}_n) \end{pmatrix}
\]

We consider three one-parameter families of virtual motions which are sufficient to obtain the governing equations:

\[
(F) \begin{cases}
\tau = g (\lambda, \mathbf{X}) = g_n (\lambda_n, \mathbf{X}_n) \\
\mathbf{x} = \Phi (\lambda, \mathbf{X}, \varepsilon) \\
\mathbf{x} = \phi_n (\lambda_n, \mathbf{X}_n)
\end{cases}
\]

with \(\Phi (\lambda, \mathbf{X}, 0) = \phi (\lambda, \mathbf{X}) \),

\[
(F_n) \begin{cases}
\tau = g (\lambda, \mathbf{X}) = g_n (\lambda_n, \mathbf{X}_n) \\
\mathbf{x} = \phi (\lambda, \mathbf{X}) \\
\mathbf{x} = \phi_n (\lambda_n, \mathbf{X}_n, \varepsilon)
\end{cases}
\]

with \(\Phi_n (\lambda_n, \mathbf{X}_n, 0) = \phi_n (\lambda_n, \mathbf{X}_n) \),

\[
(F) \begin{cases}
\tau = G (\lambda, \mathbf{X}, \varepsilon) = G_n (\lambda_n, \mathbf{X}_n, \varepsilon) \\
\mathbf{x} = \phi (\lambda, \mathbf{X}) \\
\mathbf{x} = \phi_n (\lambda_n, \mathbf{X}_n)
\end{cases}
\]

with \(G (\lambda, \mathbf{X}, 0) = G_n (\lambda_n, \mathbf{X}_n, 0) = g (\lambda, \mathbf{X}) = g_n (\lambda_n, \mathbf{X}_n) \).

The three families generate the virtual displacements

\[
\zeta = \begin{pmatrix} 0 \\ \xi \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{\partial \Phi}{\partial \varepsilon} \end{pmatrix} \bigg|_{\varepsilon = 0}, \quad \zeta_n = \begin{pmatrix} 0 \\ \xi_n \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{\partial \Phi_n}{\partial \varepsilon} \end{pmatrix} \bigg|_{\varepsilon = 0}, \quad \zeta_t = \begin{pmatrix} \tau \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{\partial G}{\partial \varepsilon} \\ 0 \end{pmatrix} \bigg|_{\varepsilon = 0}
\]

9
The virtual motion \((\mathcal{F})\) generates an associated displacement \(\delta Z_n\) of the normal component. Indeed, the relations
\[
g(\lambda, X) = g_n(\lambda_n, X_1) \\
\phi_n(\lambda, X_n) = \Phi(\lambda, X, \varepsilon)
\]

imply
\[
\zeta = \begin{pmatrix}
\frac{\partial g_n}{\partial \lambda}, & \frac{\partial g_n}{\partial X_n} \\
\frac{\partial \phi_n}{\partial \lambda_n}, & \frac{\partial \phi_n}{\partial X_n}
\end{pmatrix} \delta Z_n
\]

By using the definition of the deformation gradient \(F\) proposed in Appendix we get
\[
\delta Z_n = \mathbf{C}_n \zeta \quad \text{with} \quad \mathbf{C}_n = \begin{pmatrix} 0 & 0 \\ -F_n^{-1}V_n & F_n^{-1} \end{pmatrix}
\]

In the same way, virtual motion \((\mathcal{F}_n)\) generates an associated displacement \(\delta_n Z\) of the barycentric motion
\[
\delta_n Z = \mathbf{C} \zeta_n \quad \text{with} \quad \mathbf{C} = \begin{pmatrix} 0 & 0 \\ -F^{-1}V & F^{-1} \end{pmatrix}
\]

Now, \(H(Z, \varepsilon)\) notes a perturbation of \(h(Z)\), the variation of \(h\) is
\[
\delta h = \left. \frac{\partial H}{\partial \varepsilon} \right|_{\varepsilon=0}
\]

We can also introduce Lagrangian variations corresponding to the families \((\mathcal{F}_n)\) and \((\mathcal{F}_t)\) :
\[
\delta_n h_n = \left. \frac{\partial H_n}{\partial \varepsilon} \right|_{\varepsilon=0} \quad \text{and} \quad \delta_t h_t = \left. \frac{\partial H_t}{\partial \varepsilon} \right|_{\varepsilon=0}
\]

The variations of the entropy \(S\) is a main step of our model: we make the physical assumption that the entropy \(S\) is defined on the \(Z_n\)-space. This result corresponds to equation (24) proposed by LANDAUS. Consequently, we deduce \(\delta_n S = 0\) and \(\delta_t S = 0\). From relation (29) we obtain
\[
\delta S = \frac{\partial S}{\partial Z_n} \delta Z_n = \frac{\partial S}{\partial X} \xi
\]

Following the Hamiltonian procedure presented in paragraph 3, we consider the Lagrangian \(L\) as a function of \(\rho, v, \rho_n, v_n, S\) \((L = L(\rho, v, \rho_n, v_n, S))\). Such is the case for the intrinsic Lagrangian \(L = \frac{1}{2}(\rho_n v_n^2 + \rho_s v_s^2) - \beta(\rho, \rho_n, S)\) where \(\rho_s\) and \(v_s\) are given by the relations :
\[
\rho_s = \rho - \rho_n \quad \text{and} \quad v_s = \frac{\rho v - \rho_n v_n}{\rho - \rho_n}.
\]
Consequently,
\[
\frac{\partial v_s}{\partial \rho} = \frac{1}{\rho_s} (v - v_s), \quad \frac{\partial v_s}{\partial \rho_n} = \frac{1}{\rho_s} (v_s - v_n), \quad \frac{\partial v_s}{\partial v} = \frac{\rho}{\rho_s} I, \quad \frac{\partial v_s}{\partial v_n} = -\frac{\rho_n}{\rho_s} I
\]

The variation of the Hamilton action corresponding to the first family is:
\[
\delta I = \int_{W_0} \delta (L \det B) \, dw_0
\]
where \(B = \frac{\partial z}{\partial Z} \) is the Jacobian of \(M \) and \(W_0 \) is the associated Lagrangian domain in the \((\lambda X)\)-space. Consequently,
\[
\delta I = \int_{W_0} (\delta L + L \text{ Div } \zeta) \det B \, dw_0.
\]

Variations of \(L \) come from
\[
\delta L = \frac{\partial L}{\partial v} \delta v + \frac{\partial L}{\partial v_n} \delta v_n + \frac{\partial L}{\partial \rho} \delta \rho + \frac{\partial L}{\partial \rho_n} \delta \rho_n + \frac{\partial L}{\partial S} \delta S.
\]
with,
\[
R = \frac{\partial L}{\partial \rho} = -\frac{1}{2} v_s^2 + v_s v - \beta'_{\rho_s}(\rho_n, \rho_s, S),
\]
\[
R_n = \frac{\partial L}{\partial \rho_n} = \frac{1}{2} v^2 + \frac{1}{2} v_s^2 - v_n v_s - \beta'_{\rho_n}(\rho_n, \rho_s, S) + \beta'_{\rho_s}(\rho_n, \rho_s, S),
\]
\[
\rho T = -\frac{\partial L}{\partial S}
\]
Moreover we have,
\[
\delta v_n = \frac{\partial v_n}{\partial Z_n} C_n \, \zeta = \frac{\partial v_n}{\partial x} \xi \quad \text{and} \quad \delta \rho_n = \frac{\partial \rho_n}{\partial Z_n} C_n \, \zeta = \frac{\partial \rho_n}{\partial x} \xi
\]
Since \(\zeta = \begin{pmatrix} 0 \\ \xi \end{pmatrix} \), we get (see Appendix for the variations \(\delta \rho \) and \(\delta v \) variations),
\[
\delta L + L \text{ Div } \zeta = \frac{\partial L}{\partial v} \frac{d\xi}{dt} + \frac{\partial L}{\partial v_n} \frac{\partial v_n}{\partial x} \xi - \rho \frac{\partial L}{\partial \rho} \text{ div } \xi
\]
\[
+ \frac{\partial L}{\partial \rho_n} \frac{\partial \rho_n}{\partial x} \xi + L \text{ div } \xi + \frac{\partial L}{\partial S} \frac{\partial S}{\partial x} \xi
\]
\[
= \rho v_s \frac{d\xi}{dt} + \rho_n (v_n - v_s) \frac{\partial v_n}{\partial x} \xi - \rho R \text{ div } \xi + R_n \frac{\partial \rho_n}{\partial x} \xi + L \text{ div } \xi + \frac{\partial L}{\partial S} \frac{\partial S}{\partial x} \xi
\]
By using the expression
\[\rho v_s \frac{d\xi}{dt} = \frac{\partial}{\partial t} (\rho v_s \xi) - \frac{\partial}{\partial t} (\rho v_s) \xi + \text{div} \left(\rho (v \otimes v_s) \xi \right) - \text{div} (\rho v \otimes v_s) \xi\]
we get
\[\delta L + L \text{ div} \xi = \delta L + L \text{ div} \xi = \frac{\partial}{\partial t} (\rho v_s \xi) - \frac{\partial}{\partial t} (\rho v_s) \xi + \text{div} \left(\rho (v \otimes v_s) \xi \right) - \text{div} (\rho v \otimes v_s) \xi + \rho_n v_n \frac{\partial v_n}{\partial x} \xi - \text{div} (\rho R \xi) + \nabla (\rho R) \xi + R_n \frac{\partial \rho_n}{\partial x} \xi + \text{div} (L \xi) + \frac{\partial L}{\partial \xi} \nabla S \xi \]
and from equations (31),
\[\delta L + L \text{ Div} \xi = \left(-\frac{\partial}{\partial t} (\rho v_s) - \text{div} (\rho v \otimes v_s) + \nabla (\rho R) - R \nabla \rho - \rho \left(\frac{\partial v}{\partial x} \right)^* v_s \right) \xi \]
\[+ \frac{\partial}{\partial t} (\rho v_s) \xi + \text{div} \left(\rho (v \otimes v_s) \xi \right) - \text{div} (\rho R \xi) + \text{div} (L \xi), \]
where * notes the transposition. Consequently, the first equation of momentum is
\[\frac{\partial v_s}{\partial t} + \nabla \left(\frac{1}{2} v_s^2 + \beta_{v_s} \right) = v_s \times \text{curl} v_s \tag{32}\]
If we note \(\mu_s = \beta_{v_s}\), when \(v \approx 0\), equation (32) yields
\[\frac{\partial v_s}{\partial t} + \nabla \left(\frac{1}{2} v_s^2 + \mu_s \right) = 0 \tag{33}\]
which is the LANDAU equation for the superfluid component. In fact LANDAU pointed out that Helium II lose its superfluidity when the velocity is not small enough and the supplementary term \(\text{curl} v_s \times v \approx 0\) corresponds to this experimental evidence.

Variations of the Hamilton action are closely the same for the second family. The variation of the entropy is \(\delta n S = 0\) and consequently an entropy term is now appearing in the equations of motion. The second equation of momentum is
\[\frac{\partial}{\partial t} (\rho_n (v_n - v_s)) + \text{div} \left(\rho_n (v_n \otimes (v_n - v_s)) \right) \]
\[+ \rho_n \left(\frac{\partial u_n}{\partial x} \right)^* (v_n - v_s) - \rho_n \nabla R_n - \rho T \nabla S = 0 \tag{34}\]
By summing equations (32) and (34), equation (34) can be replaced by the balance of total momentum:

$$\frac{\partial}{\partial t}\left(\rho v_s + \rho_n (v_n - v_s) \right) + \text{div} \left(\rho v \otimes v_s + \rho_s v_n \otimes (v_n - v_s) - \rho \frac{\partial L}{\partial \rho} - \rho_n \frac{\partial L}{\partial \rho_n} + L \right) = 0.$$

Straightforward calculations yield the equation of momentum

$$\frac{\partial \rho v}{\partial t} + \text{div} \left(\rho v_n \otimes v_n + \rho v_s \otimes v_s + p \right) = 0, \quad (35)$$

where $p = \rho_s \mu_s + \rho_n \mu_n - \beta$ is the total pressure, with $\mu_n = \beta' \rho_n$.

Finally, the third family is associated with the vector displacement $\zeta = \begin{pmatrix} \tau \\ 0 \end{pmatrix}$. The variations of basic variables are calculated in Appendix:

$$\delta_t v = -v \frac{d \tau}{dt}, \quad \delta_t \rho = \rho \nabla \tau \cdot v, \quad \delta_t v_n = -v_n \frac{d \tau}{dt}, \quad \delta_t \rho_n = \rho_n \nabla \tau \cdot v_n, \quad \delta_t S = 0.$$

The variation of the Hamilton action is

$$\delta_t I = \int_{\mathcal{W}_0} \left(\delta_t L + L \frac{\partial \tau}{\partial t} \right) \det B \, dw_0$$

with

$$\delta_t L = \frac{\partial L}{\partial v} \delta_t v + \frac{\partial L}{\partial v_n} \delta_t v_n + \frac{\partial L}{\partial \rho} \delta_t \rho + \frac{\partial L}{\partial \rho_n} \delta_t \rho_n + \frac{\partial L}{\partial s} \delta_t S.$$

Hence,

$$\delta_t L + L \frac{\partial \tau}{\partial t} = -\rho v_s v \left(\frac{\partial \tau}{\partial t} + \nabla \tau \cdot v \right) - \rho_n (v_n - v_s) v_n \left(\frac{\partial \tau}{\partial t} + \nabla \tau \cdot v_n \right)$$

$$+ \rho R \nabla \tau \cdot v + \rho_n R_n \nabla \tau \cdot v_n + \frac{\partial}{\partial t} (L \tau) - \frac{\partial L}{\partial \tau} \tau$$

$$= -\frac{\partial}{\partial t} (\rho v_s v \tau) + \frac{\partial}{\partial t} (\rho v_s v) \tau - \text{div} \left(\rho (v_s v) \tau \right) + \text{div} \left(\rho (v_s v) \tau \right)$$

$$- \frac{\partial}{\partial t} (\rho_n (v_n - v_s) v_n \tau) + \frac{\partial}{\partial t} (\rho_n (v_n - v_s) v_n) \tau - \text{div} \left(\rho_n (v_n - v_s) v_n \tau \right)$$

$$+ \text{div} \left(\rho_n (v_n - v_s) v_n \tau \right) + \text{div} (\rho R v \tau) - \text{div} (\rho R v \tau)$$

$$+ \text{div} (\rho_n R_n v_n \tau) - \text{div} (\rho_n R_n v_n) \tau + \frac{\partial}{\partial t} (L \tau) - \frac{\partial L}{\partial \tau} \tau.$$

Consequently,

$$\frac{\partial}{\partial t} (\rho v_s v + \rho_n (v_n - v_s) v_n - L) +$$
\[
\text{div}\{(\mathbf{v}_s \mathbf{v} - R) \rho \mathbf{v} + [(\mathbf{v}_n - \mathbf{v}_s) \mathbf{v}_n - R_n] \rho_n \mathbf{v}_n\} = 0
\]

If we notice that
\[
\rho \mathbf{v}_s \mathbf{v} + \rho_n (\mathbf{v}_n - \mathbf{v}_s) \mathbf{v}_n - L = \frac{1}{2} \rho_n v_n^2 + \frac{1}{2} \rho_s v_s^2 + \beta = \rho \varepsilon
\]
and
\[
(\mathbf{v}_s \mathbf{v} - R) \rho \mathbf{v} + \left((\mathbf{v}_n - \mathbf{v}_s) \mathbf{v}_n - R_n \right) \rho_n \mathbf{v}_n = \left(\frac{1}{2} v_n^2 + \beta' \rho_n \right) \rho_s \mathbf{v}_s + \left(\frac{1}{2} v_n^2 + \beta' \rho_n \right) \rho_n \mathbf{v}_n = \mathbf{q},
\]
we obtain the equation of balance of the total energy in the form:
\[
\frac{\partial \rho \varepsilon}{\partial t} + \text{div} \mathbf{q} = 0.
\] (36)

We notice that the specific entropy \(S \) does not appear explicitly anymore in equations (32), (35), (36) and we conclude: In the case of superfluid Helium the Hamilton principle yields the Landau model.

5 Appendix. Variation of Basic Tensorial Quantities

Let \((\lambda, \mathbf{X})\) be any generalized Lagrangian coordinates and \((t, \mathbf{x})\) the associated Eulerian coordinates
\[
\begin{cases}
 t = g(\lambda, \mathbf{X}) \\
 \mathbf{x} = \phi(\lambda, \mathbf{X}).
\end{cases}
\] (37)

The relation \(d\mathbf{x} = \mathbf{v} dt + Fd\mathbf{X}\) defines simultaneously the velocity vector and the deformation gradient of motion (37):
\[
\mathbf{v} = \frac{\partial \phi}{\partial \lambda} \frac{1}{\partial g} \quad F = \frac{\partial \phi}{\partial \mathbf{X}} - \frac{\partial \phi}{\partial \lambda} \frac{\partial g}{\partial \mathbf{X}} \frac{1}{\partial \lambda}.
\]

Let \(\begin{cases}
 t = G(\lambda, \mathbf{X}, \varepsilon) \\
 \mathbf{x} = \Phi(\lambda, \mathbf{X}, \varepsilon)
\end{cases} \) be a virtual motion. The associated perturbation of the velocity \(\mathbf{v} \) is given by the formula:
\[
\mathbf{u} = \frac{\partial \Phi}{\partial \lambda} \frac{1}{\partial \lambda} G
\]

and consequently,
\[
\delta \mathbf{v} = \left. \frac{d \mathbf{u}}{d \varepsilon} \right|_{\varepsilon = 0} = \frac{\partial \xi}{\partial \lambda} \frac{1}{\partial \xi} - \frac{\partial \tau}{\partial \lambda} \frac{1}{\partial \lambda}.
\]

For fixed values of Lagrangian coordinates the variation of \(\mathbf{v} \) in Eulerian coordinates is:
\[
\delta \mathbf{v} = \frac{d \xi}{dt} - \mathbf{v} \frac{d \tau}{dt} \quad \text{where} \quad \frac{d}{dt} = \frac{\partial}{\partial t} + \mathbf{v} \frac{\partial}{\partial \mathbf{x}}.
\]
Analogous calculation for \mathbf{F} is:

$$\delta \mathbf{F} = \left(\frac{\partial \mathbf{\xi}}{\partial \mathbf{x}} - \mathbf{v} \frac{\partial \mathbf{\tau}}{\partial \mathbf{x}} \right) \mathbf{F}.$$

Moreover, the Euler-Jacobi identity yields

$$\delta \det \mathbf{F} = \det \mathbf{F} \ \text{tr} \left(\mathbf{F}^{-1} \delta \mathbf{F} \right).$$

Hence, the mass conservation law is: $\rho \det \mathbf{F} = \rho_0 (\mathbf{X})$ and implies

$$\delta \rho = -\rho \left(\text{div} \mathbf{\xi} - \nabla \mathbf{\tau} \cdot \mathbf{v} \right)$$

Equation (11) is the form of the mass balance for the normal component of Helium. If we assume

$$\rho_n \det \mathbf{F}_n = \rho_{0n} (\lambda_n, \mathbf{X}_n),$$

which means that ρ_n is defined on the Lagrangian space of the normal component, the variation of ρ_n with respect to δ_n is always in the form:

$$\delta_n \rho_n = -\rho_n \left(\text{div} \mathbf{\xi}_n - \nabla \mathbf{\tau} \cdot \mathbf{v}_n \right).$$

Acknowledgment: The present paper was developed during the stay of Henri Gouin as visiting professor in C.I.R.A.M. of the University of Bologna with a fellowship of the Italian C.N.R.

References

